
Research Article
Efficient Privacy-Preserving Federated Deep Learning for
Network Intrusion of Industrial IoT

Ningxin He ,1 Zehui Zhang,1,2 Xiaotian Wang,1 and Tiegang Gao 1

1College of Software, Nankai University, Tianjin 300071, China
2China-Austria Belt and Road Joint Laboratory on Artifcial Intelligence and Advanced Manufacturing,
Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China

Correspondence should be addressed to Tiegang Gao; gaotiegang@nankai.edu.cn

Received 16 September 2022; Revised 18 October 2023; Accepted 20 October 2023; Published 16 November 2023

Academic Editor: Alexander Hošovský

Copyright © 2023 Ningxin He et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Intrusion detection systems play a very important role in industrial Internet network security. However, in the large-scale,
complex, and heterogeneous industrial Internet of Tings (IoT), it is becoming more and more difcult to defend network
intrusion threats due to the insufciency of high-quality attack samples. To solve the problem, an efcient federated network
intrusion method called EFedID is proposed for industrial IoT, which can allow diferent industrial agents to collaboratively train
a comprehensive detection model. Specifcally, the adaptive gradient sparsifcation method is introduced to alleviate the
communication and computation overheads. To protect the data privacy of the agents, a CKKS cryptosystem-based secure
communication protocol is designed to encrypt the model parameters through the federated training process. Our proposed
system demonstrates exceptional detection performance on the NSL-KDD, KDDCUP 99, and CICIDS 2017 datasets. Notably, on
the NSL-KDD dataset, themodel compression rate reaches 9 times while themodel accuracy reaches 84.31%. On the KDDCUP 99
dataset, the model compression rate reaches 8.9 times while the model accuracy reaches 97.3%. Lastly, on the CICIDS 2017 dataset,
the model compression rate reached 6.173 times while the model accuracy reached 95.51%. Te experimental results demonstrate
that the proposed method is very suitable for efectively developing a high-accuracy detection model while protecting the data
information of industrial agents. Furthermore, the method can be extended to other recent deep learning networks for intrusion
detection.

1. Introduction

Industrial Internet of Tings (IoT) encapsulates commu-
nication technologies, edge computing, cloud servers, ar-
tifcial intelligence (AI), and existing industrial control
systems [1, 2]. It aims to connect real-world scenarios with
distributed computing principles to realize smart
manufacturing, resource management, and other pro-
cesses. With the rapid development of industrial IoT, the
network security threats to IoT are becoming more and
more serious [3, 4] and cyber security has become a key
issue for industrial IoT. Network intrusion refers to any
unauthorized activity on a digital network, which is one of
the most common threats in cyber space. It often involves
stealing valuable network resources and jeopardizing the

security of networks and/or their data. Hence, intrusion
detection methods are proposed to monitor network op-
erations in real time and detect suspicious invasions.

In recent years, to proactively detect and respond to
network intrusions, researchers have used artifcial in-
telligence (AI) technologies to design intrusion detection
methods. Deep learning (DL) is predominant in the recent
literature on network intrusion detection. Recent studies [5]
have defnitely demonstrated that DL techniques can achieve
excellent detection accuracy compared to conventional
machine learning techniques. Many DL-based models have
been used for network intrusion detection. For instance, the
paper [6] developed an autoencoder-based intrusion de-
tection framework that harnesses the power of convolutional
and recurrent neural networks to proactively identify cyber

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 2956990, 22 pages
https://doi.org/10.1155/2023/2956990

https://orcid.org/0000-0002-2093-5693
https://orcid.org/0000-0002-3964-2612
mailto:gaotiegang@nankai.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2956990

threats in IIoTnetworks. Te work placed a strong emphasis
on model explainability, empowering security administra-
tors to interpret the underlying data evidence and causal
reasoning behind intrusion alerts. Te framework applies
a two-step sliding window (SW) to better learn the latent
representations of the data features, efectively extracting
features including malicious pattern contexts. Ismail et al.
[7] investigated electricity theft attacks in smart grid cyber-
physical systems and proposed a deep learning-based in-
trusion detection system. Wazzeh et al. [8] proposed a DTL-
(deep transfer learning-) based residual neural network
(ResNet) to efectively detect various network threats against
the heterogeneous Internet of Tings. More recent related
works are presented in Section 2.1.

Training high-performance deep learning models de-
pends on a large number of high-quality data. Currently,
most of the existing DL-based intrusion detection methods
assume that developers have sufcient high-quality cyber-
attack data. However, it is difcult to achieve this as-
sumption in practical scenarios because it is usually very
difcult and time-consuming for one industrial IoTowner to
collect a large number of cyberattack samples. In addition,
the traditional centralized learning approach (CL), which
centralizes distributed owners’ data to a central server for
model building, is also difcult to implement because in-
dustrial IoT owners are usually unwilling to share their
attack samples with third parties out of security, privacy, and
business interest considerations [8–11]. Te open trouble-
some problem of insufcient training samples has become
a major obstacle in training high-quality intrusion detection
models. Terefore, how to solve this difculty and develop
accurate and efcient intrusion detection methods becomes
a challenge for protecting intelligent networks in practical
applications.

Te application of federated learning to solve the in-
sufcient data problem is a relatively new research area
[9, 12–14]. Since federated learning can organize diferent
participants to collaboratively train a comprehensive model,
it has great potential to utilize more data from diferent
participants and get better model performance [12, 15, 16].
Tere are also some federated learning-based intrusion
detection methods [17, 18] that have achieved good per-
formance, but traditional federated learning requires a large
number of parameters to be transmitted during the training
process, which may not be applicable to resource-
constrained industrial environments. Moreover, it is very
possible to be attacked by an adversary during the parameter
transmission process, which can cause data privacy leakage.
In this paper, we frst develop a new method for multiple
industrial IoT owners to cooperatively build a comprehen-
sive intrusion detection model to alleviate the problem of
insufcient high-quality attack samples while preserving
their local data. In addition, to be more applicable to in-
dustrial IoT environments with resource-constrained de-
vices, we introduce adaptive gradient sparsifcation
technology, which sends sparse vectors of the model pa-
rameters, to alleviate the cryptographic computing and
communication overheads. Considering the security of the
model parameters in the data transmission process, we

design a secure communication protocol based on the CKKS
cryptosystem. Compared to other traditional homomorphic
encryption schemes, the CKKS scheme has a faster en-
cryption/decryption speed and supports both additive and
multiplicative homomorphic encryption. Te main contri-
butions of this study can be concluded as follows.

First, we present a network intrusion method named
EFedID, which (1) relieves the open troublesome problem of
insufcient training samples and (2) supports data pre-
processing at each industrial agent and preserves their local
data information.

Second, an adaptive gradient sparsifcation method,
named AGS, is developed to alleviate the resource overheads
of the EFedID system while retaining high efciency so that
it can be deployed to a large number of resource-constrained
devices.

Tird, the CKKS cryptosystem-based secure commu-
nication protocol is designed for the federated learning
system, by which the security and privacy of model pa-
rameters through the training process can be well preserved.

We present related works in Section 2 and describe the
design of EFedID in Section 3. In Section 4, we analyze the
security and functionality of our method. In Section 5, we
give comparison experiments to verify the proposed
method’s performance. Finally, we conclude this study in
Section 6. Table 1 shows a summary of the acronyms used in
this paper.

2. Related Work

2.1. Intrusion Detection Schemes for Industrial CPSs (Cyber-
Physical Systems). To fght against cyberattacks, various
intrusion detection methods have been proposed. Wang
et al. [19] proposed an intrusion detection framework
method based on SVMwith feature augmentation. However,
traditional machine learning-based detection methods are
not suitable for massive and high-dimension network trafc
data detection. In recent years, owing to the rapid devel-
opment of deep learning (DL) technologies, many re-
searchers proposed DL-based intrusion detection methods.
For instance, Li et al. [20] introduced a convolutional neural
network (CNN) to design a network intrusion detection
model for industrial IoT, which achieves high accuracy on
the NSL-KDD dataset. However, it has been experimented
on only one dataset. In practice, the performance of the
classifer may fuctuate due to some redundant or inefcient
features in diferent datasets. To alleviate this problem, Wu
and Li [21] proposed some feature selection methods and
introduced a combination of neural networks and random
forests to improve the detection performance. Compared to
similar methods, their approach provides better results in
general by identifying important and closely related features.
However, this scheme requires features to be extracted from
existing training data samples and it lacks generalization.
Te paper [22] proposed a real-time industrial IoT intrusion
detection system based on deep autoencoders. Tis system
utilizes a statistical feature mining approach to extract
relevant features from network trafc data, which is designed
to be helpful in improving the model’s generalization and

2 International Journal of Intelligent Systems

addressing the issues of low detection rates and high false
positive rates (FPRs). Nevertheless, it is difcult to obtain
enough high-quality data samples for detection model
training in practical scenarios. Moreover, due to the sen-
sitivity, privacy, and high value of industrial IoT data, data
owners are usually reluctant to share data. Tang et al. [17]
proposed a network intrusion detection method based on
federated learning. Although this scheme alleviates the
problem of insufcient attack samples, it does not consider
the FL system resource consumption problem, which does
not apply to resource-constrained devices. Khan et al. [18]
proposed the federated-SRU IDS model, which employs the
improved simple recurrent unit architecture to reduce
computational cost and mitigate the gradient vanishing
problem in recurrent networks for enhancing the model
intrusion detection performance. Moreover, the system
facilitates model aggregation through multiple communi-
cation rounds within the federated learning architecture,
allowing multiple ICS networks and stakeholders to col-
laboratively build comprehensive IDS models while pre-
serving their data privacy. However, they did not consider
the problem that the model parameters may be attacked by
an adversary during transmission which is not able to
protect the privacy and security of the local data.

