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Oral squamous cell carcinoma (OSCC) is one of the deadliest and most common types of cancer. The incidence of OSCC is
increasing annually, which requires early diagnosis to receive appropriate treatment. The biopsy technique is one of the most
important techniques for analyzing samples, but it takes a long time to get results. Manual diagnosis is still subject to errors and
differences in doctors’ opinions, especially in the early stages. Thus, automated techniques can help doctors and patients to receive
appropriate treatment. This study developed several hybrid models based on the fused CNN features for diagnosing OSCC-100x
and OSCC-400x datasets for oral cancer, which have the ability to analyze medical images with a high level of precision and
accuracy. They can detect subtle patterns, abnormalities, or indicators of diseases that may be difficult to recognize with the naked
eye. The systems have the potential to significantly reduce human error and provide more consistent and reliable results, resulting
in improved diagnostic accuracy. The systems also have the potential for early detection of OSCC for treatment success and
improved patient outcomes. By detecting diseases at an early stage, clinicians can initiate interventions in a timely manner,
potentially preventing OSCC progression and improving the chances of successful treatment. The first strategy was based on
GoogLeNet, ResNet101, and VGG16 models pretrained, which did not achieve satisfactory results. The second strategy was based
on GoogLeNet, ResNet101, and VGG16 models based on the adaptive region growing (ARG) segmentation algorithm. The third
strategy is based on a mixed technique between GoogLeNet, ResNet101, and VGG16 models and ANN and XGBoost networks
based on the ARG hashing algorithm. The fourth strategy for oral cancer diagnosis by ANN and XGBoost is based on features
fused between CNN models. The ANN with fusion features of GoogLeNet-ResNet101-VGG16 yielded an AUC of 98.85%,
accuracy of 99.3%, sensitivity of 98.2%, precision of 99.5%, and specificity of 98.35%.

1. Introduction

Oral squamous cell carcinoma (OSCC) is one of the most
common types of cancer worldwide that arise in the oral
cavity. The incidence and death rate of OSCC are increasing
annually [1]. According to the International Agency on
Cancer, the number of infections in 2020 reached 377,000
new cases and more than 177,000 deaths worldwide [2]. The
increasing number of patients compared to doctors is

a health problem; the inability of oral cancer patients to
achieve a diagnosis in rural areas and receive treatment
promptly means the survival rate for five years is 15%. In
contrast, the five-year survival rate [3] in developed coun-
tries is about 65%. The OSCC is aggressive, and multiple
chemotherapy, radiotherapy, or surgical intervention
treatments are necessary [4]. OSCC cancer represents 90% of
all types of oral cancer and is the most aggressive, and late
diagnosis leads to death [5]. OSCC arises as epithelial
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dysplasia from precursor lesions termed potentially malig-
nant oral disorders (PMODs). Leukoplakia, oral lichen, and
erythroplakia lead to their development into malignant
tumors if neglected without a diagnosis [6]. Studies have
shown that PMOD changes into homogeneous and het-
erogeneous symptoms; heterogeneous symptoms are likely
to turn into malignant lesions if not diagnosed early [7].
Thus, distinguishing between malignant clinical features of
PMOD is a concern. The OSCC must therefore be diagnosed
early to diagnose malignancies at the PMOD stage. There are
many risk factors for OSCC, such as alcohol and tobacco use,
infection with HPV, age, gender, and family history [8].
There are many clinical indicators of the possibility of in-
fection with OSCC that must be taken into account; a doctor
should be consulted immediately, the most important of
which are mouth ulcers that do not heal, red and white sores
in the tongue, lips, or mouth that do not heal, swelling of the
jaw, and difficulty swallowing or speaking [9]. At present,
manual assessment examination through visual and tactile
analysis followed by tissue biopsy is the gold standard for
diagnosing the type of lesion [10]. A biopsy is to take part of
the tissue of the suspected area and complete its analysis with
hematoxylin-eosin and analyze it with special microscopic
devices [11]. However, the process is boring, tedious, takes
a long time to analyze pathological tissues, and is subject to
the differing opinions of experts and specialists. Also, the
wide gap between the number of doctors and patients, es-
pecially in developing countries and rural areas in developed
countries, poses a challenge to the early diagnosis of OSCC.
Therefore, early diagnosis of OSCC is necessary to receive
treatment and avoid its development to dangerous stages.
Computer-assisted systems improve patients’ chances of
survival through early diagnosis of OSCC. Artificial in-
telligence (AI) technologies have participated in various
healthcare fields, such as analyzing medical images for early
detection of tumors and diseases. Al techniques train models
with a large part of the data set so that they gain experience
and knowledge and store them, and then, their performance
is tested through new images whose features are extracted
and compared with the stored features and then classified
based on the similarity between the features of the new
image with the stored features (data trained). Al technol-
ogies have worked to identify biomarkers for OSCC pre-
diction, reduce clinicians’ burden, and interpret complex
data in histopathological images. In recent years, deep
learning techniques have emerged with their superior ability
to analyze medical images compared to the performance of
human experts. In this work, artificial intelligence tech-
niques were developed that combine deep learning networks
and machine learning algorithms along with histopatho-
logical image optimization techniques. Clinical indicators
that are not visible to the naked eye are similar to benign and
malignant tumors in the early stages, which constitutes
a challenge for doctors, so features were extracted by many
deep learning models and converted into high-level vector
features by global average pooling, then combined high-level
feature maps to produce new feature maps, and then send
them to machine learning algorithms for classification.
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The novelty of this paper lies in the combination of
specific AI techniques and features for the early detection of
OSCC using histopathological images. Here are the key
aspects that contribute to the novelty of this paper: The paper
proposes the use of a combined set of CNN features for
histopathological analysis of OSCC. CNNs have proven
effective in image classification tasks, including medical
imaging. However, the novelty lies in combining multiple
CNN features to capture diverse aspects of the histopath-
ological images. This combination of features enhances the
representation and discriminative power of the hybrid
model, leading to improved performance in detecting early
signs of OSCC lesions. The paper focuses on the early de-
tection of OSCC lesions using histopathological images.
Early detection is crucial for successful treatment and im-
proved patient outcomes in OSCC cases. By employing
hybrid systems and combining CNN features, the proposed
approach aims to enhance the accuracy and efficiency of
early OSCC lesion detection, contributing to timely in-
terventions and potentially saving lives. Histopathological
images require specialized analysis techniques due to their
unique characteristics, such as color variations, structural
patterns, and asymmetries. The paper specifically addresses
the challenges associated with histopathological image
analysis and proposes hybrid systems tailored for this do-
main. The novelty lies in the adaptation of hybrid systems
and CNN features to effectively extract relevant information
from histopathological images, enabling accurate diagnosis
and detection of OSCC lesions. Overall, the novelty of the
paper lies in the specific application of hybrid systems, the
combination of CNN features for histopathological image
analysis, the focus on early detection of OSCC lesions, and
the adaptation of hybrid systems to address the challenges of
analyzing histopathological images. These contributions can
potentially advance the field of histopathology and improve
the accuracy and efficiency of OSCC lesion detection, aiding
in early diagnosis and intervention.

