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Early detection of lung nodules is an important means of reducing the lung cancermortality rate. In this paper, we propose a three-
dimensional CT image lung nodule detection method based on parallel pooling and dense blocks, which includes two parts, i.e.,
candidate nodule extraction and false positive suppression. First, a dense U-shaped backbone network with parallel pooling is
proposed to obtain the candidate nodule probability map. Te parallel pooling structure uses multiple pooling operations for
downsampling to capture spatial information comprehensively and address the problem of information loss resulting from
maximum and average pooling in the shallow layers. Ten, a parasitic network with parallel pooling, dense blocks, and attention
modules is designed to suppress false positive nodules. Te parasitic network takes the multiscale feature maps of the backbone
network as the input. Te experimental results demonstrate that the proposed method signifcantly improves the accuracy of lung
nodule detection, achieving a CPM score of 0.91, which outperforms many existing methods.

1. Introduction

Lung cancer is the most prevalent cancer worldwide,
ranking frst among all cancers in terms of malignancy
and lethality [1]. Early detection, diagnosis, and treatment
of lung cancer play a key role in improving the survival
rate of patients. Te early diagnosis of lung cancer relies
on the detection and localization of lung nodules in
medical images [2]. Compared to positron emission
computed tomography (PET) and magnetic resonance
imaging (MRI), computed tomography (CT) has faster
imaging speed, lower cost, and higher density resolution,
making it widely used in lung nodule detection [3]. Given
that chest CT imaging produces a substantial number of
slices, typically around 300 per patient, manual detection
is exceedingly time-consuming. Moreover, lung nodules
are characterized by their small size, weak boundaries, and
varied locations, making manual detection challenging
and leading to high rates of both missed detections and
false alarms. Terefore, developing efcient and accurate
automated detection methods for lung nodules in CT

images is of great signifcance in improving the precision
and efciency of lung cancer computer-aided diagnosis
and treatment.

Pulmonary nodules in CT scans are often characterized
by indistinct borders, heterogeneous greyscale, and varied
shapes. Malignant nodules can have a diameter as small as 3-
4mm, making automatic detection of nodules in lungs
highly challenging. Te existing methods for lung nodule
detection are mainly divided into traditional, machine
learning-based, and deep learning-based ones [4]. Tradi-
tional methods mainly use morphology, thresholding,
clustering, and model optimization to identify and localize
lung nodules directly from complex lung images [5, 6]. For
example, Abdollahzadeh Rezaie and Ali [7] frst used
thresholding to obtain the region of interest of lung nodules
and then used edge detection to locate the nodules. Lu et al.
[8] proposed a hybrid method for lung nodule detection,
which involved various traditional methods such as mor-
phological operations, Hessian matrices, fuzzy sets, and
regression trees. Te traditional methods are often com-
plicated and require human-computer interactions with
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diferent software programs, leading to high false
positive rates.

To achieve fully automated detection of lung nodules,
many scholars have proposed machine learning-based
methods. Tese methods frst extract multiple artifcial
features from the image, such as intensity, texture, and
shape, and then use a classifcation model to classify the
extracted features to achieve the goal of recognizing target
areas. For example, Aghabalaei Khordehchi et al. [9] used
spectral, texture, and shape features to characterize nodules
and then used a support vector machine (SVM) to identify
nodules in images. Nithila and Kumar [10] extracted texture
features including contrast, correlation, energy, uniformity,
and moments from images and input them into a neural
network to identify nodular and non-nodular areas. Ma-
chine learning relies on selecting a large number of artifcial
features. However, artifcial features crafted manually re-
lying on prior knowledge frequently exhibit shortcomings,
such as being arbitrary, incomplete, and inefcient. More-
over, the ftting ability of most classifers is limited and they
perform poorly on samples with nonlinear features.

Deep learning can automatically learn efcient and more
discriminative features from training data and enable end-
to-end training and testing [11]. Current deep learning
networks for lung nodule detection mainly include 2D
CNNs [12] and 3D CNNs [13–15]. For example, Jiang et al.
[16] utilized four identical 2D CNNs to detect four images
with diferent resolutions and enhanced the images using
Frangi fltering. As this method uses a single slice image for
nodule detection, it is highly susceptible to the infuence of
pulmonary microvascular cross-sections, often resulting in
a high false positive rate. To capture relationships between
CT sequence slices, Wang et al. [17] input consecutive CT
slices into a 2D CNN for multiscale feature fusion. 2D CNN-
based methods are limited in acquiring three-dimensional
texture and shape features and may mistakenly identify
blood vessels as lung nodules, leading to a higher false
positive rate. Terefore, most lung nodule detection net-
works are currently designed based on 3D convolutions. For
example, Cao et al. [18] proposed a two-stage detection
network, in which residual and dense structures were in-
troduced into a 3D UNet for candidate nodule detection,
followed by a 3D CNN-based classifcation network to re-
duce false positive rates. Liu et al. [19] developed a 3D feature
pyramid network to improve the detection sensitivity of the
network by using multiscale features to discriminate lung
nodules. In addition, the network introduced a false positive
suppression module to track the appearance changes of each
candidate nodule on consecutive CT slices, further identi-
fying true pulmonary nodules and eliminating mis-
diagnoses. Khosravan and Bagci [14] designed a dense
connection-based segmentation network to obtain the
probability of pulmonary nodule existence in CT image. Te
study compared the performance of diferent downsampling
strategies, including max pooling, average pooling, and
stride-2 convolution, in lung nodule detection, where max
pooling achieved relatively better performance. Huang et al.
[20] frst used a 2D UNet network with squeeze and exci-
tation blocks (SE blocks) to segment the candidate nodules

