
Research Article
Modeling the Training Iteration Time for Heterogeneous
Distributed Deep Learning Systems

Yifu Zeng ,1,2 Bowei Chen,2 Pulin Pan,2 Kenli Li,2 and Guo Chen 2

1College of Computer Science and Engineering, Changsha University, Changsha 410022, Hunan, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China

Correspondence should be addressed to Guo Chen; guochen@hnu.edu.cn

Received 24 August 2022; Revised 16 September 2022; Accepted 14 October 2022; Published 21 February 2023

Academic Editor: Tao Li

Copyright © 2023 Yifu Zeng et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Distributed deep learning systems efectively respond to the increasing demand for large-scale data processing in recent years.
However, the signifcant investment in building distributed learning systems with powerful computing nodes places a huge
fnancial burden on developers and researchers. It will be good to predict the precise beneft, i.e., howmany times of speedup it can
get compared with training on single machine (or a few), before actually building such big learning systems. To address this
problem, this paper presents a novel performance model on training iteration time for heterogeneous distributed deep learning
systems based on the characteristics of the parameter server (PS) system with bulk synchronous parallel (BSP) synchronization
style. Te accuracy of our performance model is demonstrated by comparing real measurement results on TensorFlow when
training diferent neural networks with various kinds of hardware testbeds: the prediction accuracy is higher than 90% in
most cases.

1. Introduction

In recent years, we have witnessed the boom of deep learning
which has been successfully applied in numerous areas (also
changed these areas), including image processing[1], speech
processing [2], natural language processing [3], human-
machine gaming [4], autonomous driving [5], and health care
[6]. As the complexity of application scenarios and user
requirements grow fast, deep learning models scale larger and
larger, having massive data as training input, which exceed
the processing capability of one single machine. Terefore,
large-scale computer clusters are used to speedup the training
of such big neural network models, driving the rapid de-
velopment of distributed deep learning systems [7–10].

It requires signifcant investment to build such dis-
tributed learning systems, which consist of multiple high-
end servers connected between each other with high speed
networks. For example, the Google Brain project, which
began exploring the use of very large-scale deep learning
systems in 2011, costs an average of more than $100 million
per year. For researchers in general universities, a distributed

learning system often contains several computing nodes,
each node has several GPUs/CPUs/FPGAs/TPUs, and re-
quires a network connection of at least 10Gbps, which cost
up to $100,000. For such large investment, it will be good to
predict the precise beneft, i.e., howmany times of speedup it
can get compared with training on single machine (or a few),
before actually building such big learning systems. However,
above question is still hard to answer.

Although several recent works [11–18] have tried
mathematically modeling (some combined with experi-
mental methods) the computation and communication part
in distributed training, they are still not accurate enough in
practice. Particularly, when modeling the communication
time in multimachine training environment, they simply
assume that all worker nodes (machines) have the same
processing speed and are synchronized during communi-
cation (passing parameters/gradients), fairly sharing the
network bandwidth. However, such communication model
is too idealistic for large distributed learning systems in
practice with worker nodes potentially being very hetero-
geneous with each other [19, 20]. Under such practical

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 2663115, 15 pages
https://doi.org/10.1155/2023/2663115

mailto:guochen@hnu.edu.cn
https://orcid.org/0000-0002-2966-2521
https://orcid.org/0000-0002-6069-6869
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2663115

scenarios, it is neglected by previous models that worker
machines may be complexly overlapped or interleaved with
each other on both computation and communication during
each training iteration. For example, the worker with the
best computing capability pushes gradients as soon as it
fnishes calculation, which overlaps with the calculation of
the other workers.

To address the above problem, we present a novel per-
formance model on training iteration time for heterogeneous
distributed deep learning systems. By carefully analyzing the
steps of computing and communication during a training
iteration, we can model the iteration time by inductively
calculating the overlap and interference among multiple
worker nodes. With our model, one can easily predict the
speedup for diferent distributed hardware platforms only if
knowing the target neural network and its confgurations,
before actually building the system and training on it.

We have evaluated the accuracy of our performance
model by comparing real measurement results on Tensor-
Flow [21] when training diferent neural networks on var-
ious kinds of hardware testbeds. Experimental results show
that our model can predict the training iteration time in an
average accuracy over 95%, with the worst accuracy being
78.3%, under various conditions (training alexnet and
vgg11/16/19 using various number of machines with or
without GPU connected with 1Gbps or 10Gbps networks).

Te rest of the paper is organized as follows. Section 2
introduces the background and contributions of our research.
Section 3 generally explained the input and output of our
prediction model. Te foating-point trafc statistics formula
is derived in Section 4. Training Time Modelings of stand-
alone/distributed platforms with CPU/GPU are performed in
Section 5.Te experimental results are explained in Section 6.

1.1. Notes. Te performance model presented in this paper
only focuses on (one of) the most widely used architecture of
distributed deep learning systems, i.e., data-parallel parameter
server (PS) system with bulk synchronous parallel (BSP)
synchronization style [22, 23], which is shown to have better
performance in both practice and theory [24, 25]. However,
our performance model is easy to be extended using the same
methods to diferent architectures such as all-reduce [26] and
stale synchronous parallel (SSP) synchronization style [27, 28].
Te extension is omitted in this paper. As previous works (i.e.,
[15]), we model the computation part based on the number of
foat-point operations and the communication part based on
the network bandwidth and delay. We assume that distributed
deep learning systems can fully utilize the hardware processing
capability (which is the case in most of the current imple-
mentations), so implementation issues are not considered in
our performance model. Moreover, this paper focuses on
predicting the training speedup when using various hardware
resources; hence, we do not model the convergence time for
training a neural network to a desired accuracy, since the
required number of iterations to converge will not change
when using diferent number or diferent kinds of machines
when the other confgurations of the neural network remain
unchanged.

2. Background, Related Works, and Problems

2.1. Background. In March 2017, Jef Dean, head of Google
Brain, gave a speech titled “Building Intelligent Systems with
Large Scale Deep Learning” at UC Santa Barbara [29], where
he predicted that machine learning expertise could be
replaced by super computing power. Distributed machine
learning systems are positioned to provide greater computing
power. In distributed machine learning systems, the main
parallel models include model parallelism (diferent machines
(GPU/CPU, etc.) in a distributed system are responsible for
diferent parts of the network model) and data parallelism
(diferent machines have multiple copies, each machine is
assigned a diferent data, and the computation results of all
the machines are thenmerged in someway).Temain system
architecture includes PS (this architecture isolates the cal-
culation of each worker node, and each worker node only
interacts with the server) and All-Reduce (this architecture
integrates data from diferent training nodes, and distributes
the results to all training nodes after the integration is
complete). Te main parameter update methods include BSP
(Bulk Synchronous Parallel), ASP (Asynchronous Parallel),
and SSP (Stale Synchronous Parallel).

Among these combinations of system architecture and
parameter update methods, PS + BSP is the most popular one
that is demonstrated to have better performance in both practice
and theory [24, 25]. With PS architecture, the bottleneck
bandwidth is utilized up to twicemore efcient thanAll-Reduce.
Furthermore, PS + BSP can be used as asynchronous.

Terefore, the performance model presented in this paper
only focuses on data-parallel parameter server (PS) system
with bulk synchronous parallel (BSP) synchronization style.

