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In this paper, a discretization-free approach based on the physics-informed neural network (PINN) is proposed for solving the
forward and inverse problems governed by the nonlinear convection-diftusion-reaction (CDR) systems. By embedding physical
information described by the CDR system in the feedforward neural networks, PINN is trained to approximate the solution of the
system without the need of labeled data. The good performance of PINN in solving the forward problem of the nonlinear CDR
systems is verified by studying the problems of gas-solid adsorption and autocatalytic reacting flow. For CDR systems with
different Péclet number, PINN can largely eliminate the numerical diffusion and unphysical oscillations in traditional numerical
methods caused by high Péclet number. Meanwhile, the PINN framework is implemented to solve the inverse problem of
nonlinear CDR systems and the results show that the unknown parameters can be effectively recognized even with high noisy data.
It is concluded that the established PINN algorithm has good accuracy, convergence, and robustness for both the forward and

inverse problems of CDR systems.

1. Introduction

Reacting flow models play an important role in the simu-
lation of many physical and chemical problems, such as the
pollutant transport process in water and air [1], heat con-
duction process in flowing fluids [2], chromatography
column in reactors [3], and high-speed eddy current in
electromagnetic fields [4]. A reacting flow model is often
composed of a group of convection-dominated partial dif-
ferential equations (PDEs) with nonlinear source terms
[5-7], which usually accompanies autocatalytic reactions. A
typical reacting flow model is the convection-diffusion-
reaction (CDR) system [8], which is one kind of basic PDE
with nonlinear source terms of autocatalytic reactions [9].
The so-called autocatalytic reaction means that through
mutation, the autocatalyst will be transformed into another

form of substance, and this new substance can also undergo
an autocatalytic reaction at the same time, and eventually
lead to competition between the new substance and the
original autocatalyst [10]. Due to the complexity of auto-
catalytic reactions, some of the parameters such as kinetic
parameters, mutation parameters and convective diffusion
coefficients are often unavailable. Therefore, the CDR
problem can be further divided into the forward and inverse
problems. The forward problem refers to solving the con-
centration of reactants at various points within a reaction for
which all boundary conditions and medium parameters are
known, while the inverse problem refers to the recognition
of media parameters by limited known data. By accurately
solving these reacting flow models, the reaction problems in
chemistry, physics, electromagnetism, and fluids can be
analyzed, and suitable reaction units can be designed to
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optimize the process control schemes. Therefore, it is im-
portant to develop an accurate and efficient simulation tool
for solving both the forward and the inverse problems of
CDR systems.

For the forward problem of CDR involved in fluids, most
of the traditional methods are numerical ones. Numerical
schemes play a key role in the study of reacting flows and
a large variety of efficient numerical methods have been
developed, including finite difference [11], finite volume
[12], finite element [13], and spectral methods [14]. The core
of these numerical methods is to use some discrete structure
to reduce the infinite dimensional operators to a finite di-
mensional approximation problem, that is, to divide a large
space-time region into multiple, small, and simple regions
that are easily processed by computers. They are used to
numerically solve different types of PDEs for large variety of
static and dynamic problems. However, these numerical
methods are often computationally cumbersome, especially
for the problems with moving steep front and complex
geometries. Moreover, mesh generation usually incurs
a huge burden.

With the explosive growth of computing resources over
the past decade, deep learning [15, 16], especially, deep
neural network (DNN) [17, 18], has undergone revolu-
tionary development. It is increasingly used to solve fun-
damental PDEs in physics and chemistry problems [19-22],
with the help of the general approximation theorem of
neural networks and their powerful characterization capa-
bilities, i.e., excellent nonlinear approximation of the model
by the combination of multiple hidden layers and nonlinear
activation functions. Nevertheless, deep learning introduces
new uncertainties and other drawbacks to reacting flow
problems. For example, generating an accurate alternative
model of a complex physical system usually requires an
extremely large sample of data, which is often prohibitively
expensive or infeasible to be obtained from measurements or
simulations in reality.