in CT slices, followed by a 3D sequence network with SE
blocks to identify the 3D pixel blocks containing candidate
nodules. Currently, almost all three-dimensional lung
nodule detection networks use three-dimensional maximum
or average pooling for downsampling, resulting in a signif-
icant spatial compression ratio of the feature maps and a loss
of structural information in the images.

To address the problems mentioned above, we propose
a lung nodule detectionmethod for 3D CTimage with a two-
stage network, which consists of two parts: candidate nodule
extraction and false positive suppression mask generation.
First, a 3D primary network based on parallel downsampling
and dense blocks is used for candidate nodule extraction,
which is an improvement on the UNet [21] network. Dense
blocks are used to replace the convolution layers of UNet,
and a parallel downsampling structure is designed to replace
mean downsampling. Ten, a hybrid attention-based par-
asitic network is proposed, which takes multiscale feature
maps from the encoder of the primary network as the input
to generate false positive suppression mask. Te hybrid
attention module is used to enhance the network’s spatial
awareness of the lung structure. During training, candidate
nodule probabilities are introduced as spatial weights to
improve the ability to detect true and false nodules in the
candidate regions. Furthermore, a cross-entropy loss
function with edges is designed to enhance the performance
and training efciency. Te paper introduces several key
innovations, including the following:

(1) A two-stage network framework is proposed, in
which a primary network is used to detect candidate
nodules and a parasitic one is used to suppress false
positive nodules. Te candidate module probability
is utilized for the parasitic network training to focus
the network on distinguishing true and false posi-
tives in candidate nodules.

(2) A parallel pooling downsampling structure is pro-
posed, which incorporates multiple pooling opera-
tions to comprehensively capture spatial information
during downsampling. Meanwhile, convolution and
global average pooling are employed to obtain
channel contributions and the pooling results are
fused according to the contributions to enhance the
discriminative features and suppress irrelevant ones.

(3) An edge-based cross-entropy loss function is pro-
posed. Te loss function sets a lossless region for
simple samples to eliminate the loss caused by the
normal background regions in the lung. In addition,
this loss function balances the proportion of positive
and negative sample regions in CT images and urges
the network to focus on the regions that are difcult
to identify.

2. Methods

Te workfow of the proposed method for lung nodule
detection from CT images is shown in Figure 1, which
mainly includes two stages, namely, candidate nodule ex-
traction and mask generation. First, a parallel pooling dense
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U-shaped network, denoted by PPD-UNet, is used to an-
alyze image features and obtain the probability map of
candidate nodules. Dense blocks are used in PPD-UNet to
replace the conventional convolution layers. Te dense skip
connections in dense blocks can facilitate the propagation
and utilization of features. Meanwhile, a parallel pooling
structure is proposed in PPD-UNet, which uses convolution
and global average pooling to obtain channel contributions
from multiple sets of pooling results. According to the
contributions, the pooling results are fused to enhance
discriminative features and capture more comprehensive
spatial information. In addition, considering that the nod-
ules connected to the pulmonary wall and vessels as well as
those with atypical shape and tiny size are difcult to detect,
we assign higher weights to such nodules through online
hard sample mining during the training process. Tis op-
eration can efectively improve the network’s sensitivity to
lung nodule recognition and ensure that the lung nodules in
the image are efectively detected as much as possible.
However, it may also inevitably lead to a certain degree of
false positives.

To suppress the false positive nodules, we propose
a parasitic network using dense blocks and hybrid attention,
denoted by DBHA-PNet. Te network takes CT images as
the input and shares the parsing capability of the host
network by introducing the deep feature maps in PPD-
UNet. Besides, a hybrid attention is introduced to en-
hance the network’s spatial awareness of lung structure and
reduce false positive nodules. To improve the discrimination
ability for false positive nodules, we add the probability map
of candidate nodules as position weights to the loss

calculation. Afected by the position weights, regions with
lower candidate nodule probabilities are given less attention.
Finally, the mask obtained by DBHA-PNet is multiplied by
the probability map of candidate nodules to decrease the
probability of false positive nodules.

