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Knowledge graphs are crucial foundations for building intelligent systems, such as question answering and recommendation.
However, their performance is hampered by the incompleteness of KGs, so the knowledge graph completion arises to infer
whether a triple of the form (head entity, relation, tail entity) is a missing fact. The path-based approach that encodes paths from
the head entity to the tail entity for reasoning achieves good performance. Previous work suggests that entity type is beneficial for
learning path representations. Nevertheless, the semantics of entities are not captured accurately, as many entities are not typed or
loosely typed. In addition, previous methods tend to model paths only from the forward direction but fail to capture new path
patterns from the reverse direction (i.e., tail entity to head entity). In this paper, we introduce a structure enhanced path reasoning
(SPR) framework to address the above-given problems. First, the model uilizes the structure of entities, i.e., their relational
contexts (the relations linked from the given entity), to obtain a reliable path representation that captures correct entity semantics.
This information is accessible to all nonisolated entities in all KGs, so that it can compensate the semantics for entities or KGs that
have no type available. Second, we leverage the structure of paths to derive their reverse paths, so as to enhance the path
representation by additionally encoding the new patterns embedded in them through a dual path encoding method. In order to
verify the effectiveness of the proposed methods, we design different architectures based on LSTM and Transformer, respectively.
Experimental results on two benchmark datasets, WN18RR, and FB15k-237, show that our approach apparently outperforms
state-of-the-art methods on fact prediction task and relation prediction task. Furthermore, extensive experiments illustrate the
benefits of enhancing path reasoning by exploiting structure information from entity relational contexts and the dual path
encoding method.

1. Introduction

Knowledge graphs (KGs) contain millions of structured facts
represented as triples, where each of them is stored as (head
entity, relation, tail entity). As an effective way to store and
search knowledge, KGs are critical for many enterprises to
construct intelligent systems, such as web search [1, 2],
question answering [3-5], and recommendation [6, 7].
Although many KGs have been built and published, such as
WordNet [8], DBpedia [9], and Freebase [10], they are
generally incomplete as a large number of facts are missing
[11], which hinders the performance of intelligent systems.

Therefore, knowledge graph completion (KGC) is extremely
crucial in improving the quality of KGs by inferring missing
relations between entities.

Generally, prior methods of KGC can be divided into
three categories: embedding-based, rule-based, and path-
based models. (1) Embedding-based models [12-15] effi-
ciently learn semantic connections between head entity,
relation, and tail entity by mapping them to a continuous
vector space, but they have long been criticized for lacking
explainability. (2) Rule-based models [16-18] mine rules
composed of relations and variable entities, where each rule
is assigned with a confidence score indicating the probability
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the rule holds. Despite their explainable strengths, they
suffer from mining a limited form of rules dictated only by
relations, resulting in poor discrimination. (3) Path-based
models [19, 20] focus on modeling the path information
between entities to interpretively predict their missing re-
lation, which can learn not only regular relation patterns but
also the semantics of entities on the path.

Due to the advantage that path-based methods can
derive explainable inference results based on the explicit and
interpretable paths between entities, they have been widely
studied. The core of path-based methods is to learn the
representations of paths, where each path consists of nodes
representing entities and edges representing relations, as the
dark green path shown in the left part of Figure 1. Earlier
work only learns relation patterns of paths, by obtaining the
path representation from the probability of executing ran-
dom walk between two entities [19, 21], or by encoding the
features of relation sequence on the path through RNN [22].
Since entities on the path also play an essential role in in-
ference, later work [23, 24] takes entity information, such as
entity itself and entity types, together with relations on the
path to get the path representation by applying RNN or
LSTM [25]. Although exploiting entity type information can
simultaneously improve discrimination and generalization
of path-based methods [24], there are still two problems that
impede the performance of KGC.

First, these works only consider entities or entity types,
many of which are not typed or loosely typed, leading to
inaccurate and inadequate path representations. We argue
that the local structure of an entity, by which we mean its
neighboring relations, namely, relational contexts [26], can
provide valuable contextual information. All nonisolated
entities have relational contexts, and entities with different
semantics own different relational contexts. Taking Figure 1
as an example, entity Jackie Chan which is an actor has
relation playedInFilm, while entity Hong Kong which is
a location links with relation locationLanguage. This sug-
gests that entities linked with playedInFilm are likely to be
actors, not locations. Furthermore, given a query relation,
relational contexts should not receive equal attention; only
those that are semantically similar to the query are im-
portant. For instance, when predicting the profession of
Jackie Chan, relational contexts such as playedInFilm and
directedFilm should be emphasized, while others such as
gender and nationality should be disregarded.

Second, existing methods usually learn path represen-
tations only from the forward direction but fail to capture
new patterns from the reverse structure of paths, i.e., reverse
paths. The reverse path from tail entity to head entity
contains new relation patterns along a “new” path composed
of new relations. As shown in Figure 1, the relation pattern
of path <Jackie Chan% % —> PlecOBiIrth Hong  Kong
9% % — locationlanguage cantonese> for predicting the query
relation  personLanguage is “placeOfBirthA  loca-

tionLanguage — personLanguage.” While its reverse path

locationSpeakTheL.
<cantonese %% —— ~OTPECAEE Hong  Kong

9% — personBorninThelocation 15 Lije Chan>, which infers the
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reverse query relation personSpeakTheLanguage, contains
different relation patterns “locationSpeakTheLanguage A
personBornInTheLocation — person-
SpeakTheLanguage.” So that the prediction results may
differ when the encoding of reverse paths is also taken into
account.

To tackle these problems, we propose a structure en-
hanced path reasoning (SPR) framework for KGC through
leveraging the structure information of entities and paths,
i.e., relational contexts and reverse paths, respectively. First,
a multiperspective path encoder is applied to encode re-
lations and entities information on a path to obtain the path
representation. To get an accurate and adequate path rep-
resentation that captures correct entity semantics, we pro-
pose to utilize multiperspective entity information, i.e.,
entity relational contexts and entity types for each entity,
whose importance is considered differently through atten-
tion mechanism to be aggregated into entity features. Then,
an attentive path aggregator is employed to fuse path fea-
tures of all paths between the entity pair. Finally, to obtain
path representations that are enriched by new relation
patterns contained in reverse paths for final prediction,
a dual path encoding method is proposed to combine path
features of forward paths with reverse ones. Moreover, to
verify the validity of the proposed approach, we not only
implement the path encoder based on LSTM as in most
previous work, but also apply Transformer [27] as the second
architecture.

We evaluate our approach for both fact prediction task
and relation prediction task on two benchmark datasets,
WN18RR [14] and FB15k-237 [28]. Experimental results
show that SPR outperforms state-of-the-art KGC ap-
proaches and achieves an absolute MAP gain for fact
prediction over the best path-based baseline of 3.63% on
WNI18RR and 4.52% on FB15k-237. For relation pre-
diction, SPR also scores the best, with MRR and hits@1 at
99.2% and 98.7% on WNI8RR, respectively. Extensive
experiments illustrate the effectiveness of utilizing entity
relational contexts and dual path encoding. The code and
datasets are available at https://github.com/wylResearch/
SPR.

Our main contributions could be summarized as follows:

(i) We introduce relational contexts of entities to learn
accurate and sufficient path representations that
capture correct entity semantics

(ii) We propose to learn path representations by
encoding relations, entity relational contexts and
entity types on the path and additionally encoding
reverse paths in a dual encoding manner, which
enriches path representations and improves pre-
diction performance

(iii) The proposed method achieves the state-of-the-art
for fact prediction task and relation prediction task
on WN18RR and FB15k-237, and quantitative and
qualitative analyses demonstrate the effectiveness of
entity relational contexts and dual path encoding
method for enhancing path representations
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FIGURE 1: An example KG, where nodes are entities and solid edges are relations. (a) Shows some relational contexts (gold edges) of Jackie
Chan. (b) shows a path (dark green edges) from Jackie Chan to cantonese for reasoning the missing fact (Jackie Chan, personLanguage,
cantonese), where personLanguage is query relation (dark red dashed edges). Its reverse path (light green edges) can be seen as inferring the
reverse query relation personSpeakTheLanguage (light red dashed edges).

