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Identifying the association between long noncoding RNA (lncRNA) and micro-RNA (miRNA) is of great signifcance for the
treatment of diseases by interfering with the combination of miRNA and messenger RNA (mRNA). Although many eforts and
resources have been invested to identify lncRNA-miRNA associations (LMAs), clinical trials are still expensive and laborious.
Nevertheless, the experiments also need to consult a large number of side efects. Terefore, novel computer-aided models are
urgently needed to predict LMAs. Tis paper proposed a semantic embedded bipartite graph network for predicting lncRNA-
miRNA associations (SEBGLMA), which provided a novel feature extraction method by integrating K-mer segmentation,
word2vec, Gaussian interaction profle (GIP), and graph convolution network (GCN). Concretely, the attribute characteristics of
RNA sequences are extracted by K-mer segmentation and word2vec modules. Afterward, the adjacent matrix is completed by GIP
self-similarity. Ten, the attribute characteristics and adjacent matrix are fed into GCN for embedding behavior features. Finally,
the features are sent into the rotation forest (RoF) for detecting potential LMAs. Te average accuracy, precision, sensitivity,
specifcity, Matthews correlation coefcient, and F1-Score are 87.09%, 87.66%, 87.03%, 87.84%, 74.18%, and 86.99% on the
benchmark data set. For fairly validating the performance of our model, we conducted various comparisons with diferent
classifers. Furthermore, the case studies of hsa-miR-497-5P and NONHSAT022145.2 are also established. Te results of
comparisons and case studies further illustrated that our method is anticipated to become a robust and reliable tool for the
identifcation of LMAs.

1. Introduction

As a regulatory chemical molecule, noncoding RNAs par-
ticipate in many biological activities, such as epigenetic
control, gene transcription, translation, chromosome or-
ganization, cell proliferation, and development programs
[1]. In the biological regulatory network, each RNA plays a
unique role. Long noncoding RNAs (lncRNA) with more
than 200 nucleotides can take part in a variety of biological
activities including cell diferentiation, cell growth, disease
treatment, and gene transcription [2]. Te diversity and
additional functions of lncRNAs have risen extensive at-
tention. Micro RNA (miRNA) is the most common target

RNA of lncRNA with 19–22 nucleotides [3, 4]. Te miRNAs
transcribed by viruses change the number of proteins and
immune resistance by afecting the host messenger RNA
(mRNA) transcription efciency. Recently, increasing evi-
dence emphasizes the role of long noncoding RNAs
(lncRNAs) as the epigenetic factor in disease occurrence and
development. Moreover, researchers are more focused on
their relationships with downstream target miRNAs [5].

LncRNA has a similar structure and transcription to
mRNA. Previous research studies have indicated that
lncRNA andmiRNA can combine with each other to control
gene expression. LncRNA has the ability to regulate miRNA
functions by serving as competing endogenous RNA
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(ceRNA) to intervene in miRNA sponging and alter ex-
pression levels [6, 7]. Meanwhile, miRNA regulates the
expression stability of lncRNA in an Argonaute2-dependent
manner by reducing the host lncRNA for the virus. LncRNA
provides a reliable chemical combination platform for its
special segment composition. It limits the ability of miRNA
to interfere with the mRNA protein encoding process by
competitively binding miRNA in cells.

Up to now, only a small part of the working mechanism
of lncRNA-miRNA association (LMA) has been studied.
Tere are still a large number of lncRNA-MiRNA pairs that
need to be explored. However, the existing research results
have proved that tumors can be inhibited by regulating the
corresponding LMA interaction. In addition to the ceRNA
mechanism described above, researchers also found that
LMA plays a crucial role in regulating the pathogenesis
mechanisms of cancers, including ephemeral molecular
transition (EMT), cancer stem cells (CSCs), drug resistance,
and other molecular mechanisms. For instance, recent re-
search studies have uncovered partial lncRNA-miRNA as-
sociation networks hidden in breast, bladder, and colorectal
cancer [8–10]. Terefore, identifying the associations be-
tween lncRNAs and miRNAs will beneft regulating the
quantities of diferent RNAs for the treatment of diseases
and become chemical indicators for diagnosis and prog-
nosis. Feasible prediction models are urgently needed to fnd
the potential LMAs for further understanding the mecha-
nism of gene molecular networks on the molecular level.
With the advancement of gene sequencing and similarity
calculation. Many advanced methods are developed by re-
searchers to detect possible LMAs.