In recent years, a DNN framework named physics-
informed neural network (PINN) [23, 24] was developed.
PINN does not require manually labeled training data. No
validation and testing dataset are needed. This largely differs
from other deep neural networks. Making the full-use of
physical information as prior knowledge, PINN is trained
with few or even no labeled data as surrogate models for
accurate solution of PDEs [25]. Different from traditional
mesh-based discretization methods, time and space de-
rivatives in the PINN method are evaluated using automatic
differentiation [26] of the DNN that does not involve any
numerical discretization. Then, the DNN coefficients are
computed by minimizing the loss function that is the sum of
the residuals of both the PDEs and initial and boundary
conditions [24]. In addition, the PINN solution defines
a function over the continuous domain, rather than a dis-
crete solution on a grid as in traditional methods. Only
initial and boundary conditions are needed to train the
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PINN to accurately approximate the solution of the
equations.

For the inverse problem of CDR, systematic identifi-
cation and thus reconstruction of source features from
sparse data are very important. However, the inverse
problem is always a high challenging topic, for which many
difficulties exist, such as the inherent ill-posedness, data
uncertainties, and sparse and noisy observation data. To
solve the inverse problem, some methods have been de-
veloped such as genetic algorithms (GAs) [27], simulated
annealing (SA) [28], adaptive simulated annealing (ASA)
[29], artificial neural networks (ANNs) [30], and harmony
search (HS) [31]. These methods are significantly affected by
the noise in the observed data. Some nonclassical optimi-
zation algorithms, namely, the population-based ones (e.g.,
GA), also require a great number of evaluations of the
objective function, which is computationally expensive [32].
However, PINN not only solves the forward problem
according to the governing equation and the initial and
boundary conditions, but also solves the inverse problem
according to the sparse observed data. It learns the unknown
parameters of the system from a small amount of given data
and has strong robustness to noise [33, 34], which can be
a new way for solving the inverse problem of CDR.

Due to the excellent capability of neural networks in
describing complex relationship between inputs and out-
puts, PINN creates a new path to solve the forward and
inverse problems involving nonlinear PDEs [25]. Noisy,
sparse, and multifidelity data sets are easily handled by
PINN. Nowadays, many problems difficult for traditional
numerical methods are solved by using the PINN-based
methods [35-37]. PINN has been successfully used for
solving PDEs or complex PDE-based problems in various
domains, such as fluid mechanics [38, 39], medical diagnosis
[40, 41] and materialogy [42]. PINN has been applied to
single reactant CDR problems with good results [43].
However, there are no researches on the application of PINN
to CDR systems with multiple coupled reactants. The ob-
jective of this paper is to solve the forward and inverse
problems for multireactant CDR systems. The PINN is
applied to the gas-solid adsorption problem and the auto-
catalytic reacting flow problem in a tubular reactor. In the
autocatalytic reacting flow problem, the use of sin instead of
the standard activation functions such as tanh improves the
learning ability of the network for high-frequency signals. In
addition, the arithmetic examples examine the computa-
tional accuracy and stability of the algorithm for the inverse
problem with different amounts of training data and dif-
ferent levels of noise. The results show that the PINN al-
gorithm developed in this paper is a new, simple, and
effective simulation tool for solving the forward and inverse
problems of CDR systems.

The rest of the paper is organized as follows: In Section 2,
the gas-solid adsorption model and autocatalytic reacting
flow model are presented. In Section 3, the PINN method for
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solving the forward and inverse problems is introduced, and
in Section 4, PINN is tested by two CDR systems, including
both the forward and inverse problems. Conclusions are
given in Section 5.

2. Reactor Models with
Multicomponent Reactant

In this section, two kinds of multicomponent reactant
models are introduced, including the gas-solid adsorption
model and the autocatalytic reacting flow model.

2.1. Gas-Solid Adsorption Model. The gas-solid adsorption
column without the diffusion effect is described by one PDE
for flow transport, one differential equation for mass transfer
and one algebraic equation for equilibrium state is [44] as
follows:

C
CO+——5CS+ S =0,
€

1C-k(c'-C%) =0, (1)

| C'-KCC =0,

where gas concentration (C®), solid concentration (C),
gas-solid interface concentration (C!), void fraction (e),
superficial gas velocity (v), speed mass transfer coefficient
(k), and speed equilibrium constant (K) are denoted. In-
dices t and x are used for temporal and spatial derivatives,
ie, C, and C,, respectively.

