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As recommendation systems heavily depend on user data, these systems are susceptible to potential privacy breaches. To mitigate
this issue, diferential privacy (DP) protection techniques have been developed to ofer robust privacy safeguards. Nevertheless,
a majority of the extant DP-based recommendation algorithms tend to introduce excessive noise, consequently impairing the
quality of recommendations. In response, this study presents a novel DP-preserving recommendation algorithm that integrates
matrix factorization (MF) and a genetic algorithm (GA). Initially, the MF problem is transformed into two interrelated opti-
mization problems, namely, the user-hidden factor and the item-hidden factor. Subsequently, GA is employed to address these
optimization issues. An enhancement index mechanism is incorporated into the individual selection of GA, while the variation
process of GA is devised based on identifying crucial hidden factors. Utilizing the enhancement index mechanism aids in
minimizing the algorithm’s perturbation level, thereby achieving an optimal balance between privacy protection and algorithm
utility. Experimental analyses, encompassing recommendation accuracy, efciency, and parameter variation efects, are con-
ducted on Last.fm and Flixster datasets. Te fndings corroborate that the proposed system outperforms existing alternatives
under stringent privacy constraints, thereby attesting to its efcacy.

1. Introduction

In recent years, with the rapid development of the Internet
economy, there is a trend of rapid growth in the amount of
information on the network, making it sometimes difcult
for users to quickly flter out the information they are in-
terested in from the vast amount of information. Although
some search engines (such as Baidu and Google) have de-
veloped and adopted some special search algorithms to
achieve targeted search according to keywords entered by
users, the results searched in this way often cannot meet the
real needs of users to quickly obtain the information they
need. In order to make it more convenient and easier for
users to get the information they need from the Web,
personalized recommendation services are becoming an
integral part of web application services [1]. Terefore,
recommendation systems are widely used and rapidly
spreading. Recommendation systems are designed to deliver

information of interest directly to users according to their
preferences, which can signifcantly reduce the workload of
sifting through large amounts of information and bring
convenience to users’ life and work [2].

Te core part of a recommendation system is the rec-
ommendation algorithm, and a high-performance recom-
mendation algorithm is naturally the key to building a high-
quality recommendation system. As a mainstream recom-
mendation algorithm, collaborative fltering (CF) uses the
user’s historical evaluation information to predict the user’s
preference for unknown items and make recommendations
accordingly [3]. CF techniques need to use a large amount of
user data, and there is a risk of user privacy leakage. In the
neighbor-based CF technique, an attacker can infer the
target user’s rating of an item by tracking the changes in the
recommendation list of neighboring users [4]. In MF-based
CF techniques, since the decomposition of the resulting
matrix of hidden factors carries data information, it may be
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used by attackers to infer users’ rating data through re-
construction attacks and other means. Te compromised
ratings may be further used to infer the user’s gender, age,
and other information, violating the user’s privacy [5]. If
users refuse to provide some information for security rea-
sons, the performance of the recommendation system may
be degraded and even personalized services may not be
provided. Terefore, it is very necessary to consider the
privacy protection of users’ information in the recom-
mendation system.

In recent years, DP techniques have become a hot re-
search topic by adding controlled noise to protect individual
user privacy information without changing the overall
pattern characteristics of the data. Santos-Lozada et al. [6]
proposed a defnition of DP. Tey provided a good theo-
retical basis for implementing efective privacy protection in
recommender systems. Bao et al. [7] introduced DP pro-
tection into the CF technique and achieved DP protection by
perturbing the item covariance matrix. Meng et al. [8] ap-
plied DP to the CF recommendation algorithm based on
neighbors and achieved privacy protection by adding noise
to the neighbor selection and similarity metric processes. Xu
et al. [9] proposed two privacy-preserving schemes by
adding Laplace noise to the original rating and user simi-
larity metric processes, respectively. Mewada [10] proposed
a DP-preserving neighbor-based CF algorithm for the pri-
vacy leakage problem faced by the k-nearest neighbor al-
gorithm. For label-based recommendation systems, Wang
et al. [11] proposed a DP-preserving algorithm for modi-
fying and publishing user profles. Te algorithm is able to
perform label recommendation and protect users’ privacy
within a certain accuracy loss.

For the MF-based recommendation algorithm, Hien and
Gillis [12] perturbed the objective function of the MF al-
gorithm under the consideration of the untrustworthiness of
the recommendation system. Tey used the matrix of item-
hidden factors with privacy protection implemented for the
recommendation task. Shin et al. [13] proposed a person-
alized DP recommendation algorithm based on probability
MF assuming that users have diferent degrees of privacy
protection needs. Yu et al. [14] proposed a privacy MF
scheme based on joint optimization by perturbing the ob-
jective function. Gao et al. [15] applied DP protection to the
MF recommendation algorithm and designed three ways to
add noise, i.e., in the input information, in the training
process, and in the output information, respectively. Based
on this idea, Yang et al. [16] designed 3 DP-preserving
models on the SVD++ model.