2.2. Federated Learning-Based Industrial Applications.
Owing to its outstanding performance, many researchers
proposed various FL-based industrial applications. For in-
stance, Zhang et al. [23] proposed a rolling bearing fault
diagnosis method based on federated learning and con-
volutional neural network. Lu et al. [24] proposed a feder-
ated learning scheme for the digital twin networks by

incorporating IoT technologies, which improves commu-
nication efciency and reduces the transmission energy cost.
Zhang et al. [25] proposed a dynamic fusion-based FL for
medical diagnosis to classify COVID-19 infections, which
can adaptively determine the participants according to their
local model performance and model aggregation scheme
based on participants’ training time. In 2022, Aloqaily et al.
[26] proposed a hierarchical federated learning (HFL) so-
lution based on blockchain, which can provide fast, safe, and
accurate decision making for industrial machines.

3. Our Approach

In this section, we introduce our proposed EFedID, which
combines our designed adaptive gradient sparsifcation
(AGS) method and the CKKS cryptosystem-based secure
communication protocol. We frst describe the system
model and then present the detailed operations within the
method.

3.1. SystemModel. Federated learning ofers a solution to the
challenge of insufcient data by facilitating collaborative
model training among multiple institutions, all without the
need to disclose their individual data to each other or to
a central server. In this process, instead of transmitting raw
data, each agent sends model parameters to a cloud server.
We use the generic setting for the federated learning system,
where a cloud server and K industrial agents collaboratively
train a model for intrusion detection. As shown in Figure 1,
the system is composed of three parties: (1) a key generation
center (KGC), (2) a cloud server, and (3) K industrial agents.
Tese parties in the FL system are described as follows:

(1) KGC:Te KGC is a trusted third-party organization,
which is responsible for generating the keys based on
the CKKS cryptosystem and distributing the keys to
industrial agents. KGC does not send keys to entities
outside the system or without access.

(2) Cloud server: the cloud server contains three func-
tions: (a) it establishes diferent communication
channels for the industrial agents, (b) it collects the
trained models from the industrial agents and then
aggregates the models to obtain a new global model,
and (c) it adjusts the sparsifcation rate φ.

(3) Industrial agents: Each industrial agent collects and
stores the raw data. Tey are responsible for training
a model locally and uploading the trained model to
the cloud server until the end of training. In our
system, each agent sparsifes the model parameters
before sending them.

3.2. Adversary Model. We assume that the cloud server and
all the industrial agents are honest-but-curious entities.
Honest-but-curious entity means that it will faithfully follow
the designed protocol and not tamper with the calculation
results but will attempt to infer private information from the
input of other entities in the scheme (industrial agents in this
article). Meanwhile, the KGC is considered a trusted third

Table 1: Summary of acronyms used.

Acronyms Full name
IoT Internet of Tings
AI Artifcial intelligence
CL Centralized learning
DL Deep learning
FL Federated learning
ANN Artifcial neural network
DNN Deep neural network
CNN Convolutional neural network
Multi-CNN Multi-convolutional neural network
AGS Adaptive gradient sparsifcation method
SVM Support vector machine
HMM Hidden Markov model
BBFO Binary bacterial foraging optimization
HFL Hierarchical federated learning
CPS Cyber-physical system
KGC Key generation center
MGD Momentum gradient descent
MLP Multilayer perceptron
ReLU Rectifed linear unit
CPA Chosen-plaintext attack
TLS/SSL Transport Layer Security/Secure Sockets Layer
CR Compression rate
IID Identically and independently distributed
Non-IID Not identically and independently distributed

International Journal of Intelligent Systems 3

party, and it will only distribute the keys to the industrial
agents in the system.

3.3. TeWorkfow of the Proposed Method. Te workfow of
our EFedID includes four stages (see also Figure 2 and
Algorithm 1).

3.3.1. System Setup. As mentioned in Section 3.1, our system
consists of three types of entities: the KGC, the cloud server,
and the industrial agents. During the setup phase, they have
diferent tasks. Te KGC conducts KeyGen (λ) (see more
details in Section 3.6) to produce the public key pk and
private key based on the CKKS cryptosystem and sends the
keys to all agents. At the same time, the cloud server es-
tablishes diferent secure channels between the cloud server
and each industrial agent to protect transmission data.Ten,
each industrial agent uploads the encrypted initial model to
the cloud server. Te cloud server aggregates the encrypted
initial models uploaded by all industrial agents to generate
the initial global model and broadcasts the initial global
model to all industrial agents.

3.3.2. Each Industrial Agent Trains the Local Model.
After receiving the encryption sparse global model pa-
rameters Enc(sparse (vglo)) and the sparsifcation rate φ from
the cloud server, each industrial agent trains a local DL-
based intrusion detection model, using its private data re-
source Dk. Since the sparse global model parameters are
encrypted, each agent needs to decrypt using the public key
pk.

sparse vglo􏼐 􏼑 � CkkDec Enc sparse vglo􏼐 􏼑􏼐 􏼑􏼐 􏼑, (1)

where CkkDec(∙) denotes the decryption operation (see
more details in Section 3.6).

After obtaining the sparse model parameters sparse
(vglo), each industrial agent updates the local model.

wa,k � wa,k − spares vglo􏼐 􏼑, (2)

wherewa,k denotes the local model parameters of the agent k.
Ten, each agent uses the local data to train the local

model, which can be expressed as

wa,k � MGD wa,com, Dbatch,k􏼐 􏼑, (3)

where MGD denotes the momentum gradient descent al-
gorithm and Dbatch,k denotes the mini-batch data of the
agent k.

3.3.3. Each Industrial Agent Uploads Model Parameters.
Each industrial agent processes the local model parameters
according to the sparsifcation rate φ downloaded from the
cloud server to obtain sparse (va,k) (see more details in
Section 3.4).

After sparse (va,k) is obtained, each agent encrypts the
local sparse model parameters and uploads the encrypted
parameters to the cloud server. Te encryption formula is
shown in the following equation:

Enc sparse va,k􏼐 􏼑􏼐 􏼑 � CkkEnc sparse va,k􏼐 􏼑􏼐 􏼑, (4)

where CkkEnc(∙) denotes the encryption operation (see
more details in Section 3.6).

3.3.4. Cloud Server Updates Global Parameters. Te server
receives the encrypted sparsifcation local parameters Enc
(sparse (va,k)) from all the industrial agents and computes
the average model parameters Enc (sparse (vglo)) to update
the global model parameters. Encrypted sparsifcation local
parameters Enc (sparse (va,k)) can be aggregated without
decryption because the CKKS encryption algorithm is ho-
momorphic. Te server uses the weighted federated aver-
aging method, which assigns varying weights to individual
agents based on the proportion of data each agent holds
relative to the total dataset size. Te aggregation formula is
shown in the following equation:

Enc sparse vglo􏼐 􏼑􏼐 􏼑 � 􏽘
K

k�1
ϑk · Enc sparse va,k􏼐 􏼑􏼐 􏼑􏼐 􏼑, (5)

where ϑk denotes data contribution ratios calculated by ϑk � |
Dk|/|Dall|, |Dk| denotes the number of the data of the agent k,
and |Dall| denotes the number of all agent’s data. Te global
sparsifcation model parameters are obtained by adding all
encrypted sparsifcation model parameters according to the
data contribution ratios.

Ten, the cloud server uses the AGS to make some
adjustments to φ (see more details in Section 3.4).

Finally, the cloud server broadcasts the global model
parameters Enc (sparse (vglo)) and adjusts φ to all agents to
start the next round of federated training until the end. Tis

Cloud Server

Key generation center

Local data 1

Local model 1

Industrial agent 1

Local data 2

Local model 2

Industrial agent 2

Local data k

Local model k

Industrial agent k

Global model Aggregation

Figure 1: Federated learning system architecture.

4 International Journal of Intelligent Systems

procedure of multiple local update steps followed by global
aggregation repeats until training convergence.

3.4. Adaptive Gradient Sparsifcation. Te FL system com-
munication process requires the transfer of a large number
of parameters, which can put a huge strain on industrial IoT

environments with limited network resources. In order to
protect the data privacy of industrial agents, homomorphic
encryption technology is usually used in the FL system.
Encrypting and decrypting model parameters requires a lot
of resources, especially when there are many agents in the
system, which is often difcult on resource-constrained
devices. To reduce the consumption of computing

Input: Model, training parameters
Output: wglo

(1) Initialization:
(2) (a). Create separate communication channels between industrial agents and the cloud server;
(3) (b). Initialize the global model wglo;
(4) (I). Industrial agent side:
(5) for industrial agent k� 1, . . ., K do://Parallel running
(6) Receive Enc (sparse (vglo)) and φ;
(7) sparse (vglo)⟵CKKDec(Enc(sparse (vglo)));
(8) wa,k⟵wa,k − sparse(vglo);
(9) Compute the validation accuracy valueαk;
(10) Train the model locally and obtain the model parameters vk;
(11) Perform sparse operation on model parameters to obtain sparse(va,k);
(12) Enc(sparse (va,k))⟵CKKEnc(sparse (va,k));
(13) Send Enc (sparse (vk)) andαk to the server;
(14) End
(15) (II). Cloud server side:
(16) Receive Enc(sparse(va,k)) and αk;
(17) Enc(sparse(vglo))⟵􏽐

K
k�1(ϑk · Enc(sparse(va,k)));

(18) Use our AGS algorithm to make some adjustments to φ;
(19) Broadcast Enc (sparse (vglo)) and φ to all agents;
(20) Return wglo.