2.2. Autocatalytic Reacting Flow Model. The chemical reactor
is of the tubular type, where chemical species flow from the
inlet to the outlet in one pass. The chemical reaction model
includes a cubic autocatalytic reaction in which the auto-
catalyst is assumed to undergo a mutational process that
produces another form, and it can also undergo an auto-
catalytic reaction and thus compete with the original
autocatalyst [45]. The model captures the fundamental steps
encountered in many technically important biochemical and
pharmaceutical applications, such as the birth-death process
of bacteria and the interaction of drugs with some other
biological agents or cells. The autocatalytic reaction consists
of three reagents (substrate A, autocatalyst B, and mutant C)
and is carried out according to the following reaction scheme
[46]:

(i) Replication of Bk A+ 2B L 3B
(ii) Death of B: B — P, .
(iii) Mutation of B into C: A+2B—2C+B
(iv) Replication of (]:,:/ ﬁA +2C & 3C
(v) Death of C: C =5 P,
Specifically, both k; and k, represent the reacting rate

constants, « is the mutation constant, and § is the mutation
efficiency. For simplicity, we assume that the flow rate along

the reactor is constant. Then, the transport equation de-
scribing the three reactants in dimensionless form can be
expressed as follows [45]:

(oU, oU o°’U
Tt Vax = Dig + (1-UD[(+ U3 + U3
oU, oU o°’U
150V 5 = Digya + (1= (1 -U)U3 - U,
oU, U, ’U, 2 2y 7Y
33D 3 (1-U U +2aU; ) — U,
ot "V ax - Digyge (1 UN(BUs +2003) - U
(2)
where
U l/lf—l/ll
1= >
us
U
U2:_7
us
u
U3:_3’
us
L
T = kyujt,
__ %
klu;L)
klufz

In the above equations, U;(i=1,2,3) is the di-
mensionless concentration of the reactants A, B, and C, u f is
the substrate concentration, X is the dimensionless reactor
length, T is the dimensionless time, L represents the length
of the tubular reactor, D;(i = 1,2,3) is the dimensionless
diffusion parameter, v is the dimensionless convection ve-
locity, and y is a dimensionless kinetic parameter.

3. Physics-Informed Neural Network (PINN)

The PINN is a machine learning framework based on DNN.
It leverages the capabilities of DNN as universal function
approximators. However, different from traditional deep
learning algorithms, PINN restricts the set of acceptable
solutions by enforcing the validity of PDE models governing
the actual physics of the problem. This is achieved within
a fully connected feedforward neural network architecture
leveraging automatic differentiation techniques available in
the TensorFlow learning package [47]. The basic idea of the
PINN algorithm is to embed the governing equations of
physical prior information (such as conservation quantity,
invariance, and symmetry) into the loss function



corresponding to the network training, for speeding up the
network training process and improving the accuracy and
interpretability of the model prediction. PINN successfully
integrates the physical information with neural networks.
We consider the following forward problem of a PDE with
the Dirichlet boundary condition:

u, + D, (u;1) =0
u(ty, x) = uy(x),
u(t,x) = g(t, x),

x €Ot € [ty 1],
x €Q, (4)
x € 8O, t € [ty 1],

where u denotes the solution of the equation, D, is the
differential operator respect to x, A is the parameter in the
governing equation, which is a known constant in the
forward problem, Q € R and §Q denotes the boundary,
u, (x) is the initial condition at t =t,, and g(t, x) is the
Dirichlet boundary condition.

A typical PINN framework for solving the forward
problem is shown in Figure 1. The input training points
(x,t) consist of three parts as follows: initial sampling point
(x,.,0), boundary sampling points (xy,, t;.), and collocation
points (x,f() in the equation domain. The predicted value
is calculated using a fully connected feedforward DNN
corresponding to the input point. The symbol 0 is the pa-
rameter set of the DNN, including weights W, bias b, and the
activation function o. The automatic differentiation of the
DNN is utilized to calculate the partical derivatives of
upy (t, x; 0) with respect to x; and t;. The loss function is
evaluated using the contributions from the initial boundary
conditions and the residual from the governing equation
given by the physics-informed part. Then, one seeks the
optimal values of W and b to minimize the loss function
below a certain specified tolerance § or until a prescribed
maximum number # of iterations.

