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Tis paper contains modeling of a fuzzy-fractional fnancial chaotic model based on triangular fuzzy numbers (TFNs) to predict
the idea that long-term dependency and uncertainty both have an impact on the fnancial market. For solution purposes, the
He–Mohand algorithm is proposed where homotopy perturbation is hybrid with Mohand transform in a fuzzy-Caputo sense. In
analysis, solutions and corresponding errors at upper and lower bounds are estimated. Te obtained numerical results are
displayed in tables to show the reliability and efciency of the proposed methodology. Upper bound errors range from 10− 6 to
10− 12 and lower bound errors from 10− 6 to 10− 11. For graphical analysis, system profles are illustrated as two-dimensional and
three-dimensional plots at diverse values of fractional parameters and time to comprehend the physical behavior of the proposed
fuzzy-fractional model. Tese plots demonstrate that the interest rate, price index, and investment demand decrease with the
increase of the value of the r-cut at the lower bound. At the upper bound, this behavior is totally opposite. Te chaotic behavior of
the system at smaller values of saving rate, elasticity of demands, and per-investment cost is greater in contrast to their larger value.
Analysis reveals that the proposed methodology (He–Mohand algorithm) provides a new way of understanding the complicated
structure of fnancial systems and provides new insights into the dynamics of fnancial markets. Tis algorithm has potential
applications in risk management, portfolio optimization, and trading strategies.

1. Introduction

Financial modeling [1] is the process of building mathe-
matical models to represent the performance of portfolios,
fnancial assets, or businesses. Its aim is to provide
a quantitative representation of the underlying fnancial
conditions and to make predictions about future perfor-
mance. Numerous uses for these models are possible, such as
scenario analysis, valuation, planning, risk assessment, and
forecasting. Several quantitative techniques are used in f-
nancial modeling. Monte Carlo simulation [2], statistical
analysis [3], sensitivity analysis [4], discounted cash fow [5],
time-series analysis [6], and regression analysis [7] are some
of them. It also requires in-depth knowledge of accounting
principles, economic theory, and fnancial markets. Tere

are various categories of fnancial models such as option
pricing models [8], discounted cash fow models [9], chaotic
fnancial models [10], portfolio optimization models [11],
and credit risk models [12]. Each model has strengths and
shortcomings and the best model relies on the application at
hand as well as the facts that are accessible.

A fuzzy diferential equation (FDE) is a type of difer-
ential equation in which some of the initial conditions or
parameters are represented by fuzzy sets [13]. In various
situations, the values of these initial conditions or param-
eters are not known precisely, but rather within a particular
range. With the use of fuzzy diferential equations, we can
simulate the uncertainty that arises from such circum-
stances. Tese equations have many applications in various
felds, such as fuid dynamics [14], kinetics [15], fnance [16],
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economics [17], and biology [18]. Fuzzy Volterra inte-
grodiferential equations [19], fuzzy Fisher model [20], fuzzy
population growth model [21], frst-order linear fuzzy dif-
ferential equations [22], and fuzzy singular integrodifer-
ential models [23] are some examples of fuzzy diferential
equations.

Fuzzy diferential equations are also modeled in frac-
tional derivative form. An extension of a derivative to
a noninteger order is known as a fractional derivative. It is
described using fractional calculus [24], which is a feld of
mathematics that manages noninteger order integrals and
derivatives. Many physical models including the Lot-
ka–Volterra population equation [25], coupled Schro-
dinger system [26], Oldroyd 6-constant fuid [27], Grey
system models [28], tumor models [29], and Wu–Zhang
system [30] exploit a fractional derivative approach. We
can model and examine real-world problems that include
uncertainty and fractional order derivatives by utilizing
fuzzy-fractional diferential equations (FFDEs). Oceanog-
raphy [31], biological population model [32], COVID-19
model [33], heat equation [34], and Fisher’s equation [35]
are some areas that employ FFDEs. Te Caputo fractional
derivative [36] is one of the more popular defnitions of the
fractional derivative. It is commonly used in physics and
engineering. It is described as a modifcation of the Rie-
mann–Liouville derivative [37] that prevents the singular
behavior at the lower limit of the integral. Te Caputo
fractional derivative is especially benefcial in modeling
systems with memory or hereditary properties, such as
Brinkman-type fuid [38], Korteweg–de Vries system [39],
mosaic disease model [40], relaxation-oscillation equations
[41], plant disease model [42], Casson nanofuid model
[43], and chaotic system [44].

Due to the nonlocality of fractional derivatives as well as
the complexity of fuzzy sets, solving FFDEs can be chal-
lenging. In literature, several techniques have been utilized
to solve them. Rexma Sherine et al. [45] used the fuzzy-
fractional Laplace transform method to estimate the spread
of the generalized monkeypox virus model. Te fractional
diferential transform method and Hilbert space method
were combined by Najaf and Allahviranloo [46] to solve
fuzzy impulsive fractional diferential equations. Te Leg-
endre spectral method to fnd the solution of the fuzzy-
fractional coronavirus model is adopted by Alderremy et al.
[47]. To examine fuzzy-fractional diferential equations,
Alijani et al. [48] applied Spline collocation methods.
Alaroud et al. [49] employed an analytical numerical
technique on fuzzy-fractional Volterra integrodiferential
equations. Te Chebyshev spectral method was utilized by
Kumar et al. [50] to analyze the fuzzy-fractional Fred-
holm–Volterra integrodiferential equation. A powerful tool
to solve nonlinear fractional diferential equations in fuzzy
form is the He–Mohand method [51]. It is an efcient
technique that provides a practical method for solving
diferential models by combining the homotopy perturba-
tion technique (HPM) and the Mohand transform. Tus, in
order to solve the fuzzy-fractional chaotic fnancial system,
we have created an extended HPM hybrid using theMohand
transform.