ALGORITHM 1: EFedID.

Local data Local result

Local model
parameters va,1

Cloud Server

Industrial agent 1

Te Cloud Server receives the encryption model parameters Enc (sparse (va,1)) , Enc (sparse (va,2)), ..., Enc (sparse (va,K)) and the validation accuracy value α1, α2 ,..., αK
uploaded by each industrial agent.

Encryption: Enc (sparse (va,1))

Repeat the following steps:

Update: Aggregate global model parameters Enc (sparse (vglo)) = ϑ1·Enc (sparse (va,1))+ϑ2·Enc (sparse (va,2))+…+ϑK·Enc (sparse (va,K))

Broadcast:Send the updated global model parameters Enc (sparse (vglo)) and the sparsifcation rate φ to all industrial agents.

TLS/SSL channel 1

Global model
parameters vglo

Local model parameters
 sparsifcation sparse (va,1)

Validation
accuracy value α1

Local data Local result

Local model
parameters va,K

Encryption: Enc (sparse (va,K))Decryption sparse (vglo)

TLS/SSL channel k

Global model
parameters vglo

Local model parameters
sparsifcation sparse (va,K)

Validation
accuracy value αK

Adjust the sparsifcation rate φ

Decryption sparse (vglo)

Industrial agent K

Figure 2: Te workfow of the EFedID.

International Journal of Intelligent Systems 5

resources and improve communication efciency, a gradient
sparsifcation method is introduced in our scheme to reduce
the number of parameters for communication transmission.

In this paper, the momentum gradient descent (MGD)
optimizer [27] is used to minimize L(bk, wa,k

t). Te opti-
mization objective is formulated as shown in the following
equation:

min
wFL
Ε(x,y)∼Da,k

L f x;wFL(􏼁, y􏼂 􏼃, k � 1, . . . , K, (6)

where the local data of industry agent k are denoted by Da,k.
At every iteration t, industrial agent k computes the loss

L(bk,wa,k
t) and the model parameters va,k

t with regard towa,k
t .

va,k
t+1 � cva,k

t +
1
bk

􏽘

bk

i�1
∇wa,k

t
L f xi;w

a,k
t􏼐 􏼑, yi􏼐 􏼑. (7)

For t� 1, 2, 3, . . ., N, where wa,k
t is the weight vector

obtained at the end of the current iteration t,
L(f(xi;w

a,k
t), yi)) is the loss obtained at the end of the

previous iteration t(t� 0 corresponds to model initializa-
tion), and ∇wa,k

t
L(f(xi;w

a,k
t), yi) ∈ RΤ is the sparse gradient

of the local loss in iteration twith Tdefned as the dimension
of the weight vector.

Formally, in every iteration t, the weight vector of the
industrial agent k is adjusted by MGD as follows:

wa,k
t+1 � wa,k

t − ηva,k
t . (8)

When all industrial agents upload model parameters to
the server, the global model parameters are computed as

vglo �
1
K

􏽘

K

k�1
va,k. (9)

In every iteration t, the global model weight vector is
optimized by MGD by

wglo
t+1 � wglo

t − vglot . (10)

Te main goal of gradient sparsifcation is to exchange
only a small number of important gradients. Te cloud
server calculates the sparse global gradients according to
these gradients and sends the updated sparse global gradi-
ents to each agent.Te gradient sparsifcation scheme is very
efective in reducing the computation and communication
costs in the FL system. Han et al. [28] provided theoretical
analysis to prove that local and global models can still
converge after gradient sparse. Setting the sparsifcation rate

in the gradient sparsifcation scheme is critical and requires
a trade-of between model performance and resource sav-
ings. A high sparsifcation rate can signifcantly reduce the
resource overhead, but it can also signifcantly degrade
model performance. A low sparsifcation rate guarantees
a limited loss of model performance but saves very few
computing and communication resources. To better balance
model performance and resource consumption, we adopt
the adaptive gradient sparsifcation method referring to the
adaptive learning rate method [15]. We consider a slightly
diferent procedure in which instead of using a fxed
compression ratio, we adaptively adjust the compression
rate according to the training information of model per-
formance. We will see in the experiments in Section 5.3 that
our AGS performs better than the fxed compression ratio
approach (GS).

In AGS, we use the accuracy value as the model per-
formance metric. Industrial agent k computes the local
accuracy value denoted by αk. Te local accuracy values αk
are sent from each industrial agent to the cloud server, and
the server calculates the average of the accuracy values,
which can be expressed as

αglo � 􏽘
K

k�1
ϑk · αk(􏼁. (11)

We adjust the sparsifcation rate φ when the value of αglo
is continuously below the highest accuracy τ times. Te
adjustment formula is as follows:

φ � max φ − drate, 0(􏼁, (12)

where drate denotes the decay rate. We set the value of drate to
0.001 in this paper based on experimentation. Te τ value
afects the sensitivity of the proposed scheme. We set the
value of τ to 2 in this paper based on experimental.

Te cloud server sends the sparsifcation ratio φ to all
industrial agents. After the agents receive φ, each agent
calculates the absolute value abs(va,k

t) of the local model
parameters va,k

t and then sorts abs(va,k
t) of the local model

from smallest to largest values, setting the value at φ%
position as the local sparsity threshold θ for the t-th iteration.

abs va,k
t􏼐 􏼑 � va,k

t

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (13)

Each industrial agent updates model parameters va,k
t

whose absolute value is evaluated to exceed θ instead of all
model parameters.

sparse va,k
t􏼐 􏼑 � sparse cva,k

t−1 − η
1
bk

􏽘

bk

i�1
∇wa,k

t−1
L f xi;w

a,k
t−1􏼐 􏼑, yi􏼐 􏼑⎛⎝ ⎞⎠ � va,k

t ⊖ abs va,k
t >� θ􏼐 􏼑􏽨 􏽩, (14)

6 International Journal of Intelligent Systems

where sparse(va,k
t) denotes the sparse model parameters. Θ

[·] denotes the identity function that is equal to va,k
t if the

condition is satisfed and zero otherwise.
Te rate of agent k can be computed as

φt �
sparse va,k

t􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

va,k
t

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (15)

where the total number of sparse (va,k) is denoted by |sparse
(va,k)| and the total number of va,k is denoted by |va,k|.

Finally, the cloud server receives the encrypted sparse
model parameters Enc (sparse (va,k)) and computes the
sparse global model parameters Enc (sparse (vglo)) according
to equation (5).

Te overall process is shown in Algorithm 2. Next, we
analyze the resource consumption of the AGS algorithm. UA
denotes the number of agents, the total number of model
parameters is denoted by M, and each model parameter
takes up 4 bits.

3.4.1. Communication Cost. According to our algorithm, the
communication cost mainly arises from data transmission.
At each training, industrial agents send sparsifcation local
models and local accuracy information to the cloud server,
which incurs a communication cost of [(1 − φ) M + 1] ∗
4 UA bits. Te cloud server then returns the aggregated
global model and the updated sparsifcation rate φ, which is
of size 4(M + 1) bits. Tus, the communication cost is about
4[UAM(1 − φ) +M+UA+ 1] bits per training round.

3.4.2. Computational Cost. Before uploading the local
model, the industrial agent needs to perform a sparsifcation
operation on the local model parameters. Te time com-
plexity of obtaining the absolute value of the local model
parameters va,k

t is O(T) and T is the dimension of the local
model parameters. Te time complexity of computing the
sparsifcation threshold isO(T logT). Te time complexity of
selecting the updated model parameters is O(T). Te total
time complexity of the AGS algorithm is O(T logT+ 2T).

3.5. Te CNN-Based Intrusion Detection Models. Now, we
describe our designed intrusion detection model in detail.

3.5.1. Model Structure. Figure 3 shows the CNN-based in-
trusion detection model structure, which consists of a CNN
module, a MLP (multilayer perceptron) module, and
a softmax layer. Te structure of the input data is resized to
5 ∗ 5 square, as expected by the CNN model. Te CNN
module contains two convolutional blocks, and each con-
volutional block contains one convolutional layer, one batch
normalization layer, and one max-pooling layer. Te acti-
vation function of each hidden layer is the rectifed linear
unit (ReLU). Cblock1 in the CNN module extracts 5 ∗ 5
feature map as the input of Cblock2. Cblock2 extracts 5 ∗ 5
feature map with 16 channels and inputs it into the MLP
module. Te MLP module is used to predict classes, which
contain two fully connected layers and one dropout layer.