It is implemented by imposing three types of losses. One
is the loss for governing equation learning I, controlled by
the collocation points N,, the second is the loss for initial
condition learning ;. calculated on the initial points N, and
the last is the loss for boundary condition learning [, cal-
culated on the boundary points N;.. To combat overfitting,
the loss I, acts as a regularization mechanism that penalizes
solutions that do not satisfy the governing equation. Con-
sequently, PINN classifies the training points into two
categories. One kind is the points in the space-time domain
and the other is the initial boundary points. Unlike tradi-
tional numerical methods, to fit the initial and boundary
conditions, PINN uses value constraints to train the neural
network, which implies that there are errors in the learning
of the initial and boundary conditions. The loss function
defined by the L, norm is then as follows:

£ = Z’ﬂr + fic + fbc’ (5)

where
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1 % P 2
4= erW(R“ﬁ@M
1 & P2
Lptc = ﬁ Z ”uNN(tO’ xlC7 6) ( ) 2
- (6)
1 & PN
f |Nb | Z ”uNN thc’xbc7 6) - g(tbc’xbc) 2’
r(t, x;0) = W + D [unn (£ x5 0); 4],
where D, represents the learned spatial differential op-

erator, uyy (t, x; 0) is the learned solution, N,, N;., and N,
represent, respectively, the internal conﬁguration of the
sampling point data {(t!,x),r(t\, x\; 0)}1:, initial data
{(tO’ xtc) Uy ('xlc)}l 1’ boundary data { (tbc’ xlC) 9 (tbc’
xbc)}lN1 , and r(t, x; ) is the residual of the PDE. The lo-
cations of the collocation points are generated by a space-
filling Latin hypercube sampling (LHS) strategy [48] and the
initial boundary points are selected randomly.

PINN can also be applied to the inverse problem to
discover the unknown parameters A in equation (4). Inverse
problems no longer require initial boundary values but
rather the observed data in the space-time domain. They are
solved on the same footing as forward problems, in which
cases, the loss function consists of two parts. One is the loss
for governing equation learning and the other is for observed
data learning. The loss function ¢ is then defined by the
following:

=t +C, (7)

in which

z||uNN 5 6:0) —u (;n,x;n)"j,

(8)

_ 1 v ey 2
—mzum o

rl i=1

where /,, and [, are the mean square errors of the residuals
for the measured data and the governing equation, re-
spectively, N,, is the measured data size, and
uny (t, x4 0;1) and u,, (t,x!)) are the predicted and
measured values at the measuring points (t ,x' ).

In the multicomponent CDR system, the reactor model
described by a system of PDE is embedded into the loss of
PINN for training. The neural network optimizes not only
the loss function of the network itself during the training
iterations but also the residuals of each iteration of the
governing equations, so that the results obtained from the
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Initial conditions —  Loss,
Boundary conditions —  Loss,
Governing PDEs —  Loss,,.

L = Loss, + Loss, + Loss,..

FIGURE 1: A typical PINN framework to solve the forward problem of nonlinear PDEs.

fitting better satisfy the reaction laws. In the forward
problem, no manually labeled reactant concentration data
are required. The PINN solves the problem by only pro-
viding the governing equations and the initial boundary
conditions. In the inverse problem, the governing equation
and information about the measurement points are encoded
into the loss function for training. The labeled data about the
unknown parameter A are not needed either. The optimal
model parameter set ®" is obtained by minimizing the loss
function. The Adam optimization algorithm [23] is used in
this paper to avoid the training process falling into the local
optimum.

4. Numerical Results

In this section, numerical experiments on the nonlinear
CDR systems presented in Section 2, are conducted to il-
lustrate the capability and efficiency of the developed PINN
presented in Section 3. The forward problems of the gas-
solid adsorption and the autocatalytic reacting flow are
addressed first in Sections 4.1 and 4.2, respectively, and the
inverse problem of the autocatalytic reacting flow is then
pursued in Section 4.3.