Te wet experiment is a traditional method to determine
LMAs. Zhang et al. [11] fnd that the downregulation of
miR-7 in BCSCs might be indirectly attributed to lncRNA
HOTAIR by implementing ChIP-PCR and Double-Lucif-
erase Reporter assay. Kallen et al. [12] revealed that H19 is an
important regulator of the major let-7 family of microRNAs
by crosslinking and real-time PCR. In recent years, the
increasing clinical experimental data has provided an
available platform for computer-aided prediction systems.
Wang et al. [13] developed the KATZ model to construct a
heterogeneous network. Te network only utilized the to-
pology information to generate the association scores of
lncRNA-miRNA pairs. Yang et al. [14] proposed the mul-
tiple-index latent factor model (MILFM), which projects the
predicting information onto a few local subspaces to obtain
key characteristics for further ftting by regularization.
Zhang et al. [15] proposed the sequence-derived linear
neighborhood propagation method (SLNPM) to fnd the
potential interacting lncRNA-miRNA pairs. Specifcally, the
similarity information combination and interaction profle
information combination are applied in evaluating the
weighted averages. Huang et al. [16] developed a novel group
preference Bayesian collaborative fltering (GBCF) model
for picking up a top-k probability ranking list for an indi-
vidual miRNA or lncRNA. Xu et al. [17] proposed a
structural perturbation method for predicting lncRNA-
miRNA interactions (SPMLMI) which utilized the Pearson
correlation coefcient for measuring lncRNA and miRNA

similarity and form a two-layer relationship network. Re-
cently, Liu et al. [18] developed the logistic matrix factor-
ization with a neighborhood regularized (LMFNRLMI)
model to utilize the strongest adjacent relation in the
neighborhood and established an adjacency matrix through
the K nearest neighbor approach to infer LMAs.

In this paper, we designed a novel model named se-
mantic embedded bipartite graph networks for predicting
lncRNA-miRNA associations (SEBGLMA). Tis method
combines K-mer segmentation, word2vec, Gaussian inter-
action profle (GIP), graph convolution network (GCN), and
rotation forest (RoF). Te structure of this model can be
separated into the following sections. (1) Te sequences of
RNAs are frst segmented into subsequences to generate
corpuses for word2vec which record diferent combinations
of amino acids by K-mer segmentation. (2) Send the cor-
puses into word2vec to construct Lnc2Vec and Mi2Vec
models for extracting semantic attribute characteristics. (3)
Feed the known lncRNA-miRNA associations into the GIP
model to obtain sample self-similarities with the same class,
and utilize the self-similarities to complete the adjacency
matrix. (4) Input the adjacency matrix and semantic char-
acteristics into GCN to form a bipartite graph model. Te
outputs of GCN are regarded as the fusion features of nodes
combining attribute and behavior information. (5) Send the
features into the RoF for predicting the possible LMAs.
Moreover, the case studies of hsa-miR-497-5P and NON-
HSAT022145.2 are also conducted. Tis paper makes the
following contributions: (1) the RNA functional similarity of
the same class is used to enrich the edges in the graph; (2) the
attribute and behavior characteristics of lncRNAs and
miRNAs have been efectively fused to improve sample
diversity; (3) our model has great efects on screening
candidates for subsequent clinical trials. Te workfow of
SEBGLMA is displayed as Figure 1.

Te rest architecture of this study is arranged as follows:
in Section 2, we introduce the benchmark data set for LMA
prediction and diferent parts of the proposed model. In
Section 3, we discuss the criteria, performance of the pro-
posed model, and comparisons. Te conclusion and feature
work are illustrated in Section 4.

2. Materials and Methods

2.1. Datasets. In this paper, the benchmark dataset is estab-
lished based on the clinical database lncRNASNP2 (https://
bioinfo.life.hust.edu.cn/lncRNASNP#!/). LncRNASNP2 ofers
numerous interactions between lncRNAs and miRNAs which
have been clinically validated. Te specifc subjects of this
database include human and mouse [19]. It also provides
information on single-nucleotide polymorphisms (SNPs),
mutations, and diseases about lncRNA. Tis study exca-
vated 780 lncRNAs and 275 miRNA-related interaction
data from the database and collected 10597 interacting
pairs. Furthermore, the corresponding amino acid se-
quences of lncRNAs were obtained from the LNCipedia
database (https://lncipedia.org/) [20], and sequences of
miRNAs were achieved from the MiRbase database
(https://www.mirbase.org/index.shtml) [21]. Finally, there
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are 4966 interacting pairs remaining in the benchmark
dataset, involving 770 lncRNAs and 275 miRNAs after
eliminating redundant information. Table 1 gives the
statistics of the benchmark data set.

2.2. GIPKernel. Te similarities between the samples of the
same category calculated by functional diference can ex-
plicably describe the diferences between samples, com-
pared with the similarities obtained by calculating the
numerical and spatial distance between sequences. Te
genes with more similarities usually have a similar inter-
operating mechanism. To be specifc, lncRNAs that com-
bine the same target miRNAs often show more similarities.

Hence, the Gaussian interaction profle (GIP) kernel was
utilized to separately describe the lncRNA and miRNA self-
similarities for further completing the adjacency matrix

LGIP (li, lj) = exp (–λl||V (l
i
)–V (l
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)||2)
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Figure 1: Te fow chart of SEBGLMA. (a) Complete adjacency matrix by GIP kernel similarity. (b) Calculate semantic features by K-mer
and word2vec. (c) Integrate semantic and behavior features by graph convolution network. (d) Feed the fusion features into the rotation
forest for predicting LMAs.