Te format of this article is as follows. In Section 2,
preliminaries are given in whichMohand transform, Caputo
fractional derivative, and its Mohand transform, fuzzy sets,
and triangular fuzzy sets are defned. Section 3 is focused on
the modeling of the fuzzy-fractional fnancial chaotic model.
Te solution framework based on the He–Mohand algo-
rithm is presented in Section 4, whereas, the theoretical
analysis of the proposed scheme is presented in Section 5.
Te focus of Section 6 is on the application and solution of
the given system. Results of the study are discussed in
Section 7 and, Section 8 provides some important conclu-
sions of the study.

2. Preliminaries

Defnition 1. [52]
Te Mohand transform M of the function 􏽥G(τ) for τ ≥

0 is given by the following equation:

M 􏽥G(τ)􏽮 􏽯 � K(τ) � p
2

􏽚
∞

0
􏽥G(τ)e

− pτdτ, p ∈ k1, k2􏼂 􏼃,

(1)

where k1, k2 > 0 can be fnite or infnite. Te parameter p

factors the variable τ in the argument of function 􏽥G.

Defnition 2. Te inverse Mohand transform M− 1 of the
function K(τ) 1 is as follows:

M
− 1

K(τ){ } �
1
2πι

􏽚
c+ι∞

c− ι∞

1
p
2 K(τ)e

pτdp, p ∈ k1, k2􏼂 􏼃.

(2)

Defnition 3. [53]
For a function 􏽥G(τ), the Caputo fractional derivative

CDc
τ is defned as follows:

C
D

c
τ

􏽥G(τ)􏽮 􏽯 �
1
Γ(ε − c)

􏽚
τ

0
(τ − P)

ε− c− 1 􏽥G
(ε)

(P)dP, ε − 1< c≤ ε.

(3)

Defnition 4. [54]
Te Mohand transform M in the presence of Caputo

fractional derivative (3) can be written as follows:

M
C
D

c
t

􏽥G(τ)􏽮 􏽯 � p
c
M 􏽥G(τ)􏽮 􏽯 − 􏽘

ε− 1

a�0
p

c− a+1 􏽥G
(a)

(0), ε − 1< c≤ ε.

(4)

Defnition 5. [55]
Let R be a real set. Ten, a fuzzy set 􏽥w in R can be

characterized by a membership function μ􏽥w, where, μ􏽥w:
R⟶ [0, 1]. An r -level set of 􏽥w is [􏽥w]r � w ∈ R: μ􏽥w􏼈

(w)≥ r } for r ∈ [0, 1].
Te following are some conditions for a fuzzy set 􏽥w to be

a fuzzy number:

(i) 􏽥w is normal, that is, for w0 ∈ R, we have μ􏽥w(w0) � 1
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(ii) 􏽥w is convex, that is, μ􏽥w(]w1 + (1 − ])

w2)≥min μ􏽥w(w1), μ􏽥w(w2)􏼈 􏼉 for all w1, w2 ∈ R and
] ∈ [0,1]

(iii) 􏽥w is semicontinuous
(iv) Te set w ∈ R: μ􏽥w(w)> 0􏼈 􏼉 is compact

Defnition 6. [56]
A fuzzy number 􏽥w is classifed as a triangular fuzzy

number (TFN) if it is defned by three numbers (k1, k2, k3)

with k1 < k2 < k3 such that it forms a triangle. Its mem-
bership function is as follows:

μ w, k1, k2, k3( 􏼁 �

0, w≤ k1,

w − k1

k2 − k1
, k1 ≤w≤ k2,

k3 − w

k3 − k2
, k2 ≤w≤ k3,

0, w≥ k3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

By utilizing the r-cut notion, the interval form of TFN
can be expressed as follows:

􏽥w � w, w􏼂 􏼃 � k1 + k2 − k1( 􏼁r , k3 − k3 − k2( 􏼁r􏼂 􏼃, (6)

where w and w represent the lower and upper bounds,
respectively, for r ∈ [0, 1].