The remainder of this article is organized as follows.
Section 2 provides a brief description of related work, and
Section 3 gives a formal definition of the KGC task. A
detailed description of the proposed framework SPR is re-
ported in Section 4. The experimental settings and results are
discussed in Sections 5 and 6, respectively. Finally, main
conclusions and future works are summarized in Section 7.

2. Related Work

2.1. Knowledge Graph Completion. There are mainly three
categories of approaches to implement KGC: (1) embedding-
based models learn low-dimensional distributed embed-
dings of entities and relations by designing a score function.
The approach can be further classified into: distance-based
models, such as TransE [12], TransH [29], RotatE [30], and
HAKE [31]; similarity-based models, such as ComplEx [13]
and ANALOGY [32]; neural network models, such as NTN
[33], ConvE [14], and R-GCN [15]; models with additional
information, such as DKRL [34], TKRL [35], KALE [36], and
PTransE [37]. (2) Rule-based models mine interpretable
rules from the knowledge graph to fill in missing facts based
on existing knowledge, where a rule is defined in the form of
head—body, in which the head is an atom, i.e., a fact with
variable entities, and body is a conjunction of atoms. Early
approaches, such as AMIE [16] and RULES [38], mine the
structure of rules in discrete spaces while learning their
confidence in continuous spaces. Recent approaches, such as
NeuralLP [17], DRUM [18], and NLIL [39], tend to employ
neural networks to simultaneously learn the structure and
confidence of rules in a continuous space. (3) Path-based
models generally extract paths between an entity pair and
learn the path features to make predictions. The approach
falls into two major categories: path reasoning methods,
such as PRA [19] and Chains [23], and reinforcement-based
path finding methods, such as DeepPath [20] and MI-
NERVA [40]. The former pays more attention to the path

feature encoding process, while the latter focuses on
extracting an effective inference path. In this paper, we focus
on the path reasoning methods.

2.2. Path Reasoning Methods in KGC. Paths between entities
are beneficial to the explainability of reasoning in KGC.
Early path reasoning approaches [19, 41] utilize the prob-
ability of walking between entities following relation se-
quences to get the path features. Later on, neural networks
are employed to encode the path. Neelakantan et al. [22]
apply RNN to encode the relation sequence as path repre-
sentations. Chains [23] encodes alternate sequences of entity
information and relations by RNN. APR [24] separately
encodes relation sequence and entity types by LSTM and
merges them into the path feature. However, the above-
given methods only encode paths in the forward direction
but ignore capturing new patterns from reverse paths. Al-
though Cor-PRA [21], which is based on PRA, alleviates this
problem by conducting a bidirectional random walk to get
the probability as path feature, it neither learns the semantics
of relations on the path nor considers encoding entity in-
formation. Different from it, we not only model entity in-
formation along with its relational contexts to enhance path
representations but also capture new patterns from a novel
dual path encoding method.

2.3. Entity Information in KGC. Entities are critical for
predicting missing knowledge in KGs. To enhance entity
embedding learned solely from facts, some embedding-
based methods apply additional knowledge to enrich en-
tity semantics, such as entity descriptions [34, 42], entity
types [35, 43], and entity neighbors [15, 44]. Recently,
PathCon [26] proposes to fuse relational contexts into entity
representation and further perform message passing over
relation graphs for relation prediction. However, PathCon
represents an entity by summing up the representations of



its relational contexts, without considering their different
contributions. Unlike the above approach, a query relation-
guided portrait attention and the self-attention are con-
sidered in our LSTM-based and Transformer-based archi-
tectures, respectively, to capture the importance of relational
contexts for each entity, so that various relational contexts
contribute differently.

Among path-based methods, the entity is not considered
by the earlier work [19, 22, 41], where only relations are used.
In later approaches, the entities themselves and entity types
are taken as entity information for learning path repre-
sentation [23, 24]. Chains [23] simply sums entity type
representations and combines it with entity embedding to
represent an entity. APR [24] employs an attention mech-
anism on type hierarchies as entity semantics. While we
further leverage entity relational contexts to capture reliable
entity semantics, especially for entities that are not typed or
loosely typed in KGs.

3. Problem Formulation

3.1. Knowledge Graph. Let G = {&, %, F} be a KG, where &
is the set of entities, & is the set of relations and & is the set
of facts. Each fact in & can be defined as (h,r,t), where
h,t € &, r € R. For each fact (h,r,t), we take its reverse
form (t, r’,h) into account, where + denotes the reverse
relation of r.

3.2. Paths. The paths from head entity h to tail entity ¢ are
denoted as P, ;. A path p € P;, with length M can be stated
as P=<enHTe s ap ™ where e €&,
1<i<M+1, e =h, epmyy =t T € R, 1<j<M, and
(e; 71 €:41) € F. We take p as the reverse path of p, so that
P = <eyyiTap---r€pr,e > € Py, where P, | is the set of
reverse paths from t to h corresponding to Pj,,.

3.3. Relational Contexts and Entity Types. For entity e;, we
define its relational contexts C; as the relations in facts with
e; as the head entity, that is
C; = {rjl (esrjer) € Firj € Ryep € %} To distinguish it
from relations on paths, c;, is used to denote one of the
relational contexts in C;, where 1 <u < |C;|. Let L; denote the
types of entity e;, and [;, is one of the types in L;, where
1<v<|L]. An example path with relational contexts and
types shown for each entity is displayed in Figure 2.

Given a knowledge graph @, a query relation r, € %,
a head entity h € &, a tail entity ¢t € &, and some paths P,
extracted between the entity pair, the goal of KGC is to infer
whether the triple (h,7,,f) is true, ie., the probability that
(h,1,,t) holds. Important symbols are summarized in Ta-
ble 1, including those representations that will be described
later. In addition, we use the bold letter to represent a vector,
e.g., r denotes the embedding of the relation r.

4. Approach

We propose a structure enhanced path-reasoning frame-
work, namely, SPR, which enhances path representations by
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incorporating relational contexts into entity semantics and
encoding reverse paths in a dual path encoding manner, to
perform KGC. The overall architecture is presented in
Figure 3, which consists of three components: (1) the
multiperspective path encoder (MPE) encodes relations and
multiperspective entity information, i.e., relational contexts
and types of each entity, to learn accurate and adequate path
representations. We explore different architectures that are
based on LSTM and Transformer, which are described in
Sections 4.1 and 4.2, respectively. (2) The attentive path
aggregator fuses the representations of paths, where im-
portant and useful paths are highly weighted (Section 4.3).
(3) The dual path encoding combines the path representa-
tions of forward paths and reverse ones to enhance the final
prediction (Section 4.4).

4.1. LSTM-Based Multiperspective Path Encoder. The mul-
tiperspective path encoder encodes relations, entity re-
lational contexts and entity types on a path p to get its path
representation h”, ie., fP*"(p) =h?, where fPh is the
function for encoding a path. We present the architecture
based on LSTM to implement fP*" in this section, termed
LSTM-MPE, as shown in Figure 4. It consists of a LSTM-
based relation encoder and a LSTM-based entity encoder to
encode the path information separately.

4.1.1. Relation Encoder. For a path p € P, its relation
sequence p" = <ry,...,7j...,7y > is the key to inferring
r, between (h,t). The relation encoder applies a LSTM,
namely LSTM,,, to encode p”, and the encoding step j can be
expressed as

b, = LSTM, (W, 1)), (1)

where h’, is the hidden state of LSTM, at step j, and r; is the
random{y initialized embedding of relation r;. The last
hidden state, formulated as h', is used to denote the relation
representation of path p.