Table 1: Te statistics of the benchmark data set.

Database Data type Number of edges
(nodes)

LncRNASNP2 lncRNA-miRNA
associations

4966 (associations/
edges)

LNCipedia lncRNA amino acid
sequences 770 (lncRNA nodes)

MiRbase miRNA amino acid
sequences 275 (miRNA nodes)
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which describes the relationships between the nodes of the
graph network [22–24].

Te lncRNA-miRNA associations ofer a topological
structure for the GIP kernel to generate two types of
functional self-similarities, which are denoted as LGIP and
MGIP. Te vectors V(li) and V(mi) represent the internal
associations of lncRNA and miRNA, respectively. Take
miRNA as an example, V(mi) is constructed as a binary
sentence by detecting whether the miRNA interacts with a
series of lncRNAs. Te vector element corresponding to the
interaction is marked as 1, and the rest is marked as 0 [25].
Tus, the self-similarities LGIP and MGIP can be generated by
the following equations:

LGIP li, lj􏼐 􏼑 � exp −λl V li( 􏼁 − V lj􏼐 􏼑
�����

�����
2

􏼒 􏼓,

MGIP mi, mj􏼐 􏼑 � exp −λm V mi( 􏼁 − V mj􏼐 􏼑
�����

�����
2

􏼒 􏼓,

(1)

where li and lj represent the ith and jth lncRNA, mi and mj

represent the ith and jth miRNA. λ is the normalized kernel
bandwidth parameter of GIP kernel similarity, λ′ is the
original bandwidth parameter. Te defnitions of λ and λ′
are as follows:

λl �
λl
′

1/nl 􏽐
nl

i�1
V li( 􏼁

����
����
2

􏼢 􏼣

,

λm �
λm
′

1/nm 􏽐
nm

i�1
V mi( 􏼁

����
����
2

􏼢 􏼣

.

(2)

Finally, the self-similarities LGIP and MGIP composed the
blocks LL and MM. Te completed adjacency matrix is
shown as follows:

A �
LL LM

ML MM
􏼢 􏼣, (3)

where A is a 1045 × 1045 matrix including the topological
relationships of 770 lncRNA and 275 miRNA nodes. Blocks
LL and MM represent the self-similarity metrics of lncRNAs
and miRNAs, respectively. As be noticed, block ML is the
transpose of LM.

2.3. K-Mer Segmentation. Before numerical describing
lncRNA and miRNA, the amino acid sentences have to be
segmented for building corpuses. For the given sentences, K-
mer method is employed to originally explore the semantic
features [26, 27]. Specifcally, the sentences are divided into
subsequences by sliding windows, and the length of this
window is K. For instance, the sentence which contains N
amino acids, it will generate N − K + 1 subsentences. In this
section, the parameter K is set as 4. Te amounts of the
possible lncRNA and miRNA subsentences are all 4K, for
lncRNAs containing the Alanine (A), Cysteine (C), Glycine
(G), and Treonine (T) amino acids; miRNAs contain Al-
anine (A), Cysteine (C), Glycine (G), and Selenocysteine (U)

amino acids [28]. An example of NONHSAT129051.2
converting into subsequences is shown in Figure 2.

2.4. Distribution Representation of lncRNA and miRNA
Sequences. Te amino acid subsequences of lncRNAs and
miRNAs were utilized to construct the RNA2Vec models
including Lnc2Vec and Mi2Vec models for word embed-
ding. Tese models diferentially characterize lncRNA and
miRNA based on biological evidence. Ten, the sequences
were transformed into digital vectors as attribute charac-
teristics. Considering the size of the benchmark data set, the
word2vec model with skip-gram is applied to realize the
word representation [29, 30]. In general, this model con-
structs a projection neural network to learn the distribution
of words by sliding windows. Te framework of the skip-
gram is displayed in Figure 3.

With regard to the sentence (w1, w2, · · · , wN−K+1) where
w represents the amino acid, the objective function of the
model is defned as follows:

max
1

N − K + 1
􏽘

N−K+1

l�1
􏽘

−c≤m≤ c,m≠ 0
logP wn+m | wn( 􏼁, (4)

where c is the maximum distance between the words and the
central word in the sliding window. Te conditional
probability logP(wn+m | wn) is calculated by the following
equation (31):

logP wa | wb( 􏼁 � log
e

v′Twa
vwi

􏽐
w
w�1 e

v′Twa
vwi

, (5)

where vw and vw
′ represent the original and output formats of

the word w, respectively. W stand for the established lexicon
width. Similar to the nondigital text data processing, this
section inputs the sequences and corpuses into the network
for obtaining the numerical vectors as semantic features of
genes. After optimizing, the parameters size, window, iter,
and batch_words are set as 500, 5, 10, and 10, respectively.
Te size determines the length of the output vector; the
window gives the maximum distance between a central word
with contextual words; iter is the number of model itera-
tions; batch_words represents the account of words trans-
ferred to operations. Te other parameters are set as default
values. Figure 4 gives an example of the semantic embedding
process.