Defnition 7. [56]
A fuzzy number 􏽥w(r ) can also be represented as 􏽥w �

[w, w] which satisfes the following conditions:

(i) w(r ) is a bounded monotonic increasing left con-
tinuous function

(ii) w(r ) is a bounded monotonic decreasing left
continuous function

(iii) w(r )≤w(r ) for r ∈ [0, 1]

3. Fuzzy-Fractional Modeling of the Financial
Chaotic System

Tis section is focused on the modeling of the fuzzy-
fractional chaotic fnancial system that is mostly used in
the fnancial and economic sectors. We consider the chaotic
fnancial system given as follows:

zG1
zτ

− G3(τ) − G2(τ)G1(τ) + AG1(τ) � 0,

zG2
zτ

− 1 + BG2(τ) + G12(τ) � 0,

zG3
zτ

+ G1(τ) + CG3(τ) � 0, τ > 0,

(7)

with conditions

G1(0) � Y1,

G2(0) � Y2,

G3(0) � Y3,

(8)

whereG1,G2, andG3 represent the interest rate, investment
demand, and price index, respectively. Moreover, A denotes
the saving amount, B is the per-investment cost, and the
parameterC presents the elasticity of demands. For a precise
understanding of the interest rate, investment demand, and
price index, the given system is modeled in fractional form
by utilizing Defnition 3, which is presented in the following
equation:

z
c
G1

zτc − G3(τ) − G2(τ)G1(τ) + AG1(τ) � 0,

z
c
G2

zτc − 1 + BG2(τ) + G12(τ) � 0,

z
c
G3

zτc + G1(τ) + CG3(τ) � 0, 0< c≤ 1, τ > 0,

(9)

where c represents the fractional parameter in a Caputo
sense. To introduce uncertainty in the system, we have
incorporated triangular fuzzy numbers in given initial
conditions Y i, i � 1, 2, 3 by utilizing Defnition 5–7. In
parametric form, they can be written as
􏽥Y1� [0 + (0.3 − 0)r , 1 − (1 − 0.3)r ], 􏽥Y2� [− 1 + (− 0.3 + 1)

r , 1 − (1 + 0.3)r ], and 􏽥Y3� [0 + (0.2 − 0)r , 1 − (1 − 0.2)r ].
Tus, the fuzzy-fractional chaotic fnancial system is as
follows:

z
c 􏽥G1
zτc − 􏽥G3(τ) − 􏽥G2(τ) 􏽥G1(τ) + A 􏽥G1(τ) � 0,

z
c 􏽥G2
zτc − 1 + B 􏽥G2(τ) + 􏽥G12(τ) � 0,

z
c 􏽥G3
zτc + 􏽥G1(τ) + C 􏽥G3(τ) � 0, 0< c≤ 1, τ > 0,

(10)

with fuzzy initial conditions
􏽥G1(0) � 􏽥Y1,

􏽥G2(0) � 􏽥Y2,

􏽥G3(0) � 􏽥Y3.

(11)

Te system in (10) along with its fuzzy conditions (11)
will be utilized by fnancial analysts and investors to predict
the characteristics of the fnancial market. It can provide an
excellent tool to make informed investment decisions in the
areas of fnancial risk management.

4. Solution Framework Based on the Extended
He–Mohand Algorithm for Fuzzy-
Fractional Systems

Let us consider a general nonlinear fuzzy-fractional system,
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D
c
τ

􏽥Gj(τ) + L[ 􏽥Gj(τ)] + N[ 􏽥Gj(τ)] � 0, j � 1, . . . , m, τ > 0,

ε − 1< c≤ ε,
(12)

with fuzzifed initial conditions
􏽥Gj(0) � Aj, j � 1, . . . , m, (13)

where c is the Caputo fractional parameter, Dc
τ is the

fractional derivative of 􏽥Gj, and j represents the total
equations of the system.Te parametersL andN are linear
and nonlinear operators, respectively.

Equation (12) can be expressed by using r-cut as follows:

D
c
τ G j(τ; r ),D

c
τGj(τ; r )􏽨 􏽩 + L G j(τ; r )􏼂 􏼃,L[Gj(τ; r )]􏽨 􏽩 + N G j(τ; r )􏼂 􏼃,N[Gj(τ; r )]􏽨 􏽩 � 0, (14)

where 􏽥Gj(τ; r ) � [G j(τ; r ),Gj(τ; r )]. G j(τ; r ) represents
the lower bound solution and Gj(τ; r ) represents the upper
bound solution.

First, we take Mohand transform on both sides of (12) as
follows:

Mτ D
c
τ

􏽥Gj(τ; r )􏽮 􏽯 + Mτ L[ 􏽥Gj(τ; r )] + N[ 􏽥Gj(τ; r )]􏽮 􏽯 � 0.

(15)

Application of Defnition 4 gives

Mτ
􏽥Gj(τ; r )􏽮 􏽯 −

1
p

c􏼠 􏼡 􏽘

ε− 1

a�0
p

c− a+1 􏽥Gj
(a)

(0) +
1

p
c􏼠 􏼡Mτ L[ 􏽥Gj(τ; r )] + N[ 􏽥Gj(τ; r )]􏽮 􏽯 � 0. (16)

Te general homotopy of the system is as follows:

Hom: (1 − q) Mτ
􏽥Gj(τ; r )􏽮 􏽯 − 􏽥Gj0􏼐 􏼑 + q Mτ

􏽥Gj(τ; r )􏽮 􏽯 −
1

p
c􏼠 􏼡 􏽘

ε− 1

a�0
p

c− a+1 􏽥Gj
(a)