Te dropout layer with a dropout rate of 0.5 is adapted to
control overftting. Finally, we use the softmax layer that
transforms the MLP output from exponential to probabi-
listic form. Te cross-entropy function is used as the loss
function, and the formula is as follows:

L �
1
B

􏽘

B

i�1
􏽘

J

j�0
yi,jlog 􏽢yi,j, (16)

where yi,j represents the true label of i-th sample, 􏽢yi,j rep-
resents the probability label of i-th sample classifed by
softmax layer, J denotes the number of categories, and B
denotes the size of the batch data.

3.5.2. Model Training. Model training is performed on the
industrial agent side. At round t, local models of all industrial
agents are initialized to the global model wglo

t . Ten, each
industrial agent trains our designed intrusion detection model
locally on their private data resourceDk.wa,k

t+1 is updated locally
based on MGD optimizer, which can adjust the weights of the
model to reduce the cross-entropy function value.

3.6. CKKS Cryptosystem-Based Secure Communication
Protocol. Now, we introduce our designed secure com-
munication protocol based on CKKS [29]. Compared with
Paillier homomorphic encryption algorithm, CKKS has
great advantages in computing speed [30, 31], which is very
helpful in improving the operation speed of federated
learning. It is noticeable that TLS/SSL is used in our protocol
to create secure communication channels, which helps re-
duce the risk of potential external adversary attacks during
parameter transmission between the cloud server and in-
dustrial agents. Our CKKS cryptosystem-based secure
communication protocol contains a total of four functions:
KeyGen, CkkEnc, CkkAgg, and CkkDec.. Te detailed al-
gorithms are as follows:

(1) KeyGen (λ): Te key generation center generates the
public key and the private key by executing KeyGen
(λ). Te key generation center is given the security
parameter λ. It selects a prime p and an integer q0, L,
τ, sets ql � pl∙q0, where l= 1, 2, . . ., L. Te parameter
N � N(λ, qL) and B-bound error distribution χ � χ
(λ, qL) selected reasonably as parameters. Next,
a random number s � HWT(h) is chosen to gen-
erate the security key sk⟶ (1, s) ∈ ZN+1

qL
, where

HWT (h) is a signed set of n-dimensional {1, 0, 1}N
vector with Hamming weight h. In addition, a ran-
dom number A⟶ ZN∗ τ

qL
, e⟶ χτ are selected to

generate the public key pk � (−As + e(mod qL),

A) ∈ Ζτ∗ (N+1)
qL

. Finally, the key pairs are distributed
to industrial agents by the key generation center.

(2) CkkEnc (sparse (va,k), pk): Te CkkEnc function is
executed by the industrial agents to encrypt the local
model parameters before uploading them to the
cloud server. Randomly select a vector r← 0, 1{ }τ and
obtain the ciphertext of the local model parameters
CkkEnc(sparse (va,k)). It is formulated as

International Journal of Intelligent Systems 7

CkkEnc sparse va,k􏼐 􏼑􏼐 􏼑← vsparse va,k(), 0􏼒 􏼓 + pk
T

· r ∈ Z
N+1
qL

.

(17)

(3) CkkAgg(CkkEnc(sparse(va,k)), . . ., CkkEnc (sparse
(va,K))): In each communication round k, once all the
industrial agents have uploaded their encrypted
parameters δk to the cloud server, the server executes
the CkkAgg function to aggregate the local models
and obtain the global model parameters. It is for-
mulated as

CkkEnc sparse vglo􏼐 􏼑􏼐 􏼑 � 􏽘
K

k�1
CkkEnc sparse va,k􏼐 􏼑􏼐 􏼑

δk
.

(18)

(4) CkkDec (CkkEnc (sparse (vglo)), sk): the CkkDec
function is executed by the industrial agent to

decrypt the global model parameters CkkEnc (sparse
(vglo)) downloaded from the cloud server, which can
be expressed by

sparse vglo􏼐 􏼑 � 〈CkkEnc sparse vglo􏼐 􏼑􏼐 􏼑, sk〉 mod ql(􏼁.

(19)

4. Analysis

In this section, we present the security analysis and func-
tionality analysis of our EFedID scheme.

4.1. Security Analysis

Defnition 1 (CPA security). A private-key encryption
schemeΠ�Gen, Enc, Dec) has indistinguishable encryption
under a chosen-plaintext attack (CPA) if for all probabilistic

MLP module

CNN module

FC
1

(H
id

de
n

un
it

12
8)

So
ftm

ax

O
ut

pu
t

D
rp

ou
t

FC
2

(H
id

de
n

un
it

64
)

In
pu

t d
at

a

C
on

vo
lu

tio
n

Ba
tc

h
no

rm
al

iz
at

io
n

Ac
tiv

at
io

n

M
ax

Po
ol

in
g

C
on

vo
lu

tio
n

Ba
tc

h
no

rm
al

iz
at

io
n

Ac
tiv

at
io

n

M
ax

Po
ol

in
g

Fl
at

te
n

Normal

D
iff

er
en

t a
tta

ck
s

Dos

Probe

U2r

R2l

Cblock1
Feature map 5*5

Cblock2
Feature map 16@5*5

Figure 3: Te structure of the proposed CNN-based intrusion detection model.

Input: ϕ 0,η,c
Initialize α0⟵ 0, μ⟵ 0

(1) for t� 1, . . ., N do:
(2) Each industrial agent k� 1, . . ., K:
(3) Receive Enc (sparse (vglobal)) and ϕ
(4) sparse (vglo)⟵CKKDec(Enc(sparse(vglo)))

(5) wa,k⟵wa,k − ηsparse (vglo)

(6) Train the local model
(7) va,k

t+1⟵ cva,k
t+1 + 􏽐

bk

i�1∇wa,k
t

L(f(xi; wa,k
t)), yi

(8) abs(va,k
t) � |va,k

t |

(9) Spare(va,k
t)⟵ va,k

t ⊝ [abs(va,k
t)>� θ]

(10) Enc(sparse (va,k))⟵CKKEnc(sparse (va,k))

(11) Compute the validation accuracy value αk
(12) Send αk and Enc (sparse (va,k)) to cloud server
(13) Te cloud server:
(14) sparse (vglot)⟵ 1/bk􏽐

K
k�1sparse (va,k

t)

(15) αglo⟵􏽐
K
k�1(δk · αk)

(16) If αglo> α0:
(17) α0⟵ αglo
(18) else:
(19) μ⟵ μ + 1
(20) if μ>� τ:
(21) φ⟵ max (φ − 0.001, 0)

(22) μ⟵ 0
(23) Send ϕ and sparse (vglot)

ALGORITHM 2: AGS.

8 International Journal of Intelligent Systems

polynomial-time adversaries A there exists a negligible
function

Pr PrivK
cpa
A,Π(n) � 1􏽨 􏽩≤

1
2

+ negl(n), (20)

where the probability is taken over the random coins used by
A.

Te CKKS cryptosystem-based secure communication
protocol is proved to be indistinguishable against chosen-
plaintext attack (CPA) based on the decisional composite
residuosity problem, which means the ciphertexts will leak
no bit of information about the plaintexts. Next, we would
demonstrate that our scheme can protect industrial agents’
data privacy.

Theorem . Our proposed method can guarantee that no
industrial agents' data information will be leaked if the CKKS
cryptosystem-based secure communication protocol can
against Chosen Plaintext Attack (CPA) when all components
involved in the system are noncolluding.

Proof. According to CPA-secure, we assume that there is an
adversary in our system who intercepts the ciphertext of all
the model parameters. However, in the absence of collusion,
the adversary has no way to obtain the decrypted private key
sk to decrypt the ciphertext. Te key generation center will
not distribute key pairs to entities other than agents. So, the
adversary cannot infer the true value of the model param-
eters. For eavesdroppers in the process of parameter
transmission, we have employed TLS/SSL (Transport Layer
Security/ Secure Sockets Layer) to establish separate com-
munication channels between the server and each agent to
provide additional protection for the system to prevent
eavesdroppers. Moreover, each industrial agent cannot
obtain the model parameters of other agents because each
industrial agent uses a separate channel to communicate
with the cloud server. Terefore, in our system, we can
ensure the privacy of the parameters of all models and the
privacy of the industrial agent’s data. □

4.2. Functionality Analysis. Now we compare the func-
tionality of the latest FL deep learning models as shown in
Table 2. MFL [27] uses the momentum term to accelerate
convergence but does not take privacy into account. DPFL
[32] and PFL [33] do not use the momentum term to speed
up convergence, although privacy protection is considered.
Compared with these schemes, our proposed EFedID uses
AGS to reduce resource consumption while considering data
privacy protection and model convergence rate during the
training process.

5. Implementation and Evaluation

5.1. Settings

5.1.1. Environment. Te experiment is performed on
a computer that has NVIDIA 1080-Ti and 32GB RAM. Te
EFedID is developed by CKKS-Python and PyTorch.