2.2. RelatedWork. Previous work of predicting the training
iteration time include [11–15, 17]. Tey build pure math-
ematical models or combined with experimental measure-
ments to model the computation part and communication
part. All of them assume all workers start to pull and push in
a synchronized way, and calculate the time as
parameter_size/gradient_size/bandwidth.

In computation part, the references [11, 13, 17] combine
mathematical models and experimental measurements,
while [12, 14, 15] predict the training iteration time with
mathematical models alone.

2.3. Problems and Our Contributions. Te iteration time
modeling is not accurate in previous work, since distributed
learning systems have heterogeneous computation hardware
and each computing unit (GPUs/CPUs/FPGAs/TPUs) may
have diferent computing power. As shown in Figure 1(a),
the modeling in previous work is modeled as synchronized,
which requires multiple computing units in the system to
have the same processing speed. However, as shown in
Figure 1(b), the computing process is generally unsyn-
chronized in practice, since heterogeneous hardwares have
diferent computation time. Terefore, the accuracy of total
iteration time modeling can be improved by further con-
sidering the efect of heterogeneous computation hardware.

2 International Journal of Intelligent Systems

Terefore, we combine the performance and working
principle of training equipment, neural network structure,
and network bandwidth to establish a mathematical model
of one round of iterative time for distributed training under
PS + BSP. Our analysis is based on stochastic gradient de-
scent (SGD) since SGD and its variants are the main al-
gorithms for training DNN models. What is more, sigmoid
is one of the famous activation functions because of con-
tinuity and diferentiability. Since it is proposed and widely
used earlier, it is used as the frst step of our modeling of
activation function. Other activation functions will be fur-
ther modeled in future work. Moreover, we measured the
iteration time of a variety of deep neural network (DNN)
models and compared it with the predicted iteration time;
the experimental results that demonstrate our prediction
model is highly accurate.

3. Performance Model Overview

According to the foating-point calculation formula of neural
networks that derived in Section 4, the foating-point statistics
module in Figure 2 output the specifc foating-point oper-
ations of various neural networks to the next module. Af-
terwards, combined with the foating-point operations, and
the learning system’s network bandwidth and hardware
parameters, an iterative time prediction module for both
single machine and distributed system can be established in
Section 5. Prediction times output by the iterative time
prediction module are demonstrated to be accurate in Section
6.

4. Derivation of Floating Point Operations
Calculation Formula

According to our investigations, although some foating-
point calculation statistics of neural networks have been
proposed on some academic or technical platforms, there are
some errors after our verifcation. Terefore, out of scientifc
rigor, the foating-point trafc statistics formula is derived in

this section by combining the specifc calculation process of
forward-propagation and back propagation.

4.1. Formula Derivation of Convolutional Floating Point
Operations. Te matrix multiplication operation is the most
basic calculation in the forward-propagation convolution
operation.Te premise of the matrix multiplication is that the
size of the twomultipliedmatricesmust be the same. After the
two matrices are multiplied by a moment, the output is a
natural number. Te calculation of the moment multiplica-
tion can be expressed by formula (1). Among them, aij and bij

are the elements of n -order matrices A and B, respectively.

output � 􏽘
n−1

i�0,j�0
aijbij. (1)

Now, we use 5 × 5 × 3 samples and two 2 × 2 × 3 con-
volution kernels F0 and F1 to illustrate the process of for-
ward-propagation. Te 5 × 5 × 3 samples are expanded to
obtain three 5 × 5 matrices, which is shown in Figure 3. First
of all, the frst three 2 × 2 matrix among the three sample
matrices and the three 2 × 2 matrices of the convolution
kernel F0 are, respectively, subjected to moment multipli-
cation (marked in red in Figure 3). Secondly, the results of the
three moment multiplication plus the F0 ’s bias value 1 equals

GPU1

GPU2

GPU3

GPU4

Overall Time

Communication
time

Computation
time

T

(a)

GPU1

GPU2

GPU3

GPU4

Overall Time

Communication
time

Computation
time

T

(b)

Figure 1: Comparison of the communication time modeled in previous works and in practice. (a) Modeled as synchronized, (b) but
unsynchronized in practice.

Neural
Network
Structure

Floating Point
Statistics
Module

Floating Point
Operations

Network
Bandwidth

Hardware
Parameters

Distributed
Iteration Time

Prediction
Module

Iteration
Completed

Single Machine
Iteration Time

Prediction
Module

Figure 2: One round of iterative time modeling framework.

International Journal of Intelligent Systems 3

to the frst matrix value 4 in the output matrix (alsomarked in
red in Figure 3). Te specifc calculation process is as follows:

1 × 1 + 2 × 0 + 3 × 0 + 4 × 0 � 1,

1 × 0 + 0 × 0 + 0 × 2 + 1 × 1 � 1,

2 × 1 + 0 × 0 + 1 × 0 + 0 × 1 � 2,

1 + 1 + 2 + 1 � 4.

(2)

Te calculation process has a total of 24 foating-point
operations. It is noted that all parameters other than the bias
value correspond to one foating-point operation. So further,
the calculation of the number of foating-point operations f

in this part can be generalized to formula (3). Among them,
inch represents the input third dimension value, and kw and
kh, respectively, represent the width and height of the
convolution kernel.

f � inch × kh × kw × 2. (3)

Tird of all, move the “matrix to be multiplied” in the
input sample to the left by one position. Similarly, perform a
moment multiplication with the convolution kernel F0, and
fnally add a bias value of 1 to obtain the second value 7 of the
output. According to the abovemethod, the frst 4 × 4matrix
output can be calculated.

Next, we calculate the value of each element of the
second 4 × 4 matrix output. Te only diference between this
process and the previous steps is that the convolution kernel
F0 is replaced with F1. After the convolution operation, the

second two-dimensional tensor in the output tensor can be
obtained, so that the complete 4 × 4 × 2 matrix tensor can be
obtained.

It can be observed from this example that each element
in the output 4 × 4 × 2 matrix tensor corresponds to 24
foating-point operations, that is, the amount of foating-
point operations consumed by this example is 4 × 4 × 2 ×

24 � 576. Tat is, outn × outh × outw × 24, where the value
of 24 is obtained by formula (3), and outn, outh, and outw
are the length, width, and height of the output tensor, re-
spectively. Terefore, we can combine formula (3) to deduce
the statistics of foating-point operations of each layer of
convolution as formula (4).

FLOPcov � inch × kh × kw × outn × outh × outw × 2. (4)

Te actual neural network is usually composed of
multilayer convolution and a fully connected neural net-
work, such as Alexnet and VggNet. Te parameters of the
fully connected layer usually occupy more than 90% of the
entire neural network, although unlike the convolutional
layer, the same parameter will not be recalculated. But its
foating-point capacity cannot be ignored. Te fully con-
nected layer is usually a one-dimensional tensor. Terefore,
the calculation of foating-point operations can also use
formula (4), where kh, kw, outh, and outw are all set to 1, and
inch and outn are, respectively, the number of elements
contained in the two one-dimensional tensors before and
after the layer.