The reference solutions are given by the finite volume
method [12], including the weighted essentially non-
oscillation (WENO) scheme [44] and the modified total
variation diminishing Lax-Friedrichs scheme with Superbee
limiter (MTVDLE-Superbee) [49]. The solution of WENO is
used as the reference for the gas-solid adsorption problem
because it can effectively suppress the unphysical oscillations
at the steep fronts. The reference solution for the autocat-
alytic reacting flow problem is given by the MTVDLEF-
Superbee scheme. It can eliminate the numerical dissipa-
tion and spurious oscillations and is considered as an op-
timal method for handling the CDR problems [49].

Due to the similar computational complexity of the two
models, the network structure is set to be the same in all the

tests. Referring to the cases in the references [23, 43], the
network structure in this study is as follows: seven hidden
layers and 100 neurons in each layer. More hidden layers and
more neurons have been tested, but no significant differ-
ences were observed. In the experiments, the used optimizer
is Adam with a typical rate of 0.001. The used software
programs are TensorFlow 1.8.0 and Python 3.6, and the
experiments are conducted on a platform with NVIDIA
TITAN V and Intel (R) Xeon (R) Silver 4210 CPU at
2.20 GHz.

4.1. Forward Gas-Solid Adsorption Problem. In this test, we
consider whether PINN can simulate the dynamic behavior
of a multireactant system with the given initial and boundary
conditions. The following parameters are set: €= 0.4,
v =0.1m/s, k = 0.0129/s, and K = 0.85. The column length
(L) is equal to 1.5m.

The initial conditions are as follows:

ct (x,0) = 0 mol/l, (©)
C’ (x,0) = 0 mol/l.

The Dirichlet boundary condition at X = 0 is as follows:
C°(0,1) = 2.2 mol/l. (10)

The discontinuous profile given by the initial condition
moves continuously along the axial direction. The reference
solution, based on the result of the WENO-Roe-5 scheme on
300 fixed-grids [44], at t = 10s is as follows:

C%(x,t) = 2.2 - 0.3295x,
C%(x,t) = 0.0 mol/l,

when (x - 10v) <0,
when (x — 10v) > 0.
(11)



In this problem, the loss consists of three parts, namely,
the initial concentration of the gas, the gas concentration at
the boundary, and the governing equation for the gas-solid
coupling reaction. Without manually labeled data, the
concentrations of gas and solid reactants are learned by
constraining the loss with the physical information given by
the gas-solid adsorption model. During the training process,
100 initial points and 100 boundary points are randomly
selected, and 2000 collocation points are generated by LHS
in the space-time domain.

The PINN solution is compared with the reference so-
lution in Figure 2, and the results show that PINN accurately
captures the dynamic behavior of the gas-solid adsorption
column. The running time is 0.36 h. To verify the stability of
the algorithm, a set of 10 test errors has been obtained by 10
independent repetitions for this problem. The error is given
by the relative root mean square error (RMSE) between the
PINN and the reference solution. Then, the mean and
standard deviation of the error are calculated, which is
2.16e — 02 + 1.12¢ — 02 for C® and 3.41e — 02 + 1.52¢ — 02
for C5, respectively. As shown in Figure 3, by increasing the
surface gas velocity from 0.1 m/s to 0.2m/s, the reacting
reactants are accelerated to the boundary. To study the ef-
tects of void fraction € on the concentration distribution, five
cases with €=0.8, 0.4, 0.2, 0.1, and 0.05 are studied, and the
results are shown in Figure 4. It is seen that, as the void
fraction decreases, the concentration no longer uniformly
decreases along the range, but gradually shows a nonlinear
trend, and the closer the concentration is to the inlet
boundary, the faster is the decrease rate.

4.2. Forward Autocatalytic Reacting Flow Problem. In this
experiment, the following parameters are taken: o = 0.065,
B =2.0,y=0.025 v=10, and D, = D, = D; = 0.05.

The initial conditions are as follows:

U,(X,0) =1,
U, (X,0) =0, (12)
U,(X,0) = 0.

The Dirichlet boundary conditions at X =0 are as
follows:

U, (0,T) =0,
U,(0,T) =1, (13)
U,(0,T) = 0.