4.1.2. Entity Encoder. Entity information plays a crucial role
during the inference, which can lead to different path
representations even when the relation sequences of paths
are the same. Prior path-based work only considers entity or
entity types as entity information, which leads to unreliable
path representations that capture inaccurate and insufficient
entity semantics. To compensate for the entity semantics
obtained solely from entity types, we introduce relational
contexts as additional entity information.

For entity sequence p° = <ey,...,¢;,...,ey, > of path
p» its entity information includes two perspectives: entity
relational contexts and entity types, namely, relational
context sequence p¢ = <C,,...,C;,...,Cp,> and entity
type sequence p* = <L,,...,L;,..., Ly, ,>. Encoding each
of them comprises two modules: a Portrait Attention
module and a Sequence Encoding module. Since the two
kinds of entity information are encoded in the same way, we
will use the relational context sequence as an example for
a detailed description.
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FIGURE 2: An example path p = <e;, 7}, e,,7,,e; > with length M = 2, where example relational contexts and types of each entity are shown

above and below the path, respectively. C;: the relational contexts of the i-th entitye;. c

i-th entity e;. [; ;: the j-th entity type of L;.

(1) Relational Context Portrait Attention. This module aims
to fuse the relational contexts of each entity of the path, i.e.,
for step i of p°, fuse C; = {ci,l, s Cigs e - .,c,-)|C’,|} to obtain
the feature vector & of entity e; about relational contexts.
Inspired by APR [24], we use the current path features to
lead the selection of important relational contexts of an
entity. Furthermore, we consider that when predicting
different query relations, the relational contexts of the same
entity should be given different emphases. Therefore, the
query relation is employed to guide the selection. Formally,
for path p, the attention to relational context c; , is guided by
the query relation r, and the path feature about the relational
contexts selected in the previous steps. Denote the path
feature about relational contexts before step i as h{,, which
we will illustrate the detail later. This historical feature and
the embedding of query relation r, are first concatenated
and then feed into a single-layer feed- forward neural net-
work fC guide to obtain the guidance vector gt

gicil gurde( [hl TR ]) (2)

where r, is the embedding of query relation r,. Then, go s
combined with the embedding of relational context c;, to
compute its attention weight attfu~

w = fan(RLU(f5(851) + fam(cia)) @

where ¢;,, denotes the randomly initialized embedding of
relational context ¢;,» and f £S p» and £S, are all single-
layer feed- forward neural networks. Next, the normalized
attention weight af;, of relational context c; , is calculated as

. ISTP(attfu)C ' “
Zw:ll exp(atti,w)

Now, we can compute the fused relational context
representation for entity e;, i.e., €&, which is the weighted
sum of all the transformed features of relational contexts in
Ci:

]

= Z aic,:u * fecmb(ci,u)' (5)
u=1

;+ the j-th relational context of C;. L;: the types of the

(2) Relational Context Sequence Encoding. The goal of this
module is to obtain the relational context representation of
the whole path, namely, h®, from relational context sequence
p¢=<Cy,...,C;...,Cppyy > of p°. We employ a LSTM,
denoted as LSTMg, to encode the features on the sequence.
Let hgl denote its hidden state of step i — 1, which is the
historical feature mentioned in equation (2). It is used to
obtain the fused feature vector éic (equation (5)) of C;, for
input to LSTM,; at step i. Formally, the encoding step i of
relational context sequence of p® can be expressed as

h{ = LSTMc(h,, &). (6)

The initialization of hidden state h§ and cell state a§ for
LSTM. of entity sequence p° is gulded by the relation
representation h” of the corresponding relation sequence p":

For, (1), 7)

where both fwt and lmt are single-layer feed-forward
neural networks. Let hC be the last hidden state of LSTM
for p®, to represent the relational context representation of
the path.

hoc = h'), ao

zmt,l (

(3) Entity Type Portrait Attention and Entity Type Sequence
Encoding. The method for encoding entity type sequence
pt=<L,...,L,...,Ly,, > hasthe same structure as that
for encoding relational context sequence, but with different
parameters. Denote the LSTM that encodes entity type se-
quence as LSTM;, then its last hidden state, notated as h’,
which represents the entity type representation of path p°
can be obtained similarly.

Then, the relational context representation h® and entity
type representation h” are summed to represent the entity
representation h® of path p, formally written as

h® = h¢ + hl. (8)

The relation representation and entity representation are
concatenated as the path representation h” as follows, where
[, ] means concatenation:

b’ = [0, h°]. 9)
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FIGURE 3: Overview of SPR, which consists of three components: multiperspective path encoder, attentive path aggregator, and dual path
encoding. The box in the upper left shows the set of forward paths P, , between entity pair (h,t), while the lower left box means the

. !
corresponding reverse paths P, ;, where e; = h, ey, = t.

©9 el
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FIGURE 4: The architecture of LSTM-based multiperspective path encoder (LSTM-MPE) for encoding relations and multiperspective entity
information, namely, entity relational contexts and entity types, of the forward example path p in Figure 2. It consists of a LSTM-based
relation encoder and a LSTM-based entity encoder, where “RC-Att” refers to “relational context portrait attention” and “ET-Att” refers to

“entity type portrait attention.”

4.2. Transformer-Based Multiperspective Path Encoder.
Transformer-based networks show great power in fields such
as natural language processing [45, 46] and computer vision
[47, 48]. Although some methods apply it to solve the
knowledge graph completion problem, they do not use it to
encode both relation and multiperspective entity in-
formation on a path [49, 50]. Therefore, in this section, we
try to investigate its abilities to encode path information and
propose a Transformer-based multiperspective path en-

coder, notated as Transformer-MPE, to implement
fpath (p) — hp'

For a path p, its relation  sequence
pPr=<rp...,rj...,ry >, entity relational context se-

quence p€ = <C,,...,C;, ...,Cy,y >, and entity type se-
quence pl'=<L,,...,L,...,Ly,, > are processed into
three separate input sequences, namely, the relation input
sequence S, entity relational context input sequence S¢, and
entity type input sequence S'. Inspired by pretrained lan-
guage models [45], we add “[CLS]” token and “[SEP]” token
to segment these sequences. As illustrated in Figure 5,
“[CLS]” and “[SEP]” are placed at the beginning and the end
of a sequence, respectively. The “[SEP]” token is also used to
separate the relational contexts or types of different entities
in the entity information sequence. The embeddings of these
two special tokens are randomly initialized.

Then, these input sequences, i.e., S", S, and St, are fed
into three separate Transformer encoders, namely,
Transformer,, Transformer,, and Transformer;, re-
spectively. Since different kinds of information on the
path are separately put into different encoders, we only
consider the input embeddings as the sum of token
embeddings and position embeddings, without the seg-
ment embeddings. Moreover, considering the self-
attention mechanism in Transformer, instead of de-
signing additional attention for the relational contexts or
types within each entity, we treat them as a sequence with
the same position embeddings. Hence, the overall se-
mantics of all entities at different positions on the path can
be observed, and important relational contexts or entity
types can be identified for inference.

The output hidden states of “[CLS]” token of these
encoders are taken as relation representation h', relational
context representation hC, and entity type representation ht
of path p, respectively, which can be written as

h" = Trans former, (s"),
h¢ = Transformerc(sc), (10)

h' = TransformerL(sL).
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F1GURE 5: The architecture of the Transformer-based multiperspective path encoder (Transformer-MPE) for encoding the example path p in
Figure 2. The path is processed into three sequences, i.e., relation input sequence S', relational context input sequence S© and entity type
input sequence St, which are fed into Transformer,, Transformer,, and Transformer;, respectively. The processing of ST omitted in the

figure is the same as for SC.