Using artificial intelligence (AI) techniques for di-
agnosing medical images offers several benefits, but it also
comes with certain risks. Here are some of the potential
benefits and risks associated with the use of Al in medical
image diagnosis. The benefits are Al algorithms can analyze
medical images with high precision, potentially leading to
more accurate and consistent diagnoses. They can detect
subtle patterns, variations, or abnormalities that might be
difficult for human observers to identify. Al algorithms can
process medical images quickly, allowing for faster di-
agnoses and reducing the time required for analysis. This can
lead to more efficient workflows and improved patient
outcomes, particularly in time-sensitive cases. Al techniques
can help overcome geographical barriers by providing access
to expert-level diagnoses in regions with limited healthcare
resources. This can bridge the gap in specialized medical
expertise and ensure patients receive timely and accurate
assessments regardless of their location. Al algorithms can
serve as decision support tools for healthcare professionals.
By providing additional insights and highlighting potential
areas of concern, they can aid physicians in making more
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informed decisions and developing appropriate treatment
plans. AT can process and analyze vast amounts of medical
imaging data, leading to valuable insights and discoveries. It
can uncover patterns, correlations, and trends that may not
be readily apparent to human observers, potentially ad-
vancing medical research and improving patient care.

The risks are Al algorithms heavily rely on the training
data they are exposed to. If the training data are limited,
biased, or not representative of the target population, the
algorithm’s performance may be compromised. This can
lead to inaccurate diagnoses or the potential for algorithmic
bias, especially in underrepresented groups. Al algorithms
often work as black boxes, making it challenging to un-
derstand how they arrive at their diagnoses. This lack of
transparency can raise concerns regarding the in-
terpretability of results and may hinder the trust and ac-
ceptance of Al-based diagnoses among healthcare
professionals and patients. Medical images contain sensitive
patient information. When using Al, there is a risk of un-
authorized access, data breaches, or the potential for the
misuse of patient data. Implementing robust security
measures and ensuring compliance with privacy regulations
are crucial to mitigate these risks. Al raises ethical concerns
related to responsibility, accountability, and liability. De-
termining who is responsible for errors or adverse outcomes
when Al is involved can be complex. Ensuring proper
oversight, regulation, and adherence to ethical guidelines are
essential to address these concerns. Integrating Al into
medical practice requires effective collaboration between
healthcare professionals and AI systems. Striking the right
balance between the expertise of healthcare professionals
and the capabilities of Al algorithms is crucial to maximize
the benefits and minimize potential risks.

It is important to note that while AI techniques have
shown promising results in medical image diagnosis, they
are not intended to replace healthcare professionals. Al
should be viewed as a supportive tool that complements the
expertise and clinical judgment of physicians, aiding in more
accurate diagnoses and personalized treatment decisions.

The main contributions to this study are as follows:

(1) Increase the contrast of low-contrast areas and
remove artifacts by two successive techniques

(2) Development of an ARG algorithm to segment re-
gions of interest in OSCC-100x and OSCC-400x
images and isolate them from healthy tissues

(3) Development of hybrid techniques between CNN
models, ANN networks, and XGBoost based on the
ARG algorithm for effective diagnosis of histo-
pathological images of oral cancer

(4) Developing effective hybrid techniques to combine
features of CNN models and diagnosis by ANN and
XGBoost networks for accurate diagnosis of histo-
pathological images of oral cancer

The rest of the study is arranged as follows: Section 2
discusses the techniques and findings of relevant previous
studies. Section 3 explains the tools and methodologies
applied for the histopathological analysis of oral cancer.

Section 4 summarizes the most critical performance results
of the proposed methodologies. Section 5 compares the
performance of the methodologies. Section 6 concludes
the work.

2. Related Work

Alabi et al. [12] model pipeline based on the CNN for OSCC
detection, encompassing precise diagnosis and precision
medicine. It highlights the potential of CNN in analyzing
oral cancer data, such as imaging and genomic information,
to improve diagnostic accuracy. The paper emphasizes the
importance of integrating these techniques into clinical
practice to enable personalized treatment strategies for oral
cancer patients. Lin et al. [13] obtained images of oral
cavities and employed the HRNet model for diagnosing
them. The HRNet model outperformed the ResNet50 and
DenseNet169 models, demonstrating an accuracy of 84.3%
and a sensitivity of 83%. Rahman et al. [14] proposed
a methodology for prognosticating histopathologic oral
cancer through the utilization of biopsy samples from pa-
tients with OSCC. The method incorporates transfer
learning, which leverages pretrained deep learning models to
extract meaningful features from the biopsy images. By
training the model on a large dataset, the proposed approach
achieves accurate prediction of histopathologic oral cancer.
The results demonstrate the potential of this technique in
assisting clinicians in the diagnosis and treatment planning
of OSCC. The approach achieved an accuracy of 90.06%. Fati
et al. [15] employed a combination of deep learning tech-
niques, including SVM and ANN, integrated with both deep
learning-based features and manually crafted features, to
diagnose OSCC in biopsy images. AlexNet + SVM achieved
an accuracy of 97.1% and a sensitivity of 97.81%. Warin et al.
[16] used the DenseNet121 model and R-CNN to train 490
oral biopsy images of OSCC and compared the performance
of the two systems on 140 test images. The DenseNet121
model achieved better accuracy than R-CNN, with the
DenseNet121 model achieving an accuracy of 99%, while
R-CNN yielded an accuracy of 76.67%. Camalan et al. [17]
developed the inception-ResNet-V2 model and created
maps to focus on the affected area to make a classification
decision, which achieved an accuracy of 73.6% and an F1
score of 97.9%. Musulin et al. [18] integrated the Xception
and SWT approach that works in two phases for multiclass
classification and segmentation of stroma and epithelial
histology to help clinicians to classify OSCC. The DeepLabv3
approach with Xception_65 achieved an accuracy of 96.3%
and semantic segmentation of 87.8%. Lin et al. [19] de-
veloped a Genetic and Epigenetic Network (GWGEN)
utilizing the GRN and PPIN systems to identify samples of
OSCC and non-OSCC. Das et al. [20] employed a 10-layer
CNN for the purpose of automatic identification of OSCC.
The study involved evaluating the performance of their CNN
model by comparing it to pretrained CNN models. The
network performed better than the CNN models for eval-
uating a dataset of 1224 histological images, which achieved
an accuracy of 97.82%. Jing et al. [21] utilized machine
learning algorithms to forecast the progression from