1 1

1

1

1

1

2

43

1

1

1

1

1 1

1 1

1

1

1

0

0

0 0

0

00

0

2

2

1 0

0 0

0 0

4

0

0

0

10

1

1

1

1

1 1

1 1

1

1

1

1

0

0

0 0

0

00

0

2

2

2 0

01

1

1

1

1

1 1

1 1

1

1

1

0

0

0 0

0

00

0

2

2

2

0

1

1

0

0 0

1 0

0

0

0

0

input 5×5×3 samples convolution kernel
F0: 2×2×3

convolution kernel
F1: 2×2×3 output 4×4×2

F0's bias
value=1

F1's bias
value=1

Figure 3: One round of iterative time modeling framework.

4 International Journal of Intelligent Systems

4.2. Formula Derivation of Back-Propagation Floating Point
Operations. Back-propagation is the process of calculating
the gradient, and the calculation of the gradient is performed
based on the calculation result of the forward-propagation.
According to the calculation of forward-propagation, (5)
and (6) can be derived as follows:

z
(l)

� w
(l)

a
(l− 1)

+ b
(l)

, (5)

a
(l)

� σ z
(l)

􏼐 􏼑, (6)

where σ is the activation function; here, we choose Sigmod
function as the activation function. z(l) is the result obtained
by calculating the convolution of the forward-propagation of
the l -th layer, and adding the bias value b(l), a(l) is the output
processed by the activation function σ of the forward-
propagation training result of the l -th layer.

Te mean square error is the most commonly used loss
function, so that the loss function is derived as (7) based on
the mean square error. Among them, 1/2 is to ofset the
coefcients obtained after the derivation, and has no efect
on the surface calculation.

C(w, b) �
1
2

a
(l)

− y􏼐 􏼑
2
. (7)

Te gradient of the weight w and and bias value b of the
last layer of the neural network (the output layer)
zC(w, b)/zw(l) and zC(w, b)/zb(l) is calculated as

zC(w, b)

zw
(l)

�
zC(w, b)

za
(l)

za
(l)

zz
(l)

zz
(l)

zw
(l)

� a
(l)

− y􏼐 􏼑σ′ z
(l)

􏼐 􏼑a
(l− 1)

, (8)

zC(w, b)

zb
(l)

�
zC(w, b)

za
(l)

za
(l)

zz
(l)

zz
(l)

zb
(l)

� a
(l)

− y􏼐 􏼑σ′ z
(l)

􏼐 􏼑. (9)

Te common part of (8) and (9) can be written as

δ(l)
�

zC(w, b)

za
(l)

za
(l)

zz
(l)

� a
(l)

− y􏼐 􏼑σ′ z
(l)

􏼐 􏼑. (10)

Te value of σ′(z(l)) is shown in equation (16).
Te gradient of the output layer (l-th layer) has been

calculated in (8) and (9); in the same way, the gradient of the
l − 1-th layer can be calculated. Since the error of the output
layer l has been calculated above, according to the back-
propagation theory, the error of the current layer is the
composite function of all the neuron errors of the previous
layer, that is, the error of the previous layer can be used to
express the error of the current layer.

Assume that δ(l+1) of the l + 1-th layer is calculated, then
the δ(l) of the l-th layer is (the l-th layer here is not the output
layer but any non-last layer) as follows:

Te common part of (8) and (9) can be written as

δ(l)
�

zC(w, b)

zz
(l+1)

zz
(l+1)

zz
(l)

� δ(l+1)zz
(l+1)

zz
(l)

. (11)

Among (11), z(l+1) is derived by

z
(l+1)

� w
(l+1)

a
(l)

+ b
(l+1)

� w
(l+1)σ z

(l)
􏼐 􏼑 + b

(l+1)
. (12)

Ten, we have (13) and (14):

zz
(l+1)

zz
(l)

� w
(l+1)σ′ z

(l)
􏼐 􏼑, (13)

δ(l)
� w

(l+1)σ′ z
(l)

􏼐 􏼑δ(l+1)
. (14)

Derived from the Sigmod function, Formula (15) and
(16) can be obtained.

σ z
(l)

􏼐 􏼑 �
1

1 + e
− x, (15)

σ′ z
(l)

􏼐 􏼑 � σ z
(l)

􏼐 􏼑 1 − σ z
(l)

􏼐 􏼑􏼐 􏼑. (16)

Terefore, for the calculation of the intermediate layer
gradient, there is a recursive formula (17).

δ(l)
� w

(l+1)σ z
(l)

􏼐 􏼑 1 − σ z
(l)

􏼐 􏼑􏼐 􏼑δ(l+1)
. (17)

Finally, new parameters w and b can be obtained by (18)
and (19) Among them, the η is the learning rate (generally a
fxed value).

w � w − η
zC(w, b)

zw
(l)

, (18)

b � b − η
zC(w, b)

zb
(l)

. (19)

In summary, it can be seen from (8) that each parameter
of the last layer of parameters has 4 + sig foating-point
operations, where sig is the number of foating-point op-
erations required for the calculation of the Sigmod function.
Te value of sig is explained in section 4.3. Combined with 2
foating-point operations in (18), the total number of
foating-point operations is 6 + sig. Te gradient corre-
sponding to each parameter of the middle layer can also be
obtained as 6 + sig times by formula (17) and equation (18).
Te gradient (zC(w, b)/zb(l)) of the bias value b corre-
sponding to w is calculated as in equation (9), and this value
has been calculated in equation (8). Terefore, the calcu-
lation of equation (9) has no additional foating-point op-
erations, and there are 2 foating-point operations in
equation (19). From the above, the statistical formulas for
back-propagation foating-point numbers are shown in
equations (22)–(24) in section 4.3.

4.3. Derivation of Total Floating Point Operations. Te total
foating-point number of forward-propagation needs to be
calculated separately according to the number of layers of
the neural network. According to formula (4), the foating-
point number of the i-th layer is shown in formula (20).
Among them, inch represents the number of input channels

International Journal of Intelligent Systems 5

of the i-th layer, kh and kw, respectively, represent the length
and width of the i-th layer convolution kernel, outn, outh,
and outw, respectively represent the matrix number, height,
and width of the output tensor of the i-th layer. Te total
FLOPS of forward-propagation is shown in formula (21).

FLOPSi � inch × kh × kw × outn × outh × 2, (20)

FLOPSforward � 􏽘

n

i�1
FLOPSi. (21)

Te sum of the number of parameters w and b is the sum
of the parameters of the neural network (para). Te number
of b(parab) is the result of length × width × height of the
tensor size output by each layer. Te number of w is the
number of all parameter (para and parab). Terefore, the
FLOPS of back-propagation is shown in equations (22)–(24).
Among them, FLOPSw represents the number of foating-
point calculations required for a weight in a back-propaga-
tion, and FLOPSb represents the number of foating-point
calculations required for a bias value in a back-propagation.