Next, h is summed with h” as the entity representation
h®, which is next concatenated with h” to get the path
representation h? of path p, as in LSTM-based path encoder
(equations (8) and (9)). Note that, different from the LSTM-
MPE, r, is not considered in the Transformer-MPE which
we will leave as future work.

4.3. Attentive Path Aggregator. The paths between an entity
pair are usually extracted randomly, and most of them are
useless or even noisy for inference. It is therefore necessary to
select important and useful ones among these paths. The at-
tentive path aggregator is applied to weigh the paths and fuse
their features. The weight att} of path p, € P,,, is determined
directly by its path feature h?, which can be formulated as

att! = 2 (ReLU(f,(h}))), (11)

where f%, and f » are single-layer feed-forward neural
networks. Then, the normalized attention weight f8, of p,, is

exp (att?)
T exp (attl)’

where N is the number of paths in P, ;. Finally, the pooled

B = (12)

representation of all paths in P, ;, i.e., s computed as the
weighted sum of these path representations:

N
= Y B, *hl. (13)
n=1

4.4. Dual Path Encoding. Prior approaches only use feature n’
of paths Py, to predict whether (h,?) is connected by r, i..,

T
h —5 t. However, it overlooks the role of reverse paths for

reasoning t % hin assisting the prediction. Although the
inverse sequence p = <e€pp 1> pp--->€p 7€, > can be ob-
tained from the path P=<enrpney ..yl >, it is
unable to reason r The reason is that p would break the
directionality of relatlons For example take M =2, then in

fl r
sequence p there is e LR 62 LN el, ie, e, —e, <—e3,
while in path p there is e, AN e, =, es, which is contra-
dictory. In order to enhance the inference about (h, r P t) using

features about (t, r ,h), the dual path encoding module ad-
ditionally models representatlons of reverse paths P,;. The
reverse path p' = <eM+1”’1,v1>~~7 e,,r1,e; > maintains the
relation directionality and thus can be used to predict (z, ré, h),
which means (h, r;, t) but with different path features than p.
This is because the reverse path contains new relation patterns
combined by new relations {r,;, ..., 7}, which will result in
new path features.

This module learns the representation of reverse paths Pht
in the same way as P, . That is, for a reverse path P, the
multiperspective path encoder encodes it as the path repre-

sentation h'”. Then, paths in Py, are fused into h’ by the
attentive path aggregator. Finally, the dual-path representations

P and ﬁ,p are utilized by simply applying a two-layer feed-
forward neural network to predict the probability P (h,7,,1):

P(hrpt) = o fo(Rev(£,([B°57])))). a9

where o is the sigmoid function.

Note that, encoding reverse paths share the parameters
of the multiperspective path encoder with encoding for-
ward ones. Two attentive path aggregators are applied
separately to fuse features of paths in P;,, and of reverse
paths in Pht In LSTM-MPE, both relational context
portrait attentlon and entity type portrait attention for
reverse path p are led by reverse query relation rq in
equation (2), and the initialization of LSTM,. in relational
context sequence encoding and LSTM; in entity type se-
quence encoding are guided by relation representation h’
of reverse path p’ in equation (7).

4.5. Training. Let R, = {rl, T rQ} denote the set of
query relations. For each task (query relation) r,, the true
triples in the KG with r_ as relation are regarded as positive
samples A} while the unobservable triples with , as relation
are treated as negative samples A_. The ground truth y is 1 for
positive sample and 0 for negative sample. The parameters of
the model for each r, can be trained end to end by minimizing
the loss between predictions and ground truths:

L= Y J(P(erpe)y) (15)

e rq,ek)EAq



International Journal of Intelligent Systems

Input: KG &, query relations R, = {rl, c T
AV ={AY,. LAY
IFERRIVIV

(1) for each query relation r, in R, do
(2)  Initialize model SPR with parameters 6,;

(3) for epoch = 1 - max_epoch_num do

(10)  Validate using validation examples A;’;

.,rQ}, training examples A = {Ap LA
.,Ag}, paths between the entity pair of each example, types of each entity.
Output: The set of model parameters for each query relation, i.e., {01, RPN RN GQ}.

(4) for step = 1 » max_step_num do

(5) b «—— sample a batch of training examples from Aq = {Ag,A;};
(6) for (e,-,rq,ek) in b do

(7) Compute the prediction probability by equation (14);

(8) Compute the loss by equation (15);

9) Update 6, by minimizing the batch loss;

g ,AQ}, validation examples

> YUgp

ALGORITHM 1: Training algorithm of SPR.

where A, is the training samples about r,, i.e., A; = {AZI’, A;I},
and J(-) is the binary cross-entropy loss. The training
process of SPR is presented in Algorithm 1.

5. Experiments

5.1. Datasets. We evaluate our model using the data released
in APR [24] for experiments, which are based on two
common KGs datasets: WN18RR [14] and FB15k-237 [28].
The statistics are shown in Table 2. The data contains positive
and negative examples, as well as paths extracted by bi-
directional breadth first search between the entities in each
example for each query relation. Reverse relations have
already been added to augment these knowledge graphs for
path extraction. The 11 relations in WN18RR are all set as
query relations, and 10 relations are sampled as queries out
of 237 relations in FB15k-237. The maximum length of
apath is 6 for WN18RR and 4 for FB15k-237. The maximum
number of paths between each entity pair is 200, which
means that if more paths can be extracted, then 200 paths of
them are randomly sampled. The type hierarchies of each
entity are provided in both datasets. Specifically, the type
data of entities for WN18RR is extracted from inherited
hypernyms available in WordNet [8], and for FB15K-237, it
is those released by Xie et al. [35]. The average and maximum
numbers of entity types are 4.6 and 14 for WN18RR, 6.4 and
7 for FB15k-237. For more details, please refer to APR [24].
As for the relational contexts used in the proposed method,
we count them for each entity in both KGs, where the av-
erage and maximum numbers of relational contexts are 2.6
and 9 for WN18RR, 10.6 and 59 for FB15k-237.

5.2. Experimental Settings. We present the settings
according to the different components of the proposed SPR.
For LSTM-MPE, its hidden dimension of all the LSTM:s (i.e.,
LSTM,, LSTM_, and LSTM; ) is set to 150 for both datasets.
The output dimensions of the fully connected layers for
encoding relational context sequence, i.e., fg, S S
fgmh, and fC. , are set to 50, 50, 1, 150, and 150, respectively,
and the same for the fully connected layers that encode entity
type sequence. For Transformer-MPE, the number of

TABLE 2: Statistics about the datasets, including KGs, samples of
tasks, paths between entity pairs, types of entities, and the relational
contexts of entities.

Dataset WN18RR FB15k-237
#Entities 40,943 13,545
#Relations 11 237
#Facts 67,360 254,290
#Tasks (#query relations) 11 10
Avg. #train sample/task 35,747 16,596
Avg. #valid sample/task 8,936 4,152
Avg. #test sample/task 11,173 5,188
Avg. #paths/sample 88.6 154.8
Max path length 6 4
Avg. Path length 5.3 3.5
#Entity types 8,092 1,029
Avg. #types/entity 4.6 6.4
Max number of types 14 7
#Relational contexts 11 237
Avg. #relational contexts/entity 2.6 10.6
Max number of relational contexts 9 59

Transformer layers and the number of heads per layer of
Trans former,, Trans former, and Trans former; are all
set as 3 and 2 on both datasets. The dimension of the feed-
forward network in these Transformer layers is set to 150.
For attentive path aggregator and dual path encoding, the
output dimensions of f ,, f P and f, are set to 100, 1, ang,}lj,
and the output dimension of f, is set to be the same ash".
Since SPR can be built on different MPE, we denote the
overall model based on LSTM-MPE and Transformer-MPE
by SPR_LSTM and SPR_Transformer, respectively.