The Neumann boundary conditions at X =1 are as
follows:

ou, (1,t)

L2,
ox

ou, (1,t) _o, (14)
ox

aU;(1,t)

7836 =0.
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In this problem, the loss also consists of three parts,
including the concentrations of the three reactants at the
initial moment, the Dirichlet boundary condition at X = 0,
and the Neumann boundary condition at X =1, and the
governing equation for the autocatalytic reacting flow. The
PINN results as function of X at T=0.1 and 0.5 and
function of T at X = 0.1 and 0.5 are shown in Figure 5,
compared with the reference solution given by MTVDLE-
Superbee [49]. The good agreement is clearly observed. For
this test, the running time is 0.46 h.

Since the sin activation function can improve the
learning ability of the network for high-frequency signals
[50, 51], it is used in the above tests. The tanh is also applied
as the activation function and the results are shown in
Figure 6, together with the PINN solution with activate
function sin. Numerical oscillations at the boundary are
observed. Therefore, the sin activation function is also better
to fit high-frequency solutions of the CDR system
studied here.

It is known that the Péclet number (Pe) defined by Pe; =
v/D; has an important effect on the solution of a numerical
method. For convection-dominated transport (i.e., Pe > 1),
the numerical solution can develop spurious oscillations
(over or undershoot) or numerical dispersion [52, 53]. Its
effect on the solution of PINN is also studied here. Figure 7
shows the reactant concentrations over the entire space-time
domain for the cases of Pe =100,1000 and 10000, and
Figure 8 exhibits the simulated concentration distribution at
the reactor center (X = 0.5) of the three reactants. The
sharpness of the moving fronts increases with the increasing
Pe number. Even for the high Pe case (Pe =10000), the
PINN method still converges and captures the steep gradient
with no oscillations. Therefore, the PINN method has good
accuracy and effectiveness in solving the autocatalytic
reacting flow problems.

4.3. Inverse Autocatalytic Reacting Flow Problem. In this
section, the application of PINN for the inverse autocatalytic
reacting flow problems is investigated. In the forward
problem, with the given initial and boundary conditions,
accurate solutions of the three reactants have been obtained.
In the inverse problem, the solutions of the autocatalytic
reacting flow model are known at a given number of
measuring points across the problem domain, while the
model parameters A = [&,,y,v,D;]” are unknown. The
measured data are encoded as constraints into the loss
function of the neural network to identify the unknown
parameters and to estimate the solution in the entire space-
time domain.

As no measured data is available, to illustrate the ef-
fectiveness of PINN, the dataset was generated by MTVDLF-
Superbee [49] with « = 0.065, = 2.0, y = 0.025, v = 1.0,
and D, = D, = D; = 0.05. Different from the original PINN,
with randomly obtained points in the space-time domain, an
arrangement closer to the real situation is considered. The
monitoring distance interval is set to be 0.025m, and the
monitoring time interval is 0.025s, resulting in a total
number of 1600 data pairs {x,t,).
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Figure 9 illustrates the performance of PINN for solving
the inverse problem. The concentration of the reactants
learned by PINN at T' = 0.1 and T = 0.5, and the time history
of the concentration at X = 0.1 and X = 0.5 are shown, and
the results are compared with the numerical solutions of
MTVDLE-Superbee. The results reveal good agreement,
indicating that PINN can accurately predict the concen-
tration of the reactants in the entire space-time domain
using limited given data. PINN simulates the inverse

problem with a running time of 0.51 h. This is a remarkable
advantage over the traditional
methods [27].

In addition to providing predictions in the space-time
domain, the solution to the inverse problem involves
identifying the unknown parameters A = [&f,7,7,D;]".
Table 1 presents all the model parameters learned by PINN
from the supposed observations. Except f3, all parameters
have been correctly identified with relative error less than

time-consuming
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5%. The parameters associated with f3 are & and D, resulting
in a relative high error of 1% for a and 4% for D;. Other
parameters are identified with relative errors less than 0.5%.
This test demonstrates the excellent capability of PINN for
identifying the parameters in the CDR system. Note that the
error is given by the RMSE between the predicted and the
reference value defined by the following:

/ltrue - )‘pred

2, (15)
[Pl

RMSE:|

Table 2 presents the learned kinetics of the reaction and
mutation efliciency, supposing the flow velocity and diffu-
sion coefficients are known. When only the reaction-related

model parameters are predicted, the relative errors for both
« and y are less than 1%, but it remains large for . That is,
when PINN is used to identify fewer model parameters, the
prediction accuracy will be improved as expected.