leukoplakia to oral cancer. Their approach involved exam-
ining the shared weighted gene network and differential
expression patterns to identify seven genes that are corre-
lated with the development of leukoplakia into oral cancer.
Yang et al. [22] developed a deep learning algorithm to
detect OSCC. The algorithm underwent training using
a dataset consisting of 1925 images and was subsequently
tested on 100 images. The results of the evaluation dem-
onstrated a sensitivity of 98%, specificity of 92%, and an F1
score of 95.1%. Additionally, the same set of 100 images was
assessed by a pathologist, who achieved an F1 score of
92.21%. However, when utilizing the deep learning model,
the pathologist's F1 score improved to 95.66%. Amin et al.
[23] adapt three pretrained CNN models to extract features
individually and then extract the features sequentially. Se-
quential models achieved better results than individual
models, which reached an accuracy of 96.66% and a recall of
98.3%. Deo et al. [24] extract features by two-dimensional
wavelet transform and then apply two pretrained CNN
models for OSCC detection; the model achieved an accuracy
0f 92%. Ghosh et al. [25] utilized Fourier Transform Infrared
Spectroscopy and Raman spectroscopy techniques to ana-
lyze the spectral characteristics of oral cancer samples,
aiming to detect and diagnose epi-genetic alterations as-
sociated with the disease. The DRNN layer is used to detect
and classify peak epigenetic features that achieve an AUC of
88%. Deif et al. [26] used four DL models to extract and
identify important features through the BPSO tool. The
selected features were rated by XGBoost, which achieved an
accuracy of 96.3%.

Panigrahi et al. [27] investigated the effectiveness of
capsule networks in identifying and classifying cancerous
cells in these images. The study utilizes a dataset of OSCC
images and applies a capsule network architecture for feature
extraction and classification. The paper concludes that the
capsule network shows promising potential for the analysis
of OSCC histopathological images, suggesting its usefulness
as a tool for assisting in the diagnosis and treatment of oral
cancer. The system reached an accuracy of 97.35%, a sen-
sitivity of 96.92%, and a specificity of 97.78%. Wu et al. [28]
developed an automated approach for accurate and efficient
region segmentation. The proposed model employs various
machine learning techniques and a dataset of H&E-stained
histology images from multiple centres. The approach
achieved an accuracy of 95.8%, a sensitivity of 79.1%, and
a precision of 85.7%. Das et al. [29] developed an efficient
and accurate method for identifying cancerous cells in these
images. The proposed CNN model is trained on a dataset of
histopathological images and employs various layers for
feature extraction and classification. ResNet101 achieved an
accuracy of 89%, sensitivity of 93%, precision of 89%, and
specificity of 88%. Myriam et al. [30] introduced a novel
meta-heuristic algorithm that combines particle swarm
optimization (PSO) and Al-Biruni Earth Radius Optimi-
zation (ABERO) methods for the detection of oral cancer.
The algorithm enhanced the accuracy and efficiency of oral
cancer detection by leveraging the strengths of both PSO and
ABERO. PSO-ABERO achieved an accuracy of 97.3%,
a sensitivity of 94.3%, and a precision of 96.3%. Panigrahi
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et al. [27] explored the use of capsule networks for analyzing
histopathological images of oral squamous cell carcinoma
(OSCC). The authors propose a novel approach that le-
verages the advantages of capsule networks to improve the
accuracy of OSCC analysis through the dynamic routing
consensus of capsule network. The capsule networks
achieved an accuracy of 97.35%, a sensitivity of 97.78%, and
a precision of 96.92%.

From the above, the gaps in previous studies that have
been addressed in this study can be summarized as follows:

(1) Limited Feature Extraction: Previous studies have
used traditional feature extraction methods that may
not capture complex patterns and textures in his-
topathological images effectively. This research can
address this gap by utilizing several models of CNNs,
which are known for their ability to automatically
learn relevant features directly from images and
integrate them into feature vectors.

(2) Insufficient Classification Accuracy: Previous studies
have encountered challenges in achieving high ac-
curacy in classifying OSCC based on histopatho-
logical images. This research can address this gap by
combining multiple CNN features and taking ad-
vantage of complementary information to improve
classification accuracy.

(3) Lack of Robustness: Previous studies have struggled
with decreased robustness when dealing with dif-
ferences in image quality, lighting conditions, and
different acquisition devices. This research has
addressed this gap by integrating two overlapping
techniques to enhance the robustness of the pro-
posed Al techniques, by removing noise and in-
creasing the low contrast of the edges of cancer cells.

(4) Limited Focus on Early Diagnosis: Previous studies
focused mainly on the general classification of OSCC
without focusing specifically on early diagnosis. This
research can address this gap by specifically targeting
early diagnosis of OSCC, bearing in mind that early
intervention can significantly improve patient
outcomes.

(5) This study was distinguished from previous studies
by applying hybrid techniques based on the ex-
traction of hidden features that are not visible to the
naked eye through the extraction of hybrid features
of the features of deep learning models.