2.5. Graph Convolution Network. To date, graph represen-
tation models are divided into traditional graph algorithms
and graph neural networks. Te traditional graph model can
efectively implement the low-dimensional representation of
network nodes without the attribute characteristics of the
model. However, graph neural networks can make full use of
the attribute characteristics of nodes generated by the in-
creasing semantic feature extraction methods to improve the
feature diference between nodes. Moreover, the graph
neural networks can better represent graph structure
characteristics of the nodes.
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Kipf et al. proposed an extensible method of graph
convolution network (GCN) for semisupervised learning of
graph structure data, which is based on an efcient variant of
a convolution neural network [32]. It is widely utilized to
characterize the associations between the central node and
neighbor nodes. Tis model linearly extends the number of
edges and learns to encode the hidden layer representation
of local graph structure and node features [33]. Terefore,
GCN is employed to calculate the behavior features. Te
structure of GCN is shown in Figure 5.

In this research, the associations between lncRNAs and
miRNAs are embedded in the graph G � (V, E), V and E
denote the nodes and edges, respectively. Meanwhile, the
attribute features and adjacency matrix are fed into GCN

[34, 35]. Hence, the GCN can also integrate the attribute
features with behavior features. Specifcally, the Laplace
regularization term is applied to defne the convolution

NONHSAT129051.2

4-mer
AGAGCGCGTGTGGC
GGCCGAGCACATGG
GCCCGCGGGCCGGG
CGGGCTCGGGGCGG
CCGGGAC ..... CATT
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GGCC GCCG CCGG CGGG GGGA GGAC ..... CATT

CGGG GGGC GGCC GCCG CCGG CGGG

Figure 2: K-mer segmentation of NONHSAT129051.2.
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kernel for diferentially describing nodes. Te Laplace reg-
ularized formula is expressed as follows:

L � I − D
− 1/2

AD
− 1/2

, (6)

where I is the adaptive identity matrix, D is the degree
matrix, A is the adjacency matrix. Te application of the
Laplace regularization term will make the convolution
process smoother. Te graph matrix decomposition of L and
the convolution process are defned as follows:

L � UΛUT
,

gθ ∗x � UgθU
T
x,

(7)

where x denotes the input features of nodes. It aims to
transfer nodes into Fourier space. Subsequently, the Che-
byshev matrix is employed to approximate the convolution
kernel for reducing the computational complexity, the new
convolution kernel is as follows:

gθ(Λ) � 􏽘
K−1

k�0
θkΛ

k ≈ 􏽘
K

k�0
θk
′Tk(􏽥Λ),

􏽥Λ �
2

λmax
Λ − IN, θ′ ∈ R

k
,

(8)

where λmax is the maximum eigenvalue of L. In this paper, we
only consider the frst-order neighbors of the central node,
the parameters K and λmax are set as 1 and 2. Te Chebyshev
recursive formula is defned as follows:

Tk(x) � 2xTk−1(x) − Tk−2(x), T0(x) � 1, T1(x) � x. (9)

Te equation of graph convolution is updated to the
followinf equation:

gθ ∗ x ≈ θ0′x + θ0′ L − IN( 􏼁x � θ IN + D
− 1/2

AD
− 1/2

􏼐 􏼑x.

(10)

For preventing gradient explosion, the equation is fur-
ther standardized as follows:

Z � 􏽥D
− 1/2 􏽥A 􏽥D

− 1/2
XΘ, 􏽥A � A + IN, 􏽥D � 􏽘

j

􏽥Aij. (11)

Here, X is an N × C matrix containing C-dimensional
semantic features of N nodes, andΘ is a trainable matrix set.
According to the convolution kernel, the forward propa-
gation formula of a two-layer model is as follows:

F � 􏽢AReLU 􏽢AXW
(0)

􏼐 􏼑W
(1)

, (12)

where W(0), W(1) represent the weight matrix of hidden
layers 1 and 2. Finally, matrix F is utilized as the output
feature integrating attribute and behavior characteristics.

2.6. Rotation Forest. Rodriguez et al. [36] evolved integrated
forest into rotation forest (RoF) which promotes the dif-
ference by adding a rotation module. It provides a feasible
pipe for dealing with the benchmark dataset. Terefore, this
ensemble model is established to promote the feature dif-
ference and detect the interactions between lncRNAs and
miRNAs [37]. Firstly, the whole subjects have to be sto-
chastically disjointed into L independent subsets. Subse-
quently, Principal Component Analysis (PCA) algorithm
attends to transfer subsets for integrating RF. Finally, these
converted subsets are fed into the base classifers for scoring
subtrees. Te matrixQ of s × S represents the train set with S

characteristics of s samples. Te corresponding labels R �

(r1, r2, · · · , rn)T are also sent into the model to supervise the
training process [38]. Tis model has K base classifers Hi.
Te sequential training parts are as follows:

(i) After optimizing the parameters, the dataset Z is
divided into L disjoint subsets containing m � S/L
features.