(0)⎛⎝

+
1

p
c􏼠 􏼡Mτ L[ 􏽥Gj(τ; r )] + N[ 􏽥Gj(τ; r )]􏽮 􏽯􏼡 � 0,

(17)

with 􏽥Gj0 as an initial guess and q ∈ [0, 1]. Expansion of
􏽥Gj(τ; r ) in power series form w.r.t. q gives

􏽥Gj(τ; r ) � 􏽘
∞

n�0
q

n 􏽥Gjn(τ; r ). (18)

Substituting (18) in (17) and comparing similar co-
efcients of power of q leads to q1 where

Mτ
􏽥Gj1(τ; r )􏽮 􏽯 + 􏽥Gj0 −

1
p

c􏼠 􏼡 􏽘

ε− 1

a�0
p

c− a+1 􏽥Gj
(a)

(0) +
1

p
c􏼠 􏼡Mτ L 􏽥Gj0(τ; r )􏽨 􏽩 + N 􏽥Gj0(τ; r )􏽨 􏽩􏽮 􏽯 � 0. (19)

At q2, we obtain

Mτ
􏽥Gj2(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ L 􏽥Gj1(τ; r )􏽨 􏽩 + N 􏽥Gj1(τ; r )􏽨 􏽩􏽮 􏽯 � 0. (20)

In general at qn, we have
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Mτ
􏽥Gjn(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ L 􏽥Gjn− 1(τ; r )􏽨 􏽩 + N 􏽥Gjn− 1(τ; r )􏽨 􏽩􏽮 􏽯 � 0. (21)

Applying the inverse Mohand transform gives the fol-
lowing at q1:

􏽥Gj1(τ; r ) + M
− 1
τ

􏽥Gj0 −
1

p
c􏼠 􏼡 􏽘

ε− 1

a�0
p

c− a+1 􏽥Gj
(a)

(0) +
1
s

c􏼒 􏼓Mτ L 􏽥Gj0(τ; r )􏽨 􏽩 + N 􏽥Gj0(τ; r )􏽨 􏽩􏽮 􏽯
⎧⎨

⎩

⎫⎬

⎭ � 0. (22)

At q2, we have

􏽥Gj2(τ; r ) + M
− 1
τ

1
p

c􏼠 􏼡Mτ L 􏽥Gj1(τ; r )􏽨 􏽩 + N 􏽥Gj1(τ; r )􏽨 􏽩􏽮 􏽯􏼨 􏼩 � 0. (23)

At qn, we obtain

􏽥Gjn(τ; r ) + M
− 1
τ

1
p

c􏼠 􏼡Mτ L 􏽥Gjn− 1(τ; r )􏽨 􏽩 + N 􏽥Gjn− 1(τ; r )􏽨 􏽩􏽮 􏽯􏼨 􏼩 � 0. (24)

Te approximate solution of (12) is obtained by

􏽥Gj � 􏽘
∞

n�0

􏽥Gjn(τ; r ). (25)

Te residual function can be calculated by substituting
(25) in the given system (12) as

R􏽥Gj
� D

c
τ

􏽥Gj + L[ 􏽥Gj] + N[ 􏽥Gj]. (26)

5. Theoretical Analysis of the Extended
He–Mohand Algorithm for Fuzzy-
Fractional Systems

Theorem 8. Convergence
Given that a Banach space has 􏽥Gjn(τ) and 􏽥Gj(τ) defned

in it for j � 2, . . . , m. Ten, the obtained approximate solution
(25) of a fuzzy-fractional diferential system for S ∈ (0,1)
converges to its exact solution (12).

Proof. Let Cjn􏼈 􏼉 be the sequence of partial sums of (25). In
order to show that Cjn is a Cauchy sequence in Banach
space, let us consider

Cjn+1 − Cjn

����
���� � 􏽥Gjn+1

����
����

≤S 􏽥Gjn

����
����

≤S2 􏽥Gjn− 1
����

����

⋮

≤Sn+1 􏽥Gj0
����

����.

(27)

By considering Cjn and Cjm as partial sums, for n≥m

and n, m ∈ N, triangle inequality property provides

Cjn − Cjm

����
���� � Cjn − Cjn− 1( 􏼁 + Cjn− 1 − Cjn− 2( 􏼁

����

+ · · · + Cjm+1 − Cjm( 􏼁
����

≤ Cjn − Cjn− 1
����

���� + Cjn− 1 − Cjn− 2
����

����

+ · · · + Cjm+1 − Cjm

����
����.

(28)
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Utilizing (27) gives

Cjn − Cjm

����
����≤Sn 􏽥Gj0

����
���� + S

n− 1 􏽥Gj0
����

���� + · · · + S
m+1 􏽥Gj0

����
����

≤ S
n

+ S
n− 1

+ · · · + S
m+1

􏼐 􏼑 􏽥Gj0
����

����

≤Sm+1
S

n− m− 1
+ S

n− m− 2
+ · · · + S + 1􏼐 􏼑 􏽥Gj0

����
����

≤Sm+1 1 − S
n− m

1 − S
􏼠 􏼡 􏽥Gj0

����
����.