3. Materials and Methods

3.1. Description of OSCC Dataset. This work evaluated the
proposed systems on histopathological images taken as a bi-
opsy from the oral cancer histology dataset’s oral cavity. The
data set was obtained from the Institute of Cancer Research
Dr. B Borooah and Ayursundra Healthcare Pvt. Lt. Images of
the dataset were acquired by a Leica ICC50 HD microscope at
magnification factors size of 100x and 400x [31]. The dataset
contains 1224 histopathological images divided into two
groups, with a magnification factor of 100x and 400x. Each
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magnification factor contains images of normal epithelium
and histopathology of OSCC. First, a dataset with a magni-
fication factor of 100x contains 528 images divided into 89
normal oral histological images and 439 histological images of
OSCC. Second, a dataset with a magnification factor of 400x
contains 696 images divided into 201 images of normal oral
epithelium and 495 histological images of OSCC. All dataset
images are at 100x and 400x magnifications with a size of
2048 x 1536 pixels. Figure 1(a) shows sample histopatho-
logical images of an OSCC dataset at a magnification of 100x,
while Figure 2(a) shows histopathological samples of an
OSCC dataset at a magnification of 400x.

3.2. Enhancing Histopathological Images of OSCC.
Dataset images contain artifacts due to the preparation of
biopsies, such as different staining and luminance at image
acquisition. Hence, these artifacts impair the performance of
CNN models and machine learning algorithms. The image
optimization step is crucial to eliminate artifacts, standardize
the colors of all images, and make systems robust for image
classification. A mean of RGB primary colors is calculated,
and then, the scale is set to calculate color consistency. Images
were passed to an averaging filter to eliminate artifacts and
a contrast-limited adaptive histogram equalization (CLAHE)
technique to increase the contrast of ROI pathological [32].

First, the average filter works by setting its operator to 4 x 4,
which means the filter will cover 16 pixels of the image to be
processed each time. The filter selects one central pixel and
calculates the average of the 15 adjacent pixels [33]. The process
is repeated with the number of pixels in the image until all
pixels have been processed, as shown in the following equation:

m—1

2= Y x(y i), (1)

i=

where z (y) is the output, m is the number of pixels, a (x) is
the input, and x (y —i) is the earlier input.

Second, to show the contrast of the affected pathological
tissues by increasing the contrast of the edges using the
CLAHE technique, this technology works on processing each
pixel in the image based on neighboring pixels by distributing
the bright pixels to the dark areas of the image [34]. A pixel is
compared to its neighbors, and contrast is increased or de-
creased by comparison. If the value of the target pixel is
greater than the value of the neighboring pixels, the contrast
decreases whereas the contrast increases if the value of the
target pixel is smaller than the value of neighboring pixels.

Figure 1(b) shows histopathological images of the OSCC
dataset at 100x magnification after improvement, while
Figure 2(b) shows histopathological samples of the OSCC
dataset at 400x magnification after improvement.

3.3. Adaptive Region Growing. Images of pathological tissues
consist of two parts: regions of interest (ROI) named the
affected regions and unimportant regions named healthy
regions [35]. Therefore, extracting features from all the
images leads to inaccurate diagnostic results. Therefore, it is
necessary to separate the regions with interest from other

regions by segmentation algorithms [36]. The segmentation
algorithms separate the affected pixels from health. In this
study, the adaptive region growing (ARG) algorithm collects
similar pixels in ROI. For the sake of the success of the
algorithm, it must meet the following conditions:

1) ULx; =x
2) x;=1,2,...... , N is connected
(3) P(x;) = TRUE for1,2,...... N

(4) P(x; ij)FALSE for i # j Where
x; and x; are neighboring regions

First, the segmentation process must be complete. Second,
all the like pixels should be in one area, and the union of all
regions leads to the full image. Pixels of the same area should be
connected. Third, similar pixels should be correct when ap-
plying full pixels of the image. Fourth, there are no similar
pixels in different regions. The algorithm work mechanism
from bottom to up starts with pixels, and similar pixels are
collected to form regions. The algorithm uses local information
to create the region. The fundamental concept of the ARG
algorithm involves initiating a single pixel for each region, and
then allowing the regions to expand progressively, ensuring
that neighboring units with similarities are grouped together
within the same area. The edges regions grow with similar
pixels; the process continues until each pixel is assigned to its
area. The ARG algorithm works to collect adjacent pixels x; to
x; inside ROI based on |I (x;) — I (x;)| < T, where Tis the value
of the fixed threshold and I (-) is the value of the pixel density.
The aim of applying this algorithm is to extract regions of
interest only and feed them to the following stages for analysis.
This method is one of the essential contributions of this study,
as the interest regions of the OSCC data group have been
extracted and saved in a new folder called OSCC-ROIL. In all
literary studies, CNN models receive the OSCC dataset and
work to analyze and classify while distinguishing our study is
that CNN models receive the OSCC-ROI dataset and work to
analyze and extract their advantages. Figure 3 shows samples of
the pathological tissue of OSCC after ROI extract.

3.4. Extracting CNN Maps. One of the main aspects of
CNN models is their superior ability to extract features from
input images. CNN models can automatically interpret and
analyze the most representative and relevant features. Thus,
CNN models are successive layers for feature discovery: the first
layers that follow the input layer extract low-level features while
other layers extract higher-level features. Low-level features,
such as points and edges, are fed back to the next layers to form
the high-level features. The layers of CNN models consist of
convolutional, pooling, fully connected, and auxiliary layers [37].

First, convolutional layers receive images from the input
layer, analyze them, and extract low-level features, followed by
high-level features. Each CNN model consists of convolutional
layers different from the other model, among the most im-
portant CNN layers. Three main parameters controlling
convolutional layers’ action are filter size, zero padding, and p-
step [38]. Each layer has a filter of a different size than the other
filter. The filter f{() of a given size wraps around an area of the
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target image x(f) of the same size as the filter as in equation (2).
The benefit of zero padding is preserving the original image’s
size by inserting zeros around the image edges. P-step specifies
the number of steps the filter jumps on the image each time;
when p-step =2, the filter jumps 2 steps each time [39].

y(8) = (x = f)(£)

(2)
- Jx(a)f(t —a)da,
where f(t) refers to the filter, and x(¢) and y(¢) refer to the
input and output image.

The output of each neuron in the CNN by calculating the
input of the previous neuron W, the filter size K, the number
of P-steps S, and the zero padding P is shown in the following
equation:

W -K+2P
_—+

S I8 (3)

Output Neurons =
where W indicates the size of the input neurons, K is the size
of the filter, P is the size of the padding, and S indicates the
stride.