For both architectures, the embedding matrix of re-
lations is randomly initialized for both datasets. The em-
bedding matrix of entity types for WN18RR is initialized
with vectors provided by APR [24], which is mapped from
a pretrained Google News word2vec model. The embedding
matrix of entity types for FB15k-237 is randomly initialized.
As for relational contexts, another random initialized em-
bedding matrix different from relations is applied. Let D,,
D¢, and D; be the embedding dimensions of relations,
relational contexts, and entity types, respectively, whose
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TaBLE 3: Hyperparameter settings on two datasets.
SPR_LSTM SPR_transformer
D, D¢ D, K K,
bs Ir bs Ir
WN18RR 150 300 300 2 14 16 e-3 4 e—=5
FB15k-237 150 50 50 12 7 16 e-3 8 e—4

D,, embedding dimension of relations; D, embedding dimension of relational contexts; D;, embedding dimension of entity types; K, the maximum
number of relational contexts used for each entity; K;, the maximum number of types used for each entity; bs, batch size; Ir, learning rate; SPR, structure
enhanced path reasoning; SPR_Transformer, Transformer-based SPR; SPR_LSTM, LSTM-based SPR.

values are listed in Table 3. The embedding matrices of
position in SPR_Transformer are randomly initialized, with
the same dimensions as the corresponding input tokens
(relations, relational contexts, or entity types). Table 3 also
reports the maximum number of relational contexts and
types used for each entity in the model, i.e., K- and K}, as
well as the batch size bs and learning rate Ir. Note that, we set
K, to the maximum number of types of the entity, i.e., we
use all the types contained in it. However, for relational
contexts, the number of them for some entities is so large,
e.g., up to 59 in FB15k-237, so that we use only K instead of
all of them. Due to the limitation of computational re-
sources, SPR_Transformer is set to a smaller batch size than
SPR_LSTM, and the learning rate is reduced accordingly.
We employ the self-adaptive optimization method Adam
[51] for all trainings, and the model is trained fully to 30
epochs, where the best one is chosen based on validation
sets. All experiments are conducted with one Tesla
V100 GPU.

5.3. Evaluation Metrics. We evaluate the performance of
SPR for implementing KGC on two tasks, namely, fact
prediction and relation prediction. For fact prediction task,
where the system needs to, given a missing triple (h,7,1),
identify whether it is true or not. We utilize the classical
mean average precision (MAP) as the evaluation metric
following previous path-based models. It measures the
model performance on all categories (here on all query
relations), which is the mean of the average precision (AP)
for each category. As for relation prediction task, the goal is
to predict the missing relation between the entity pair (A, t).
We adopt typical ranking metrics including mean rank
(MR), mean reciprocal rank (MRR), and Hits@n.

5.4. Baselines. We select several state-of-the-art models with
released code as baselines:

(1) Embedding-based models: TransE [12], PTransE
[37], RotatE [30], HAKE [31], PairRE [52], and
PathCon [26]. Among them, paths are additionally
considered in PTranse and PathCon. We test these
embedding-based models by their released codes
with corresponding optimal parameters, and the
hidden dimension is set to 500 on WN18RR and
1000 on FB15k-237. Following Xiong et al. [20], test
triples with the same relation are clustered together
to calculate the AP and finally obtain the MAP. Note
that, since PathCon focuses on relation prediction

task by calculating the probability distribution of
relations given an entity pair, we take the probability
of the query relation for an entity pair as its triple
score to calculate MAP for fact prediction task.

(2) Path-based models: PRA [19], SFE [41], Path-RNN
[22], Chains [23], and APR [24], where their details
are described as follows:

(a) PRA [19]: adopts the probabilities of performing
random walks between entities following re-
lation sequences as path features.

(b) SFE [41]: improves PRA [19] by regarding re-
lation paths as binary features without calcu-
lating the random walk probabilities.

(c) Path-RNN [22]: encodes the relation sequence
on the path through RNN as path features for
prediction.

(d) Chains” [23]: encodes relations and entity types
on the path by RNN to jointly create the path
representation and consider multiple paths for
inference, where the features of multiple types of
an entity are averaged.

(e) Chains®? [23]: goes a step further than Chains® by
combining the features of entities themselves to
obtain the path representation, in addition to the
relations and the averaged entity type features.

(f) APR [24]: utilizes two LSTMs to separately en-
code relations and weighted entity type hierar-
chies on the path and combines them into path
representations which are aggregated by an at-
tention mechanism.

The first two approaches, i.e., PRA [19] and SFE [41], are
tested with code released by Gardner and Mitchell [41];
Path-RNN [22], Chains? [23], and Chains? [23] are tested
with code released by Das et al. [23], which use LogSumExp
method proposed in Chain [23] to pool scores of paths; APR
[24] are tested with code released by Liu et al. [24]. We use
their fact prediction results reported by Liu et al. [24].

6. Results and Analysis

In this section, we first analyze the main results of SPR
against the baselines for fact prediction task in Section 6.1.
Then, we additionally build a unified version of SPR and
report its results for fact prediction task in Section 6.2. The
results for relation prediction task are presented in Section
6.3. To explore the effects of using entity, entity relational
contexts, entity types, and dual path encoding, we design
several variants of SPR_LSTM in Section 6.4. Next, the
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contribution of each component is described in Section 6.5.
We also illustrate the influences of different strategies for
choosing relational contexts, as well as the effects of the value
of K¢ in Section 6.6. At last, to better understand the ef-
fectiveness of the proposed approach, several case studies are
shown in Section 6.7.

6.1. Main Results of Fact Prediction. The fact prediction
results of SPR against various baselines are shown in Table 4.
We can observe that both LSTM-based and Transformer-
based SPR outperforms all the baselines in both datasets. (1)
Compared to path-based models, the results suggest the
effectiveness of SPR in enhancing path features by utilizing
relational contexts and dual path encoding, where
SPR_LSTM achieves 3.63% and 4.52% improvements over
the best on WNI18RR and FB15k-237, respectively.
SPR_Transformer is not as good as SPR_LSTM, probably
due to the fact that the information of the query relation r is
not fused in MPE-Transformer, which can refer to Section
6.5 for more analysis. Insufficient training data may also be
the reason that hinders the great power of Transformer, since
each query relation has its own training data and model
parameters (more detailed analysis can be found in Section
6.2). (2) The superiority of SPR is displayed on WN18RR
with a MAP higher than 87%, which beats the embedding-
based approach by a large margin where the MAP is no
higher than 55%. This is probably because SPR does not use
the embedding of entity as most embedding-based methods
do, but uses relational contexts and types to represent the
entity. When there are a huge number of entities in a KG, the
use of entity embedding may introduce noise and lead to
performance degradation as discussed in Section 6.4. In
addition, it may also benefit from the ability of SPR to ef-
ficiently utilize information on the path for prediction,
where the results in Section 6.4 show that different kinds of
information on paths play essential roles in performance
improvement. (3) On FB15k-237, even though the recent
embedding-based method HAKE with 58.11% MAP shows
slightly better performance than the path-based methods
APR with 57.35% MAP, SPR beats both of them. However,
compared with the embedding-based approach, the effec-
tiveness of SPR on FB15k-237 is not as obvious as on
WN18RR, which may be caused by the higher number of
relations on FB15k-237. This will lead to a great number of
combinations of relational patterns on the paths, thus
making it more difficult for SPR to learn knowledge from the
paths and make predictions. (4) SPR beats PathCon on both
datasets, even though it also utilizes relational contexts and
paths between entity pairs, indicating the validity of SPR by
treating paths as sequences and identifying different con-
tributions of multiple relational contexts for each entity.