Most of the current work implements DP protection by
adding noise terms to various results of the MF process (e.g.,
gradient, hidden factor matrix, and objective function), and
such schemes have the following problems: (1) higher noise:
higher privacy protection requirements or sensitivities can
increase the variance of the noise distribution, leading to the
inclusion of excessive noise. (2) Nongeneralizability: the
noise addition method may cause the fnal solution to be
infeasible for constrained problems. (3) Te importance of
the hidden factor is not considered, which afects the al-
gorithm’s solving efciency.

To address the abovementioned problems, this paper
proposes a DP-preserving recommendation algorithm that
fuses MF and the genetic algorithm. It introduces the genetic
algorithm into the MF task so that the DP protection can be
achieved by perturbing the selection process of candidate
solutions without relying on the abovementioned method of
adding noise. Meanwhile, the search for solutions in the
genetic algorithm will be performed in the feasible domain,
which can be easily extended to MF problems with con-
straints. Several sets of experimental results show that the
algorithm in this paper can obtain higher accuracy on the
basis of ensuring privacy protection and has better practical
application value.

2. State of the Art

2.1. MF and CF. Usually, recommendation systems can be
classifed into three categories as follows: content-based
recommendations, CF-based recommendations, and hy-
brid approach-based recommendations [17]. Te specifc
classifcation is shown in Figure 1.

Te recommendation based on CF is to analyze the user’s
historical behavior data to fnd people who have similar
behavior with that of the user or items that are similar to the
items they are interested in. Ten, by continuously fltering
out those items that do not interest them, the needs of that
user are increasingly satisfed. CF generally uses the nearest
neighbor technique. Its recommendation mechanism is to
calculate the distance between users or items based on the
user-item rating matrix and then fnd the nearest neighbors
of the target user or item and make recommendations based
on the nearest neighbors. According to whether machine
learning ideas are applied, CF recommendation can be di-
vided into neighborhood-based CF recommendation and
model-based CF recommendation [18]. Figure 2 explains
what is meant by CF through a schematic diagram.

As shown in Figure 2, the CF algorithm fnds videos that
users may like in an intuitive way by using the user’s viewing
history to fnd similar users who have watched the same
videos as the target user, Sam.Ten, it fnds other videos that
these similar users like to watch and recommends them to
the target user Sam.

MF is a typical algorithm of the implicit semantic rec-
ommendation model, which is one of the CF methods be-
longing to the model-based approach [19]. Compared with
the traditional memory-based CF recommendationmethods
for users and items, the model-based MF recommendation
algorithm has a better recommendation efect. Moreover,
MF can fully consider various factors that have an impact on
the data and possesses very good scalability. MF algorithms
are widely used because they are easy to implement and have
excellent scalability. In the Netfix Prize competition, the
recommendation based on MF has achieved very good
recommendation results.

2.2. Research on theApplication of DP inCFRecommendation
Algorithms. Diferential privacy (DP) is a privacy-
preserving technique [20] that aims to protect individual
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private information while allowing statistical analysis of
data. Te technique was frst proposed by Li et al. [21] in
2006 and has been widely used in the felds of data pub-
lishing, machine learning, and recommender systems. Te
core principle of diferential privacy is to introduce con-
trolled random noise into the statistical results so that an
attacker cannot infer any specifc information about an
individual from the output data. DP provides a powerful
privacy-preserving mechanism that allows dataset

publishers to share the aggregated results of the data without
revealing sensitive information about individuals.

Te exponential mechanism is an important tool for
implementing randomization in diferential privacy. Its
basic principle is to introduce noise by calculating the
sensitivity of each output to provide diferential privacy
protection. In the exponential mechanism, for each possible
output, its sensitivity with respect to the input data is
computed and randomly sampled according to the
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Figure 1: Classifcation of recommendation system algorithms.
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Figure 2: Schematic diagram of CF.
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probability distribution of the exponential distribution to
obtain the fnal diferential privacy output.

Diferential privacy and exponential mechanisms have
a wide range of applications in recommender systems. By
introducing the randomization mechanism of diferential
privacy, recommender systems can provide users with ac-
curate and personalized recommendation results while
protecting their privacy. For example, in collaborative
fltering-based recommendation algorithms, by introducing
diferential privacy and the exponential mechanism, noise
can be added to the user rating matrix, thus realizing user
privacy protection. Meanwhile, the recommender system
can use the index mechanism to randomize the recom-
mendation results according to the user’s personalized
preferences and increase the diversity of the recommen-
dation results. Terefore, the application of DP technology
to the protection of recommender systems has become a hot
spot in the current research.