2.1. Candidate Nodule Extraction. In this section, a PPD-
UNet is proposed to obtain a candidate nodule probability
map, which uses 7 dense blocks as feature extraction units
and applies parallel pooling for downsampling. Te struc-
ture of PPD-UNet is shown in Figure 2. First, the input 3D
lung CT image is processed by a 7 × 7 × 7 convolution layer,
followed by several sets of parallel pooling and a dense block
in the encoder. A tensor carrying spatial coordinate in-
formation is introduced after the frst dense block. Te
added coordinate tensor can enhance the network’s per-
ception of the spatial structure of the lungs. Skip connections
are employed between the encoder and the decoder to
promote the propagation and utilization of features. Te
probability map for candidate nodules is obtained by ap-
plying a 1 × 1 × 1 convolution and Sigmoid activation
function. To further obtain the size of pulmonary nodules,
a threshold is used to segment the probability map. Te
center point of the segmentation result is considered the
position of the pulmonary nodule. Te diameter of the
pulmonary nodule is then calculated based on the segmented
volume.

Similar to H-DenseUNet [22], PPD-UNet also use dense
blocks for feature extraction. However, there are still many
diferences between PPD-UNet andH-DenseUNet. First, the
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Figure 1: Workfow of the proposed method for lung nodule detection.
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structure of the dense blocks used in PPD-UNet is dif-
ferent from that in H-DenseUNet. Te dense block used in
PPD-UNet contains multiple convolution combinations,
each of which is composed of two sets of the BN-Relu--
Conv operation. Besides the last convolution combina-
tion, the inputs of the other ones are concatenated with
their corresponding outputs by skip connections. Figure 3
shows a dense block containing four convolution com-
binations. Te convolution combination at the end is used
to control the number of channels and fuse the output of
the previous feature maps. Second, the downsampling
operations used in PPD-UNet and H-DenseUNet are
diferent. Te H-DenseUNet employs average pooling for
downsampling, which can easily lead to the loss of
structural information. To address this issue, we propose
a parallel pooling downsampling, whose structure will be
illustrated in Section 2.2.

Te input of dense blocks passes through all convolution
combinations. In the U-shaped structure, as the feature map
size decreases, the number of channels increases, and the
features carried become more advanced and abstract. Fol-
lowing this principle, we use dense blocks with more con-
volution combinations when dealing with smaller feature
maps. Te number of convolution combinations used in
dense blocks is listed in Table 1.

2.2. Parallel Pooling. Te detection of pulmonary nodules
depends on accurate interpretation of their intensity and
texture. Conventional downsampling operations compress
image spatial information, leading to blurred texture edges.
To alleviate the information loss caused by downsampling, it
is necessary to convert the spatial features such as intensity
and texture into a more abstract representation. Te
transformation from specifc features to abstract features
depends on the feature extraction module with a sufciently
large receptive feld.

To this end, a parallel pooling module is designed,
which includes two stages, pooling and fusion. Te
structure of parallel pooling is shown in Figure 4. In the
pooling phase, various pooling operations, including av-
erage pooling, maximum pooling, and stride convolution
pooling, are used to capture features comprehensively. In

the fusion phase, the pooling results are frst concatenated
to form a new feature map of size [3C, D, H, W]. Sub-
sequently, three groups of 7 × 7 × 7 convolutions are used
to obtain three groups of feature maps with dimensions of
[C, D, H, W], and the global average pooling is used to
compress the three groups of feature maps to obtain three
groups of channel vectors with a length of C. Finally, the
three channel vectors are fused with the corresponding
pooling results from the pooling phase by channel-wise
multiplication and addition.

It is worth noting that although both of the parallel
pooling and the convolutional block attention module
(CBAM) [23] involve operations such as pooling and
convolution, they are entirely diferent modules. First, the
structures of parallel pooling and CBAM are diferent.
CBAM only employs global max pooling and average
pooling to get attention weights, while the proposed parallel
pooling introduces local max pooling, average pooling, and
stride convolution for comprehensive feature capture. Ad-
ditionally, CBAM employs a serial structure, sequentially
performing channel attention and spatial attention modules.
In contrast, the parallel pooling contains a pooling stage and
a fusion stage. In the pooling stage, three distinct down-
sampling operations are conducted. In the fusion stage,
a series of operations, including convolution, global pooling,
sigmoid activation, element-wise multiplication, and
channel-wise addition, are employed to explore deep-level
relationships within the feature maps, suppress low-
discriminative features, and enhance high-discriminative
features.