6.2. Results of Unified Version

6.2.1. SPR_Unified. Recall that SPR treats different query
relations as different tasks for training in Section 4.5. In
order to obtain a model that takes all relations as one task
for inference, we modify the proposed SPR as a unified
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TaBLE 4: MAP% of fact prediction results about embedding-based
models (the first portion), path-based models (the second portion),
and the proposed SPR method (the third portion, including
SPR_Transformer and SPR_LSTM).

Models Use paths WNI18RR FB15k-237
TransE [12] — 28.59 57.68
PTransE [37] v 39.52 58.04
RotatE [30] — 50.58 57.56
HAKE [31] — 53.84 58.11
PairRE [52] — 44.43 57.55
PathCon [26] v 52.48 41.24
PRA [19] v 38.85 34.33
SEE [41] v 30.75 36.79
Path-RNN [22] v 67.16 45.64
Chains® [23] v 50.82 51.23
Chains® [23] v 51.08 52.17
APR [24] v 84.91 57.35
SPR_Transformer v 87.53 61.01
SPR_LSTM v 88.54 61.87

Note. The best result is shown in bold, and the previous best is in italics.
MAP, mean average precision; SPR, structure enhanced path reasoning;
SPR_Transformer, Transformer-based SPR; SPR_LSTM, LSTM-based SPR.

model, namely, SPR_Unified. Given an entity pair (h,t),
instead of predicting the probability of a fact (h,r,,t)
consisting of a certain query relation r,, SPR_Unified
predicts a vector T representing the relation features be-
tween h and ¢, so that the score of (h, e t) can be generated
by matching ¥ against the embedding of r, via dot product.
Specifically, it replaces the prediction in equation (14) by
the following formulas:

= r(ran(n([F) oo

[F"(h, rq,t) = a(fTrq), (17)

where the output dimension of the fully connected layer f,
is changed to be the same as the dimension of relation
embeddings, r, is the relation embedding of query relation
ry» and o is the sigmoid function.

6.2.2. Training. For training SPR_Unified, positive sam-
ples A** are composed of all the positive instances cor-
responding to each query relations in SPR, i.e,
A" = {A+|r € RQ} And, negative samples A*” are ob-
tained by corrupting the relation of each positive triple in
A", That is, for a positive triple (h,7,,t) in A*", we obtain
its negative samples A{; rof) by corruptlng its relation by
all relations that do not exist between hand ¢, i.e. A(h rh =
{(h,r,t)|(h,r, t) ¢ F,r € R}. The ground truth y is { for
positive sample and 0 for negative one. SPR_Unified is
trained by minimizing the loss between predictions and
ground truths over the training samples A"

L=y

u
e,,rq,ek)eA

I(P(ei’rq’ek)’y)’ (18)

where A* = {A*", A"}, and J (-) is the binary cross-entropy
loss. The training process is shown in Algorithm 2.
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Input: KG &, query relations [RQ = {rl, R A
Output: The model parameters for all query relations, i.e., 6.
(1) Initialize model SPR_Unified with parameters 6;

(2) for epoch = 1 — max_epoch_num do

(3) for step =1 — max_step_num do

(8) Update 6 by minimizing the batch loss;
(9)  Validate using validation examples A*Y;

i rQ}, training examples A" for all query relations, validation examples A"V for all
query relations, paths between the entity pair of each example, types of each entity.

4) b —— sample a batch of training examples from A* = {A*", A“"};
(5) for (el-,rq,ek) in b do

(6) Compute the prediction probability by equation (17);

(7) Compute the loss by equation (18);

ALGORITHM 2: Training algorithm of SPR_Unified.

6.2.3. Evaluation. Note that, query relation r, is encoded in
SPR_LSTM, so we remove the guide of r, in equation (2) to
get its unified version, noted as SPR_Unified_LSTM. And we
denote  SPR_Unified_Transformer as the unified
SPR_Transformer. For comparison, we also modify APR
[24] to APR_Unified in the same way. We evaluate these
unified models for fact prediction and relation prediction
task on WN18RR. It is worth noting that we do not evaluate
on FB15k-237, since this dataset released by Liu et al. [24]
contains only samples of 10 query relations out of 237 re-
lations and cannot perform complete training on the unified
model for all relations.

Results for fact prediction are listed in Table 5, we find
that: (1) the unified version SPR_Unified_Transformer
achieves the best result of 81.32% MAP, which gains an
absolute improvement of 27.48% and 6.7% compared to the
previous optimal embedding-based model HAKE and
path-based model APR_Unified, respectively. (2) Com-
paring  SPR_Unified Transformer  with ~ SPR_Uni-
fied_LSTM, the Transformer-based architecture is clearly
superior to the LSTM-based one with a 9.49% higher MAP,
which illustrates the ability of Transformer to handle large-
scale and complex data. (3) Compared to APR_Unified,
which is also a path-based method built on LSTM,
SPR_Unified_ LSTM shows a performance degradation.
This can be explained by the inability of LSTM to handle
complex data and learn useful information when consid-
ering relational contexts and dual path encoding method in
the unified version, resulting in a MAP decline of
SPR_Unified LSTM. (4) The performances of unified
versions, including APR_Unified and SPR_Unified, are
reduced compared to the corresponding original models.
This is because in the unified version, there is only one set of
model parameters to be trained, rather than one set for each
query relation. That is, the total number of parameters of
the unified model is reduced compared to the original one,
while the amount of data for training it is increased. As
a result, the unified version fails to learn and remember all
the knowledge, leading to reduced performance. However,
the decline in our SPR_Unified_Transformer is the least,
with 6.21% lower than SPR_Transformer, while the drop of
APR_Unified is 10.29% lower than APR [24]. This once

TaBLE 5: Fact prediction results on WNI8RR of SPR_Unified,
including SPR_Unified_LSTM and SPR_Unified_Transformer.

Models MAP%
PathCon [26] 52.48
HAKE [31] 53.84
APR_Unified 74.62
SPR_Unified_LSTM 71.83
SPR_Unified_Transformer 81.32

Note. The best result is shown in bold, and the previous best is in italics.
MAP, mean average precision; SPR, structure enhanced path reasoning;
SPR_Unified, unified version of SPR; APR_Unified, unified version of
APR [24]; SPR_Unified_LSTM, unified version of LSTM-based SPR;
SPR_Unified_Transformer, unified version of Transformer-based SPR.

again indicates the ability of the Transformer-based ar-
chitecture to deal with complex and massive data.

6.3. Main Results of Relation Prediction. The relation pre-
diction results of SPR and its unified version on WN18RR
are listed in Table 6. As mentioned above, the dataset FB15k-
237 released by Liu et al. [24] contains only samples for
predicting 10 query relations, which is not suitable for re-
lation prediction task of predicting all relations, so we only
evaluate on WN18RR.

We can conclude that: (1) SPR_Unified achieves the best
results in several metrics such as MR, MRR, hits@1, and
hits@5. Although the hits@3 of SPR_Unified is slightly
worse than APR_Unified by about 0.1% to 0.2%, it obtains
the best MRR and MR since the hits@1 is at least 0.5%
higher. (2) SPR_Unified_LSTM and SPR_Unified_Trans-
former obtains comparable performance, with the former
having a higher hits@3 and the latter having a higher hits@1.
However, compared to their fact prediction performance in
Table 5, SPR_Unified_Transformer outperforms SPR_Uni-
fied_LSTM by a large margin, indicating that the MAP for
fact prediction task is a more rigorous evaluation metric. (3)
It is not surprising that the unified version SPR_Unified
shows better performance than SPR for relation prediction
task, while the opposite conclusion is reached for fact
prediction. It is mainly because SPR_Unified learns prob-
ability distributions over all relations in one model, while
SPR gets different probability distributions for each query
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TABLE 6: Relation prediction results on WN18RR of the proposed
SPR and SPR_Unified.

