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Te development of object detection networks has reached a high point, and there have been signifcant improvements in accuracy
and detection speed. Object detection is widely used in intelligent robots, self-driving cars, and other edge-intelligent terminals.
Unfortunately, when a detector is allowed to learn new objects in an unfamiliar environment, it can catastrophically forget the
objects it has already learned. In particular, reliable and stable knowledge cannot be extracted from old models. Based on this,
a new multinetwork mean distillation loss function for open-world domain incremental object detection is presented. To better
extract reliable and stable knowledge from old models, we enhanced the distillation output of the detector with a ResNet50
backbone and an output RoI head. Te distillation output of the intermediate RPN is softened by adaptive distillation. To obtain
more stable results, the ResNet50 backbone and RPN on the channel are zero-averaged. Various incremental steps and stability
experiments are performed on two benchmark datasets, PASCAL VOC and MS COCO. Te experimental results show the
excellent performance of our method in diferent experimental scenarios, and it is superior to the most advanced methods. For
example, in the setting of the batch task, incremental object detection on the PASCAL VOC and MS COCO datasets is improved
by 3.4% and 2.1%, respectively.

1. Introduction

Object detection models, which are currently the most
representative models for vision tasks, play a signifcant role
in felds such as intelligent robot tasks [1], autonomous
driving [2], and other edge intelligent terminal schemes [3].
However, existing supervised models can only be trained on
labeled task data from existing categories in the training
dataset. Furthermore, to adapt to a new task, the network
parameters of the model need to be adjusted, and it is
difcult for existing object detection models to adjust to
dynamic real-world environments, causing them to forget
old knowledge [4].

In this work, we investigate the problem of class-
increment multinetwork object detection based on a cata-
strophic forgetting mechanism. In the incremental setting,
task queues are introduced sequentially to the object de-
tector, and a high-performance agent should maintain the
old task performance during the new task learning process.
Terefore, the model adaptive parameter update process that
is executed when new task input is limited by setting
knowledge distillation [4] at the model parameter level
[5–7]. For Faster-RCNN [8] with a multinetwork structure,
it is difcult to alleviate the catastrophic forgetting problem
with the distillation of only a single network [9], and it is
more efective to use multinetwork distillation [5, 10] to
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retain old knowledge for the whole network. Furthermore,
existing incremental object detection methods based on
multinetwork knowledge distillation make the model more
prone to learning the old task and minimize the new task
learning efect.

Based on these considerations, Peng et al. [10] proposed
an incremental learning approach to multinetwork adaptive
distillation, where distillation is set up in multiple networks
and the teacher network is used as a lower bound for
adaptive knowledge extraction. However, forcing a com-
parison of the outputs of the teacher network and the
student network as an adaptive extraction condition may
lead to signifcant loss caused by past knowledge being
identifed as more important for new task learning and
zeroed out for distillation loss; the weights related to this
output value may be equally important for the old task. In
contrast, Joseph et al. [5] performed meta-learning by
specifying an RoI head layer and setting a certain number of
iterations to optimize the gradient update direction to better
learn the new task. However, because the region proposal
network (RPN) for the class is agnostic, the method does not
include a distillation loss term. Te correct rate of RPN
classifcation and anchor regression of an object and the
background of an old task directly afect the accuracy of RoI
head prediction and degeneration of the old class in the next
stage because the candidate regions learned by the RoI head
are generated from the previous step after pooling. Tis
results in a lack of candidate regions for the old task in the
learning process of the RoI head, which afects the ability of
the object detection model to recognize new and old classes.
In addition, by changing the network parameters during
training to ft the new task, a direct calculation of the dis-
tillation loss of the network output at each stage will cause
the output of the new model to be very diferent from the
output data distribution of the old model. Tis will make the
network output difcult to ft and unstable.