5.1.2. Datasets and Data Preprocessing. We select three
network intrusion detection datasets from diferent domains
to validate the efectiveness of our scheme.Te KDDCUP 99
[34] dataset is extracted based on packet traces frommilitary
network environments, and it is one of the most widely used
datasets in the feld of intrusion detection. Te NSL-KDD
[35] dataset is an updated version of the KDD CUP 99,
which eliminates redundant data and selects a number of
records from each difculty level group that is inversely
proportional to the percentage of records in the original
KDD CUP 99 dataset. Terefore, the classifcation rates of
diferent machine learning methods vary over a wider range,
which makes the accurate assessment of diferent learning
techniques more efective. In the recent literature [20, 27],
many researchers use the NSL-KDD dataset as a valid
baseline dataset, which can help researchers to compare
diferent intrusion detection methods. CICIDS 2017 [36] is
collected by the Canadian Institute for Cybersecurity Re-
search in 2017, which contains the benign and newest
common types of attacks similar to real-world data.
Terefore, we decide to use the above three datasets to test
the benchmark performance of our approach. Te number
of data records and characteristics in diferent datasets are
given below:

(i) KDD CUP 99 dataset: Tis dataset consists of 5
million records, and we use a 10% training subset
and a test set for our experiments. Te training set
has 494,021 training samples, and the test set has
311,092 test samples. Te dataset includes 41 fea-
tures, and there are 24 types of attacks in the
training set and 38 types of attacks in the test set.
Te types of attacks can be classifed as denial-of-
service (DoS), attack from remote to local machine
(R2L), unauthorized access to local administrator
user (U2R), and probing attack 4 types.

(ii) NSL-KDD dataset: In our paper, we have used the
“KDDTrain+” dataset for the model’s training and the
“KDDTest+” dataset for testing. Te “KDDTrain+”
dataset has 125973 records and the “KDDTest+”
dataset has 22544 records. Each record contains 41
feature attributes and one label attribute. Tere are 9
discrete features and the rest are continuous features.

(iii) CICIDS 2017 dataset: Tis dataset consists of
3429031 records and we use 80% of the data as the
training set and 20% of the data as the test set. Each
record has 80 features, and the dataset has 14 types
of attacks.

We assume that the data are independently and iden-
tically distributed (IID). Te data are shufed and

Table 2: Comparison of functionality with the latest FL models.

Function MFL PFL DPFL EFedID
Noninteractive × √ × √
Privacy-preserving × √ √ √
Momentum √ × × √
Gradient sparsifcation × × × √

International Journal of Intelligent Systems 9

partitioned to each industrial agent. Before model training,
the industrial agents in the FL system process their local data
to generate training and testing samples. First, the random
forest algorithm is used to perform feature analysis on the
data, and the top 25 features are selected for model training.
Next, we use one-hot encoding to encode the three features
of “protocol_type,” “service,” and “fag.” Tis operation can
convert data into numerical values, which is convenient for
neural network processing. In addition, we use Min-Max
normalization to scale the samples to the range of 0-1.

5.1.3. Models. We design experiments to study the perfor-
mance of the proposed EFedID for multiclass classifcation
on the NSL-KDD, KDD CUP 99, and CICIDS 2017 datasets.
We use our designed CNN-based intrusion detection model
as the local model of industrial agents. A dropout layer with
a dropout rate of 0.5 is used between the frst fully connected
layer and the second fully connected layer to control
overftting. Rectifed linear unit (ReLU) is used as the ac-
tivation function of each hidden layer. A momentum gra-
dient descent (MGD) optimizer with a momentum rate of
0.5 is adopted to train models. Te loss function is the cross-
entropy cost function. Te mini-batch size, the aggregation
round, the learning rate, and the decay rate drate used in
training the networks are 512, 1500, 0.05, and 0.001,
respectively.

5.1.4. Performance Metrics. In this paper, we use the ac-
curacy, precision, recall, and compression rate to evaluate
the performance of the diferent methods: (1) accuracy—the
proportion of correctly classifed samples to the total
number of samples; (2) precision—the percentage of records
predicted to be of categories are indeed those categories; (3)
recall—the proportion of all correctly predicted category
records to exact types of categories; (4) F1-score—the
harmonic mean of the accuracy and recall, with the maxi-
mum value of 1 and the minimum value of 0.5; and (5)
compression rate—the proportion of the number of the
transmission parameters computed as CR � 􏽐

N
t�1􏽐

K
k�1

|sparse(va,k
t)|/􏽐N

t�1􏽐
K
k�1|v

a,k
t |, where N denotes the aggrega-

tion rounds.

5.2.Case 1. In this experiment, we conduct a comprehensive
evaluation by comparing our proposed EFedID approach
with three other prominent methods: centralized learning
(CL), privacy-preserving federated learning (PFL), and
PFL-GS using a fxed sparsifcation rate of 0.8. Te com-
parison is performed across various dimensions to assess the
efciency and efectiveness of EFedID.

5.2.1. Accuracy. Accuracy is a critical metric for evaluating
intrusion detection models. As illustrated in Figures 4(a),
5(a), and 6(a), our EFedID initially exhibits lower accuracy
in the early aggregation rounds due to its higher sparsif-
cation rate during this phase. Ten, with the increase of the
number of aggregation rounds, the accuracy of EFedID

steadily improves, eventually converging to levels closely
matching those of PFL. Further insights are provided in
Figures 7–9, which present histograms derived from ex-
perimental results.

Notably, the centralized learning (CL) approach attains
the highest accuracy, achieving 84.33%, 97.35%, and 95.85%
on diferent datasets, making it the top-performing model
among the four learning approaches. For the purpose of
baseline comparison, we chose PFL. Importantly, it is worth
highlighting that EFedID and PFL-GS (φ� 0.8) demonstrate
comparable model performance to PFL. Tis result un-
derscores that EFedID does not afect model performance on
diferent datasets.

5.2.2. Resource Costs. Resource consumption is a critical
concern in practical deployments. Figures 4(c), 5(c), and 6(c)
show transmission parameter curves on diferent datasets,
while Figures 7–9 present histograms of these transmission
parameters. Te number of transmission parameters plays
an important role in determining cryptographic computa-
tion and communication overheads. Observing Figures 4(c),
5(c), and 6(c), it becomes evident that the number of
transmission parameters in PFL signifcantly increases with
each iterative round across diverse datasets. In contrast, the
transmission parameter count in PFL-GS exhibits a more
gradual increment. Te histograms of the experimental
results clearly illustrate the efcacy of our GS method, re-
ducing the transmission parameter count by a factor of 5
(φ� 0.8). Moreover, EFedID further enhances compression
rates by 1.92 times, 1.78 times, and 1.23 times on diferent
datasets. Tis observation underscores the AGS method’s
capability to further reduce resource consumption while
maintaining model performance.

5.3. Case 2. In this section, we delve into the validity of our
AGS method by contrasting it with PFL utilizing diferent
fxed sparsifcation rates (φ� 0.8 and φ� 0.9) for comparison
with our EFedID approach. Figure 10 provides an overview
of the experimental curves, while Figure 11 presents detailed
experimental results on the NSL-KDD dataset. An initial
observation reveals that EFedID’s accuracy convergence
appears slower than that of PFL-GS (φ� 0.9) and PFL-GS
(φ� 0.8) in the early rounds of aggregation. Tis divergence
can be attributed to the comparatively higher sparsifcation
rate employed by EFedID during these initial aggregation
rounds. Figure 10(c) underscores this point by showing that
the number of transmission parameters gradually increases
with iterative rounds in PFL-GS (φ� 0.8). However, when
compared to PFL-GS (φ� 0.8), both EFedID and PFL-GS
(φ� 0.9) exhibit a more gradual increase in the transmission
parameter count. From Figure 11, we observe that the ac-
curacy of PFL-GS (φ� 0.8) reaches 84.45%, surpassing the
other two learning approaches, with EFedID closely fol-
lowing. Conversely, the lowest accuracy, 83.07%, is attrib-
uted to PFL-GS (φ� 0.9), underscoring the signifcant
impact of the sparsifcation rate on model accuracy. Re-
garding the reduction in the number of transmitted pa-
rameters, PFL-GS (φ� 0.9) achieves a remarkable

10 International Journal of Intelligent Systems

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Ac
cu

ra
cy

500 1000 15000
Aggregation round

CL
FL

PFL (GS) (φ = 0.8)
EFedID

(a)

0

0.2

0.4

0.6

0.8

1

Sp
ar

sif
ic

at
io

n
ra

te

500 1000 15000
Aggregation round

PFL
PFL (GS) (φ = 0.8)
EFedID

(b)

500 1000 15000
Aggregation round

0

500

1000

1500

Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

PFL
PFL (GS) (φ = 0.8)
EFedID

(c)

Figure 5: Curves of the diferent learning models (dataset: NSL-KDD). (a) Accuracy curves. (b) Sparsifcation rate curves. (c) Transmission
parameter curves.

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

500 1000 15000
Aggregation round

CL
FL

PFL (GS) (φ = 0.8)
EFedID

(a)

0

0.2

0.4

0.6

0.8

1

Sp
ar

sif
ic

at
io

n
ra

te

500 1000 15000
Aggregation round

PFL
PFL (GS) (φ = 0.8)
EFedID

(b)

0

500

1000

1500

Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

500 1000 15000
Aggregation round

PFL
PFL (GS) (φ = 0.8)
EFedID

(c)

Figure 6: Curves of the diferent learning models (dataset: CICIDS 2017). (a) Accuracy curves. (b) Sparsifcation rate curves. (c)
Transmission parameter curves.