FLOPSbackward � para × FLOPSw + parab × FLOPSb, (22)

FLOPSw � 6 + sig, (23)

FLOPSb � 2. (24)

From the formula (15), the value of sig is 2 + x, where x

represents the number of foating-point calculations con-
sumed to calculate the exponential function ex. Since the
calculation of the exponential function ex in Python3 is es-
sentially an approximation obtained by calculating the Taylor
expansion of ex (equation (25)), we can get equation (26).
Among them, i is Taylor’s expansion series, and this value is
uncertain in the underlying implementation of Python3.
Python3 is dynamically adjusted according to the actual
calculated value, and the calculation accuracy is increased by 3
digits each time. Due to the complexity and uncertainty of the
parameters in deep learning, we will take the value of i based
on the results of experiments, and through the results of
multiple experiments, i is approximately equal to 20.

e
x

� 1 + x +
x
2

2!
+

x
3

3!
+

x
4

4!
+

x
5

5!
+ 0 x

6
􏼐 􏼑, (25)

x � 1 + 4i. (26)

In summary, in a round of iteration with a batch size of
bs, the number of foating-point numbers (FLOPS) is
expressed as formula (27).

FLOPS � bs × FLOPSforward + FLOPSbackward. (27)

5. Predictive Modeling of Distributed Training
Time Based on CPU and GPU

5.1. Training Time Modeling of Stand-Alone CPU Platform.
Te Single Instruction Multiple Datastream (SIMD) tech-
nology enables multiple data to be calculated in parallel
within the same CPU clock cycle with only one instruction.
In general, the parallel data calculation of Single Instruction
to Multiple Execution depends on the number of CPU
registers. If it is 64 bits, it can be split into 8 8 bit registers,
and 8 8 bit data operations can be completed at the same
time. Te efciency is increased by 8 times. Similarly, it can
be divided into 2 32 bit or 416 bit registers as well. According
to the operating principle of the CPU, the mathematical
model of the single-core cpu’s one round iteration time can
be established as formula (28). Among them, Tcpu repre-
sents the training prediction time. Te value of FLOPs is
obtained by formula (27) in Section 4.3. cpuhz represents the
CPU frequency, and simd represents the number of data that
can be operated in parallel after optimization with SIMD
instructions.

Tcpu �
FLOPs

cpuhz × simd
. (28)

5.2. Training Time Modeling of Distributed CPU Platform.
Most of the 64 bit processors on the server market now have
a clock speed between 1.6Ghz and 2.6Ghz, so the com-
puting power for 32 bit foating-point numbers is between
3.2 and 5.2GFLOPs. Commonly used neural networks such
as Alexnet and Vgg have parameters ranging from tens to
hundreds of megabytes. Specifcally, Alexnet has 63M pa-
rameters, which is equivalent to 2Gbit data, while Vgg has
133M parameters, which is 4.25Gbit data. If the computing
power of each training node is not far apart, and the total
bandwidth is below 1Gb, then the communication overhead
will inevitably seriously afect the training performance. Te
communication overhead will become a performance bot-
tleneck for training when the time for each node to execute
push is in confict, which will cause network congestion.Te
purpose of our modeling is to help relevant personnel obtain
the most cost-efective overall system architecture solution
by predicting what kind of equipment constitutes a system
architecture that can avoid the performance bottleneck
caused by communication.

Based on the PS architecture and combined with the
synchronization communication algorithm, mathematical
models for training nodes with equal computing power and
nonequal computing power is established. Te one-round
iteration time modeling on platforms with equal computing
power are illustrated in formulas (29)–(31). Among them, T

6 International Journal of Intelligent Systems

represents the total time of one-round iteration, Tcpu is
obtained by formula (28). Tpull is the total time for all
workers to pull parameters, and Tpush is the total time for all
workers to send gradients. Tpull and Tpush are both com-
munication time, and the communication performance is
mainly manifested in Tpush. n is the number of workers, P

and G are, respectively, the amount of parameters and
gradient (need to be converted to bit), and B is the band-
width of the parameter server (bit/s).

T � Tcpu + Tpush × n

+ Tpull × n,

(29)

Tpull �
P

B
, (30)

Tpush �
G

B
. (31)

Te one-round iteration time modeling on platforms
with nonequal computing power and equal communication
power are illustrated in Algorithm 1. Te main scenario
considered in this paper is the case where multiple workers
as well as PSs are connected to the same switch. In this case,
it is common that each machine have equal communication
power. And the link between the PS and the switch is the
main communication bottleneck. Figure 4 gives a brief
explanation of Algorithm 1. In the fgure, nodes w0w3 have
the same push time and pull time, but the calculation time is
diferent and gradually increases. To calculate one round of
iteration timeT, frst initializeT to the sum of the calculation
time of w0 and the push time. Second, since T � Tcpu0 +

Tpush > � Tcpu1 and Tcpu0 >Tcpu1, the push of w0 has not
ended when w1 is calculated. Tanks to the communication
bottleneck in the link between the PS and the switch, the
gradient of w1 will enter the sending queue and wait for the
gradient of w0 to be sent before pushing, and the push of w1
will fnish after the push of w0 ended with Tpush, which can
be shown in yellow. Terefore, the total time consumption
from the start of local calculation of w0 to the end of the
push of w1 is equal to the sum of calculation time of w0, the
push time of w0 and the push time of w1, which represented
as T. As shown in Figure 4, the current value of T can be
represented by moving the push legend of w1 directly be-
hind the push legend of w0. Tird, since the calculation time
of w2 is larger than the current value of T, so T is directly set
to the sum of the calculation time of w2 and the push time of
w2. Fourth, similar to the second step, the current value of T

is the calculation time of w2 plus the push time of w2 and the
push time of w3. Finally, add the pull time to T, that is the
result of one round of iteration time (By default, the pa-
rameter server will use a balanced algorithm to ensure that
each computing node can receive new parameters at the
same time).

In our analysis, the ratio of computation time to
communication time and the local computation time for
each worker is uncertain. When the ratio of computation
time to communication time is diferent, the one-round

iteration time will be calculated diferently according to
Algorithm 1 and Algorithm 2. In particular, when the
communication time is greater than the computation time
of each worker, the one-round iteration time is simply
summarized as

T � n∗Tpull + Tmin + n∗Tpush, (32)

where Tmin is the local computation time of the fastest
worker(with the best computing capability in n workers). In
this case, the bottleneck push process starts as soon as the
fastest worker completes its computation and the iteration
time is not related to the computation time of other workers.
In other words, under the communication bottleneck,
replacing some of the workers with those with worse
computational performance does not change the iteration
training time, but it signifcantly saves computational re-
sources compared with equal computing power. And it will
be better to make the communication time as equal to the
computation time as possible. When there is a communi-
cation bottleneck, replacing a higher bandwidth network
device can result in a better performance improvement than
replacing a better computing device. Te reverse is also true.

5.3. Training Time Modeling of Stand-Alone GPU Platform.
Te foating-point computing power of GPU is usually
expressed in FLOPs/s per second. Te maximum GPU
foating-point computing power for computing with stream
processor is gpuhz × sp × fc, where gpuhz represents the
GPU clock speed, sp represents the number of stream
processors, and fc represents the number of foating-point
operations that can be performed per stream processor in a
single clock cycle. From this, the single iteration time
mathematical model of a single-GPU computer can be
established as formula (33). In this formula, the value of
FLOPs is obtained by formula (27). In addition, the value of
fc depends on whether the Fused-Multiply-Add(FMA) in-
struction set is used. If it is used, fc � 2. Otherwise, fc � 1.