Pooling layers reduce the millions of neurons, pa-
rameters, and connections generated by convolutional
layers, which requires complex and time-consuming cal-
culations. There are two-layer pooling methods, max
pooling and average pooling [40]. With max pooling, the
largest value of the selected pixels will be taken and rep-
resented in one cell. In the case of average pooling, the
average value of the selected pixels will be calculated and
represented in one cell. Thus, pooling layers reduce the size
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Dataset with a magnification factor of 100x

Dataset with a magnification factor of 400x

FIGURE 3: Samples from the OSCC dataset at magnifications of 100x and 400x: (a) original images, (b) segmentation of infected histo-

pathological, and (c) and (d) regions of interest.

of the underlying feature maps, making calculations more
efficient [41].

Some convolutional layers follow the ReLU activation
layer, which receives feature maps and passes positive values,
while converting negative values in the maps to zero, as
shown by the following equation:

» x20

ReLU (x) = { * (4)
0, x<0.

Fully connected layers are among the most critical layers
of CNN models for figuring out the hierarchy and classi-
fication of features. Each neuron in the FCL is connected to
all neurons of the previous layer. FCL converts features from
high-level 2D to flat (vectors) [42].

Finally, the SoftMax activation function is used, which
divides the output into multiple classes according to the
dataset classes and labels each feature vector to a specific
class, as in the equation.

In this approach, the deep feature maps were extracted
using GoogLeNet, ResNet101, and VGG16 models and
classified by machine learning algorithms. The last con-
volutional layers produce higher-level features as follows:
(7,7, 512), (3, 3, 512), and (7, 7, 512), respectively. The last
layer of the models is the global average pooling layer after
the high-level convolutional layers, which converts high-

level features into low-level features stored in feature
vectors of sizes 4096, 2048, and 4096 for GoogLeNet,
ResNet101, and VGGI16, respectively. Thus, the data set
becomes represented by a features matrix: first, a data-
set-100x with sizes 4069 x 528, 2048 x 528, and 4096 x 528
for GoogLeNet, ResNetl101, and VGGI6, respectively.
Second, a data-set-400x with sizes 4069 x 696, 2048 x 696,
and 4096 x 696 for GoogLeNet, ResNet101, and VGG16,
respectively.

3.5. Classification. Classification is the last stage in bio-
medical image processing, which depends on the efficiency
of the previous stages. After extracting the features of the
histopathological images of OSCC cancer from the ROI by
CNN models, each image feature was placed into a vector,
and all the image features were represented in the feature
matrix, which is input to the PCA algorithm. PCA selects
highly representative features, deletes redundant and un-
important features, and outputs them as input to ANN and
XGBoost. After feature reduction using PCA, the feature
matrices for two datasets become: first, the data-set-100x
with sizes 660 x 528, 530 x 528, and 680 x 528 for GoogLe-
Net, ResNet101, and VGG16, respectively, and second, the
data-set-400x with sizes 660 x 696, 530 x 696, and 680 x 696
for GoogLeNet, ResNet101, and VGG16, respectively.



3.5.1. ANN Network. ANN network is a mathematical
model inspired by how the nervous system processes data or
images. ANN works through interconnected processing
units; neurons receive data from previous neurons with
weights associated with each neuron [43]. The most im-
portant component of ANNs is neurons, which convert
input data into output. The data are modified by the weight
factor that connects the neurons. ANN has the ability to
adjust weights based on trial and error, which makes ANN
adaptable to different types of inputs and has the ability to
learn. An ANN has three layers: the input, which receives
data from outside the network. Hidden layers are layers
within the network that receive data from the input layer and
process the data and update the weights each time [44]. ANN
measures the minimum square error (MSE) between the
actual values x; and the output y;, and through it, the
weights are calculated as in equation (5). In this study, the
number of hidden layers was set to 15 through training and
trial and error. Output layers contain an activation function
to label the data and sort it into two classes, either normal or
oral cancer.
L 2

1
MSE:EFZI(xj_yj) , (5)

where m is the data points.

3.5.2. XGBoost Algorithm. XGBoost is a powerful and ef-
ficient algorithm based on the ensemble learning method.
Due to the poor performance of the single-learning model
algorithms, algorithms based on ensemble learning were
developed to obtain a powerful predictive model [45]. The
network produces decision trees sequentially, each with
a different weight. The network produces an effective model
by integrating weak learners with strong ones, called
boosting. The idea of boosting is that each subsequent tree
performs better than the previous tree so that each sub-
sequent tree takes advantage of the weaknesses of the pre-
vious tree and updates the parameters [46]. Boosting results
in a strong learner model by treating weak learners with
successor trees. The network continues until a strong learner
model with high prediction efficiency is generated.

3.6. Training of Proposed Systems

3.6.1. Training of Pretrained Models. The first strategy for
classifying histopathological images of oral cancer is used by
applying pretrained GoogLeNet, ResNet101, and VGG16
models [47]. The OSCC dataset is fed into models, and CNN
layers analyze images to extract features by convolutional
layers and pooling and classification through fully connected
layers [48].

The second strategy is to diagnose histopathological
images of oral cancer through the following sequence of
steps: first is applying the averaging filter and CLAHE
method to improve the images. The second is the application
of the ARG method to extract ROI and isolate them from
other tissues and save them in a new OSCC-ROI dataset
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folder. Third is feeding the new data set to GoogLeNet,
ResNet101, and VGG16 models to extract and classify the
features.

3.6.2. Training of Hybrid Method. The third strategy is to
analyze histopathological images for the diagnosis of oral
cancer by hybrid systems through the sequence of the fol-
lowing implementation steps as shown in Figure 4.

First, removing the artifacts and increasing the ROI
region contrast through the average filter and CLAHE
methods. The second is obtaining ROI regions only and
isolating them from other tissues by the ARG method. Third,
the GoogLeNet, ResNet101, and VGG16 models receive ROI
regions for analysis and feature map extraction. The Goo-
gLeNet, ResNet101, and VGG16 models produce features of
size 4069 x 528, 2048 x 528, and 4096 x 528 for data-set-100x
and 4069 x 696, 2048 x 696, and 4096 x 696 for data-set-
400x. Fourth is reducing the characteristics of GoogLeNet,
ResNet101, and VGG16 models by PCA to select the most
important features. Fifth, ANN and XGBoost receive feature
vectors and allocate 80% for system training and weight
control and 20% for the testing phase.