0 500 1000 1500
Aggregation round

0.75

0.8

0.85

0.9

0.95

1
A

cc
ur

ac
y

CL
FL

PFL (GS) (φ = 0.8)
EFedID

(a)

0 500 1000 1500
Aggregation round

0

0.2

0.4

0.6

0.8

1

Sp
ar

sif
ic

at
io

n
ra

te

PFL
PFL (GS) (φ = 0.8)
EFedID

(b)

0 500 1000 1500
Aggregation round

0

500

1000

1500

Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

PFL
PFL (GS) (φ = 0.8)
EFedID

(c)

Figure 4: Curves of the diferent learning models (dataset: KDD CUP 99). (a) Accuracy curves. (b) Sparsifcation rate curves.
(c) Transmission parameter curves.

International Journal of Intelligent Systems 11

0

200

400

600

800

1000

1200

1400

1600

Transmission
parameters

number (|v|*N)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Accuracy Precision Recall F1-score
0
1
2
3
4
5
6
7
8
9

10

CR

CL
PFL

PFL-GS (φ=0.8)
EFedID

Figure 8: Results of the diferent learning models (dataset: NSL-KDD).

0

200

400

600

800

1000

1200

1400

1600

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0

1

2

3

4

5

6

7

Transmission
parameters

number (|v|*N)

Accuracy Precision Recall F1-score CR

CL
PFL

PFL-GS (φ=0.8)
EFedID

Figure 9: Results of the diferent learning models (dataset: CICIDS 2017).

Transmission
parameters

number (|v|*N)

Accuracy Precision Recall F1-score CR
0

200

400

600

800

1000

1200

1400

1600

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0
1
2
3
4
5
6
7
8
9

10

CL
PFL

PFL-GS (φ=0.8)
EFedID

Figure 7: Results of the diferent learning models (dataset: KDD CUP 99).

12 International Journal of Intelligent Systems

compression ratio of 10 times, followed by EFedID at 9.6
times. However, EFedID outperforms PFL-GS (φ� 0.9) in
terms of accuracy improvement. Notably, EFedID manages
to halve the number of transmitted parameters compared to
PFL-GS (φ� 0.8).

To validate our AGS method further, we extend our
analysis to the KDD CUP 99 and CICIDS 2017 datasets, as
illustrated in Figures 12–15. Remarkably, similar trends
emerge across these datasets, afrming the consistent im-
provement in training efciency achieved by our adaptive
sparsifcation rate method compared to the fxed sparsif-
cation rate approach.

In conclusion, our results underscore the efectiveness of
our AGS method in enhancing training efciency, partic-
ularly when compared to fxed sparsifcation rate methods.
EFedID’s adaptability to diferent datasets and its ability to
maintain accuracy while signifcantly reducing resource
consumption make it a promising choice for privacy-
preserving federated learning in various applications.

5.4. Case 3. In this subsection, we explore the adaptability of
our EFedID method to a distributed computing environ-
ment and investigate the infuence of themomentum rate (c)
on its convergence rate.

5.4.1. Varying the Number of Agents N. We begin by varying
the number of industrial agents (N) to assess how EFedID
performs under diferent distributed scenarios.Te curves of
EFedID for N ranging from 10 to 50 are depicted in
Figures 16–18, derived from simulations. As illustrated in
Figures 16(a), 17(a), and 18(a), with the increase in the
number of aggregation rounds, all accuracy curves of
EFedID gradually improve and converge to similar accuracy
levels by the end of the training process. Complementary
insights are provided in Figures 19–21, presenting histo-
grams based on experimental results. Notably, our EFedID
exhibits comparable performance between scenarios with
N� 20 and N� 50 when compared to the baseline scenario

with N� 10 (chosen as a reference point). Tis observation
suggests that small variations in the number of agents (N) do
not signifcantly afect EFedID’s performance. Tis ro-
bustness underscores the adaptability of our proposed
scheme to edge-computing industrial environments.

In summary, our EFedID method’s consistent perfor-
mance across varying numbers of agents demonstrates its
suitability for a distributed computing environment. Ad-
ditionally, our investigation into the impact of the mo-
mentum rate (c) on the convergence rate will provide further
insights into EFedID’s optimization potential in such
environments.

5.4.2. Impact of c. In this subsection, we explore the in-
fuence of the momentum rate (c) on the performance of
our EFedID method, as illustrated in Figures 22–24. As
observed, in the fgures, the convergence rates gradually
increase as c is adjusted from 0 to 0.7. Tis trend indicates
that the incorporation of the momentum term enhances
the convergence speed of EFedID. Notably, the sparsif-
cation rate experiences a slightly faster decay as c increases.
Tis behavior can be attributed to the acceleration of
adaptive adjustments caused by the model rapidly
approaching the adjustment threshold. To provide detailed
insights into EFedID’s performance with diferent c values,
we present the results in Figures 25–27. In this evaluation,
we use EFedID with c � 0 as the baseline for comparison.
Across the NSL-KDD dataset, EFedID with c � 0.7 achieves
the highest accuracy at 0.8450, followed by EFedID with
c � 0.5 (accuracy of 0.8431) and EFedID with c � 0.3 (ac-
curacy of 0.8414). Notably, all models with c values out-
perform the baseline model with c � 0, highlighting the
positive impact of the momentum term on accuracy im-
provement. A similar trend is observed in the KDD CUP 99
dataset, where EFedID with c � 0.7 attains the highest
accuracy of 0.9735, followed by EFedID with c � 0.5 (ac-
curacy of 0.9712) and EFedID with c � 0.3 (accuracy of
0.9706). Once again, all models with varying c values

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
Ac

cu
ra

cy

500 1000 15000
Aggregation round

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(a)

0

0.2

0.4

0.6

0.8

1

Sp
ar

sif
ic

at
io

n
ra

te

1000 1500500
Aggregation round

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(b)

0

100

200

300

400

Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

500 1000 15000
Aggregation round

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(c)

Figure 10: Curves of the PFL with diferent sparsifcation rates (dataset: NSL-KDD). (a) Accuracy curves. (b) Sparsifcation rate curves. (c)
Transmission parameter curves.

International Journal of Intelligent Systems 13

0
200
400
600
800

1000
1200
1400
1600

Transmission
parameters number

(|v|*N)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Accuracy Precision Recall F1-score
0

2

4

6

8

10

12

CR

PFL-GS (φ=0.9)
PFL-GS (φ=0.8)
EFedID

Figure 13: Results of the PFL with diferent sparsifcation rates (dataset: KDD CUP 99).

0 500 1000 1500
Aggregation round

Ac
cu

ra
cy

0.85

0.95

0.9

1

0.8

0.75

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(a)

0 500 1000 1500
Aggregation round

0.8

1

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(b)

0 500 1000 1500
Aggregation round

200

300

400

100

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(c)

Figure 12: Curves of the PFL with diferent sparsifcation rates (dataset: KDD CUP 99). (a) Accuracy curves. (b) Sparsifcation rate curves.
(c) Transmission parameter curves.

Transmission
parameters

number (|v|*N)

Accuracy Precision Recall F1-score CR
0

200

400

600

800

1000

1200

1400

1600

0.68
0.7

0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86

0

2

4

6

8

10

12

PFL-GS (φ=0.9)
PFL-GS (φ=0.8)
EFedID

Figure 11: Results of the PFL with diferent sparsifcation rates (dataset: NSL-KDD).

14 International Journal of Intelligent Systems

0 500 1000 1500
Aggregation round

Ac
cu

ra
cy

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(a)

0 500 1000 1500
Aggregation round

0.8

1

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(b)

0 500 1000 1500
Aggregation round

200

150

100

50

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(c)

Figure 16: Curves of the EFedID with diferent N (dataset: NSL-KDD). (a) Accuracy curves. (b) Sparsifcation rate curves. (c) Transmission
parameter curves.

0 500 1000 1500
Aggregation round

Ac
cu

ra
cy

0.85

0.95

0.9

1

0.8

0.75

0.7

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(a)

0 500 1000 1500
Aggregation round

0.8

1

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te
PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(b)

0 500 1000 1500
Aggregation round

200

300

400

100

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

PFL (GS) (φ = 0.8)
PFL (GS) (φ = 0.9)
EFedID

(c)

Figure 14: Curves of the PFL with diferent sparsifcation rates (dataset: CICIDS 2017). (a) Accuracy curves. (b) Sparsifcation rate curves.
(c) Transmission parameter curves.

0

50

100

150

200

250

300

350

Transmission
parameters

number (|v|*N)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Accuracy Precision Recall F1-score
0

2

4

6

8

10

12

CR

PFL-GS (φ=0.9)
PFL-GS (φ=0.8)
EFedID

Figure 15: Results of the PFL with diferent sparsifcation rates (dataset: CICIDS 2017).

International Journal of Intelligent Systems 15

0 500 1000 1500
Aggregation round

1

0.95

0.9

0.85

0.8

0.75

Ac
cu

ra
cy

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(a)

0 500 1000 1500
Aggregation round

0.8

1

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(b)

0 500 1000 1500
Aggregation round

200

150

100

50

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(c)

Figure 17: Curves of the EFedID with diferent N (dataset: KDD CUP 99). (a) Accuracy curves. (b) Sparsifcation rate curves. (c)
Transmission parameter curves.