(29)

Since 0 <S< 1, therefore, 1 − Sn− m < 1. Tus, we have

Cjn − Cjm

����
����≤

S
m+1

1 − S
max 􏽥Gj0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (30)

Te boundedness of 􏽥Gj0 implies that

lim
n,m⟶∞

Cjn − Cjm

����
���� � 0. (31)

Hence, we proved that Cjn is a Cauchy sequence in
a Banach space. Tis leads to the convergence of the given
scheme. □

Theorem  . Error Estimation
Te solution of the fuzzy-fractional system (12) has

maximum absolute truncation error given as follows:

􏽥Gj − 􏽘

m

h�0

􏽥Gjh

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
S

m+1

1 − S
􏽥Gj0

����
����. (32)

Proof. From equation (29), we obtain

􏽥Gj − Cjm

����
����≤Sm+1 1 − S

n− m

1 − S
􏼠 􏼡 􏽥Gj0

����
����, (33)

where 0<S< 1⇒ 1 − Sn− m < 1. Tus, we have

􏽥Gj − 􏽘
m

b�0

􏽥Gjb

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
S

m+1

1 − S
􏽥Gj0

����
����. (34)

Hence proved. □

6. Application of the Proposed Methodology to
the Fuzzy-Fractional Chaotic
Financial System

Let us consider the chaotic fnancial system modeled in
fuzzy-fractional form (see (10)) in Section 3,

z
c 􏽥G1
zτc − 􏽥G3(τ) − 􏽥G2(τ) 􏽥G1(τ) + A 􏽥G1(τ) � 0,

z
c 􏽥G2
zτc − 1 + B 􏽥G2(τ) + 􏽥G12(τ) � 0,

z
c 􏽥G3
zτc + 􏽥G1(τ) + C 􏽥G3(τ) � 0, 0< c≤ 1, τ > 0,

(35)

with fuzzifed conditions (see (11)).
􏽥G1(0) � 􏽥Y1,

􏽥G2(0) � 􏽥Y2,

􏽥G3(0) � 􏽥Y3,

(36)

where 􏽥Y1� [0, 0.3, 1], 􏽥Y2� [− 1, − 0.3, 1], and 􏽥Y3� [0, 0.2,1]
are triangular fuzzy numbers.

Solution 10. Initiating Mohand transform and then using
the diferential property of Mohand transform (4) gives

p
c
Mτ

􏽥G1(τ; r )􏽮 􏽯 − p
c+1 􏽥Y1 + Mτ − 􏽥G3(τ; r ) − 􏽥G2(τ; r ) 􏽥G1(τ; r ) + A 􏽥G1(τ; r )􏽮 􏽯 � 0,

p
c
Mτ

􏽥G2(τ; r )􏽮 􏽯 − p
c+1 􏽥Y2 + Mτ − 1 + B 􏽥G2(τ; r ) + 􏽥G12(τ; r )􏽮 􏽯 � 0,

p
c
Mτ

􏽥G3(τ; r )􏽮 􏽯 − p
c+1 􏽥Y3 + Mτ + 􏽥G1(τ; r ) + C 􏽥G3(τ; r )􏽮 􏽯 � 0.

(37)

Homotopies of abovementioned system for q ∈ [0,1] are
as follows:

H1: (1 − q) Mτ
􏽥G1(τ; r )􏽮 􏽯 − 􏽥G10􏼐 􏼑 + q Mτ

􏽥G1(τ; r )􏽮 􏽯 − p􏽥Y1 +
1

p
c􏼠 􏼡Mτ − 􏽥G3(τ; r ) − 􏽥G2(τ; r ) 􏽥G1(τ; r ) + A 􏽥G1(τ; r )􏽮 􏽯􏼠 􏼡 � 0,

H2: (1 − q) Mτ
􏽥G2(τ; r )􏽮 􏽯 − 􏽥G20􏼐 􏼑 + q Mτ

􏽥G2(τ; r )􏽮 􏽯 − p􏽥Y2 +
1

p
c􏼠 􏼡Mτ − 1 + B 􏽥G2(τ; r ) + 􏽥G12(τ; r )􏽮 􏽯􏼠 􏼡 � 0,

H3: (1 − q) Mτ
􏽥G3(τ; r )􏽮 􏽯 − 􏽥G30􏼐 􏼑 + q Mτ

􏽥G3(τ; r )􏽮 􏽯 − p􏽥Y3 +
1

p
c􏼠 􏼡Mτ

􏽥G1(τ; r ) + C 􏽥G3(τ; r )􏽮 􏽯􏼠 􏼡 � 0.

(38)
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Substitution of (18) in (38) gives the following at q1:

Mτ
􏽥G11(τ; r )􏽮 􏽯 + 􏽥G10 − p􏽥Y1 +

1
p

c􏼠 􏼡Mτ − 􏽥G30(τ; r ) − 􏽥G20(τ; r ) 􏽥G10(τ; r ) + A 􏽥G10(τ; r )􏽮 􏽯 � 0,

Mτ
􏽥G21(τ; r )􏽮 􏽯 + 􏽥G20 − p􏽥Y2 +

1
p

c􏼠 􏼡Mτ − 1 + B 􏽥G20(τ; r ) + 􏽥G120(τ; r )􏽮 􏽯 � 0,

Mτ
􏽥G31(τ; r )􏽮 􏽯 + 􏽥G30 − p􏽥Y3 +

1
p

c􏼠 􏼡Mτ
􏽥G10(τ; r ) + C 􏽥G30(τ; r )􏽮 􏽯 � 0.