(ii) Regard Zi,j as jth subset of Z, and Qi,j as the feature
set of Zi,j. Ten, bootstrap sampling on 75% of Qi,j

to generate training set Qi,j
′ .

(iii) Apply PCA in Qi,j
′ to obtain principal component

coefcients a
(1)
i,j , a

(2)
i,j , · · · a

(mj)

i,j .
(vi) Te rotation matrix Pi made up by coefcients is as

follows:

Pi �

a
(1)
i,1 , a

(2)
i,1 , · · · a

M1( )
i,1 0 · · · 0

0 a
(1)
i,2 , a

(2)
i,2 , · · · a

M2( )
i,2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · a
(1)
i,K , a

(2)
i,K , · · · a

Mk( )
i,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

In the classifcation, the possibility that the sample x
belongs to category ri is di,j(xPa

i ) calculated by base classifer
Hi. Furthermore, count the confdence degree that x is
assigned to each class, the method is as follows:

cj(x) �
1
L

􏽘

L

i�1
di,j xP

a
i( 􏼁. (14)

Te fnal category of sample x will be given according to
the degree.
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3. Results and Discussion

3.1. Evaluation Criteria. For rigorously verifying the model
performance, the criteria, viz. accuracy (Acc.), precision
(Prec.), sensitivity (Sen.), specifcity (Spec.), Matthews
correlation coefcient (MCC), and F1-Score (F1) are
employed to analyze the fve-fold cross-validation results.
Tese criteria are calculated by the following formulas:

Acc. �
TP + TN

TP + FP + TN + FN
,

Sen. �
TP

TP + TN
,

Pr e. �
TP

FP + TP
,

Spec. �
TN

TP + FP
,

MCC �
TN × TP − FN × FP

����������������������������������������
(TN + FN) ×(TP × FP) ×(TN + FP) ×(TP × FN)

􏽰 ,

F1 �
2 × Pr e. × Sen.

Pr e. + Sen.
,

(15)

where true positive (TP) represents the sum of associated
lncRNA-miRNA pairs which are detected as positive sam-
ples; true negative (TN) records the number of nonassoci-
ated pairs which are classifed as negative samples; false
positive (FP) denotes the aggregate of associated lncRNA-
miRNA pairs which are inferred as negative samples; false
negative (FN) is the count of nonassociated pairs which are
predicted as positive samples. In addition, Receiver Oper-
ating Characteristic (ROC) and Precision-Recall (PR) curves
are depicted to visualize the experimental results [39, 40].
Te area under the curves (AUC) and area under the PR
(AUPR) values are also attached to ROC and PR curves for
justifying our model and indicating the sample balance.

3.2. Parameter Discussion. In the experiment, the parame-
ters K and L which represent the numbers of feature subsets
and decision trees need to be optimized in the RoF classifer.
To obtain the optimal results, the grid-search algorithm is
applied to picture the accuracy surface of prediction results
with diferent parameters. Tere are 2400 experiments with
various groups of parameters K and L were conducted. With
the increment of the L-value from 0 to 60, the surface in-
dicates that the accuracy is continuously improved.
Meanwhile, the accuracy is increased and then dramatically
declined with the value rise of parameter K from 0 to 40. For
high efciency, the parameters K and L are set as 26 and 35.
Figure 6 shows the prediction accuracy surface with diferent
K-values and L-values.

3.3. Five-fold CV Results on Benchmark Data Sets. To fairly
validate the prediction feasibility of SEBGLMA and prevent
overftting and underftting. We applied the 5-fold cross-
validation (CV) method on the benchmark dataset with the

same optimal parameters. Specifcally, the standard dataset
was segmented into fve independent parts of the same size.
Te disjointed subdatasets take turns as a test set, while the
other four sets are treated as train sets.Te statistics of 5-fold
CV results on the benchmark dataset based on SEBGLMA
are listed in Table 2. Te average accuracy, precision, sen-
sitivity, specifcity, Matthews correlation coefcient, and F1-
Score are 87.09%, 87.66%, 87.03%, 87.84%, 74.18, and
86.99%. Te corresponding standard deviations are 0.59%,
1.02%, 0.87%, 0.65%, 0.12%, and 0.68%. Figures 7 and 8
display the performance of our model by ROC and PR
curves, the mean AUC value of 0.9301 and AUPR value of
0.9323 are attached to them.