3.6.3. Training of Hybrid Method Based on Fusion Features
CNN. The fourth strategy for analyzing histopathological
images for diagnosing oral cancer by hybrid systems with
features fused between CNN models is through [49] the
sequence of the following implementation steps as shown in
Figure 5. The first four sequential steps in the third strategy
are the same as in the fourth. Fifth, a series fusion of the
features of the GoogLeNet, ResNet101, and VGG16 models
is as follows: GoogLeNet-ResNet101, ResNet101-VGG16,
GoogLeNet-VGG16, and GoogLeNet-ResNet101-VGG16.
Sixth is saving the fused features in new feature matrices and
sending them to ANN and XGBoost networks to train 80%
of them and keep 20% for systems performance testing [50].

4. Results of Systems Execution

4.1. Split of OSCC-100-400X Datasets. In this study, two
OSCC datasets were used for the 100x and 400x magnifi-
cation factors to measure the performance of several sys-
tems. The OSCC-100x dataset contains 528 histological
images divided into 439 OSCC histopathological and 89
normal oral cavity histopathological while the OSCC-400x
dataset contains 696 histopathological images divided into
495 OSCC histopathological and 201 normal oral cavity
histopathological. The two datasets were split into 80% for
systems training and validation and 20% for testing and
benchmarking, as shown in Table 1.

4.2. System Performance Metrics. The systems generate
a confusion matrix through which the performance of the
techniques is evaluated through equations (6)-(10). The
confusion matrix contains rows and columns, where all
systems performance test samples are represented in the cells
of the matrix. The rows of the confusion matrix represent the
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output classes, while the columns represent the target
classes. The confusion matrix contains correctly classified
samples in the main diagonal called true positive (TP). At the
same time, other cells represent samples incorrectly classi-
fied as either false positive (FP) or false negative (FN) [51].

TP Rat
AUC = ——2€ 4 100%, (6)
FP Rate
A IN+TP 100% )
ccuracy = * N
Y= IN+TP + FN + FP °
Sensitivit 1P 100% (8)
nsitivity = ——— * ,
VY = Tp N °
TP
Precision = ————— # 100%, 9
recision TP+ TP * % 9
TN
Specificity = ——— % 100. 10
pecificity TN TP * (10)

oral cancer dataset by a hybrid approach based on the ARG algorithm.

4.3. Augmentation Data Method. Artificial intelligence
techniques require huge images to train, especially deep
learning models. When AI techniques are trained on
a dataset with few images, they perform poorly when tested
with new samples. Also, the unbalanced data set represents
a challenge for evaluating systems because the accuracy will
be large with the majority of classes. Therefore, the data
augmentation method was applied since the OSCC data set
lacks sufficient images to train the systems and is unbalanced
[52]. This method solves both challenges in parallel, where
the images of the dataset’s classes are increased for the
systems to train well, and the images between the classes are
increased unevenly. The method increases minority classes
by more than majority classes. The method works through
many operations, such as rotating images in multiple di-
rections, shifting them up and down, flipping, and others
[53]. It is noted from Table 2 that the OSCC-100x dataset has
increased by 18 artificial images for normal class images,
while the OSCC class has artificially increased by three
artificial images for each image. In the OSCC-400x dataset,
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FiGure 5: Histopathological image analysis strategy for diagnosing an oral cancer dataset by a hybrid approach based on a fusion of features
of CNN models.

TaBLE 1: Dividing two OSCC datasets into training and testing phases.

Datasets OSCC-100x OSCC-400x

80% (80:20 80% (80:20
Phase o 6 ( ' ) . Testing 20% o 0 ( ] ) ) Testing 20%
Classes Training (80%) Validation (20%) Training (80%) Validation (20%)
Normal oral cavity histopathological 57 14 18 129 32 40
OSCC histopathological 281 70 88 317 79 99

TABLE 2: Data augmentation for the OSCC-100x and OSCC-400x datasets.

Datasets OSCC-100x OSCC-400x
Phase Training dataset Training dataset

Normal oral cavity . . Normal oral cavity . .
Classes histopathological OSCC histopathological histopathological OSCC histopathological
Before augmentation 57 281 129 317
After augmentation 1,083 1124 903 951
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the quantity of normal class images was artificially amplified
sixfold for each image, whereas the OSCC class images were
artificially amplified twofold.

4.4. Strength, Limitation, and Impact/Significance

4.4.1. Strengths. 'The use of hybrid systems is based on the
features of fused CNN models: the research demonstrates
the application of hybrid systems based on the features of
fused CNN models to analyze histopathological images in
the early detection of OSCC. This approach uses the power
of deep learning to extract meaningful features from images
and combine them into feature vectors so that feature
vectors become highly representative of each image, en-
abling accurate classification and diagnosis. Improved early
detection: by taking advantage of the hybrid systems based
on the advantages of fused CNN models, the proposed
method can improve the early detection of oral cancer. Early
detection is crucial for timely intervention and treatment,
leading to better patient outcomes and saving lives. In-
tegrated CNN features are that incorporating CNN features
allows for a more comprehensive analysis of histopatho-
logical images, capturing diverse aspects and features of
OSCC lesions. This approach may enhance the accuracy and
robustness of the detection and classification process.

4.4.2. Limitations. Data set limitations: The performance of
the proposed method was aftected by the quality and size of
the available data set. If the dataset used for training and
evaluation is limited in size and unbalanced between classes
of the dataset, it may affect the generalizability and reliability
of the results. This limitation was addressed by the data
augmentation method to balance the data set and to increase
its size to overcome the overfitting problem. Interpretation
of results: Deep learning models, such as CNNs, are often
considered black-box models, meaning that their decision-
making cannot be easily explained. This lack of in-
terpretation may present challenges in understanding the
underlying factors that contribute to the classification or
prognosis of OSCC. This limitation has been overcome by
hybrid systems between CNNss to extract fused features and
classify them by machine learning algorithms.

4.4.3. Real-World Implementation Challenges. While the
paper focuses on the development of Al techniques for
pathological image analysis, real-world implementation of
these systems may face challenges related to integration into
existing healthcare infrastructure, regulatory considerations,
and acceptance by professionals.