(39)

Applying the inverse Mohand transform results in

􏽥G11(τ; r ) � −
(A􏽥Y1 − 􏽥Y2􏽥Y1 − 􏽥Y3)τc

Γ(c + 1)
,

􏽥G21(τ; r ) � −
B􏽥Y2 + 􏽥Y12 − 1􏼐 􏼑τc

Γ(c + 1)
,

􏽥G31(τ; r ) � −
(C􏽥Y3 + 􏽥Y1)τc

Γ(c + 1)
.

(40)

At q2, we obtain

Mτ
􏽥G12(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ − 􏽥G31(τ; r ) − 􏽥G21(τ; r ) 􏽥G11(τ; r ) + A 􏽥G11(τ; r )􏽮 􏽯 � 0,

Mτ
􏽥G22(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ − 1 + B 􏽥G21(τ; r ) + 􏽥G121(τ; r )􏽮 􏽯 � 0,

Mτ
􏽥G32(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ
􏽥G11(τ; r ) + C 􏽥G31(τ; r )􏽮 􏽯 � 0.

(41)

Applying the inverse Mohand transform gives

􏽥G12(τ; r ) �
− τ2c

− 􏽥Y1 A
2

− 􏽥Y2(2A + B) + 􏽥Y22􏼐 􏼑 + 􏽥Y3(A + C − 􏽥Y2) + 􏽥Y13􏼐 􏼑

Γ(2c + 1)
,

􏽥G22(τ; r ) �
τ2c 􏽥Y12(2A + B − 2􏽥Y2) + B(B􏽥Y2 − 1) − 2􏽥Y3􏽥Y1􏼐 􏼑

Γ(2c + 1)
,

􏽥G32(τ; r ) �
τ2c 􏽥Y1(A + C − 􏽥Y2) + C

2
− 1􏼐 􏼑􏽥Y3􏼐 􏼑

Γ(2c + 1)
.

(42)

At q3, we obtain
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Mτ
􏽥G13(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ − 􏽥G32(τ; r ) − 􏽥G22(τ; r ) 􏽥G12(τ; r ) + A 􏽥G12(τ; r )􏽮 􏽯 � 0,

Mτ
􏽥G23(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ − 1 + B 􏽥G22(τ; r ) + 􏽥G122(τ; r )􏽮 􏽯 � 0,

Mτ
􏽥G33(τ; r )􏽮 􏽯 +

1
p

c􏼠 􏼡Mτ
􏽥G12(τ; r ) + C 􏽥G32(τ; r )􏽮 􏽯 � 0.

(43)

Applying the inverse Mohand transform leads to

􏽥G13(τ; r ) �
1

Γ(c + 1)
2Γ(3c + 1)

τ3c
− 􏽥Y3 A

2
+ AC + C

2
− 1􏼐 􏼑Γ(c + 1)

2
− 􏽥Y2 (2A + C)Γ(c + 1)

2
+ BΓ(2c + 1)􏼐 􏼑􏼐

+ Γ(2c + 1) + 􏽥Y22Γ(c + 1)
2
􏼑

+ 􏽥Y1 Γ(c + 1)
2
A

3
− A + B − C􏼐 􏼑􏼐 􏼑

− 􏽥Y2 3A2
+ AB + B

2
− 1􏼐 􏼑Γ(c + 1)

2
+(AB + 1)Γ(2c + 1)􏼐 􏼑

+ AΓ(2c + 1) + 􏽥Y22 (3A + B)Γ(c + 1)
2

+ BΓ(2c + 1)􏼐 􏼑 + 􏽥Y23 − Γ(c + 1)
2

􏼐 􏼑

− 􏽥Y13 AΓ(2c + 1) +(3A + B)Γ(c + 1)
2

− 􏽥Y2 3Γ(c + 1)
2

+ Γ(2c + 1)􏼐 􏼑􏼐 􏼑

+ 􏽥Y3􏽥Y12 2Γ(c + 1)
2

+ Γ(2c + 1)􏼐 􏼑,

􏽥G23(τ; r ) �
− 1

Γ(c + 1)
2Γ(3c + 1)

τ3c 􏽥Y12 A
2Γ(2c + 1) + 2A2

+ 2AB + B
2

􏼐 􏼑Γ(c + 1)
2

􏼐 􏼑

− 􏽥Y2 AΓ(2c + 1) + 2(A + B)Γ(c + 1)
2

􏼐 􏼑 + 􏽥Y22 2Γ(c + 1)
2

+ Γ(2c + 1)􏼐 􏼑

− 2􏽥Y3􏽥Y1 AΓ(2c + 1) + Γ(c + 1)
2
(A + B + C) − 􏽥Y2 Γ(c + 1)

2
+ Γ(2c + 1)􏼐 􏼑􏼐 􏼑

+ B
3 􏽥Y2Γ(c + 1)

2
− B

2Γ(c + 1)
2

− 2􏽥Y14Γ (c + 1)
2

+ 􏽥Y32Γ(2c + 1)􏼐 􏼑,

􏽥G33(τ; r ) �
− 1
Γ(3c + 1)

τ3c 􏽥Y1 A
2

− 􏽥Y2(2A + B + C) + AC + C
2

+ 􏽥Y22􏼐 􏼑 + 􏽥Y3 − A + C
3

− 2C + 􏽥Y2􏼐 􏼑 − 􏽥Y13􏼐 􏼑.