Tgpu �
FLOPs

gpuhz × sp × fc
. (33)

5.4. Training Time Modeling of Distributed GPU Platform.
Since sending data is executed by the CPU, a training device
that uses GPU for distributed training can execute the two
tasks of training and sending data in parallel. In this sce-
nario, the frst push of the training node occurs after the
back-propagation completes the calculation of the gradient
of the frst layer. In addition, since most of today’s GPUs are
clocked at more than 1.5Ghz, even if there is only one
stream processor, its calculation speed is 1.5 × 32Gbit/s.
Terefore, if and only if the sending speed is greater than
48Gbit/s, the sending time will be less than the calculation
time. However, the number of stream processors of current
GPUs is usually more than hundreds, so the calculation
speed is obviously much faster than the sending speed. In
this way, the calculation time of one round of iterative time
modeling for distributed multimachines using GPUs can be
regarded as the forward-propagation time plus the time to
complete the frst layer of back propagation.Tis time can be

International Journal of Intelligent Systems 7

obtained by dividing the total time of back propagation by
the number of pushes.Te number of pushes depends on the
experimental results, which are shown in Table 1. Te one-
round iteration timemodeling algorithm of distributed GPU
platform is shown in Algorithm 2.

Now, we give a briefy explanation of Algorithm 2 in
conjunction with Figure 5. In the fgure, w0w3 are four
training nodes, and the red square represents the forward-
propagation time. Te blue square and the green square
represent the back-propagation time and push time, re-
spectively, and both are divided into several small segments
according to the number of pushes. As mentioned above, the
calculation speed is greater than the sending speed, so each
green segment is slightly larger than the blue segment. First,
when w0 fnishes calculating the frst blue segment, it starts
to send the gradient. When the second blue segment is
calculated, since the frst gradient has not yet been sent, it
enters the sending queue and waits. Tat is to say, the green
segment representing the push of second gradient needs to
be placed behind the green segment representing the push of
frst gradient, and same for subsequent operations. Second,
when w1 calculates the frst gradient (the frst blue segment)
and starts sending, since the gradient of w0 has not been sent
yet (green square), the gradient of w1 enters the waiting
queue. Te corresponding push time is directly added to the
push time of w0. At this time, the total time T equals to the
forward-propagation time of w0 (red square), plus the
calculation time of the frst gradient of w0 (the frst blue
segment), plus the push time ofw0 and w1 (green square and
yellow square). In the third step, we can see that the forward-
propagation time of w2 plus the back-propagation time of
the frst layer is greater than T, so the value of T is set to the

forward-propagation time plus the back-propagation time of
the frst layer plus the push time of of w2. Fourth, it can be
seen that the forward-propagation time of w3 plus its frst-
layer back-propagation calculation time is less than T.
Terefore, the push time of w3 can be added to T as the
current total time T. Finally, adding the total pull time pull ×

4 is the iteration time T. Finally, by adding T to the total pull
time (pull × 4, the four gray squares in the fgure), one round
of iteration time T can be obtained.

Similarly, when the communication time is greater than
the computation time of each worker, the one round iter-
ation time can also be summarized as ??.Te iteration time is
only related to the computation time of the fastest worker.

6. Performance Evaluation

6.1.ExperimentalPreparationandExperimentalEnvironment
Introduction. Existing neural network-related papers gen-
erally do not count the amount of foating-point operations,
and there is no reliable statistical work on the amount of
foating-point operations in neural networks. As a prework
for performance evaluation, we have performed statistics on
the forward-propagation and back propagation of a number
of commonly used convolutional neural networks according
to formulas in Section 4. In addition, we also obtain the
number of push gradients in one round of iteration of some
neural networks according to related distributed experi-
ments. Te result is shown in Table 1.

For the experimental environment, Ubuntu18.04 and
Python3.7 are selected to implement the functional modules
of the distributed machine learning performance modeling
system. Te construction of the distributed system is based

Require: FLOPs, CPUhz1,CPUhz2 . . .CPUhzn, simd � 2, B, G, P, n.
Ensure: One-round iteration time T.
1: Calculate the computing time of each device by formula (28), and arrange the CPUs in ascending order as Tcpu1,Tcpu2 . . .Tcpun;
2: Calculate Tpull and Tpush by formulas (30) and (31);
3: T � Tcpu1 + Tpush;
4: fori in (2, n)do
5: ifT≥Tcpuithen
6: T+ � Tpush;
7: else
8: T � Tcpui + Tpush;
9: T+ � n × Tpull;

ALGORITHM 1: One-round iteration time modeling Algorithm with nonequal computing power CPUs and equal communication power.

w0

w1

w2

w3

Computation time

Push time

Pull time

Figure 4: One-round iteration time modeling algorithm with nonequal computing power CPUs.

8 International Journal of Intelligent Systems

on TensorFlow2.1, TensorFlow/benchmark, and CUDA-10.2.
Te CPUs are Intel ® Xeon™ E5-2660 @ 2.2GHz and Intel ®Xeon™ E5-2620 @ 2.0GHz. Te GPUs are NVIDIA Quadro
RTX 4000 8GB @ 1.545Ghz and GeForce GTX 1060 6GB @
1.506Ghz. Te end network bandwidth is 1Gb/s. Alexnet,
Vgg11A, Vgg16D, and Vgg19E are selected as representatives
of neural networks. Te dataset is ImageNet, and the size of
each sample is 224 × 224 × 3. Te source code is available at
https://github.com/bocway/Distributed-DNN-Modeling.

6.2. Experimental Results of CPU and GPU in Stand-Alone
Platform. Te experimental results of prediction time and
actual measurement time of one round of iteration on stand-
alone CPU platform are shown in Table 2 and Figure 6. It can
be seen that the experimental results in this section are
relatively ideal with an average accuracy of more than 90%,
which demonstrates the efectiveness of the proposed pre-
diction model. Te experiments prove that our modeling of
the computation time is essentially correct. Tere are two
main reasons for the error, including the randomness of
system scheduling, and the limit of foating calculation
accuracy of Python 3.7. Due to these two reasons, even if the
same experiment is performed on the same device multiple
times, the results will not be exactly the same.

Te experimental results of prediction time and actual
measurement time of one round of iteration on stand-alone
GPU platform are shown in Table 3 and Figure 7. Since the

FMA instruction are not used in these experiments, the value
of fc is 1. Tere are two reasons for the errors in stand-alone
GPU training. Te frst one is the computing power is too
strong, which fnishes training too fast that the time man-
agement function cannot be accurately captured.Te second
one is some training models such as Alexnet are too small
and the GPU’s stream processors are not all used. It means
the GPU’s computing power is not fully utilized, which
result in errors in the prediction. It can be seen that the
accuracy of single-machine GPU training increases as the
scale of the neural network increases. Vgg19 is the largest of
these four neural networks, and the accuracy is above 96%
under the actual measurement with bs � 32 and bs � 64.Te
scale of Vgg16 is slightly inferior to that of Vgg19, and the
accuracy can also be stabilized at around 90%. However,
Alexnet and Vgg11 have relatively large fuctuations in the
accuracy between bs � 32 and bs � 64 due to the smaller
neural network scale, which verifes the above-mentioned
reasons for the errors.