3.4. Comparison with Other Classifers. At present, there are
many supervised learning classifers are established for
identifying the association between lncRNA and miRNA
based on the 5-fold cross-validation method. For further
evaluating the performance of rotation forest (RoF) in
SEBGLMA. We replaced the RoF with a support vector
machine (SVM), deep learning with dual-net neural archi-
tecture (DLDP) [41], light gradient boosting machine
(LGBM), and random forest (RF). In comparison, the pa-
rameters of RoF are set as the values which are optimized
above. Te inner product kernel is applied to map features
into a high dimension in the SVM classifer. Furthermore, the
classifcation process is simplifed by the small sample
learningmechanism. After optimization, the parameters c and
g are set as 0.7 and 38, respectively with radial basis function
(RBF) based on the LIBSVM tool. Te DLDP classifer is a
dual-net natural network combing Feature Importance
Ranking (FIR), andMultiple-Layer Perceptron (MLP).We set
parameter max batches� 3000 and the feature related pa-
rameters into 300, the rest parameters are set as default values.
LGBM is developed from gradient boosting decision tree
(GBDT) algorithm which saves computing time and cost.
After optimization, the leaf number, learning rate, and
training rounds were set to 60, 0.05, and 40, respectively.
Within the RF classifer, the number of estimators is set as 80.
Table 3 gives the results generated by diferent classifers.

Figure 9 displays the results of SVM, LGBM, RF, and
RoF on a benchmark data set with the same features. Te
comparison illustrates that the RoF-based model has a better
performance than other classifers. Compared with SVM, the
average accuracy, precision, sensitivity, specifcity, Matthews
correlation coefcient, and F1-Score improved by 16.97%,
16.22%, 16.38%, 17.89%, 27.97%, and 15.78%, respectively.
Compared with DLDP, these criteria improved by 15.62%,
11.71%, 30.09%, 15.40%, 30.96%, and 21.09%. Compared
with LGBM, these criteria improved by 5.86%, 5.56%, 4.70%,
4.42%, 3.96%, and 5.86%, respectively. Compared with RF,
the criteria improved by 1.51%, 1.45%, 0.72%, 2.72%, 2.95%,
and 1.30%, respectively. Figures 10 and 11 give the ROC and
PR curves of diferent classifers. Te AUC value gaps be-
tween RoF and other models have attained 0.1697, 0.1569,
0.0326, and 0.0164, respectively. Te AUPR value gaps have
reached 0.1544, 0.1625, 0.0385, and 0.0148, respectively.
Tus, the proposed model is more efcient to predict LMAs.
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Table 2: 5-fold cross-validation results on benchmark data set obtained by SEBGLMA.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC F1-score (%)
1 87.92 88.73 86.95 88.90 75.86 87.83
2 87.12 87.97 86.76 87.49 74.23 87.36
3 86.25 87.36 88.51 87.42 72.53 86.22
4 87.11 88.16 86.24 88.01 74.24 87.19
5 87.06 86.06 86.70 87.38 74.06 86.38
Average 87.09± 0.59 87.66± 1.02 87.03± 0.87 87.84± 0.65 74.18± 0.12 86.99± 0.68
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Figure 6: Te accuracy surface of the optimization on K-value and L-value.
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Table 3: 5-fold cross-validation results on benchmark dataset obtained by diferent classifers.

Model Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%) F1-score (%)
SVM 70.12 71.44 70.65 69.95 46.21 71.21
DLDP 71.47 75.95 56.94 72.44 43.22 65.90
LGBM 81.23 82.10 82.33 83.42 70.22 81.13
RF 85.55 86.21 86.31 85.12 71.23 85.69
RoF 87.09 87.66 87.03 87.84 74.18 86.99
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Figure 9: Comparison of various classifers on benchmark dataset.
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3.5.AblationExperiment. To evaluate the optimization efect
of each improved module, ablation experiments were
conducted on the RoF classifer. Table 4 gives the results of
ablation experiments. Firstly, we employed RNA2Vec
models to extract the attribute features of samples and input
them into the classifer as basic experiments. Ten, GIP is
utilized to extract the self-similarity between the same kind
of samples, and it is simply spliced with attribute features for
predicting LMAs. Compared with single attribute features,
the model which integrates RNA2Vec and GIP diferentiates
samples by splicing the semantic features and self-similarity
features.Te evaluation indicators of the model increased by
13.77%, 14.52%, 14.39%, 13.46%, 11.48%, and 15.39%, re-
spectively. After that, the adjacency matrix generated by
attribute features and known lncRNA-miRNA associations
was fed into the GCN to generate fusing features.Te criteria
of the model which combines RNA2Vec and GCN were
improved by 17.17%, 17.24%, 17.72%, 16.62%, 34.35%, and
17.48%. Finally, after integrating RNA2Vec, GIP, and GCN,
SEBGLMAmakes full use of the relationship between nodes
to embedding attribute features into behavior features. Te
performance of the model improved by 19.74%, 19.85%,
20.96%, 19.19%, 39.46%, and 20.18% compared with the
single attribute feature. Figures 12 and 13 give the ROC and
PR curves of ablation experiments. Te AUC value gaps
between SEBGLMA and other models have attained 0.2010,
0.0213, and 0.0174, respectively. Te AUPR value gaps have
reached 0.2012, 0.0170, and 0.0090, respectively. Ablation
experiments indicated that each module can efectively
improve the performance of SEBGLMA.