Wang et al. [22] proposed a recommendation scheme
based on DP protection through the Laplacian mechanism of
the DP recommendation scheme. However, in their scheme,
they introduced a randomperturbationmethod to process the
user’s historical data and generate useful data, which may
have uncontrollable noise. Shen et al. [23] mentioned a fed-
erated diferential privacy method for collaborative fltering.
Te method introduces the idea of federated learning in
collaborative fltering. However, these issues need to be better
handled as the diference in data distribution between dif-
ferent data sources, and the imbalance in data volume may
lead to degradation in the generalization performance of the
model. Hu et al. [24] proposed a new federated edge learning
framework based on hybrid diferential privacy and adaptive
compression for industrial data processing. Experimental
results show that the method is very efective in industrial
edge computing scenarios and also opens up new directions
for the efect of diferential privacy in federated learning.
However, the adaptive federated diferential privacy tech-
nique proposed in this method may lead to an increase in
noise or over elimination of noise while protecting individual
privacy, afecting the accuracy of the recommendation al-
gorithm. A better tradeof between privacy protection and
data quality is needed.

Matrix factorization (MF) is a commonly used technique
in recommender systems, which maps users and items to
a hidden factor space of the same dimension. By learning the
hidden factors of users and items, the potential feature
relationships between them can be extracted to achieve
personalized recommendations. Tere are also many studies
on the application of matrix decomposition methods in
recommender systems; for example, Fan et al. [25] proposed
a collaborative fltering model based on graph neural net-
works for heterogeneous graphs. Tey learned the complex
relationship between users and items through graph neural
networks and fully exploited the interaction information
between users and items in the graph structure, thus im-
proving the performance of the recommender system.
However, the high computational complexity of graph
neural networks when facing large-scale data may lead to
a decrease in the efciency of training and inference. Jing

et al. [26] proposed a multiview fusion recommendation
algorithm with an attentive deep neural network. Te model
designs a two-stage joint learning solution that combines
user attributes, item attributes, and user-item interaction
information into a unifed framework. Experimental results
on real datasets show that the algorithm achieves high
recommendation accuracy even with extremely sparse data.
Te method fuses information from diferent views, thus
improving the personalization efect of the recommender
system. However, when faced with heterogeneous data with
large diferences in quality, the method may overft low-
quality views, thus afecting the recommendation efect.

Te genetic algorithm (GA) is an optimization algorithm
that can be used to solve complex optimization problems. In
recent years, researchers have begun to apply genetic al-
gorithms to recommender systems to improve the accuracy
and diversity of recommendation algorithms. Alhijawi and
Kilani [27] proposed a novel genetic-based recommender
system. Te system relies on semantic information and
historical rating data. Te experimental results demonstrate
a more accurate prediction performance than other col-
laborative fltering recommender systems. However, the
system may sufer from slow convergence, and better design
of algorithm parameters and strategies is needed to improve
the efciency and convergence of the algorithm. Wei et al.
[28] proposed a hybrid probabilistic multiobjective evolu-
tionary algorithm for solving the cold-start problem. Te
method optimizes the recommendation results by the ge-
netic algorithm to improve the recommendation accuracy in
the case of cold start. However, it may be more sensitive to
missing data when dealing with the cold-start problem and
needs to better deal with data incompleteness to further
improve the recommendation results.

3. Methodology

3.1. MF Algorithm. MF is the mapping of both users and
items into the same d-dimensional hidden factor space [17].
Te hidden factor corresponding to user p is denoted as
Up ∈ Rd, and the matrix consisting of the hidden factors of
all users is denoted as U. Te hidden factor of item x is
denoted as Vx ∈ Rd, and the matrix consisting of the hidden
factors of all items is denoted as V. MF is shown in Figure 3.

Ten, the MF algorithm is to solve for best U and V
satisfying the following equation:

minf(U, V) � min 
(p,x)∈K

rpx − U
N
p Vx 

2
, (1)

where rpx is the rating of item x by user p in the user rating
matrix and K is the set of user-item pairs corresponding to
the observed rating data. Assuming that the number of users
contained in r is w and the number of items is t, then there is
r ∈ Rw×t, where d≪w, t.

3.2.Diferential Privacy. For any neighboring datasets D and
D′ that difer by at most one data, and for all possible outputs
O in the range of the randomized algorithm G, the difer-
ential privacy (DP) guarantee holds. (Te O and G in this
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sentence are formulas). G satisfes ε-DP when and only if the
following equation is satisfed:

Ur[G(D) ∈ O]⩽ e
ε
Ur G D

′
  ∈ O , (2)

where ε is the privacy budget, and the smaller the value of ε,
the higher the level of demand for privacy protection.