6.3. Experimental Results of CPU and GPU in Distributed
Platform. Te CPU frequency of the two training nodes is
2Ghz (Intel ® Xeon™ E5-2620), and the CPU frequency of
the parameter service node is 2.2Ghz (Intel ® Xeon™ E5-
2660).Te experimental results of prediction time and actual
measurement time of one round of iteration on distributed
CPU platform are shown in Table 4 and Figure 8.

Table 1: Statistics of FLOPs and number of push.

Convolutional neural network Forward-propagation Back-propagation Number of push
Alexnet 1.6776 × 10+09 5.2554 × 10+09 19
Overfeat 5.8584 × 10+09 1.2402 × 10+10 20
Vgg11A 1.5224 × 10+10 1.1292 × 10+10 24
Vgg13B 2.2623 × 10+10 1.1308 × 10+10 —
Vgg16C 2.3548 × 10+10 1.1358 × 10+10 34
Vgg16D 3.0947 × 10+10 1.1759 × 10+10 —
Vgg19E 3.9270 × 10+10 1.2210 × 10+10 40
Resnet18 3.5924 × 10+9 9.7808 × 10+8 —
Resnet34 7.2898 × 10+9 1.8366 × 10+9 —
Resnet50 6.9943 × 10+9 1.8015 × 10+9 269
Resnet101 1.4421 × 10+10 3.4114 × 10+9 524
Resnet152 2.1845 × 10+10 4.7372 × 10+9 779

w0

w1

w2

w3

Back-propagation

Forward-
propagation

Push time

Pull time

Figure 5: One-round iteration time modeling with GPUs.

International Journal of Intelligent Systems 9

https://github.com/bocway/Distributed-DNN-Modeling

Require: forwardpropagationFLOPs, backpropagationFLOPs, numberofpushes, the gpuhz, sp, fc, B, G, P of each node, batch − size
set by each node, number of nodes n.
Ensure: One-round iteration time T.
1: Calculate Tpull and Tpush by formulas (30) and (31);
2: fori in (1, n)do
3: FLOPsi � (forwardpropagationFLOPs × batch − sizei + backpropagationFLOPs÷numberofpushes);
4: Tgpui � FLOPsi÷(gpuhzi × sp × fc)
5: Sort (Tgpu1,Tgpu2 . . .Tgpun) in ascending order;
6: T � Tgpu1 + Tpush;
7: fori in (2, n)do
8: ifT≥Tgpuithen
9: T+ � Tpush;
10: else
11: T � Tgpui + Tpush;
12: T+ � n × Tpull;

ALGORITHM 2: Training time modeling algorithm of distributed GPU platform.

300

250

200

100

50

0

150

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
alexnet vgg11 vgg16 vgg19

Ti
m

e (
s)

Ac
cu

ra
cy

Prediction
Accuracy

Measurement

0.987
0.915 0.897

0.994

(a)

500

400

300

200

100

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
alexnet vgg11 vgg16 vgg19

Ti
m

e (
s)

Ac
cu

ra
cy

Prediction
Accuracy

Measurement

0.979
0.898

0.999 0.987

(b)

500

400

300

200

100

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
alexnet vgg11 vgg16 vgg19

Ti
m

e (
s)

Ac
cu

ra
cy

Prediction
Accuracy

Measurement

0.917
0.968

0.919 0.948

(c)

500

400

300

200

100

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
alexnet vgg11 vgg16 vgg19

Ti
m

e (
s)

Ac
cu

ra
cy

Prediction
Accuracy

Measurement

0.957
0.933 0.9590.971

(d)

Figure 6: Comparison between prediction time and measurement time on stand-alone CPU platform. (a) 2.0GhzCPU, bs� 32, (b)
2.0GhzCPU, bs� 64, (c) 2.2 GhzCPU, bs� 32, and (d) 2.2GhzCPU, bs� 64.

10 International Journal of Intelligent Systems

It can be seen that the performance on Alexnet is only
mediocre that the accuracy is 78.3% and 82.3%when the bs is
32 and 64, respectively. However, the accuracy of the other
three convolutional neural networks can reach around 95%.

Since the distributed platform is built on two virtual ma-
chines on a physical machine, we speculate that the pa-
rameter server only performs one pull operation on the
physical machine, and the two virtual machines obtain

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

alexnet vgg11 vgg16 vgg19

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Ti
m

e (
s)

0.765

0.986

0.898
0.968

Prediction
Accuracy

Measurement

(a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

alexnet vgg11 vgg16 vgg19

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ti
m

e (
s)

0.875 0.87
0.92

0.989

Prediction
Accuracy

Measurement

(b)

Figure 7: Comparison between prediction time and measurement time on stand-alone GPU platform. (a) bs� 32 and (b) bs� 64.

Table 2: Prediction time (PT), measurement Time (MT), and accuracy on stand-alone CPU platform.

Frequency (Ghz) bs� 32 PT MT Accuracy bs� 64 PT MT Accuracy

2.0

Alexnet 11.59 11.74 0.987 Alexnet 22.18 21.72 0.979
Vgg11 118.68 108.62 0.915 Vgg11 234.68 210.76 0.898
Vgg16 208.75 230.26 0.897 Vgg16 415.06 415.36 0.999
Vgg19 264.35 265.87 0.994 Vgg19 526.15 519.27 0.987

2.2

Alexnet 10.54 9.66 0.917 Alexnet 20.17 19.58 0.971
Vgg11 94.41 91.42 0.968 Vgg11 186.68 178.64 0.957
Vgg16 189.78 174.32 0.919 Vgg16 377.33 351.99 0.933
Vgg19 230.71 218.68 0.948 Vgg19 459.19 440.37 0.959

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

alexnet vgg11 vgg16 vgg19

300

250

200

100

50

0

150

Ti
m

e (
s)

0.799

0.955 0.939
0.975

Prediction
Accuracy

Measurement

(a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

alexnet vgg11 vgg16 vgg19

600

500

400

200

100

0

300

Ti
m

e (
s)

0.823

0.973 0.978 0.942

Prediction
Accuracy

Measurement

(b)

Figure 8: Comparison between prediction time and measurement time on distributed CPU platform. (a) bs� 32 and (b) bs� 64.

International Journal of Intelligent Systems 11

updated parameters through the shared space. Due to the
small scale of Alexnet, the training time is short, so less
counting of the time of a pull has a great impact on accuracy.
If the measurement time is added to the time of a pull, the
accuracy of can be increased from 78.3% and 82.3% to about
86% and 89%, respectively. Te other three convolutional
neural networks have a much larger scale than Alexnet,
which means less counting of the time of a pull has a little
impact on accuracy.

Te experiment of distributed GPU platform uses two
physical machines and each one has a GPU (NVIDIA
quadro RTX4000).Te CPU of the parameter service node is
Intel ® Xeon™ E5-2660. It can be seen from Table 5 and
Figure 9 that the accuracy is relatively stable and mainly
around 95%. Tis is because the GPU has strong computing
power, and its calculation time is negligible in one round of
iteration time. Terefore, the measurement time is mainly
composed of the communication time of parameters and

gradient transmission, which can maintain a high level of
accuracy and stability.