3.6. ComparisonwithPreviousMethods. By the time, various
previous methods have achieved advanced performances in
predicting LMAs. For more sufciently evaluating the
performance of our algorithm, we conducted the comparing
experiments with SPMLMI [17], EPLMI [42], LMI-INGI
[43], GNMFLMI [44], NDALMA [45], and LMFNRLMI
[16]. Tese models are established on the same benchmark
dataset with a 5-fold CV.Te LMFNRLMI algorithm utilized
the strongest adjacent relation to detect LMAs. Te ex-
pression profle-based prediction model for lncRNA-
miRNA interactions (EPLMI) method has the ability to
achieve the interaction possibility of lncRNA and miRNA.
Concretely, this method constructs a bipartite graph by
collaborative efects and similarities of diferent nodes. Te
lncRNA-miRNA interactions based on the interactome
network and graphlet interaction (LMI-INGI) model divides
the complex network into subgraphs, which is called
graphlet interaction isomers. Te subgraphs have 9 types of
structures containing 4 nodes to diferently describe the

nodes. Te graph regularized non-negative matrix factor-
ization for predicting lncRNA-miRNA interactions
(GNMFLMI) model constructs afnity graphs by p-nearest
neighbors, and scores the interacting possibility by graph
regularized non-negative matrix factorization. Te SPMLMI
algorithm established a two-layer network for inferring the
associations between lncRNAs and miRNAs. Table 5 lists the
AUC values of diferent methods. Te AUC values of the
previous models are 0.9220, 0.8447, 0.8957, 0.8894, 0.8810,
and 0.8767, respectively. Our method achieves a higher value
of 0.9301 compared with these advanced methods. Hence,
the proposed model has the potential to become a feasible
and efective tool to identify LMAs.

3.7. Case Study. In this work, case studies are conducted to
further verify the predictive performance of SEBGLMA. We
rescreened 7263 lncRNA-miRNA interaction pairs related to
419 lncRNAs and 263 miRNAs in lncRNASNP2 to prevent
accidental results. Subsequently, we took hsa-miR-497-5P
and NONHSAT022145.2 as case studies. Liver cancer is a
disease with a high incidence rate and is not easy to be found
in the early stage. Te miRNA hsa-miR-497-5P has a sig-
nifcant correlation with the occurrence of liver cancer by
interacting with lncRNAs. Terefore, our model is estab-
lished to detect the potential interacting lncRNAs for the
target miRNA. In this case study, 122 case-related positive
samples were subtracted from 7263 positive samples to
obtain 7141 unrelated positive samples from lncRNASNP2.
Subsequentially, 419 case-related samples were screened as
the test set. Finally, the unrelated positive samples and the
test data set are subtracted to obtain the fnal negative sample
data set. Te same number of negative samples are collected
from the remaining 102637 (419 × 263 − 7141 − 419) pairs
without validations. Te prediction results are sorted in
descending order according to the prediction score. Table 6
shows the top 30 predicted interactions. Tere are 24 of the
top 30 candidate lncRNAs were confrmed by lncRNASNP2.

Regarding NONHSAT022145.2, it has been certifcated
to have an infuence on the changes of renal cancer cells by
regulating miRNAs. In this case study, 120 case-related
positive samples were subtracted from 7263 positive samples
to obtain 7143 unrelated positive samples from
lncRNASNP2. Subsequentially, 263 case-related samples
were screened as a test set. Finally, the unrelated positive
samples and the test data set are subtracted to obtain the fnal
negative sample data set. Te same number of negative
samples are obtained from the remaining 102791 (419 ×

263 − 7143 − 263) pairs without validations. After sorting by
prediction scores, the top 30 predicted interactions are listed
in Table 7. Within the results, there are 27 of the top 30

Table 4: 5-fold cross-validation results on benchmark data set obtained by ablation experiments.

Model Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%) F1-score (%)
RNA2Vec 67.35 67.81 66.07 68.65 34.72 66.92
RNA2Vec +GIP 81.12 82.33 80.46 82.11 46.20 82.31
RNA2Vec +GCN 84.52 85.05 83.79 85.27 69.07 84.40
SEBGLMA 87.09 87.66 87.03 87.84 74.18 86.99
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Table 5: Comparison between our model with state-of-art methods in terms of benchmark data sets.

Model AUC
SPMLMI 0.8767
EPLMI 0.8447
LMI-INGI 0.8957
GNMFLMI 0.8894
NDALMA 0.8810
LMFNRLML 0.9220
Our method 0. 301
Te bold value represents the highest AUC value in the comparison.