Models MR| MRR] hﬁ@ h‘;?@ h‘;?@
TransE [12] 220 0.639 0.385 0.850 0.943
RotatE [30] 148 0.903 0.857 0.934 0.960
HAKE [31] 1.56 0.887 0.832 0.935 0.953
PathCon [26] 1.50 0.867 0.786 0.942 0.975
APR [24] 1.32 0.937 0910 0.953 0.969
APR_Unified 1.03 0.989 0.981 0.999 0.999
SPR_LSTM 1.15 0.958 0.935 0.977 0.992
SPR_Unified_LSTM 1.03 0.992 0.986 0.998 0.999
SPR_Transformer 1.23 0.948 0923 0.962 0.983
SPR_Unified_Transformer 1.03 0.992 0.987 0.997 0.999

Note. The best result is shown in bold, and the second best is in italics. MR,
mean rank; MRR, mean reciprocal rank; APR_Unified, unified version of
APR [24]; SPR, structure enhanced path reasoning; SPR_Unified, unified
version of SPR; SPR_LSTM, LSTM-based SPR; SPR_Unified_LSTM, uni-
fied version of LSTM-based SPR; SPR_Transformer, Transformer-based
SPR; SPR_Unified_Transformer, unified version of Transformer-based SPR.

relation which has separate model parameters. In SPR,
a query relation has a high triple score does not mean that
the query relation will rank top among all relations.

6.4. Variants Analysis. Several variants of SPR_LSTM are
explored for comparison, to investigate the effects of using
entity, entity relational contexts and entity types, as well as
dual path encoding: (1) Path_LSTM" does not encode entity
information, which suggests that the path representation in
equation (9) is obtained only from the relation represen-
tation, i.e, h? = h",h"? = h"; (2) Path_LSTM? encodes entity
information by directly encoding entity sequences (p° and

p'), i.e., it uses entity embeddings as input to the LSTM in
entlty encoder, rather than encoding sequences of relational
contexts and entity types; (3) Path_BiLSTM does not apply
the dual path encoding method, i.e., it uses only P, but
conducts bidirectional encoding, where the backward
encoding of a path p is equivalent to encoding its inverse
sequence p = <ey 1Ty, --»€;,71,€ >, rather than its
reverse path p'. Specifically, Path_BiLSTM encodes relation
sequence p" by Bi-LSTM to obtain h” and h” and encodes
the sequences of the relational contexts and entity types of p
by LSTM. and LSTM, forward and backward, to obtain h®,
bt 1, and h'.

Table 7 shows the results of SPR_LSTM against its
variants, from which we can find that: (1) learning path
representation with the dual path encoding method by
taking relational contexts, entity types as entity information,
achieves the best results. (2) Directly encoding entities may
not bring benefits. Compared to Path_LSTM’, although the
results of Path_ LSTM® increase in FB15k-237 (from 51.88%
to 55.32%), they deteriorate in WNI18RR (from 82.64% to
78.21%), which confirms that entity embedding may lead to
noise. This may be due to the larger number of entities and
the smaller number of facts in WN18RR, which highlights
the drawbacks of embedding-based methods that learn
entity representations directly. (3) Compared with the
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Path_BiLSTM, which encodes the relation sequence and
entity information sequence directly forward and backward,
the results of SPR_LSTM gain 1.69% and 2.81% on WN18RR
and FB15k-237 respectively, indicating that the dual path
encoding method in SPR_LSTM works better than encoding
forward paths and their inverse sequences in Path_BiLSTM.
It suggests the indispensable contribution of the reverse
paths that comprise new relation patterns.

6.5. Ablation Study. We conduct ablation studies to in-
vestigate the effectiveness of different components of SPR: (1)-
DualPath: removing the dual path encoding method which
means we only encode forward paths Py, to get 1’ and use it
to calculate P (h, rg ,t) in equation (14); (2)- Rel ctx: removing
entity relational contexts for paths P;,; and Ph +» which implies
that the entity representation in equation (8) is obtained only
from the entity type representation, i.e., h® = h’ and h® =
(3)-Type: removing entity types for paths P, and P, where
the entity representation in equation (8) is obtamed onlg from
the relational context representation, i.e., and
h* =h'; (4)- Iq rq. removing the guide of query relation in
relat10na1 context portrait attention and entity type portrait
attention in SPR_LSTM, i.., the attention for relational
contexts and types is only guided by historical path feature in
equation (2).

From the results shown in Tables 8 and 9, it can be
observed that: (1) removing the dual path encoding
(-DualPath) results in performance degradation in both
datasets, which demonstrates that the learned features of
reverse paths are different from those of forward paths and
can help predict the query relation. (2) Using only entity
relational contexts (-Type) or entity types (-Rel_ctx) de-
grades performance. This proves that these two kinds of
information are complementary to the semantic portrayal of
entities, thus together they can enhance the representation of
entities. Besides, the performance drop is more pronounced
when relational contexts are not used, which indicates its
greater contribution than types. (3) For SPR_LSTM, the
results decline when without the guide of query relation
(-r,574), indicating that query relation can help to spotlight
essential relational contexts and types of the entity. Com-
pared to SPR_Transformer, neither of which uses in-
formation of query relation, its performance is slightly lower
(0.05%) on FB15k-237, suggesting that the guidance of query
relation is more important on FB15k-237. (4) For
SPR_LSTM, the removal of dual path encoding (-DualPath)
has the most noticeable decreases, which is 3.91% and 4.62%
in WN18RR and FB15k-237, respectively. For SPR_Trans-
former, the most influential setting is the removal of re-
lational contexts (-Rel_ctx), with drops of 1.73% and 3.83%
in WN18RR and FB15k-237, respectively. These imply that
relational contexts and dual path encoding are critical for
improving the ability to path reasoning.

6.6. Influence of Entity Relational Contexts. We examine the
impact of relational contexts in this section. First, three
strategies are set to rank the relational context of an entity
based on how often it appears in the facts with the entity as
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TaBLE 7: MAP% of fact prediction results against the variants of SPR_LSTM.

Models Path info Path encoding Entity info WN18RR FB15k-237

Path_LSTM’ P, Py, Dual — 82.64 51.88

Path_LSTM® P, P,, Dual Entity 78.21 55.32

Path_BiLSTM Py, Bi-direction Relational context, entity type 86.85 59.06

SPR_LSTM Py Ph”t Dual Relational context, entity type 88.54 61.87

Note. The best result is shown in bold. MAP, mean average precision; info, information; SPR, structure enhanced path reasoning; SPR_LSTM, LSTM-based

SPR; Py, paths from head entity & to tail entity ¢; and Ph,,:’ reverse paths of P, .

TaBLE 8: Ablation study of SPR_LSTM for fact prediction task
(MAP%).

Models WNI8RR FB15k-237

SPR_LSTM 88.54 61.87
-DualPath 84.63 57.61
-Rel_ctx 86.03 58.09
-Type 86.62 58.99
T Ty 87.69 60.96

MAP, mean average precision; SPR, structure enhanced path reasoning;
SPR_LSTM, LSTM-based SPR; -DualPath, removing dual path encoding;
-Rel_ctx: removing relational contexts; -Type: removing entity types; -r, r‘;:
removing the guide of query relation.

TaBLE 9: Ablation study of SPR_Transformer for fact prediction
task (MAP%).