To address the aforementioned challenges based on the
Faster-RCNN incremental object detector, we propose a new
distillation scheme for the Faster-RCNN detector. We im-
prove the distillation output of the ResNet50 backbone at the
input level and the RoI head network at the output level, and
we use adaptive distillation to maintain the past knowledge
of the RPN. Moreover, we adopt the meta-learning strategy
in [5] to mitigate the degradation of model learning per-
formance for new tasks caused by knowledge distillation. In
addition, to address the problem of bias in the output data
distribution of the new and old models, we perform zero
averaging on the output data of the ResNet50 backbone and
RPN of the new and oldmodels to mitigate bias in the output
data distribution of the new model. Consequently, the
primary contributions of our work are as follows:

(i) We propose a new scalable Faster-RCNN detector-
based multinetwork distillation scheme that uses
enhanced distillation values for the ResNet50
backbone and RoI head network and adaptive
distillation for the RPN to mitigate the catastrophic
forgetting problem.

(ii) To alleviate the instability of the network output
caused by the diferences in the old and new net-
work outputs, we perform zero averaging on the
output of the backbone network and RPN of the old
and new models and consider the RoI head network
averaged over the class to produce a new set of
distillation losses.

(iii) We extensively evaluate the PASCAL VOC and
COCO benchmark datasets and compare two ad-
vanced baseline methods.Te experimental fndings
demonstrate the superior performance of our ap-
proach in various incremental scenarios.

2. Related Works

Incremental learning is a special machine learning paradigm
that simulates the human brain’s learning of sequential task
streams, where the model can continuously learn new tasks
and maintain old task performance. However, to maintain
such properties, it is necessary to address the forgetting
problem of the model due to new task learning [11]. On this
basis, this section proposes incremental learning techniques
for knowledge distillation and loss minimization.

2.1. Incremental Learning Approach for the Knowledge Dis-
tillation Strategy. Knowledge distillation [4] methods have
been extended to mutual distillation learning [12–14],
assisted distillation learning [15–17], spatial location dis-
tillation learning [18, 19], and dataset distillation learning
[20–22]. In addition, knowledge distillation can be used in
incremental learning because of its ability to transfer
knowledge from one model to another [8–13]. Knowledge
distillation in incremental learning typically transfers old
information from the teacher’s network to the student’s
network to alleviate the forgetting of old knowledge. As
a traditional incremental learning method for knowledge
distillation, LwF [23] mitigates forgetting by freezing the old
model as the teacher network, using a temperature factor to
soften the softmax output of the logit, then adding the factor
to the current task loss as a regularization term, and con-
straining the model to mitigate forgetting through param-
eter updates. However, LwF is vulnerable to a signifcant
learning bias when there is an imbalance between the old
and new classes. To address this problem, Zhao et al. [24]
combined weight aligning (WA) with knowledge distillation
by utilizing WA to balance the weights of the old and new
class information in the fnal fully connected layer while
using knowledge distillation to maintain the model’s dis-
crimination of the old classes. In contrast, Dong et al. [25]
used a dual-teacher distillation framework to mitigate the
class imbalance problem using sampled unlabeled data to
extract knowledge from the base class teacher and new class
teacher models and transfer the knowledge to the student
model. Similarly, Abdelsalam et al. [26] used a dual-teacher
distillation strategy with regular and superclass teachers to
solve the incremental implicitly refned classifcation (IIRC)
problem. In feature relationship exploration, Yang et al. [9]
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explored important correlations with old and new classes in
the feature space. Tey maintained the ability to learn to
detect new classes by passing correlations to retain the close
relationships within important learning knowledge. Simi-
larly, Dong et al. [27] proposed the exemplar relationship
distillation incremental learning (ERDIL) method, which
mines exemplar relationship information in old tasks
through exemplar relationship graphs (ERG) and uses graph
relationship-based knowledge distillation to transfer old
knowledge to CNNmodels for learning new tasks.Te above
knowledge distillation-based methods all distill the model
structure. Te distilled old model is used to constrain the
new model to update the new task learning process and
maintain the performance of the old and new tasks. Ad-
ditionally, the multinetwork structure of the object detection
model gives us inspiration for model structure distillation.