4.4.4.  Impact/Significance  in  Real-Life  Scenarios.
Improved diagnostic accuracy: The use of hybrid systems
based on the features of the built-in CNN models has the
potential to enhance the diagnostic accuracy of OSCC. This
can help histopathologists, oncologists, and healthcare
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professionals to make more informed decisions, reduce
diagnostic errors, and improve patient outcomes. Early
intervention and treatment: By enabling early detection of
OSCC, the proposed method can facilitate timely in-
tervention and treatment. This can improve the outlook,
increase survival rates, and improve the quality of life for
patients.

4.4.5. Supporting Histopathologists and Oncologists. Al
technologies can be valuable tools to support histopathol-
ogists and oncologists in their clinical practice. By auto-
mating certain aspects of analysis, such as feature extraction
and classification, Al systems can help reduce the workload
of oncologists and histologists, allowing them to focus on
more complex cases and provide more personalized care to
patients.

4.5. Results of Pretrained CNN Models. This section
discusses the results of pretrained GoogLeNet, ResNet101,
and VGG16 models with the ImageNet dataset having 1.2
million images from more than 1000 classes. Unfortunately,
ImageNet does not include medical images, so the pre-
trained CNN models will transfer the experience gained to
perform a new OSCC dataset classification task. The input
layers of GoogLeNet, ResNet101, and VGG16 models receive
histological images of oral cancer and transfer them to
convolutional layers for analysis. The fully connected layers
classify the feature maps, and the SoftMax activation
function labels each image to a specific class.

Table 3 and Figure 6 discuss the results of GoogLeNet,
ResNet101, and VGG16 pretrained models for classifying
two OSCC-100x and OSCC-400x oral cancer datasets. First,
with the OSCC-100x dataset, GoogLeNet achieved an AUC
of 69.1%, accuracy of 82.1%, sensitivity of 72.25%, precision
of 69.1%, and specificity of 72.35%. The ResNet101 yielded
an AUC of 70.65%, accuracy of 81.1%, sensitivity of 69.15%,
precision of 67.25%, and specificity of 69.15%. The VGG16
yielded an AUC of 65.45%, accuracy of 78.3%, sensitivity of
62.7%, precision of 62.1%, and specificity of 62.55%.

Second, with the OSCC-400x dataset, GoogLeNet
achieved an AUC of 74.2%, accuracy of 77.7%, sensitivity of
71.1%, precision of 72.8%, and specificity of 71.2%. The
ResNet101 yielded an AUC of 74%, accuracy of 77%, sen-
sitivity of 69.95%, precision of 71.85%, and specificity of
69.8%. The VGG16 yielded an AUC of 77.5%, accuracy of
79.9%, sensitivity of 72.05%, precision of 76%, and specificity
of 72.55%.

4.6. Results of CNN Based on ARG Algorithm. This section
discusses the results of pretrained GoogLeNet, ResNet101,
and VGG16 models based on the ARG algorithm. In this
strategy, the images are first improved, extracted ROI, and
saved in new folders OSCC-100x-ROI and OSCC-400x-ROI.
The input layers of the GoogLeNet, ResNet101, and VGG16
models receive the ROI of oral cancer and pass them to the
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FIGURE 6: Display of results of pretrained CNN models for classification of the two oral cancer datasets.

convolutional layers for analysis. Fully connected layers
classify feature maps, and the SoftMax activation function
labels each image into a specific class.

Table 4 discusses the results of GoogLeNet, ResNet101,
and VGGI16 pretrained models based on the ARG algorithm
for classifying OSCC-100x and OSCC-400x oral cancer
datasets. First, with the OSCC-100x dataset, GoogLeNet
achieved an AUC of 77.95%, accuracy of 90.6%, sensitivity of
76.75%, precision of 87.4%, and specificity of 77.15%. The
ResNet101 yielded an AUC of 77.6%, accuracy of 89.6%,
sensitivity of 76.45%, precision of 84.15%, and specificity of
76.85%. The VGG16 yielded an AUC of 81.9%, accuracy of
88.7%, sensitivity of 86.65%, precision of 79.4%, and spec-
ificity of 86.5%.

Second, with the OSCC-400x dataset, GoogLeNet
achieved an AUC of 82.4%, accuracy of 91.4%, sensitivity of
88.45%, precision of 89.95%, and specificity of 88.4%. The
ResNet101 yielded an AUC of 83.4%, accuracy of 92.8%,
sensitivity of 90.55%, precision of 91.8%, and specificity of
90.75%. The VGG16 yielded an AUC of 81.6%, accuracy of
92.1%, sensitivity of 89.25%, precision of 91.15%, and
specificity of 88.75%.

Figure 7 presents the implementation performance of
GoogLeNet, ResNetl01, and VGG16 pretrained models
based on the ARG algorithm for classifying two OSCC-100x
and OSCC-400x oral cancer datasets.

4.7. Results of Hybrid Systems. The section presents the
findings of hybrid strategies between CNN (GoogLeNet,
ResNet101, and VGG16) with ANN and XGBoost algo-
rithms for classifying histopathological images of oral cancer
with magnification factors of 100x and 400x. The histo-
pathological images were improved, then ROI regions were
segmented, and the ROI was sent to CNN networks for
analysis and obtaining features. PCA worked after CNN
models to reduce the high dimensions and sent the features
to ANN and XGBoost algorithms to classify them and
distinguish OSCC tissues from normal.

Table 5 and Figure 8 show the results of the hybrid
strategy of CNN models with ANN and XGBoost algorithms
for histopathological analysis for diagnosing the OSCC-100x
dataset.

The GoogLeNet with ANN achieved an AUC of 88.05%,
accuracy of 92.5%, sensitivity of 86.5%, precision of 92.5%,
and specificity of 86.5%. ResNet101 with ANN yielded an
AUC of 85.1%, accuracy of 91.5%, sensitivity of 82.3%,
precision of 86.7%, and specificity of 82%. VGG16 with
ANN yielded an AUC of 90.35%, accuracy of 93.4%, sen-
sitivity of 91.7%, precision of 86.9%, and specificity of
91.55%.

The GoogLeNet with XGBoost achieved an AUC of
92.2%, accuracy of 92.5%, sensitivity of 92.85%, precision of
84.8%, and specificity of 93.15%. ResNet101 with XGBoost
yielded an AUC of 92.7%, accuracy of 94.3%, sensitivity of
91.9%, precision of 88.85%, and specificity of 92.25%.
VGG16 with XGBoost yielded an AUC of 91.1%, accuracy of
91.5%, sensitivity of 86.05%, precision of 84.55%, and
specificity of 86.25%.