Second, the purposes of the modules are diferent.
CBAM is an attention module designed to guide the net-
work’s focus towards essential spatial and channel in-
formation in the image. In contrast, the proposed parallel
pooling module is used for image downsampling, addressing
the issue of information loss caused by conventional
downsampling. Concretely, it converts spatial information
into higher-level features during pooling to prevent in-
formation loss.Te output dimensions of the CBAMmodule
remain unchanged compared to the input, while the parallel
pooling module, after integrating various pooling features,
reduces the output dimensions to half of the input.
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Figure 2: Structure of PPD-UNet.
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2.3. False Positive SuppressionMaskGeneration. To suppress
the false positive nodules, we propose a parasitic network
called DBHA-PNet, which is composed of parallel pooling,
hybrid attention (HA), and dense block. Te network takes
the deep features of PPD-UNet as inputs. Te hybrid at-
tention is utilized to enhance the spatial perception of the
network and alleviate the interference of non-nodules. Te
probability of candidate nodules is used as the position
weight in the training process to guide the network to focus
on discriminating true positive nodules from false ones. Te
structure of DBHA-PNet is shown in Figure 5. Tis network
frst takes CT images as the input and employs convolutional
and dense blocks for shallow feature extraction. Meanwhile,

DBHA-PNet leverages the deep features of PPD-UNet and
shares its parameters, avoiding repetitive feature extraction
steps. To integrate deep and shallow features, DBHA-PNet
applies a HA after each feature map concatenation. Te HA
cascades a channel attention and a spatial attention. Finally,
the false positive suppression mask is obtained by applying
a convolution layer and a sigmoid activation function.

3. Experiment

3.1. Dataset and Preprocessing. Te LUNA16 pulmonary
nodules public dataset is applied, which contains 888 low-
dose chest CT images [24]. Tere are 1186 lung nodules with
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Figure 3: Structure of dense blocks.

Table 1: Te number of convolution combinations used in dense blocks.

Module Number of convolution combinations
Dense block1 4
Dense block2 6
Dense block3 8
Dense block4 12
Dense block5 6
Dense block6 4
Dense block7 4
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annotated positions and diameters in total. Te database
includes 10 subsets, and the experiment adopts 10-fold cross
validation. Rotation and scaling operations are employed for
data enhancement.

In this paper, the candidate nodule probability map and
false positive suppression mask are obtained by performing
segmentation tasks, which requires pixel-wise segmentation
labels of lung nodules for training. However, the LUNA16
dataset only provides positions and diameters of pulmonary
nodules, assuming the pulmonary nodules are spherical. In
fact, pulmonary nodules may have various shapes. For in-
stance, malignant pulmonary nodules may appear as ground
glass opacity or have an irregular shape, as shown in
Figure 6.

Considering the imprecise edge labeling, we adopt a soft-
edge segmentation labeling method, illustrated in Figure 7.
Te region within 0.7 times the radius of the pulmonary
nodule (i.e., inside the magenta circle) is marked as positive
sample and that outside 1.4 times the radius (i.e., outside the
green circle) as negative sample. Te region between the
green and magenta circles is marked as uncertain. We can
reduce the impact of imprecise label by decreasing the loss
weight of the uncertain regions.

3.2. MCE Loss Function. Te proportion of lung volume
occupied by lung nodules is very small, and their diameters
generally range from 3mm to 30mm. Although the majority
of normal areas are relatively easy to distinguish, their high
proportion still leads to a considerable amount of loss, which
will interfere the training of key areas, such as nodules and
boundaries.

To solve this problem, we propose an edge-based cross
entropy loss function, denoted by MCE loss. Te loss
function defnes lossless regions for non-nodule samples

that are easy to distinguish. Tis strategy is employed to
eliminate the loss accumulation caused by normal samples,
alleviates the problem of imbalance between difcult and
easy samples, and enhances the attention to lung nodules.
Moreover, the lossless region is gradually reduced in training
to improve the prediction confdence of themodel.TeMCE
loss is defned as follows:

MCE loss(p, g) �
1
N

􏽘

−α∗g∗ log
p

β
􏼠 􏼡, |g − p|≥ β,

0, |g − p|< β,
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⎪⎪⎪⎪⎩
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Figure 7: Illustration of soft-edge labeling.
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where p and g, respectively, represent the predicted prob-
ability and true label, α is used to assign weights to positive
and negative samples to balance them, and β is to defne the
lossless interval. Simple samples usually come from normal
lung areas. Te loss generated by the simple sample is rel-
atively small. However, due to the large proportion of
normal lung areas in CT images, a large amount of loss will
still be generated. Considering the class imbalance in
training, we do not calculate the loss for the samples with
|g − p|< β and urges the network to focus on the regions that
are difcult to identify.