3.2.1. Exponential Mechanism. Te exponential mechanism
[29] is a technical means to achieve DP protection, which is
defned as follows.

Exponential mechanism: let the input of the randomized
algorithm W be the dataset D and the output be ω ∈ Ω. Te
function V(D,ω)⟶ R is the availability function of ω. If
the algorithm W selects and outputs ω from Ω with
a probability proportional to exp (εV(D,ω)/Δ), then al-
gorithm W provides ε-DP protection and is said to be an
exponential mechanism, where Δ is the damping factor of
the availability function V(D,ω), also called the sensitivity
of V(D,ω). It indicates the maximum impact of the dif-
ference of individual data on V(D,ω). We assume that D′
and D are neighboring datasets, and Δ satisfes the
inequality:

Δ⩾2 max
ω∈Ω,D,D′

V(D,ω) − V D
′
,ω . (3)

3.2.2. Enhanced Exponential Mechanism. In contrast to the
exponential mechanism, the application of the augmented
exponential mechanism is limited to availability functions
with a specifc form:

f(D,ω) � b(ω) + 
n∈D

v(n,ω), (4)

where D is a dataset containing t tuples, T is the range of
values of any tuple n, v(n,ω) is the tuple ft function, which
indicates how well the model fts a single tuple n in D, and
b(ω) is a function independent of the dataset D. Based on
this availability function, the augmented exponential
mechanism is defned as follows.

Enhanced exponential mechanism (EEM): let the input
of the randomized algorithm W be the dataset D and the
output be ω ∈ Ω. Te algorithmW selects and outputs from
Ω with a probability proportional to exp (εf(D,ω)/Δ),
where f(D,ω) satisfes equation (4), and Δ satisfes the
following inequality:

Δ⩾min
2 max

n,n′∈T,ω∈Ω
v(n,ω) − v n

′
,ω ,

2 max
n∈T,ω,ω′∈Ω

v(n,ω) − v n,ω′ .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (5)

Ten, the algorithm W provides ε-diference privacy pro-
tection and is called the enhanced exponential mechanism.
From equation (5), it can be seen that the diference between the
enhanced exponential mechanism and the standard exponential
mechanism is that the damping factorΔ of the former takes into
account the maximum diference between v(n,ω) and v(n,ω′).
Tis is more suitable for the case where the degree of variation
between solutions in the candidate solution set is relatively small
due to the fact that max may obtain a smaller value at this time.
Te privacy-preserving scheme proposed in this paper will take
advantage of this feature to improve the algorithm utility.

3.3. Privacy Genetic MF Algorithm. Tis algorithm improves
the privacy genetic algorithm and proposes the adjusted private
genetic algorithm (APrivGene). Te APrivGene algorithm is
used to solve the optimization problem shown below, and the
privacy protection of the MF process is implemented by in-
troducing an enhanced indexmechanism in the selection phase.
Te APrivGene algorithm is presented in the order of execution
in 3 aspects as follows: initialization, selection, and variation.

Initialization phase: each control parameter, including ε,
is set. Ten, ld-dimensional vectors are randomly generated
as the initial candidate solution set Ω, and the objective
function value of each solution is calculated as the ftness
value of the genetic algorithm.

Selection phase: with f(D,ω) as the availability function
and using ε/2NA as the privacy budget for the selection
operation, the enhanced exponential mechanism (EEM) is
applied to select ω from Ω with probability proportional to
exp (εf(D,ω)/2NAΔ). To efectively mitigate the

1 5 3 0

3 4 2 4

5 1 2

3 2 4 2 3

2 0 4

0.45 0.06 0.12

1.76 1.53 0.28

0.34 0.57 1.47

0.84

0.05

1.16

0.08 0.95 1.46

1.37 0.41 0.86

0.72 0.68 1.27

1.24 2.36 0.09
Original matrix Matrix factorization Items characteristic matrix

User characteristic matrix

Figure 3: Schematic diagram of MF.
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perturbations introduced in the selection phase, only a single
individual is selected for the subsequent operation, after
which Ω is left empty and ready to admit new solutions.

Variation stage: to avoid excessive sensitivity caused by
crossover operations, only variation operations are used. To
improve the efciency of the search, the variational per-
turbation is generated using the Corsi variational operator
with high global search efciency; that is, a random per-
turbation is generated from the standard Corsi distribution
C (0,1). Ten, with the aim of fnding the most important
hidden factor, let the variation operation vary for each
hidden factor and search only on one dimension z at a time.
Since the preference of a user or item for a hidden factor can
be classifed as positive or negative, perturbations on indi-
vidual hidden factors are correspondingly designed in both
positive and negative directions. Te abovementioned var-
iation is performed for each dimension, and two new so-
lutions are generated for each variation and added to Ω,
fnally forming a new set of candidate solutions.