We also complete experiments of distributed hetero-
geneous GPU platform by adding a heterogeneous GPU
(GeForce GTX 1060 6GB), which only has close to half the
computing performance of the other GPU. Since the
communication time in our experimental environment is
greater than the computation time, the iteration time can be
formulated by formula (32). It can be seem from Table 6 and
Figure 10 that the accuracy is relatively stable and over 93%.
Similarly, this is because the GPU has strong computing
power, and its calculation time is negligible in one round of
iteration time. To further verify the modeling accuracy, we
increased the network bandwidth to 10GbE, and the result is
shown in Table 7 and Figure 11. It can be seem that the
accuracy is relatively mainly over 80% and the iteration
training time is reduced signifcantly by alleviating the
network bottlenecks. However the accuracy decreases by

Table 3: Prediction time (PT), measurement time (MT), and accuracy on stand-alone GPU platform.

bs� 32 PT MT Accuracy bs� 64 PT MT Accuracy
Alexnet 11.59 11.74 0.987 Alexnet 22.18 21.72 0.979
Vgg11 118.68 108.62 0.915 Vgg11 234.68 210.76 0.898
Vgg16 208.75 230.26 0.897 Vgg16 415.06 415.36 0.999
Vgg19 264.35 265.87 0.994 Vgg19 526.15 519.27 0.987

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

alexnet vgg11 vgg16 vgg19

20

16

12

8

4

0

Ti
m

e (
s)

0.943 0.925
0.964 0.99

Prediction
Accuracy

Measurement

(a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

alexnet vgg11 vgg16 vgg19

20

16

12

8

4

0

Ti
m

e (
s)

0.918 0.929 0.957 0.988

Prediction
Accuracy

Measurement

(b)

Figure 9: Comparison between prediction time and measurement time on distributed GPU platform. (a) bs� 32 and (b) bs� 64.

Table 4: Prediction time (PT), measurement time (MT), and accuracy on distributed CPU platform.

bs� 32 PT MT Accuracy bs� 64 PT MT Accuracy
Alexnet 19.51 15.28 0.783 Alexnet 30.09 24.75 0.823
Vgg11 120.68 115.27 0.955 Vgg11 222.34 216.39 0.973
Vgg16 225.71 211.86 0.939 Vgg16 432.77 423.35 0.978
Vgg19 282.74 275.61 0.975 Vgg19 544.54 512.75 0.942

12 International Journal of Intelligent Systems

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

alexnet vgg11 vgg16 resnet50vgg19

Ti
m

e (
s)

Ac
cu

ra
cy

0.949 0.933 0.935 0.937 0.947
35

30

25

15

10

5

0

20

Prediction
Accuracy

Measurement

(a)

35

30

25

15

10

5

0

20

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

alexnet vgg11 vgg16 resnet50vgg19
Ti

m
e (

s)

Ac
cu

ra
cy

0.951 0.933 0.937 0.943 0.95

Prediction
Accuracy

Measurement

(b)

Figure 10: Comparison between prediction time and measurement time on distributed heterogeneous GPU platform with 1GbE. (a)
bs� 16 and (b) bs� 32.

Table 5: Prediction time (PT), measurement time (MT), and accuracy on distributed GPU platform.

bs� 32 PT MT Accuracy bs� 64 PT MT Accuracy
Alexnet 7.93 8.38 0.943 Alexnet 7.94 8.59 0.918
Vgg11 17.14 18.42 0.925 Vgg11 17.28 18.51 0.929
Vgg16 17.99 18.64 0.964 Vgg16 18.26 19.04 0.957
Vgg19 18.74 18.93 0.990 Vgg19 19.09 19.32 0.988

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

alexnet vgg11 vgg16 resnet50vgg19

Ti
m

e (
s)

Ac
cu

ra
cy

0.854 0.821 0.824 0.845
0.944

4.5

4.0

3.5

3.0

2.0

1.5

1.0

0.5

0

2.5

Prediction
Accuracy

Measurement

(a)

4.5

4.0

3.5

3.0

2.0

1.5

1.0

0.5

0

2.5

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

alexnet vgg11 vgg16 resnet50vgg19

Ti
m

e (
s)

Ac
cu

ra
cy

0.885
0.82

0.867 0.894 0.902

Prediction
Accuracy

Measurement

(b)

Figure 11: Comparison between prediction time and measurement time on distributed heterogeneous GPU platform with 10GbE. (a)
bs� 16 and (b) bs� 32.

Table 6: Prediction time (PT), measurement time (MT), and accuracy on distributed heterogeneous GPU platform which connected with
1GbE.

bs� 16 PT MT Accuracy bs� 32 PT MT Accuracy
Alexnet 12.17 12.83 0.949 Alexnet 12.19 12.817 0.951
Vgg11 25.58 27.43 0.933 Vgg11 25.65 27.51 0.933
Vgg16 26.71 28.57 0.935 Vgg16 28.85 28.66 0.937
Vgg19 27.76 29.63 0.937 Vgg19 27.94 29.91 0.934
Resnet50 4.95 5.23 0.947 Resnet50 4.98 5.24 0.95

International Journal of Intelligent Systems 13

10% compared to the result connected with 1GbE by the
below reasons:

(1) Communication time error: we experimented and
found that there is startup overhead a in the pull
and push process, which is not related to batch
size and the bandwidth we use. In our experi-
mental environment, the startup overhead a is
about 0.5s, which cannot be ignored in our 10GbE
experiments.

(2) Computation time error: in the GPU training pro-
cess, it exits the process of memory copy from host to
GPU, which cannot be ignored if the local compu-
tation time of worker is short.

As for Resnet50, the startup overhead can be ignored
in our experiment and percentage of computation is much
higher than the others. So, it still maintains high accuracy.

In this section, we built a distributed PS system based
on the Linux system and TensorFlow/benchmark. Trough
the use of synchronous communication algorithms, dis-
tributed measurements were carried out on various types of
CPUs and GPUs. Trough the analysis of the results, it is
known that although the cause of the error cannot be solved
by mathematical modeling, the mathematical model
established in this paper still has a high level of accuracy of
around 90%.

7. Conclusions and Further Study

Based on the PS architecture, this paper deeply studies
various key factors that afect the performance of distributed
machine learning training, and combines these factors to
establish the one round of iterative time prediction model
for training on stand-alone/distributed CPU/GPU plat-
forms. In addition, this paper also designed rigorous ex-
periments to verify that the accuracy of the proposed
performance prediction model is higher than 90% in most
cases. In addition, the highest accuracy rate 99.4% is
achieved in the prediction of stand-alone CPU Platformwith
Vgg19E. As for our future work, on the one hand, con-
sidering the increase of training nodes will lead to the
emergence of communication bottlenecks, we will study one
round of iterative time modeling of multiparameter servers.
On the other hand, we are going to incorporate local SGD
synchronization communication into the scope of modeling.

Data Availability

No data were used to support this study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te research was partially funded by the National Key R&D
Program of China (2020YFB2104000), the National Natural
Science Foundation of China (No. 61872132, No. 62172148),
the Scientifc Research Foundation of Hunan Provincial
Education Department (Grant no. 21A0535), and the Nat-
ural Science Foundation of Hunan Province (Grant no.
2021JJ40635), the Natural Science Foundation of Hunan
Province for Excellent Young Scholars, and the Training
Program for Excellent Young Innovators of Changsha.