(44)

Te higher-order problems and solutions can be cal-
culated in a similar way. Tus, by adding the terms we can
get the required approximate solution. Te residual error of
system (35) can be observed through (26).

7. Results and Discussion

Te main objective of the current study is the solution and
analysis of a fuzzy-fractional chaotic fnancial model that
depends upon interest rate, price index, and investment
demand. It is a highly nonlinear diferential system with
a time-fractional derivative. Te fuzziness in initial condi-
tions 􏽥Y1, 􏽥Y2, and 􏽥Y3 are incorporated with the help of
triangular fuzzy numbers (TFNs). Te approximate series
solution is calculated for both the upper bound and lower

bound of TFNs through the He–Mohand technique. In this
method, the homotopy perturbation method and Mohand
transform are combined to tackle the noninteger order
derivative and fuzziness. At diferent values of time, solution
and absolute errors are determined. Te accuracy of the
proposed methodology can be seen from absolute residual
and system errors (Tables 1 and 2) that range from 10− 6 to
10− 12 at the upper bound and from 10− 6 to 10− 11 at the lower
bound for fractional parameter c � 0.89 and 1.0 and r � 0.8.

To analyze the behavior of interest rate, investment
demand, and price index across the fuzzy domain, three-
dimensional plots are created. From Figure 1, it can be
observed that in the case of lower bound solutions, in-
creasing the value of r -cut decreases the rate of interest,
investment demand, and price index. On the other hand, the
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Table 1: Upper and lower bound solutions and errors at A � B � C � 0.01, r � 0.8, and c � 0.89.

τ
Solution Absolute errors

􏽥G1 􏽥G2 􏽥G3 |R|􏽥G1
|R|􏽥G2

|R|􏽥G3
|R|􏽥G− system

G(τ; r )

0.1 0.246633 − 0.313071 0.127044 1.28 × 10− 8 1.74 × 10− 10 6.07 × 10− 9 6.35 × 10− 9

0.2 0.251791 − 0.205296 0.098220 4.90 × 10− 7 3.20 × 10− 10 2.46 × 10− 7 2.45 × 10− 7

0.3 0.256299 − 0.103982 0.070471 4.04 × 10− 6 5.89 × 10− 8 2.14 × 10− 6 2.08 × 10− 6

0.4 0.260353 − 0.006756 0.043282 1.77 × 10− 5 5.08 × 10− 7 9.97 × 10− 6 9.41 × 10− 6

0.5 0.264054 0.087470 0.016437 5.51 × 10− 5 2.37 × 10− 6 3.28 × 10− 5 3.01 × 10− 5

G(τ; r )

0.1 0.484377 0.065320 0.297071 5.15 × 10− 8 1.83 × 10− 8 1.24 × 10− 8 2.74 × 10− 8

0.2 0.520534 0.150092 0.238334 2.07 × 10− 6 6.96 × 10− 7 5.03 × 10− 7 1.09 × 10− 6

0.3 0.553101 0.225697 0.178841 1.79 × 10− 5 5.73 × 10− 6 4.39 × 10− 6 9.35 × 10− 6

0.4 0.582844 0.294436 0.118016 8.27 × 10− 5 2.54 × 10− 5 2.04 × 10− 5 4.28 × 10− 5

0.5 0.609988 0.357481 0.055758 2.69 × 10− 4 8.02 × 10− 5 6.71 × 10− 5 1.39 × 10− 4

Table 2: Upper and lower bound solutions and errors at A � B � C � 0.01, r � 0.8, and c � 1.0.

τ
Solution Absolute errors

􏽥G1 􏽥G2 􏽥G3 |R|􏽥G1
|R|􏽥G2

|R|􏽥G3
|R|􏽥G− system

G(τ; r )

0.1 0.245020 − 0.345490 0.135598 6.78 × 10− 11 8.22 × 10− 12 2.54 × 10− 11 3.38 × 10− 11

0.2 0.249716 − 0.251312 0.110736 8.35 × 10− 9 9.35 × 10− 10 3.26 × 10− 9 4.18 × 10− 9

0.3 0.254131 − 0.157456 0.085443 1.37 × 10− 7 1.41 × 10− 8 5.57 × 10− 8 6.90 × 10− 8

0.4 0.258305 − 0.063910 0.059746 9.86 × 10− 7 9.25 × 10− 8 4.17 × 10− 7 4.98 × 10− 7

0.5 0.262273 0.029330 0.033669 4.50 × 10− 6 3.82 × 10− 7 1.99 × 10− 6 2.29 × 10− 6