After generating the new set, the variation step size η is
reduced using the decay factor β to gradually reduce the
search range and improve the search efciency. Ten, the
selection session is returned, and the next cycle is entered.
When the maximum number of iterations A is reached, the
fnal solution ω∗ is selected using the EEM approach. Te
pseudocode of the abovementioned improved privacy ge-
netic algorithm is shown in Algorithm 1.

Te proposed algorithm revolves around the de-
composition of the scoring matrix of the recommendation
system and transforms the process of solving the hidden
factor matrices U and V into two alternating optimization
processes. A genetic algorithm is used to solve the opti-
mization process, and an enhanced exponential mechanism
is introduced in the solution process, which in turn makes
theMF process satisfy DP protection.Te general fow of the
algorithm in this paper is as follows:

(1) To improve the rating prediction accuracy, the user
rating matrix r is preprocessed.Tat is, the boundary
parameter is set to B, and the ratings are transformed
to the range of [-H, H] to obtain the new user rating
matrix R. Ten, the matrix R is decomposed by the
hidden factor:

U, V � argmin
U,V


(p,x)∈K

Rpx − U
N
p Vx 

2
. (6)

Where Rpx is the true rating of item x by user p in R.
Te objective of the hidden factor decomposition is
to fnd the U and V matrices that minimize the sum
of squared errors between the predicted and true
ratings.

(2) Te objective problem of equation (6) is converted
into two types of feature solving tasks as follows: (1)
solving the vector of hidden factors of users and (2)
solving the vector of hidden factors of items. Tat is,
in solving Up, the matrix V is considered as a con-
stant, and the objective function is constructed as
follows:

f
p

V Dp, Up  � − 
x∈Xp

Rpx − U
N
p Vx 

2
� 

n∈Dp

v n, Up . (7)

Where v(n,Up) � − (Rpx − UN
p Vx)2 is a tuple ftting

function for a single tuple n � (Vx, Rpx), which
characterizes the prediction efect on a single rating,
Vx � (Vx1, Vx2, · · · , Vxd) denotes the vector of hid-
den factors for item x, Dp � (Vx, Rpx)|x ∈ Xp  is
the set of binary tuples about the user p, and Xp is the
set of items evaluated by the user p. To guarantee the
accuracy of rating prediction, upper and lower
bounds are set on the hidden factor Vx:
|Vxz|⩽ 1, z ∈ 1, 2, · · · , d{ }.
Similarly, in solving Vx, keeping the V matrix
constant, the objective function is constructed as
follows:

f
x
U Dx, Vx(  � − 

p∈Px

Rpx − U
N
p Vx 

2
� 

n∈Dx

v n, Vx( . (8)

Where v(n, Vx) � − (Rpx − UN
p Vx)2, n � (Up, Rpx),

andUp � (Up1, Up2, · · · , Upd) are the vector of hidden
factors for the user p.Dx � (Up, Rpx) ∣ p ∈ Px  is the
set of binary groups about the item x.Px is the set of
users who have evaluated the item x.We set upper and
lower bounds on the hidden factor Up:
|Upz|⩽ 1, z ∈ 1, 2, · · · · · · , d{ }.

(3) First, keeping the matrix V constant, we use pre-
viously designed APrivGene to solve the optimiza-
tion problem shown in equation (7) for each user,
obtain the corresponding user hidden factor, and
update the matrix U. Ten, keeping the matrix U
constant, we use previously designed APrivGene to
solve the optimization problem shown in equation
(8) for each item, obtain the corresponding item
hidden factor, and update the matrix Q. Te
abovementioned process is repeated alternately to
continuously optimize the matricesU andV until the
maximum number of iterations N is reached.

Te pseudocode of the above privacy genetic MF al-
gorithm is shown in Algorithm 2.

Te computational complexity of the proposed method
was discussed and analyzed, summarized as follows.