0 500 1000 1500
Aggregation round

1

0.9

0.8

0.7

0.6

Ac
cu

ra
cy

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(a)

0 500 1000 1500
Aggregation round

1

0.8

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(b)

0 500 1000
Aggregation round

300

250

200

150

100

50

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

EFedID (N=10)
EFedID (N= 20)
EFedID (N= 50)

(c)

Figure 18: Curves of the EFedID with diferent N (dataset: CICIDS 2017). (a) Accuracy curves. (b) Sparsifcation rate curves. (c)
Transmission parameter curves.

0
20
40
60
80

100
120
140
160
180
200

Transmission
parameters number

(|v|*N)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Accuracy Precision Recall F1-score
0

2

4

6

8

10

12

CR

EFedID (N=10)
EFedID (N=20)
EFedID (N=50)

Figure 19: Results of the EFedID with diferent N (dataset: NSL-KDD).

16 International Journal of Intelligent Systems

145

150

155

160

165

170

175

180

Transmission
parameters

number (|v|*N)

0.95

0.955

0.96

0.965

0.97

0.975

Accuracy Precision Recall F1-score
7.8

8
8.2
8.4
8.6
8.8

9
9.2
9.4
9.6

CR

EFedID (N=10)
EFedID (N=20)
EFedID (N=50)

Figure 20: Results of the EFedID with diferent N (dataset: KDD CUP 99).

245
250
255
260
265
270
275
280
285
290
295
300

Transmission
parameters

number (|v|*N)

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

Accuracy Precision Recall F1-score
4.7
4.8
4.9

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

CR

EFedID (N=10)
EFedID (N=20)
EFedID (N=50)

Figure 21: Results of the EFedID with diferent N (dataset: CICIDS 2017).

0 500 1000 1500
Aggregation round

Ac
cu

ra
cy

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(a)

0 500 1000 1500
Aggregation round

1

0.8

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(b)

0 500 1000 1500
Aggregation round

200

150

100

50

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(c)

Figure 22: Curves of the EFedID with diferent c (dataset: NSL-KDD). (a) Accuracy curves. (b) Sparsifcation rate curves. (c) Transmission
parameter curves.

International Journal of Intelligent Systems 17

0 500 1000 1500
Aggregation round

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

Ac
cu

ra
cy

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(a)

0 500 1000 1500
Aggregation round

1

0.8

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(b)

0 500 1000 1500
Aggregation round

300

250

200

150

100

50

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(c)

Figure 23: Curves of the EFedID with diferent c (dataset: KDD CUP 99). (a) Accuracy curves. (b) Sparsifcation rate curves. (c)
Transmission parameter curves.

1

0.9

0.8

0.7

0.6

Ac
cu

ra
cy

0 500 1000 1500
Aggregation round

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(a)

1

0.8

0.6

0.4

0.2

0

Sp
ar

sif
ic

at
io

n
ra

te

0 500 1000 1500
Aggregation round

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(b)

300

250

200

150

100

50

0Tr
an

sm
iss

io
n

pa
ra

m
et

er
s (

|w
|*N

)

0 500 1000 1500
Aggregation round

EFedID (γ= 0)
EFedID (γ= 0.3)
EFedID (γ= 0.5)
EFedID (γ= 0.7)

(c)

Figure 24: Curves of the EFedID with diferent c (dataset: CICIDS 2017). (a) Accuracy curves. (b) Sparsifcation rate curves. (c)
Transmission parameter curves.

0
20
40
60
80

100
120
140
160
180
200

Transmission
parameters

number (|v|*N)

0.65

0.7

0.75

0.8

0.85

0.9

Accuracy Precision Recall F1-score
0
2
4
6
8

10
12
14
16
18

CR

EFedID (γ=0)
EFedID (γ=0.3)

EFedID (γ=0.5)
EFedID (γ=0.7)

Figure 25: Results of the EFedID with diferent c (dataset: NSL-KDD).

18 International Journal of Intelligent Systems

outperform the c � 0 baseline, underscoring the benefts of
utilizing the momentum term. Figures 24 and 27 illustrate
the experiment curves and detailed results on the CICIDS
2017 dataset, where a similar pattern emerges, further

reinforcing the positive impact of adjusting c. In conclu-
sion, our analysis of diferent c values indicates that
EFedID’s convergence rate can be accelerated by in-
corporating the momentum term.

0

50

100

150

200

250

Transmission
parameters

number (|v|*N)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Accuracy Precision Recall F1-score
0

2

4

6

8

10

12

14

CR

EFedID (γ=0)
EFedID (γ=0.3)

EFedID (γ=0.5)
EFedID (γ=0.7)

Figure 26: Results of the EFedID with diferent c (dataset: KDD CUP 99).

0

50

100

150

200

250

300

350

Transmission
parameters

number (|v|*N)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Accuracy Precision Recall F1-score
0

1

2

3

4

5

6

7

8

CR

EFedID (γ=0)
EFedID (γ=0.3)

EFedID (γ=0.5)
EFedID (γ=0.7)

Figure 27: Results of the EFedID with diferent c (dataset: CICIDS 2017).

Table 3: Te accuracy of the EFedID and the other latest models.

Dataset Model Accuracy (%)

KDD CUP 99

CNN [37] 92.14
Tree-stage SMOTE-GAN-VAE [39] 94.0

NIDS-CNNLSTM [38] 97.05
EFedID 97.3

NSL-KDD

Muli-CNN [40] 81.33
AE-R with SMOTE [44] 82.09

SCAE+ SVM [41] 84.16
EFedID 84.31

CICIDS 2017

Tree-stage SMOTE-GAN-VAE [39] 94.5
FL [42] 93

CPIO [43] 93.64
EFedID 95.51

Bold values represent the best results of the several compared models.

International Journal of Intelligent Systems 19

5.5. Performance Comparison with Other Latest Methods.
In the same way, we compare the performance of EFedID
with some of the latest other notable state-of-the-art
methods. Models CNN [37] and NIDS-CNNLSTM [38]
were both trained using the KDDTrain+ dataset and tested
using the KDDTest+ dataset. Te model SMOTE-GAN-VAE
[39] was evaluated on the NSL-KDD and CICIDS 2017
datasets, respectively. Muli-CNN [40] and SCAE+ SVM [41]
showed their performance using the NSL-KDD dataset. FL
[42] and CPIO [43] showed their performance using the
CICIDS 2017 dataset. Table 3 presents the experiment results
of the above compared methods. It can be seen that the
proposed EFedIDmodel performs better than other state-of-
the-art methods in multivariate classifcation.

6. Conclusion

In this article, we proposed EFedID, which allows distrib-
uted industrial agents to collaboratively train a network
intrusion detection model. Te resource overheads of the FL
system are reduced by using the AGS algorithm, and the
performance of the model is guaranteed. Moreover, we
demonstrated the preservation of data privacy for industrial
agents through a secure communication protocol based on
the CKKS cryptosystem. Te experiment results show that
our proposed method can efciently organize multiple in-
dustrial agents to collaboratively train a network intrusion
detection model and protect the industrial agents’ data.

Since the training data are collected by each client in its
own local environment and follows its usage patterns, the
size and distribution of the local datasets often diferent.
Non-IID (not identically and independently distributed)
data for privacy-preserving federated learning models can
refect practical scenarios. In the future, we will also focus on
investigating how to adjust the model aggregation interval to
further improve training efciency for privacy-preserving
federated learning on non-IID data. Tis will allow us to
continue pushing the boundaries of secure and efcient
collaborative learning in diverse industrial settings.

Data Availability

Previously reported KDD CUP 99, NSL-KDD, and CICIDS
2017 datasets were used to support this study. Tese prior
studies (and datasets) are cited at relevant places within the
text as references [34–36].

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Ningxin He and Zehui Zhang contributed equally to
this work.

Acknowledgments

Te authors gratefully acknowledge the fnancial support
provided by National Science and Technology Major Project
of China (2021YFB0300104), Tianjin Research Innovation
Project for Postgraduate Students (2022BKY013), and Na-
tional Key R&D Projects (2022YFE0210700).

References

[1] F. Liang, W. Yu, X. Liu, D. Grifth, and N. Golmie, “Towards
deep Q-network based resource allocation in industrial in-
ternet of Tings,” IEEE Internet of Tings Journal, vol. 9, p. 1,
2021.

[2] J. Franco, A. Aris, B. Canberk, and A. S. Uluagac, “A survey of
honeypots and honeynets for internet of Tings, industrial
internet of Tings, and cyber-physical systems,” IEEE Com-
munications Surveys and Tutorials, vol. 23, no. 4, pp. 2351–
2383, 2021.

[3] J. Yu, X. Ye, and H. Li, “A high precision intrusion detection
system for network security communication based on multi-
scale convolutional neural network,” Future Generation
Computer Systems, vol. 129, 2021.

[4] S. Roy, J. Li, B. J. Choi, and Y. Bai, “A lightweight supervised
intrusion detection mechanism for IoT networks,” Future
Generation Computer Systems, vol. 127, pp. 276–285, 2022.

[5] E. U. H. Qazi, M. Imran, N. Haider, M. Shoaib, and I. Razzak,
“An intelligent and efcient network intrusion detection
system using deep learning,” Computers and Electrical En-
gineering, vol. 99, Article ID 107764, 2022.