We compare the MCE loss with some other commonly
used ones, such as cross-entropy (CE) loss and focal loss as
follows [25]:

CE Loss(p, g) �
1
N

􏽘 −g∗ log(p),

Focal Loss(p, g) �
1
N

􏽘 −α∗g∗ log(p)∗ (1 − p)
c
.

(2)

Te CE loss is widely used for classifcation tasks to
evaluate the model’s performance. However, it cannot adapt
to the problem of class imbalance. To address this, the focal
loss introduces the weights α and c to the cross-entropy loss
to reduce the weight of easy-to-classify samples.

Te curves of CE loss, focal loss (α� 0.5, c � 0.8), and
MCE loss (α� 0.5, β� 0.75) functions are plotted in Figure 8.
Te horizontal coordinate shows the probabilities of pixels
classifed to ground truth class, and the vertical coordinate
shows the corresponding losses. Pixels with low probabilities
are considered difcult to classify, while those with high
probabilities are considered easy. Compared to CE loss,
MCE loss and focal loss have steeper gradients for the
samples difcult to classify, which can enable the network
focus on the hard-to-classify samples in the training process.
Besides, to balance the weights of simple and difcult
samples, MCE loss set the loss to 0 for the easy-to-classify
samples whose probabilities classifed to ground truth class
is within (0.75, 1.0). Compared to focal Loss, the MCE loss
does not involve exponential calculation, which signifcantly
speeds up volume-rendering-based image analysis tasks.
Meanwhile, the MCE loss dynamically adjusts the parameter
β during training to promote the comprehensive learning of
both easy and difcult samples and improving the prediction
confdence of the network. Te MCE loss function was used
for all segmentation training in this study. Te α values used
for positive and negative sample balance in the PPD-UNet
and DBHA-PNet are set to 0.6 and 0.3, respectively.

3.3. Training Strategy. Te experiments in this study were
conducted in a Linux environment using Python 3.7 and
PyTorch 1.10 framework for model training and testing. Te
initial learning rate for PPD-UNet training was set to 0.01.
When the evaluation index of the validation set did not de-
crease for more than 5 epochs during the training process, the
learning rate was reduced to 1/10 of the original.Te training of
DBHA-PNet begins after 10 epochs, and its learning rate
adjustment strategy is consistent with that of PPD-UNet.

4. Experimental Results and Comparison

Figure 9 presents some intermediate results by our
method, where columns (a), (b), (c), (d), and (e), re-
spectively, show the CT images, candidate nodule prob-
ability map, false positive suppression mask, nodule
probability map, and ground truth. First, PPD-UNet is
used to extract candidate nodules from CT images. As
shown in Figure 9(b), although the lung nodule regions
are efectively detected, a large number of false positive
nodules are also introduced. DBHA-PNet focuses on
distinguishing true and false positive nodules among the
candidates to generate a false-positive suppression mask.
As shown in Figure 9(c), almost all the false positive
nodules are efectively suppressed. Finally, the candidate
nodule probability map is multiplied by the false-positive
suppression mask to obtain the fnal lung nodule prob-
ability map, as shown in Figure 9(d).

4.1. Ablation Experiment. Te main innovations in this
study lie in the dense block (DB), parallel pooling (PP), and
parasitic network. Te dense block is used instead of con-
ventional convolution to extract features comprehensively.
Parallel pooling aims to convert the spatial features such as
intensity and texture into a more abstract representation. A
parasitic network DBHA-PNet is designed to improve the
network’s detection performance by sharing the host net-
work’s deep features.

To validate the efectiveness of each module, we con-
ducted numerous ablation experiments. Te experimental
confgurations are as follows:

(1) PPD-UNet w/o DB or PP: average pooling is used in
place of the parallel downsampling in PPD-UNet,
and conventional convolution layers were used to
replace the dense blocks in PPD-UNet.
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Figure 8: Curves of diferent objective functions.
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(2) PPD-UNet w/o DB: conventional convolution layers
are used to replace the dense blocks in PPD-UNet.

(3) PPD-UNet w/o PP: average pooling is used in place
of the parallel downsampling in PPD-UNet.

(4) PPD-UNet: only applying the primary network
PPD-UNet for lung nodule detection.

(5) PPD-UNet w/DBHA-PNet: the parasitic network
DBHA-PNet is added to the primary network, i.e.,
the proposed method.

Te FROC (free-response receiver operating character-
istic) curve is used to evaluate the detection results quan-
titatively. Te FROC curve is a commonly used evaluation
indicator in object detection or localization tasks, which can
evaluate the algorithm’s sensitivity under diferent false
positive conditions. Te sensitivity is defned as follows:

Sensitivity �
TP

TP + FN
, (3)

where TP, FP, and FN, respectively, denote the number of
true positive, false positive, and false negative nodules.