Models WN18RR FB15k-237

SPR_Transformer 87.53 61.01
-DualPath 85.86 58.66
-Rel_ctx 85.80 57.18
-Type 86.02 57.23

MAP, mean average precision; SPR, structure enhanced path reasoning;
SPR_Transformer, Transformer-based SPR; -DualPath, removing dual path
encoding; -Rel_ctx: removing relational contexts; -Type: removing
entity types.

the head: (1) frequent_sort: sorts the relational contexts in
descending order of frequency; (2) infrequent_sort: sorts the
relational contexts in ascending order of frequency; (3)
random_sort: sorts the relational contexts randomly. Sec-
ond, we investigate the influence of K., which is the
maximum number of relational contexts used for each
entity. That is, if there are more than K, relational contexts
of an entity, then only the top K of them are used.

The results based on SPR_LSTM are displayed in Fig-
ure 6. We can notice that: (1) although the performance on
the two datasets displays different trends, the results are
relatively high when K. is close to the average number of
relational contexts per entity. (2) On WN18RR, regardless of
the value of K, the performance is approximately the same
for all three sorting scenarios. This may be because the
average number and the kinds of relational contexts are both
small, i.e., 2.6 and 11, respectively. Thus, when K, is smaller
than the average number of 2.6, most entities select the same
relational contexts under all three strategies. Even when K
is greater than 2.6, the number of combinations of entity
relational contexts on the path is not large, therefore the
strategies make little difference. (3) On FB15k-237, the
prediction performance gets the best apparently with the

0.90
0.89 |
0.88 |
0.87 |

MAP% on WN18RR

0.86

0 2 4 6 8 9
—— frequent_sort
infrequent_sort

—=— random_sort

0.62 -

0.60

0.58 | W

0.56
0 2 4 6 8 10 12 14 16
K, (upper bound of the used relational contexts)

MAP% on FB15k-237

—— frequent_sort
infrequent_sort

—=— random_sort

Figure 6: Influences of the sorting strategies for entity relational
contexts on the proposed SPR_LSTM for fact prediction task. The
gray dashed vertical line shows the average number of relational
contexts per entity in the corresponding KG.

frequent_sort, while it shows erratic performance as K
increases under the infrequent_sort and random_sort set-
tings. This indicates that frequently occurring relational
contexts are more representative of the semantics often
expressed by the entity. While using infrequent relational
contexts would be inconsistent with the semantics the entity
intends to represent in most cases.

6.7. Case Study. We analyze the weights of relational con-
texts and types of entities on the paths. Figure 7 gives a path
of a positive example in FB15K-237 learned by SPR_LSTM.
We can observe that new knowledge can be learned from
relational contexts, so as to enrich the semantics of entities.
For instance, most of the learned highlight types of entity
RazzieAward shown in the first column are meaningless pad
rather than meaningful award category. While the relational
contexts nomineeWorkOfAward and winningWorkOfA-
ward of this entity RazzieAward are given higher weights,
which fills a gap in the entity information learned from
types. Moreover, relational contexts can capture what kind
of semantics an entity is concerned with on a path. As the
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r
RazzieAward Machete LittleFockers

roleOfTheFilm roleOfTheFilm 0.18
_ filmLanguage filmProdCompany
_ filmLanguage
award category award winning work  award winning work 0.175

common topic film film I 0.150

award nominated work award nominated work

- 0.100
common topic common topic

FIGURE 7: Attention weights for relational contexts (top) and types (bottom) of each entity on path < RazzieAward, nomineeWorkOfAward
(r1), Machete, nominatedFor (r,), LittleFockers > for predicting (RazzieAward, nomineeWorkOfAward, LittleFockers) in FB15K-237.
Each column shows the top six relational contexts and types with the highest weights, which is listed from top to bottom by frequency. If an
entity has less than six relationship contexts or types, it is filled in with “pad.” Note that, we abbreviate the name of relational contexts.

TaBLE 10: Examples of important relational contexts listed for head entities and tail entities of several query relations in FB15k-237, where
“r” refers to the reverse relation of r. Note that, we abbreviated the name of relational contexts.

Query relations Entity pairs Important relational contexts

Head entity: person athleteSportTeam, personProfession, filmDesignby’, musicMemberRole

personProfession Tail entity: profession jobtitleCompany, filmCrewRole', personProfession, professionSpecialized’

teamOfSportsPosition Hgad eptity: position icehockeyPos’, basketballPos’, baseballPos’, professionSpecialized
Tail entity: sport team soccerPos, footballPos, sportsDraft, basketballTournament

AlmGenre Head entity: film filmGenre, filmCostumeDesignby, directorOfFilm’, dataSplitto'

Tail entity: genre filmGenre, dataSplitto’, tvGenre’, filmOfTheSubject

TaBLE 11: Prediction probability of positive samples with only one path available between the entity pair for inferring query relation hasPart
in WNI8RR, learned by Path_LSTM' and SPR_LSTM, respectively.

Missing facts and
the forward path

t

between the entity Path_LSTM SPR_LSTM
pair
Fact: (custard apple tree, hasPart, custard apple)

0.22 0.88

h h h
Path: custard apple tree yp;n);m soursop tree = soursop P custard apple
Fact: (open ﬁreplace, hasPart mantlepiece)
h h

Path: open ﬁreplace P hearth o mymhome i dining 0.35 0.97

haspar haspart rnym
room —23' sideboard —rs shelf it mantlepiece

SPR, structure enhanced path reasoning; SPR_LSTM, LSTM-based SPR; Path_LSTM’, variant of SPR_LSTM.

entity Machete shown in the second column, its relational ~ emphasized relational contexts are logically meaningful for

context awardHonoredFor which is about award is em-
phasized for inferring the query relation nomi-
neeWorkOfAward, while filmLanguage is neglected.

We also count the important relational contexts learned
for head entities and tail entities of several query relations,
where the results are in Table 10. As can be seen, most of the

predicting the query relation. For example, when inferring
facts with query relation personProfession, i.e., predicting
the profession (tail entity) of a person (head entity), ath-
leteSportTeam and filmDesignby' are highly valued, which
can infer professions like “athlete” and “actor,” respectively.
However, relational contexts such as nationality and gender,
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which are owned by most entities in the KG, are ignored,
suggesting that the model can capture important relational
contexts associated with the query relation.

In addition, Table 11 shows the prediction probability for
inferring query relation hasPart, where only one forward
path is available for the listed positive examples. The reverse
path, and the relational contexts and types of entities are not
displayed. Model Path_LSTM' is a variant that removes dual
path encoding, entity relational contexts, and query relation
in entity information attention from SPR_LSTM, which
means it only encodes relations and entity types of forward
paths as the path representations. From the comparison with
Path_LSTM), it is clear that SPR_LSTM predicts correctly,
which demonstrates the contribution of relational contexts
and dual path encoding.

7. Conclusion

In this paper, we propose a path-based framework named
SPR for knowledge graph completion by enhancing the path
representation through the structure information of each
entity and each path, i.e., relational context and reverse path,
respectively. We utilize relational contexts of entities to
obtain a reliable path representation that captures accurate
and sufficient entity semantics, where different weights of
relational contexts are taken into account. Moreover, a dual
path encoding method is used to enrich the path repre-
sentation by capturing new path patterns contained in re-
verse paths. Different architectures based on LSTM and
Transformer are designed to encode the information on the
path, including relations, entity relational contexts, and
entity types. Experimental results on fact prediction task and
relation prediction task show that SPR outperforms the
state-of-the-art models. Quantitative and qualitative ex-
periments demonstrate the effectiveness of enhancing path
reasoning through utilizing entity relational contexts and
dual path encoding method.

It will be part of our future work to focus on designing
a Transformer-based architecture, which fuses the query
relation to guide the important selection of entity relational
contexts and entity types. In addition, leveraging textual
descriptions encoded by pretrained language models to
complement the semantics of entities may be beneficial for
path reasoning. Therefore, there is a potential for further
additional research on how to integrate the textual semantic
information with structure information on the path for final
prediction.
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