Table 7: Top 30 miRNAs associated with NONHSAT022145.2 predicted by SEBGLMA.

Rank miRNA Evidence
1 hsa-miR-200c-3p lncRNASNP2
2 hsa-miR-338-3p lncRNASNP2
3 hsa-miR-429 lncRNASNP2
4 hsa-miR-140-5p lncRNASNP2
5 hsa-miR-378f lncRNASNP2
6 hsa-miR-599 Unconfrmed
7 hsa-miR-370-3p lncRNASNP2
8 hsa-miR-181b-5p lncRNASNP2
9 hsa-miR-378a-3p lncRNASNP2
10 hsa-miR-378d lncRNASNP2
11 hsa-miR-181a-5p lncRNASNP2
12 hsa-miR-378e lncRNASNP2

Table 6: Top 30 lncRNAs associated with has-miR-497-5P predicted by SEBGLMA.

Rank LncRNA Evidence
1 NONHSAT137542.2 lncRNASNP2
2 NONHSAT137558.2 lncRNASNP2
3 NONHSAT137541.2 lncRNASNP2
4 NONHSAT137559.2 lncRNASNP2
5 NONHSAT137541.2 lncRNASNP2
6 NONHSAT022125.2 Unconfrmed
7 NONHSAT001468.2 lncRNASNP2
8 NONHSAT022132.2 Unconfrmed
9 NONHSAT022145.2 Unconfrmed
10 NONHSAT055703.2 lncRNASNP2
11 NONHSAT055688.2 lncRNASNP2
12 NONHSAT055676.2 lncRNASNP2
13 NONHSAT055683.2 lncRNASNP2
14 NONHSAT055670.2 lncRNASNP2
15 NONHSAT055705.2 Unconfrmed
16 NONHSAT108321.2 Unconfrmed
17 NONHSAT055684.2 lncRNASNP2
18 NONHSAT055690.2 lncRNASNP2
19 NONHSAT055692.2 lncRNASNP2
20 NONHSAT055698.2 lncRNASNP2
21 NONHSAT055694.2 lncRNASNP2
22 NONHSAT108327.2 Unconfrmed
23 NONHSAT055673.2 lncRNASNP2
24 NONHSAT055671.2 lncRNASNP2
25 NONHSAT055700.2 lncRNASNP2
26 NONHSAT021846.2 lncRNASNP2
27 NONHSAT021836.2 lncRNASNP2
28 NONHSAT056045.2 lncRNASNP2
29 NONHSAT001973.2 lncRNASNP2
30 NONHSAT001976.2 lncRNASNP2
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candidate miRNAs have been validated. Te case studies
illustrate that SEBGLMA can efectively predict LMAs.

4. Conclusion

In general, this paper provides a novel mechanism inte-
grating K-mer segmentation, word2vec, Gaussian interac-
tion profle, graph convolution network, and rotation forest
to infer the LMAs. Specifcally, the K-mer segmentation and
word2vec are utilized to extract the attribute features of
RNAs. Ten, the adjacency matrix is completed by com-
bining the GIP self-similarity and the known relationships
between lncRNAs and miRNAs. Sequentially, the attribute
features and the completed adjacency matrix are sent into
GCN for embedding behavior characteristics. Finally, the
fusion features are fed into RoF for identifying LMAs. Te
mean accuracy, precision, sensitivity, specifcity, Matthews
correlation coefcient, and F1-Score of the proposed model
were 87.09%, 87.66%, 87.03%, 87.84%, 74.18%, and 86.99%,
respectively. For ensuring the advancement of ourmodel, we
also systematically conducted comparisons. First of all, the
classifer was altered by SVM, DLDP, LGBM, and RF to
validate the performance of RoF. Secondly, the ablation
experiments are carried on to prove the optimization ef-
ciency of each module. Finally, many state-of-art methods
are employed to evaluate the prediction performance. Te
comparisons indicate that our model can be a robust and
efcient tool to screen reliable candidates for clinical trials.

5. Limitation and Feature Work

Besides improving the accurate prediction ability of the
model, the limitations of the proposed model are also no-
ticed. Te limitations focusing on two aspects will be il-
lustrated in this section. On the one hand, the graph
convolution network only considers the mutual relation-
ships between the target nodes and the directly connected
primary nodes to obtain the local behavior feature infor-
mation. It is hardly to achieve the global structure

information of the target node. In future work, graph neural
networks with diferent distances between the target and
neighbor nodes will be constructed at the same time, and
these networks will be cascaded to extract the global
structure information of target nodes. On the other hand,
the noise and feature loss in the preprocessed sequence
features will reduce the robustness of the model. We will
develop a sequence data denoising algorithm to improve the
diference between samples. Generally, the subsequent re-
search will emphasize excavating more robust characteristics
with less noise and constructing reliable classifers. Te
expansion of the high-throughput database will furnish a
data foundation for building complementary identifcation
tools.
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