[6] I. A. Khan, N. Moustafa, D. Pi, K. M. Sallam, A. Y. Zomaya,
and B. Li, “A new explainable deep learning framework for
cyber threat discovery in industrial IoT networks,” IEEE In-
ternet of Tings Journal, vol. 9, no. 13, pp. 11604–11613, 2022.

[7] M. Ismail, M. F. Shaaban, M. Naidu, and E. Serpedin, “Deep
learning detection of electricity theft cyber-attacks in re-
newable distributed generation,” IEEE Transactions on Smart
Grid, vol. 11, no. 4, pp. 3428–3437, 2020.

[8] M. Wazzeh, H. Ould-Slimane, C. Talhi, A. Mourad, and
M. Guizani, “Privacy-preserving continuous authentication
for mobile and iot systems using warmup-based federated
learning,” IEEE Network, vol. 37, no. 3, pp. 224–230, 2023.

[9] M. N. H. Nguyen, N. H. Tran, Y. K. Tun, Z. Han, and
C. S. Hong, “Toward multiple federated learning services
resource sharing in mobile edge networks,” IEEE Transactions
on Mobile Computing, vol. 22, p. 1, 2021.

[10] A. Li, L. Zhang, J. Wang, F. Han, and X. Y. Li, “Privacy-
preserving efcient federated-learning model debugging,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33,
p. 1, 2021.

[11] S. Agrawal, S. Sarkar, O. Aouedi et al., “Federated learning for
intrusion detection system: concepts, challenges and future
directions,” Computer Communications, vol. 195, pp. 346–
361, 2022.

[12] M. Cao, L. Zhang, and B. Cao, “Toward on-device federated
learning: a direct acyclic graph-based blockchain approach,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 34, pp. 1–15, 2021.

20 International Journal of Intelligent Systems

[13] M. Aloqaily, I. Al Ridhawi, and M. Guizani, “Energy-aware
blockchain and federated learning-supported vehicular net-
works,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 23, pp. 1–12, 2021.

[14] Y. Zheng, S. Lai, Y. Liu, X. Yuan, X. Yi, and C. Wang,
“Aggregation service for federated learning: an efcient, se-
cure, and more resilient realization,” IEEE Transactions on
Dependable and Secure Computing, vol. 20, 2022.

[15] U. Ahmed, G. Srivastava, and J. C. W. Lin, “Reliable customer
analysis using federated learning and exploring deep-
attention edge intelligence,” Future Generation Computer
Systems, vol. 127, pp. 70–79, 2022.

[16] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and
Y. Jararweh, “Federated learning review: fundamentals, en-
abling technologies, and future applications,” Information
Processing and Management, vol. 59, no. 6, Article ID 103061,
2022.

[17] Z. Tang, H. Hu, and C. Xu, “A federated learning method for
network intrusion detection,” Concurrency and Computation:
Practice and Experience, vol. 34, no. 10, 2022.

[18] I. A. Khan, D. Pi, M. Z. Abbas, U. Zia, Y. Hussain, and
H. Soliman, “Federated-SRUs: a federated simple recurrent
units-based IDS for accurate detection of cyber attacks against
IoT-augmented industrial control systems,” IEEE Internet of
Tings Journal, vol. 10, 2022.

[19] H. Wang, J. Gu, and S. Wang, “An efective intrusion
detection framework based on SVM with feature aug-
mentation,” Knowledge-Based Systems, vol. 136, pp. 130–
139, 2017.

[20] Y. Li, Y. Xu, Z. Liu et al., “Robust detection for network
intrusion of industrial IoT based on multi-CNN fusion,”
Measurement, vol. 154, 2020.

[21] C.Wu andW. Li, “Enhancing intrusion detection with feature
selection and neural network,” International Journal of In-
telligent Systems, vol. 36, no. 7, pp. 3087–3105, 2021.

[22] I. A. Khan, M. Keshk, D. Pi, N. Khan, Y. Hussain, and
H. Soliman, “Enhancing IIoT networks protection: a robust
security model for attack detection in Internet Industrial
Control Systems,” Ad Hoc Networks, vol. 134, Article ID
102930, 2022.

[23] J. Zhang, Y. Wang, K. Zhu, Y. Zhang, and Y. Li, “Diagnosis of
interturn short-circuit faults in permanent magnet syn-
chronous motors based on few-shot learning under a feder-
ated learning framework,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 12, pp. 8495–8504, 2021.

[24] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-efcient federated learning for digital
twin edge networks in industrial IoT,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 8, pp. 5709–5718,
2021.

[25] W. Zhang, T. Zhou, Q. Lu et al., “Dynamic-fusion-based
federated learning for COVID-19 detection,” IEEE Internet
of Tings Journal, vol. 8, no. 21, pp. 15884–15891, 2021.

[26] M. Aloqaily, I. Al Ridhawi, and F. Karray, “Towards
blockchain-based hierarchical federated learning for cyber-
physical systems,” in Proceedings of the 2022 International
Balkan Conference on Communications and Networking
(BalkanCom), pp. 46–50, Sarajevo, Bosnia and Herzegovina,
August, 2022.

[27] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating
federated learning via momentum gradient descent,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 8,
pp. 1754–1766, 2020.

[28] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient
sparsifcation for efcient federated learning: an online
learning approach,” IEEE ICDCS, July 2020, Hong Kong,
China, pp. 300–310.

[29] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Pro-
ceedings of the International Conference on the Teory and Ap-
plication of Cryptology and Information Security, vol. 10624,
pp. 409–437, Springer, Berlin, Germany, May, 2017.

[30] M. Babenko and E. Golimblevskaia, “Euclidean division
method for the homomorphic scheme ckks,” in Proceedings of
the 2021 IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering (ElConRus), pp. 217–220,
Moscow, Russia, January, 2021.

[31] E. M. Shiriaev, A. S. Nazarov, N. N. Kycherov, and
N. A. Sotikova, “Efcient implementation of the CKKS
scheme using a quadratic residue number system,” in Pro-
ceedings of the 2021 IEEE Conference of Russian Young Re-
searchers in Electrical and Electronic Engineering (ElConRus),
pp. 665–669, IEEE, Moscow, Russia, January, 2021.

[32] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang,
“Blockchain and federated learning for privacy-preserved data
sharing in industrial IoT,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 6, pp. 4177–4186, 2020.

[33] Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic en-
cryption,” IEEE Transactions on Information Forensics and
Security, vol. 13, pp. 1333–1345, 2017.

[34] S. K. Sahu, S. Sarangi, and S. K. Jena, “A detail analysis on
intrusion detection datasets,” in Proceedings of the 2014 IEEE
international advance computing conference (IACC),
pp. 1348–1353, IEEE, New Delhi, India, February, 2014.

[35] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of
Tings intrusion detection: centralized, on-device, or feder-
ated learning?” IEEE Network, vol. 34, no. 6, pp. 310–317,
2020.

[36] G. Caminero, M. Lopez-Martin, and B. Carro, “Adver-
sarial environment reinforcement learning algorithm for
intrusion detection,” Computer Networks, vol. 159,
pp. 96–109, 2019.

[37] Y. Wang, J. Wang, and H. Jin, “Network intrusion detection
method based on improved CNN in internet of Tings en-
vironment,”Mobile Information Systems, vol. 2022, Article ID
3850582, 10 pages, 2022.

[38] J. Du, K. Yang, Y. Hu, and L. Jiang, “Nids-cnnlstm: network
intrusion detection classifcation model based on deep
learning,” IEEE Access, vol. 11, pp. 24808–24821, 2023.

[39] K. T. Chui, B. B. Gupta, P. Chaurasia, V. Arya, A. Almomani,
and W. Alhalabi, “Tree-stage data generation algorithm for
multiclass network intrusion detection with highly imbal-
anced dataset,” International Journal of Intelligent Networks,
vol. 4, pp. 202–210, 2023.

[40] Y. Li, Y. Xu, Z. Liu et al., “Robust detection for network
intrusion of industrial IoT based on multi-CNN fusion,”
Measurement, vol. 154, Article ID 107450, 2020.

[41] W. Wang, X. Du, D. Shan, R. Qin, and N. Wang, “Cloud
intrusion detection method based on stacked contractive
auto-encoder and support vector machine,” IEEE Trans-
actions on Cloud Computing, vol. 10, no. 3, pp. 1634–1646,
2022.

[42] M. A. Ayed and C. Talhi, “Federated learning for anomaly-
based intrusion detection,” in Proceedings of the 2021 In-
ternational Symposium on Networks, Computers and

International Journal of Intelligent Systems 21

Communications (ISNCC), pp. 1–8, IEEE, Dubai, UAE, Oc-
tober, 2021.

[43] H. Alazzam, A. Sharieh, and K. E. Sabri, “A feature selection
algorithm for intrusion detection system based on pigeon
inspired optimizer,” Expert Systems with Applications,
vol. 148, Article ID 113249, 2020.

[44] X. Ma and W. Shi, “Aesmote: adversarial reinforcement
learning with smote for anomaly detection,” IEEE Trans-
actions on Network Science and Engineering, vol. 8, no. 2,
pp. 943–956, 2021.

22 International Journal of Intelligent Systems