In terms of time complexity, the method involves several
crucial steps. Te preprocessing step, where the user rating
matrix R is transformed into a bounded range, takes O(n)
time, with n representing the number of nonzero elements in
the rating matrix. Te matrix factorization (the MF algo-
rithm) contributes O(nd) time, where d signifes the di-
mension of the hidden factor matrices U and V. Te outer
loop iteration, conducted N times, accounts for O(N) time.
In addition, calculating objective functions and obtaining
binary groups have time complexities of O(1) and O(m),
respectively, where m is the number of items evaluated by
a user. Te privacy genetic algorithm (APrivGene) used for
obtaining hidden factors takesO(Ald) time for each user and
O(n∗Ald) time for each item, where A corresponds to the
number of genetic algorithm iterations and l denotes the
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population size. Te total time complexity of the method is
summarized as follows:

O(n + nd + N∗ (m∗Ald) + N∗ (n∗Ald)). (9)

In terms of space complexity, the method requires
storage for various components. Te user rating matrix R′,
with bounded ratings, has a space complexity of O(n).
Meanwhile, the hidden factor matrices U and V occupy the
O(nd) space. Consequently, the total space complexity is

O(n + nd). (10)

In conclusion, the proposed method has been thor-
oughly analyzed for its computational complexity. Te
time complexity assessment provides valuable insights
into the method’s efciency in real-world scenarios, while
the space complexity estimation helps in understanding
the memory requirements for storing matrices and data

during algorithm execution. Tis comprehensive un-
derstanding of computational complexities is crucial for
evaluating the method’s practical feasibility and potential
applications.

In summary, this paper proposes a diferential
privacy-preserving recommendation algorithm that in-
corporates matrix decomposition and the genetic algo-
rithm. Te algorithm employs an augmented exponential
mechanism to mitigate the degree of perturbation of the
algorithm, thus better realizing the diferential privacy
protection. Te method successfully solves the problems
of privacy leakage and data security in recommender
systems while maintaining the efciency of the recom-
mendation algorithm and the personalized features of the
recommendation results. Te following block diagram
analyzes the function of each module in the model of this
paper while explaining its role and the problem it solves
(see Figure 4).

Input: user rating matrix r, user set Users, item set Items, number of iterations N.
Output: U, V;
Te r matrix is preprocessed to obtain the homotopy matrix R. Te optimization problem is established as in equation (6);
For n� 1 to N;
For p in Users;
Construct the objective function f

p

V;
Dp � (Vx, Rpx)|x ∈ Xp // get the set of user binary groups;
Up � APrivGene (Dp, f

p

V)// solve for the users’ hidden factor;
End for
For x in Items
Construct the subobjective function fx

U;
Dx � (Up, Rpx)|p ∈ Px // obtain the set of item binary groups;
Vx � APrivGene (Dx, fx

U)// solve for the item hidden factor;
End for
Return U, V

ALGORITHM 2: Privacy genetic MF algorithm.

Input: D, the set of binary groups Dp or Dx. f, the objective function fp
q or fx

p;
Output: a vector of hidden factors ω∗ � (ω1,ω2, · · · ,ωd);
Control parameters in the initialization algorithm: set the number of hidden factors d, the privacy budget ε, the variation step η, the
decay factor β< 1, the maximum number of iterations A, and the size l of the candidate solution set Ω;
Te initial candidate solution set Ω is generated randomly;
For a� 1 to A-1 do
Compute f(D,ω) for each ω ∈ Ω;
ω � EEMe

f (D) select individuals using the augmented index mechanism;
Set Ω to null.
For z� 1 to d do
i�C(0,1)//draw random noise according to the standard Corsi distribution;
q1 � (ω1,ω2, · · · ,ωz + ηi, · · · ,ωd)// positive directional variation;
q2 � (ω1,ω2, · · · ,ωz − ηx, · · · ,ωd)// negative directional variation;
Ω � Ω∪ q1, q2 

End for η� ηβ.
End for
Compute f(D,ω) for each ω ∈ Ω;
ω∗ � EEMe

f (D)

Return ω∗

ALGORITHM 1: Improved privacy genetic algorithm (APrivGene).
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Te hyperparameter setting of the model proposed in
this paper is shown in Table 1. Te table includes parameter
settings related to matrix decomposition, genetic algorithm,
and diferential privacy. Te application of these hyper-
parameters in the model, as well as their role and signif-
cance, is emphasized.

4. Result Analysis and Discussion

4.1. Experimental Setup. Te hardware confguration se-
lected for the experiments in this section is as follows:
Intel i5-6400K 3.2 GHz, memory 8GHx, and system Win8
fagship version. To verify the efectiveness of the algo-
rithm in this paper, four algorithms from literatures
[29–32] are selected here as the comparison algorithms.
Te experimental objects of the algorithms in this paper
are the data in Table 2.