From the two tables, it is seen that all the reaction pa-
rameters have been correctly learned except the mutation
efficiency . The large deviance in the recognition of 8 is
attributed to the fact that it is insensitive to the governing
equation. To verify this, the forward problem with three
different 8 was solved using PINN and the results are shown
in Figure 10. The concentrations of substrate A and auto-
catalyst B do not change when taking different values of 8
(see Figures 10(a) and 10(b)). However, due to the small
magnitude of the mutant C, a slight difference in the con-
centration of reactant C at T = 1 is found (Figure 10(c)).
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TaBLE 1: RMSE for predicted model parameters by PINN.

Model parameters True value Predicted value RMSE (%)
a 0.065 0.0658 1.32
B 2.000 0.8005 59.9
y 0.025 0.0252 0.8
v 1.000 0.998 0.12
D1 0.050 0.0498 0.28
D2 0.050 0.0497 0.40
D3 0.050 0.0520 4.06

TaBLE 2: RMSE of the kinetic parameters of the reaction and mutation parameters learned by PINN from the reference solution.

Model parameters True value Predicted value RMSE (%)
a 0.065 0.0651 0.18
B 2.000 0.8991 551
y 0.025 0.0251 0.40
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TaBLE 3: Percentage error in the identified parameters « and y for
different number of training data N corrupted by different noise
levels.

Noise
Error (%)
o b4
N 0% 1% 5% 10% 0% 1% 5% 10%
1000 0.186 0.543 1.261 4.554 0.420 0.766 1.856 8.530

2000 0.178 0.212 1.257 3.523 0.369 0.658 3.481 7.223
3000 0.165 0.175 1.203 2.946 0.295 0.543 2.896 6.391

In reality, there is often noise in the measured data,
which leads to various difficulties for the learning methods
and highly affects the recognition accuracy of these pa-
rameters. The capacity of the PINN to solve the inverse
problem with noisy data was investigated by adding
Gaussian noise to the dataset. Table 3 shows the error in the
PINN solution of the inverse problem at different noise
levels (noise =0%, 1%, 5%, 10%) and different sizes of the
measured point (N = 1000, 2000, 3000), supposing the flow
velocity and diffusion coefficients are known. The results
indicate that the quality of the prediction over the problem
domain decreases with increasing noise levels from error
~107? for noise=0% to error =~ 10~ for noise = 10%.
However, the identifications of the model parameters do not
show significant variations due to increasing noise levels.
The proposed method appears to be robust to noise levels in
the data, and a reasonable recognition accuracy is main-
tained even for noise corruptions up to 10%. At the same
time, the error of parameter learning is hardly affected by the
size of the training data. This means that for CDR systems,
PINN can obtain accurate results with sparse training data.

5. Conclusion

In this paper, a PINN framework for solving the forward and
inverse problems of nonlinear CDR systems is presented. In
PINN, the CDR systems expressed as PDEs are incorporated
into the neural network. Due to being devoid of grids or

nodes, PINN is a mesh-free method that can predict the
solution at any point in the equation domain without
interpolation.

For the forward gas-solid adsorption problem, the re-
action process is simulated for different convection velocities
and void fractions. The PINN results agree well with the
reference solutions, and the moving steep fronts are cor-
rectly captured without numerical dissipation and spurious
oscillations.

For the forward autocatalytic reacting flow problem, the
PINN method accurately predicts the dynamic profiles of the
system. Compared with the standard activation function of
tanh, the sin activation function can more effectively
eliminate the unphysical oscillation generated at the
boundary. For high Péclet numbers, PINN still captures the
sharp profiles without any unphysical oscillation or nu-
merical dissipation.

For the inverse autocatalytic reacting flow problem, with
limited data, PINN successfully identified the unknown
parameters in the CDR systems, even the measured data are
heavily polluted by noise. This demonstrates a strong ability
of PINN to learn missing chemical information and to better
observe and explain the laws in the reaction chemistry.
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