Te FROC curves obtained with diferent confgurations
are shown in Figure 10. FPs/scan, applied as the horizontal
axis unit, represents the average number of false positive
nodules detected per scan (i.e., per patient CT sequence).
Sensitivity, applied as the vertical axis unit, represents the
lung nodule detection sensitivity under the false positive
constraints. As can be seen, lung nodule detection sensitivity
is improved as the number of false positive nodules allowed
per scan increases.

Lung nodule detection is a very challenging task. Lung
nodules in CT images typically exhibit small size, hetero-
geneous intensities, various shapes, varied locations, and
weak boundaries. In lung nodule detection, it is highly
susceptible to missing small nodules and misclassifying
other similar tissues as lung nodules, resulting in a high false
positive rate. To enhance the recognition accuracy of nod-
ules with small size and those connected to lung walls and
blood vessels, we introduce dense blocks and parallel pooling
downsampling operations into the PPD-UNet network. Te
former can alleviate gradient vanishing, strengthening fea-
ture extraction and propagation, and the latter can

(a) (b) (c) (d) (e)

Figure 9: Some intermediate results by our method. (a) CT images, (b) candidate nodule probability map, (c) false positive suppression
mask, (d) nodule probability map, and (e) ground truth.
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transform spatial information into higher-level features,
preventing information loss of small targets during down-
sampling. Furthermore, to address the issue of high false
positives, we develop a parasitic network called DBHA-
PNet. Tis parasitic network utilizes the multiscale fea-
tures of the host network PPD-UNet as the input and
employs hybrid attention mechanisms to enhance the net-
work’s spatial perception of lung structures and suppress
false-positive nodules.

PPD-UNet w/o DB or PP does not include dense blocks
or parallel pooling. PPD-UNet w/o DB does not include
dense blocks, and PPD-UNet w/o PP does not include
parallel pooling. Tese networks have limited feature ex-
traction capabilities. While a PPD-UNet introduces dense
blocks, it does not utilize a parasitic network for false-
positive suppression. From Figure 10, it can be observed
that under the condition of low false-positive constraints per
scan, PPD-UNet w/o DB or PP and PPD-UNet w/o DB
exhibit very low detection sensitivity. Tis indicates that the
models cannot accurately discriminate lung nodules from
other similar tissues. PPD-UNet improves the network’s
feature extraction and downsampling modules, resulting in
signifcantly enhanced performance compared to PPD-UNet
w/o DB or PP and PPD-UNet w/o DB. However, due to the
absence of a parasitic network, PPD-UNet still tends to
produce a relatively high false positive rate. As shown in
Figure 10, when FPs/scan is controlled within a lower range,
the sensitivity of PPD-UNet signifcantly decreases. How-
ever, when FPs/scan exceeds 2, the sensitivity can reach
above 0.93, markedly higher than that of PPD-UNet w/o DB
or PP and PPD-UNet w/o DB and comparable to that of our
proposed method, i.e., PPD-UNet w/DBHA-PNet.

By comparing the diferent FROC curves, it is evident
that the introduction of dense blocks, parallel pooling, and
parasitic network all contributed to the improvement of the
network’s detection performance. Te parasitic network

focuses on distinguishing true positive and false positive
nodules among the candidates. Te mask generated by the
parasitic network exerts a suppression efect on the false
positive nodules. As shown in Figure 10, by combining the
main network and the parasitic network, the proposed
method can signifcantly improve the detection sensitivity
under the condition of lower false positive constraints per
scan, such as when FPs/scan is less than 1/2.

Table 2 presents the sensitivity and CPM score for
pulmonary nodule detection under 1/8 FPs/scan, 1/4 FPs/
scan, 1/2 FPs/scan, 1 FPs/scan, 2 FPs/scan, 4 FPs/scan, and 8
FPs/scan.Te CPM score is the average sensitivity across the
seven conditions. Compared to PPD-UNet w/o DB or PP
and PPD-UNet w/o PP, PPD-UNet w/o DB and PPD-UNet,
respectively, resulted in 6.1% and 2.9% improvements in the
CPM score by introducing the parallel-pooling structure.
Compared to PPD-UNet, PPD-UNet +DBHA-PNet results
in a 5.7% improvement in the CPM score. In addition, there
was a signifcant improvement in the detection sensitivity at
lower false-positive rates in the PPD-UNet +DBHA-PNet
model. For instance, the detection sensitivity has a signif-
cant improvement of 18.8% under 1/8 FPs/scan. Tis means
that the model is able to accurately detect pulmonary
nodules even at a lower number of allowed false positives per
scan. Tis is an important factor as it reduces the potential
for false alarms or unnecessary treatments.