Te relevant parameters in Table 2 are parameter P
which is the number of user sets in the experimental
object, parameter S1 which is the number of relationships
between users in the experimental object, parameter S2
which is the number of relationships between users and
items in the experimental object, and the parameter item
which is the number of items in the experimental object.
In order to verify the usability of the DP recommendation
results of the fve algorithms, the experimental evaluation
index selected is the NDCG index. It is defned in the
following form:

NDCG (z, p) � 
p∈P

DCG(L(z), p)

DCG(L(z), p)
×

1
|P|

, (11)

where the parameter term NDCG (z,p) is an evaluation
metric for the usability recommendation of the DP item z by
the user p in the experimental object. Its defnition form is as
follows:

DCG(L(z), p) � 
Xx∈L(z)

Rank p, Xx( 

max 1, log
2
index Xx(  + 1 

,

(12)

where the parameter term index(Xx.) is the location index of
the DP item Xx in the L(z) dataset. Meanwhile, to evaluate
the similarity of DP recommendations between the two
datasets Flixster and Last.fm, the nearest neighbor re-
lationship index is selected in this section.

Jaccard(p, q) �
|Γ(p)∩ Γ(q)|

|Γ(p)∪ Γ(q)|
,

Adamic
Adar (p, q)

� 
k∈Γ(p)∩Γ(q)

1
log |Γ(k)|

,

(13)

where the parameter term Γ(p) is the set of relational nearest
neighbors of user p in the same dataset.

4.2. Usability Metric Evaluation. Te two experimental
datasets shown in Table 2 are used, and the evaluation metrics
NDCG (z, p) for usability recommendations of diferent sizes
are obtained by setting diferent item recommendation
numbers z and privacy budgets ε during the experiments.Te
parameters ε� {0.1, 0.4, 0.7, 1.0} and z� {10, 40, 70, 100}. Te
parametric experiments are as follows:

(1) Privacy budget ε infuence experiment: the recom-
mended number of DP in this experiment is set to
k� 40 in the dataset, the privacy budget ε is chosen to
be changed during the experiment, and the efec-
tiveness of the algorithm is verifed by using Jaccard
metrics. Ten, the NDCG evaluation metrics of the
comparison algorithm on the selected experimental
set are shown in Figures 5 and 6.

Privacy-Preserving
Collaborative Filtering

Differential privacy is applied on the user hidden factor
matrix U and the item hidden factor matrix V to obtain
the differential privacy protected hidden factor matrices

U' and V'.

It addresses the problem of user data
privacy leakage in collaborative
filtering recommender systems.

Enhanced Exponential
Mechanism (EEM)

The personalization of recommendation results is
guaranteed by EEM selecting candidate recommendation

items from the differential privacy-preserved hidden
factor matrices U' and V'.

It solves the privacy protection problem
when selecting candidate

recommendations.

Privacy Genetic MF
Algorithm

The optimized hidden factor matrices U and V are
obtained by iteratively updating the hidden factor

matrices U and V by the privacy genetic MF algorithm.

It further secures the personalized
recommendation effect and improves

the recommendation accuracy.

Module Operation Role

Figure 4: Analysis of the problems solved by the proposed method.
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According to the experimental results in Figures 5
and 6, it can be seen that the trend of the indicator
NDCG value changes when the experimental pa-
rameter privacy budget ε is varied in the interval (0.1,
1.0). Te main reason is that the larger the value of
the privacy budget ε, the smaller the value of the
Laplace noise required in the implementation of the
algorithm. Since the algorithms are based on the

traditional optimization methods of literature [30]
and literature [29], when the privacy budget ε is
smaller, the noise introduced is larger, resulting in
a large gap between the solved hidden factor vector
and the optimal solution, and the accuracy of the
recommendation is reduced. However, the algorithm
in this paper uses the server gradient perturbation of
user privacy, so the NDCG value that it obtains is
larger and the recommended accuracy is higher.

(2) Te parameter m changes afect the experiment. In
this part of the experimental session, the privacy
budget is set to a fxed value, i.e., ε� 0.4. For diferent
values of the number of DP recommendationsm, the
Jaccard metric is selected to verify the efectiveness of
the algorithm. Te usability recommendation results
of diferent algorithms on the selected experimental
set are shown in Figures 7 and 8.

According to the experimental results in Figures 7 and 8,
it can be seen that the NDCG indices of the centralized
comparison algorithms all show a monotonically increasing
trend when the number of DP recommendation items is
gradually increased from 10 to 100.Te results show that the
NDCG indices of the algorithms in this paper are kept above
90% on the selected experimental datasets, and the algo-
rithms in literature [32] can be kept above 80%, the algo-
rithm in literature [31] is kept above 70%, and the algorithms
in literature [29, 30] are only maintained at less than 50%.
Te main reason is that the algorithm in this paper has low
noise among the project users for the experimental dataset.

4.3. Algorithm Comparison Test. Te abovementioned four
algorithms are selected as the comparison calculation
method, and the comparison index object is shown in Ta-
ble 2. Algorithm calculation time and privacy data recovery
accuracy are selected as the comparison index to verify the
data recommendation quality of the algorithm, and the
experimental results are shown in Figure 9.