2.2. Loss Optimization Method for Knowledge Distillation.
In studies on knowledge distillation loss, existing distillation
loss optimization methods [28–32] mainly optimize the
defciencies of the incremental learning processes by com-
bining them with other techniques. Li et al. [30] prevented
the features extracted from the intermediate neural network
layers from changing drastically by adding feature distilla-
tion loss terms and minimizing the feature diferences using
a smoothed L1 loss function. EEIL [28] combines cross-
entropy and distillation loss into an end-to-end learning
network, using cross-entropy to learn new classes and
distillation to retain knowledge corresponding to old classes.
Xiang et al. [29] proposed a dynamic correction vector al-
gorithm that combines representational memory and
knowledge distillation loss to optimize cross-entropy and
knowledge distillation loss functions to alleviate knowledge
distillation bias and model overftting problems. Douillard
et al. [33] combined representation learning with distillation
to mitigate the impact of feature extraction network changes
by using a multiagent classifer through spatially based
distillation loss-constrained representation evolution. To
address the old-new data imbalance problem, Wu et al. [31]
proposed a BiC algorithm for large-scale data processing
based on distillation loss to correct old-new class bias.
Similarly, Hou et al. [32] combined cross-entropy loss,
feature-based distillation loss, and marginal ranking loss,
which separates old and new classes, to mitigate the adverse
efects of class imbalance. For the object detection problem,
ILOD [9] uses knowledge distillation to regularize the output
of the fnal classifcation and regression layers to retain the
performance of the old task. Chen et al. [6] used cue learning
to maintain the initial model feature information and added
it to the distillation loss calculation while setting the con-
fdence loss to extract the confdential information of the
initial model to mitigate further forgetting. In the detector
feature space, Yang et al. [34] investigated the applicability of
both old and new classes and set a distillation loss term for
two-stage Faster-RCNN using three perspectives—channel-
based, point-based, and instance-based perspectives. Nota-
bly, the introduction of knowledge distillation aggravates the
model’s focus on new tasks and reduces their performance.

Based on this, Peng et al. [10] applied adaptive distillation to
multiple networks in the Faster-RCNN detector, using the
teacher network as a lower bound and adaptively extracting
knowledge to improve new task learning. In contrast, Joseph
et al. [5] set the Warp loss to optimize the gradient update
direction by specifying a layer of the RoI head network for
meta-learning to make it better adapted to learning new
tasks. In conclusion, the design of the loss function has
optimization efects both on the degradation of the learning
performance of new tasks caused by the introduction of
knowledge distillation and on the alleviation of forgetful-
ness, prompting us to place a greater emphasis on our work
on optimizing the distillation loss.