To validate the efectiveness of the proposed MCE loss,
we compared it with the focal loss. Figure 11 displays
training losses obtained with diferent loss functions.
Considering the class imbalance in training, MCE loss sets
lossless regions for non-nodule samples that are easy to
distinguish, urging the network to focus on the regions that
are difcult to identify. As depicted in Figure 11, when MCE
loss is employed as the objective function, the network
demonstrates a notably accelerated convergence rate and
attains reduced loss values. Table 3 shows the detection
sensitivity and the CPM score of the models trained with
MCE loss and focal loss. Te model trained with MCE loss
demonstrates a clear advantage over that trained with
focal loss.

4.2. Comparison with Other Methods. Te proposed ap-
proach utilizes 3D chest CT images as input and employs
a U-shaped network to obtain a probability map of nodules.
Ten, a feature fusion network based on parallel pooling and
attention is used to obtain a false positive suppression mask.
Finally, a point-by-point multiplication is applied to com-
bine the probability map of the nodules with the false
positive suppression mask, resulting in better detection
performance. Te approach focuses more on the 3D spatial
structural information and makes full use of the spatial
information of the lung to improve the network’s ability to
distinguish false positives.

We compared our method with many existing ones,
including convolution-based models such as NoduleNet
[26], S4ND [14], DBResNet [13], V-Net [15], and H-
DenseUNet [22], as well as transformer-based models
such as Swin-UNetr [27] and UNetr [28]. In all the
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Figure 10: FROC curves obtained with diferent confgurations.
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comparative experiments, 3D images are used as input for all
networks. Te position and radius of lung nodules are
calculated using the predicted probability maps of the
nodules.

Figure 12 shows some pulmonary nodule detection
results by diferent methods. Column (a) displays the
original CT image of the pulmonary nodule, where the
golden circle represents the true location of the nodule,
and R represents the radius of the nodule. Columns (b),
(c), (d), (e), (f ), (g), (h), and (i), respectively, show the
detection results using the proposed method, NoduleNet,
S4ND, DBResNet, V-Net, H-DenseUNet, Swin-UNetr,
and UNetr, where P represents the probability of the
region being predicted as a nodule and R represents the
predicted radius of the nodule. Alternating rows show the
amplifed versions of ROIs marked by white rectangles in
the upper row. Te proposed method introduces hybrid
attention mechanism in the parasitic network, which can
efectively suppress false positive nodules. Swin-UNetr
adopts a shifted window-based attention mechanism,

which is capable of capturing long-range dependencies
efectively, aiding in handling of complex tasks. Com-
pared to the conventional transformer-based UNetr,
Swin-UNetr demonstrates superior performance in pul-
monary nodule detection. Although Swin-UNetr can
identify the pulmonary nodules in CT images accurately,
our proposed method still exhibits advantages in pre-
dicting the confdence and radius of pulmonary nodules.

Te FROC curves obtained by diferent methods on the
LUNA16 dataset are shown in Figure 13. All methods
achieved a detection sensitivity of over 0.9 under the con-
dition of allowing 8 FPs/scan. However, under the condition
of allowing relatively low false positive, such as 1/8 FPs/scan
and 1/4 FPs/scan, and the detection sensitivities obtained by
our method are signifcantly higher than those of other ones.

Table 4 provides the detection sensitivity and the CPM
score for diferent methods under some false positive rate
conditions. As expected, the proposed method shows ob-
vious advantage in lung nodule detection, especially for the
case that the false positive rate is set to a low value.

Table 2: Detection sensitivity and the CPM score achieved by diferent confgurations.

Model 1/8 FPs/scan 1/4 FPs/scan 1/2 FPs/scan 1 FPs/scan 2 FPs/scan 4 FPs/scan 8 FPs/scan CPM
PPD-UNet w/o DB or PP 0.488 0.559 0.643 0.723 0.772 0.854 0.883 0.703
PPD-UNet w/o DB 0.577 0.631 0.679 0.752 0.828 0.864 0.891 0.746
PPD-UNet w/o PP 0.657 0.737 0.811 0.870 0.920 0.928 0.935 0.837
PPD-UNet 0.701 0.775 0.857 0.896 0.931 0.934 0.936 0.861
PPD-UNet +DBHA-PNet 0.833 0.87 0.898 0.921 0.938 0.951 0.960 0.910
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Figure 11: Training losses obtained with diferent loss functions.

Table 3: Detection sensitivity and the CPM score achieved with diferent loss functions.