G(τ; r )

0.1 0.473284 0.039131 0.313990 5.06 × 10− 11 1.29 × 10− 10 8.29 × 10− 11 8.77 × 10− 11

0.2 0.505566 0.115083 0.264750 5.78 × 10− 9 1.50 × 10− 8 1.06 × 10− 8 1.04 × 10− 8

0.3 0.536854 0.187749 0.212381 8.75 × 10− 8 2.30 × 10− 7 1.81 × 10− 7 1.66 × 10− 7

0.4 0.567106 0.257040 0.156990 2.74 × 10− 7 1.54 × 10− 6 1.35 × 10− 6 1.15 × 10− 6

0.5 0.596234 0.322897 0.098685 2.36 × 10− 6 6.46 × 10− 6 6.47 × 10− 6 5.10 × 10− 6

0.0
0.5

1.0
1.5

2.0

τ

1.0

100

50

0

0.5

0.0

G 
1 

(τ
)

(a)

0.0

2.0
1.5

1.0
0.5

0.0
0.3

0.2

0.1

0.0

0.5
1.0

τ

G 
1 

(τ
)

(b)
Figure 1: Continued.
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Figure 1: 3D fuzzy upper and lower bound solutions at A � 0.20, B � 0.10, C � 0.11, and c � 0.51.
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Figure 2: 2D fuzzy upper and lower bound solutions at diferent fractional order c when A � 0.5, B � 0, C � 0.4, and r � 0.8.
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Figure 3: 2D fuzzy upper and lower bound solutions at varying values of time τ when A � 0.5, B � 0.0, C � 0.5, and c � 0.9.
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Figure 4: Dynamic behavior of interest rate, investment demand, and price index at A � 1.1, B � 0.33, C � 0.97, c � 0.95, and r � 1.
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rate of interest, investment demand, and price index increase
with the increase in r-cut value. At r � 0, the given fuzzy-
fractional chaotic system shows maximum uncertainty. Te
fuzziness in interest rate, investment demand, and price
index begins to decline when r expands in its domain as they
eventually convert to their crisp form at r � 1. Figure 2 il-
lustrates the impact of various fractional parameter values
with time on the profles of interest rate, investment de-
mand, and price index in two-dimensional formation. It is
seen that at the lower bound solution of interest rate, ini-
tially, the solution profle decreases before changing course

after a certain time. In the case of an upper bound, the
fractional parameter exhibits a rise in the interest rate. Te
upper and lower bound profle of the chaotic system in-
creases along with the fractional parameter for the price
index. However, the investment demand declines with an
increment in the fractional parameter value.

In Figure 3, the behavior of interest rate, investment
demand, and price index is demonstrated across the fuzzy
domain for diferent values of the time. It is displayed
through arrows that the interest rate at the lower bound rises
as time increases. On the other hand, it is declining in the
case of the upper bound. At both the upper and lower
bounds, overtime the investment demand shows a rise while
the price index depreciates. Furthermore, the chaotic pat-
terns of the system at diferent values of saving amount, per-
investment cost, and elasticity in demands with respect to
interest rate, investment demand, and price index are il-
lustrated in Figures 4–6 at c � 1 and fractional parameter
c � 0.97. A signifcant increase in the chaotic behavior of
interest rate, investment demand, and price index is ob-
served as the value of saving rate, elasticity of demands, and
per-investment cost decreases.

8. Conclusion

Te purpose of this research article is the modeling and
analysis of the fuzzy-fractional fnancial chaotic model.
Here, we combine fuzzy logic with fractional calculus
through an efcient semianalytical methodology which is
known as the He–Mohand algorithm. Te time-fractional
derivative in the model is considered in the Caputo sense.
Te triangular fuzzy numbers (TFNs) approach is used to
include the uncertainty in the system. Error analysis
spanning across the r -cut domain is illustrated through
tables. It is seen that the obtained errors range from 10− 6 to
10− 12 at the upper bound and from 10− 6 to 10− 11 at the lower
bound. Te efciency of the proposed methodology is also
presented in the theoretical analysis. From this, it can be
noticed that the He–Mohand algorithm is a convergent
scheme. Te behavior of interest rate, investment demand,
and price index is analyzed in two-dimensional and three-
dimensional plots at both upper and lower bounds. Te
efect of time and fractional parameters on the system profle
with regard to r -cut is also studied. It is estimated that as
r -cut approaches to 1, correspondingly solution becomes
less fuzzy and eventually changes into a crisp form at r � 1. It
is also observed that the smaller value saving rate, elasticity
of demands, and per-investment cost has a signifcant efect
on the chaotic behavior of the system. In conclusion, the
modeled fuzzy-fractional fnancial chaotic system has the
potential in helping the analyst to better comprehend the
predictions and risk assessments of fnancial systems.
Moreover, the proposed methodology can be efciently
utilized to tackle various research areas of the fnancial
market such as risk analysis, portfolio administration, and
decision-making procedures in fractional and fuzzy envi-
ronments in the future.
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Figure 5: Dynamic behavior of interest rate, investment demand,
and price index at A � 0.9, B � 0.2, C � 0.3, c � 0.95, and r � 1.
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