References

[1] J. Juszczyk, P. Badura, J. Czajkowska et al., “Automated size-
specifc dose estimates using deep learning image processing,”
Medical Image Analysis, vol. 68, no. 101, Article ID 101898,
2021.

[2] T. Arias-Vergara, P. Klumpp, J. C. Vasquez-Correa, E. Nöth,
J. R. Orozco-Arroyave, and M. Schuster, “Multi-channel
spectrograms for speech processing applications using deep
learning methods,” Pattern Analysis & Applications, vol. 24,
no. 2, pp. 423–431, 2021.

[3] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the
usages of deep learning for natural language processing,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 32, no. 2, pp. 604–624, 2021.

[4] H. T. Joo and K. J. Kim, “Visualization of deep reinforcement
learning using grad-cam: how ai plays atari games?” in
Proceedings of the 2019 IEEE Conference on Games (CoG),
pp. 1-2, London, UK, August 2019.

[5] Y. Deng, T. Zhang, G. Lou, X. Zheng, J. Jin, and Q. L. Han,
“Deep learning-based autonomous driving systems: a survey
of attacks and defenses,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 12, pp. 7897–7912, 2021.

[6] S. Yang, F. Zhu, X. Ling, Q. Liu, and P. Zhao, “Intelligent
health care: applications of deep learning in computational
medicine,” Frontiers in Genetics, vol. 12, Article ID 607471,
2021.

[7] F. Guo, B. Xu, W. A. Zhang, C. Wen, D. Zhang, and L. Yu,
“Training deep neural network for optimal power allocation
in islanded microgrid systems: a distributed learning-based
approach,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no. 5, pp. 2057–2069, 2022.

[8] H. Jiang, J. Starkman, Y. J. Lee, H. Chen, X. Qian, and
M. C. Huang, “Distributed deep learning optimized system
over the cloud and smart phone devices,” IEEE Transactions
on Mobile Computing, vol. 20, no. 1, pp. 147–161, 2021.

Table 7: Prediction time (PT), measurement time (MT), and accuracy on distributed heterogeneous GPU platform which connected with
10GbE.

bs� 16 PT MT Accuracy bs� 32 PT MT Accuracy
Alexnet 1.23 1.44 0.854 Alexnet 1.23 1.39 0.885
Vgg11 2.62 3.19 0.821 Vgg11 2.69 3.28 0.820
Vgg16 2.80 3.40 0.824 Vgg16 2.94 3.39 0.867
Vgg19 2.94 3.48 0.845 Vgg19 3.11 3.48 0.894
Resnet50 0.52 0.55 0.944 Resnet50 0.55 0.61 0.902

14 International Journal of Intelligent Systems

[9] X. Tang, W. Cao, H. Tang et al., “Cost-efcient workfow
scheduling algorithm for applications with deadline con-
straint on heterogeneous clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 9, pp. 2079–2092,
2022.

[10] Y. Zhang, F. McQuillan, N. Jayaram et al., “Distributed deep
learning on data systems: a comparative analysis of ap-
proaches,” Proceedings of the VLDB Endowment, vol. 14,
no. 10, pp. 1769–1782, 2021.

[11] S. Alqahtani and M. Demirbas, “Performance analysis and
comparison of distributed machine learning systems,” 2019,
http://arxiv.org/abs/1909.02061.

[12] A. Castelló, M. F. Dolz, E. S. Quintana-Ort́ı, and J. Duato,
“Analysis of model parallelism for distributed neural net-
works,” in Proceedings of the 26th European MPI Users’ Group
Meeting, pp. 1–10, Zurich, Switzerland, September 2019.

[13] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and
S. Matsuoka, “Predicting statistics of asynchronous sgd pa-
rameters for a large-scale distributed deep learning system on
gpu supercomputers,” in Proceedings of the 2016 IEEE In-
ternational Conference on Big Data (Big Data), pp. 66–75,
Washington, DC, USA, December 2016.

[14] Z. Pei, C. Li, X. Qin, X. Chen, and G. Wei, “Iteration time
prediction for cnn in multi-gpu platform: modeling and
analysis,” IEEE Access, vol. 7, pp. 64788–64797, 2019.

[15] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance
model for deep neural networks,” in Proceedings of the 5th
International Conference on Learning Representations, Tou-
lon, France, April 2017.

[16] X. Tang, C. Shi, T. Deng, Z. Wu, and L. Yang, “Parallel
random matrix particle swarm optimization scheduling al-
gorithms with budget constraints on cloud computing sys-
tems,” Applied Soft Computing, vol. 113, no. 107, Article ID
107914, 2021.

[17] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance
modeling and scalability optimization of distributed deep
learning systems,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp. 1355–1364, Sydney, Australia, April 2015.

[18] T. Zhu, Y. Lin, and Y. Liu, “Improving interpolation-based
oversampling for imbalanced data learning,” Knowledge-
Based Systems, vol. 187, Article ID 104826, 2020.

[19] M. Grossman, M. Breternitz, and V. Sarkar, “Hadoopcl2:
motivating the design of a distributed, heterogeneous pro-
gramming system with machine-learning applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27,
no. 3, pp. 762–775, 2016.

[20] H. Hu, D. Wang, and C. Wu, “Distributed machine learning
through heterogeneous edge systems,” Proceedings of the
AAAI Conference on Artifcial Intelligence, vol. 34, no. 5,
pp. 7179–7186, 2020.

[21] M. Abadi, A. Agarwal, P. Barham et al., “Tensorfow: large-
scale machine learning on heterogeneous distributed sys-
tems,” 2016, http://arxiv.org/abs/1603.04467.

[22] Z. Han, H. Tan, S. H. C. Jiang et al., “Spin: bsp job scheduling
with placement-sensitive execution,” IEEE/ACM Transactions
on Networking, vol. 29, no. 5, pp. 2267–2280, 2021.

[23] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[24] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unifed
architecture for accelerating distributed {DNN} training in
heterogeneous GPU/CPU clusters,” in Proceedings of the 14th
{USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 20), pp. 463–479, Carlsbad, CA,
USA, November 2020.

[25] E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and
principles of distributed machine learning on big data,”
Engineering, vol. 2, no. 2, pp. 179–195, 2016.

[26] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter,
“Blueconnect: decomposing all-reduce for deep learning on
heterogeneous network hierarchy,” IBM Journal of Research
and Development, vol. 63, no. 6, p. 1, 2019.

[27] H. Shi, Y. Zhao, B. Zhang, K. Yoshigoe, and A. V. Vasilakos,
“A free stale synchronous parallel strategy for distributed
machine learning,” in Proceedings of the 2019 International
Conference on Big Data Engineering, pp. 23–29, Hong Kong,
China, June 2019.

[28] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale
synchronous parallel distributed training for deep learning,”
in Proceedings of the 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), pp. 1507–1517,
Dallas, Texas, USA, July 2019.

[29] J. Dean, “Large-scale deep learning for building intelligent
computer systems,” in Proceedings of the Ninth ACM Inter-
national Conference on Web Search and Data Mining, San
Francisco, CA, USA, February 2016.

International Journal of Intelligent Systems 15

http://arxiv.org/abs/1909.02061
http://arxiv.org/abs/1603.04467