In order to evaluate the performance of the algorithms
more consistently, the average computational metrics of 10
experimental runs are selected here as the comparison re-
sults. As can be seen from Figure 9, in terms of the cal-
culation time index, the DP recommendation time of this
algorithm on the Last.fm test set is about 2.5 s, while the
algorithms in literature [30] and literature [32] are 12.5 s,
10 s, 8 s, and 5.5 s, respectively. Te calculation time of this
algorithm is improved by 80%, 75%, 68.8%, and 54.5%,
respectively, compared with the other four algorithms. In the
recommended accuracy index, the recommended accuracy
of this algorithm is 99%, which is 4.5%, 6.2%, 11.4%, and
13.6% higher than that of the four algorithms in literature
[29–31] and [32]. Tis indicates that the DP recommen-
dation efciency and recommendation quality of this paper’s
algorithm on the Last.fm test set are better than those of the
four selected comparison algorithms. Meanwhile, the data
on the Flixster test set prove that this paper’s algorithm also
outperforms the other four comparison algorithms in the
literature, showing similar performance.

Table 2: Selected datasets.

Parameters
Datasets

Last.fm Flixster
P 1778 137372
S1 11603 1269074
S2 91081 7527931
Item 16523 48754
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Figure 5: Changes of NDCG indicators on the experimental set
(Last.fm).
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Figure 6: NDCG index changes on the experimental set (Flixster).
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4.4. Efect of Diferent Privacy Budgets on Recommendation
Results. Te purpose of this set of experiments is to examine
the impact of this paper’s algorithm on the recommendation
results while achieving DP protection for users (see Figure -
10). Te root mean square error (RMSE) is used to measure
the performance of the algorithm.Te privacy budget ε of this
algorithm is 5. As can be seen in Figure 10, when ε< 1, the
accuracy of this algorithm is smaller than that of the un-
derlying literature’s [30] algorithm, which makes the algo-
rithm unusable. Tis is because when ε is small, the algorithm

adds a large amount of noise and thus afects the results of the
model. When 1< ε< 3, the accuracy of the proposed algo-
rithm is between that of literature [30] and literature [29].
When 3< ε< 5, the accuracy of the algorithm in this paper is
between literature [29] and literature [31]. When 5< ε< 6, the
accuracy of the proposed algorithm is between literature [31]
and literature [32]. When ε> 6, the accuracy of this algorithm
is higher than that of literature [32]. ε is still one of the
difculties in DP research, and it is generally believed that the
smaller ε is, the higher the degree of privacy protection is.
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Figure 7: Recommended results on Last.fm.
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Figure 8: Recommendation results on Flixster.
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5. Conclusion

In this paper, a privacy-preserving recommendation algo-
rithm based onMF and the genetic algorithm is proposed for
the privacy problem in recommendation systems. Te al-
gorithm transforms MF into two alternating user-hidden
factor and item-hidden factor optimization problems, which
efectively overcomes the problems of high dimensionality of
the solution space and nonconvexity in optimization in the
solution process. Moreover, an enhanced exponential
mechanism is used in the selection operation of the genetic
algorithm to make the whole MF process satisfy the DP
protection. However, based on the idea of searching for
signifcant hidden factors, the mutation operation of the
genetic algorithm is redesigned to mutate the hidden factors
from both positive and negative directions. Tis not only
improves the efciency of the algorithm but also efectively
enhances the performance of the understanding. Experi-
mental results on two standard datasets show that the al-
gorithm in this paper can better balance privacy and
recommended accuracy. Especially under the condition of
high privacy protection requirements, it can still achieve
a good recommendation efect and has good application
potential.

Te proposedmodel exhibits two limitations that require
further research. (1) Privacy budget selection: the model
relies on the privacy budget parameter (ε) to control the level
of privacy protection for users. However, determining the
appropriate privacy budget for individual users poses
a signifcant challenge. Setting the same privacy budget for
all users may not adequately cater to varying privacy con-
cerns among users. Future research needs to address the
issue of dynamically selecting privacy budget parameters
based on users’ privacy preferences and risk tolerance. (2)
Individual user characteristics: the model assumes a uniform
privacy protection level for all users, overlooking the fact
that diferent users may have distinct privacy requirements.
Future research should explore methods to capture indi-
vidual user attributes, such as privacy preferences, risk
tolerance, and past privacy-related behaviors. By integrating
such information into the model, personalized privacy
protection strategies can be devised, ensuring that users feel
comfortable and confdent in sharing their data while re-
ceiving personalized recommendations.
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