Table 6 and Figure 9 show the results of the hybrid
strategy of CNN models with ANN and XGBoost algorithms
for histopathological analysis for diagnosing the OSCC-400x
dataset.

The GoogLeNet with ANN achieved an AUC of 91.7%,
accuracy of 92.1%, sensitivity of 90.1%, precision of 92.1%, and
specificity of 90%. ResNet101 with ANN yielded an AUC of
93.85%, accuracy of 94.2%, sensitivity of 94.15%, precision of
92.5%, and specificity of 94.15%. VGG16 with ANN yielded
an AUC of 93.15%, accuracy of 93.5%, sensitivity of 92.15%,
precision of 92.35%, and specificity of 92%.

The GoogLeNet with XGBoost achieved an AUC of
93.2%, accuracy of 95.7%, sensitivity of 93.55%, precision of
96.15%, and specificity of 93.5%. ResNet101 with XGBoost
yielded an AUC of 93%, accuracy of 92.8%, sensitivity of
91.55%, precision of 91.2%, and specificity of 91.6%. VGG16
with XGBoost yielded an AUC of 94.75%, accuracy of 95.7%,
sensitivity of 95%, precision of 94.75%, and specificity of
95%.
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FIGURE 7: Display of results of the pretrained CNN models based on the ARG algorithm for classifying the two oral cancer datasets.

The hybrid strategy between CNN and ANN for clas-
sifying histology images for the OSCC-100x data set pro-
duces the confusion matrix shown in Figure 10. CNN with
ANN vyielded promising results for class-level diagnosis:
GoogLeNet with ANN yielded an accuracy of 77.8% for
normal oral cavity histology and 95.5% for malignant OSCC.
ResNet101 with ANN yielded an accuracy of 66.7% for
normal oral cavity histology and 96.6% for malignant OSCC.
VGG16 with ANN yielded an accuracy of 88.9% for normal
oral cavity histology and 94.3% for malignant OSCC.

The hybrid strategy between CNN and XGBoost for
classifying histology images for the OSCC-100x data set
produces the confusion matrix as shown in Figure 11. CNN
with XGBoost yielded promising results for class-level di-
agnosis: GoogLeNet with XGBoost yielded an accuracy of
94.4% for normal oral cavity histology and 92% for malignant
OSCC. ResNet101 with XGBoost yielded an accuracy of 88.9%
for normal oral cavity histology and 95.5% for malignant
OSCC. VGG16 with XGBoost yielded an accuracy of 77.8% for
normal oral cavity histology and 94.3% for malignant OSCC.

The hybrid strategy between CNN and ANN for clas-
sifying histology images for the OSCC-400x data set pro-
duces the confusion matrix as shown in Figure 12. CNN with
ANN vyielded promising results for class-level diagnosis:
GoogLeNet with ANN yielded an accuracy of 85% for
normal oral cavity histology and 94.9% for malignant OSCC.
ResNet101 with ANN yielded an accuracy of 92.5% for
normal oral cavity histology and 94.9% for malignant OSCC.
VGG16 with ANN yielded an accuracy of 87.5% for normal
oral cavity histology and 96% for malignant OSCC.

The hybrid strategy between CNN and XGBoost for
classifying histology images for the OSCC-400x data set
produces the confusion matrix as shown in Figure 13. CNN
with XGBoost yielded promising results for class-level di-
agnosis: GoogLeNet with XGBoost yielded an accuracy of
87.5% for normal oral cavity histology and 99% for ma-
lignant OSCC. ResNet101 with XGBoost yielded an accuracy
of 87.5% for normal oral cavity histology and 94.9% for
malignant OSCC. VGG16 with XGBoost yielded an accuracy
of 92.5% for normal oral cavity histology and 97% for
malignant OSCC.

4.8. Results of Hybrid Systems Based on Fusion Features of
CNN. The section presents the results of hybrid strategies
based on fused CNN features and their classification by
ANN and XGBoost networks to classify histopathological
images of oral cancer with magnification factors of 100x and
400x. The histopathological images were optimized, then the
ROI were sectioned, and the ROI were sent to CNNs for
analysis and obtaining features. PCA worked after CNN
models to reduce the high dimensionality. The features of the
CNN models were serially combined to obtain the most
efficient and robust feature vectors as follows: GoogLeNet-
ResNet101, ResNetl01-VGG16, GoogLeNet-VGG16, and
GoogLeNet-ResNet101-VGG16. The fused features were
sent to ANN and XGBoost algorithms to classify and dif-
ferentiate OSCC tissues from normal.

Table 7 and Figure 14 show the results of the hybrid
strategy of CNN models with ANN and XGBoost algorithms
based on CNN fusion features for histopathological analysis
for diagnosing the OSCC-100x dataset.

The GoogLeNet-ResNet101 with ANN achieved an AUC
0f 95.3%, accuracy of 96.2%, sensitivity of 95.5%, precision of
91.9%, and specificity of 95.5%. ResNet101-VGG16 with
ANN yielded an AUC of 94.45%, accuracy of 96.2%, sen-
sitivity of 93.45%, precision of 93.3%, and specificity of
93.65%. GoogLeNet-VGG16 with ANN vyielded an AUC of
94.2%, accuracy of 95.3%, sensitivity of 90.5%, precision of
92.4%, and specificity of 90.45%. GoogLeNet-ResNet101-
VGG16 with ANN yielded an AUC of 98.05%, accuracy of
99.1%, sensitivity of 99.25%, precision of 97.35%, and
specificity of 99.5%.

The GoogLeNet-ResNet101 with XGBoost achieved an
AUC of 96.05%, accuracy of 95.3%, sensitivity of 94.065%,
precision of 89.9%, and specificity of 94.65%. ResNet101-
VGG16 with XGBoost yielded an AUC of 97.9%, accuracy of
98.1%, sensitivity of 98.95%, precision of 95%, and specificity
of 98.65%. GoogLeNet-VGG16 with XGBoost yielded an
AUC of 96.7%, accuracy of 96.2%, sensitivity of 95.4%,
precision of 91.9%, and specificity of 95.5%. GoogLeNet-
ResNet101-VGG16 with XGBoost yielded an AUC of 99.1%,
accuracy of 98.1%, sensitivity of 98.95%, precision of 95%,
and specificity of 98.95%.
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