Loss
functions 1/8 FPs/scan 1/4 FPs/scan 1/2 FPs/scan 1 FPs/scan 2 FPs/scan 4 FPs/scan 8 FPs/scan CPM

Focal loss 0.784 0.837 0.863 0.899 0.916 0.942 0.954 0.885
MCE loss 0.833 0.870 0.898 0.921 0.938 0.951 0.960 0.910

10 International Journal of Intelligent Systems



4.3. Implementation Platform and Running Time. Table 5
shows the parameter numbers, FLOPs, and the average
inference time per case of diferent methods. All the ex-
periments are executed on the same device (NVIDIA

GeFroce RIX 3090 GPU with 24GB memory). UNetr and
Swin-UNetr utilize Transformer [29] and Swin Transformer
[30], respectively, as their encoders. As a result, when
processing high-dimensional data, they require substantial

(a) (i)(b) (c) (d) (e) (f) (g) (h)

Figure 12: Some pulmonary nodule detection results by diferent methods. (a) Ground truth, (b) the proposed mothed, (c) NoduleNet, (d)
S4ND, (e) DBResNet, (f ) V-Net, (g) H-DenseUNet, (h) Swin-UNetr, and (i) UNetr.

0.7

0.8

0.9

1.0

Se
ns

iti
vi

ty

1/4 1/2 1 2 4 81/8
False Positive Per Scan

Ours
V-Net
DBResNet
S4ND

NoduleNet
H-DenseUNet
Swin-Unetr
Unetr

Figure 13: FROC curves obtained by diferent methods on the LUNA16 dataset.
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computational resources. DBResNet and S4ND only focus on
the design of the encoding path, resulting in relatively simple
network structures and fewer parameters. NoduleNet, V-Net,
and H-DenseUNet have complete encoding and decoding
paths, and the parameter numbers involved in them are
signifcantly more than those in DBResNet and S4ND. Te
proposed method is a two-stage model, comprising a candi-
date nodule extraction network PPD-UNet and a false-
positive suppression parasitic network DBHA-PNet. Te
model is relatively complex, with a parameter number of
93.32M. Te average testing time for a case of our method is
1.27 s, slightly higher than the methods [13, 14, 26, 27] but still
acceptable.

5. Conclusion

Accurate detection of lung nodules in CT images is a pre-
requisite for early diagnosis and treatment of lung cancer. To
improve the accuracy of lung nodule detection, we propose
a two-stage lung nodule detection method. First, a primary
network based on parallel pooling and dense blocks is
designed to obtain the candidate nodule probability map.
Ten, a parasitic network is designed to extract false positive
suppressionmasks. By sharing the parameters of the primary
network, the parasitic network focuses on distinguishing
true and false positives in candidate nodules. In addition,
considering the imbalanced positive and negative samples,
an edge-based cross-entropy loss function is proposed. By
setting a lossless region for healthy regions, the network pays
more attention on difcult-to-classify samples. Te pro-
posed method was extensively evaluated on the publicly
available LUNA16 dataset and compared with various

existing methods. Te detection sensitivity of diferent
methods under diferent false positive limits was discussed
by applying the FROC curve. Te results show that the
proposed method efectively reduces the false positive rate
by introducing the parasitic network and achieves higher
detection sensitivity when the false positive rate is
controlled low.
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Table 4: Detection sensitivity and the CPM score achieved by diferent methods.

Methods 1/8 FPs/scan 1/4 FPs/scan 1/2 FPs/scan 1 FPs/scan 2 FPs/scan 4 FPs/scan 8 FPs/scan CPM
NoduleNet (2020) [26] 0.732 0.763 0.818 0.875 0.893 0.917 0.928 0.846
S4ND (2019) [14] 0.781 0.822 0.85 0.898 0.928 0.943 0.955 0.882
DBResNet (2020) [13] 0.817 0.852 0.885 0.912 0.936 0.947 0.955 0.900
V-Net (2020) [15] 0.702 0.801 0.844 0.881 0.927 0.939 0.942 0.862
H-DenseUNet (2018) [22] 0.753 0.802 0.832 0.88 0.909 0.935 0.953 0.866
Swin-UNetr (2021) [27] 0.761 0.827 0.867 0.902 0.933 0.949 0.956 0.885
UNetr (2022) [28] 0.726 0.754 0.801 0.853 0.878 0.912 0.937 0.837
Ours 0. 33 0. 7 0. 9 0.921 0.93 0.951 0.96 0.910
Te best results are highlighted in bold.

Table 5: Comparison of diferent methods on parameter numbers, FLOPs, and inference.

Methods #Parameters (M) FLOPs (T) Inference time (s)
NoduleNet (2020) [26] 50.19 0.28 0.93
S4ND (2019) [14] 4.58 0.17 0.84
DBResNet (2020) [13] 7.4 0.17 0.85
V-Net (2020) [15] 65.95 4.31 1.73
H-DenseUNet (2018) [22] 40 1.18 1.27
Swin-UNetr (2021) [27] 61.98 0.68 1.02
UNetr (2022) [28] 102.2 4.48 1.74
Ours 93.32 1.09 1.27
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