2.3. Gradient Mate Learning. In contrast to the aforemen-
tioned methodologies, contemporary scholars have focused
their eforts on investigating the potential of meta-learning to
facilitate enhanced computational efciency in models. Te
initial work by Andrychowicz et al. [35] established the
groundwork for the advancement of gradient meta-learning.
Teir proposal involved the automatic learning of hyper-
parameters for model optimizers by specifying particular
optimizers. However, this approach poses difculties in the
selection of suitable optimization algorithms and parameter
settings. Furthermore, model-agnostic meta-learning
(MAML) [36] is a prominent method in gradient meta-
learning that aims to enhance the initial model parameters
for various tasks by performing gradient meta-updates on
multiple tasks. Tis approach has garnered signifcant at-
tention in the domain of few-sample learning. Nevertheless,
the efectiveness of MAML is contingent upon the availability
of high-quality task data and its sensitivity to hyper-
parameters, which impose certain restrictions. To address the
challenges, Franceschi et al. [37] introduced diferentiable
convex optimization techniques in the feld of meta-learning.
Tis approach aimed to enhance the stability of the meta-
update strategy and resolve the sensitivity issues associated
with previous methods. In addition, Snell et al. [38] proposed
a gradient-based meta-learning method utilizing a prototype
network. Tis method proved efective in scenarios with
limited training samples and overcame the challenges posed
by sparse data through the concept of category prototyping.
Similarly, Kedia and Chinthakindi [39] employed the reptile
algorithm in meta-learning, combined with an inductive bias
on pretrained weights, to enhance the generalization per-
formance of the model. Notably, the meta-gradient of the
reptile algorithm incorporates a gradient component that
maximizes the inner product between diferent batch sizes
from the same task, thereby facilitating greater adaptability to
new tasks. Furthermore, Xu et al. [40] and other researchers
have integrated reinforcement learning with gradient-based
meta-learning techniques to enhance the efectiveness of deep
reinforcement learning in large-scale applications. Tis is
achieved by considering the payof function as a parametric
function with adjustable meta-parameters and addressing the
optimization of task-specifc objectives. Consequently, the
integration of meta-learning has expanded the scope of in-
cremental learning applications. Furthermore, Joseph et al. [5]
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introduced a meta-learning approach for incremental target
detection. Tis method involves learning from intermittent
data inputs. During the meta-learning process, newly ac-
quired data are incorporated into the Faster-RCNN network,
and the RoI head modules with unfrozen weights are adjusted
to better align with the new task. Tis approach addresses the
issue of performance degradation in the model when
attempting to distill knowledge for new tasks.

Inspired by the above work, a common strategy for
incremental object identifcation methods to retain acquired
knowledge is to simulate considerable activation of the
original model byminimizing the frst-order distillation loss.
A new Faster-RCNN-based multinetwork structure distil-
lation strategy for object detectors is devised as a result.
Consideration is given to the impact of the new task’s de-
graded performance because of knowledge distillation. In
contrast, the problem of model output data distribution bias
resulting from the instructor and student model tasks during
learning is investigated.

3. Proposed Method

Incremental object detectors do not require all data classes
to be available in advance. When new data are input, the
unique structure of the detectors can prevent catastrophic
instances of forgetfulness. Incremental object detection
(iOD) is a commonly used approach for target detection,
and it is characterized by its multinetwork structure. In this
approach, a new model, referred to as the student network,
is trained to learn a new task while keeping the weights of
the previous model, known as the teacher model, fxed.Tis
is achieved by setting the distillation loss, which helps
mitigate the performance degradation of the student net-
work on the new task caused by distillation. However,
iOD’s method of directly calculating the distillation loss on
the input parameters can result in an imbalanced data
distribution, leading to instability in the model’s output. As
shown in Figure 1, our method mitigates catastrophic
forgetting via multinetwork knowledge distillation and
experience replay. Specifcally, we reinforce the focus on
past tasks for the beginning and end of the model and
consider the problem of poor RoI head training in the next
phase due to the lack of RPN training on old tasks. We use
adaptive distillation in the intermediate RPN phase. We
employ adaptive distillation in the intermediate RPN stage
to conditionally maintain the model’s focus on the old task
suggestion area; moreover, during the knowledge distil-
lation process, we average the input to improve the stability
of the model output. Furthermore, to prevent knowledge
distillation from overprotecting past tasks and limiting the
learning of new tasks, we use the gradient preprocessing
meta-learning method in [5]. Specifcally, the model
learning process can be divided into two distinct phases:
the incremental learning phase and the fne-tuning phase.
In the incremental learning phase, the model learns the
image features of the task by optimizing the specifed loss
function. On the other hand, the fne-tuning phase involves
further training the model using microdata. Tis process

allows the model parameters to be adjusted to efectively
adapt to both previous and new tasks. Te process of in-
cremental learning can be divided into two stages: the initial
stage involves learning a new task (referred to as new task
loss), while the learning process is constrained by the dis-
tillation loss to limit changes in model parameters related to
previous tasks (referred to as multinetwork mean distillation
loss). Te second stage utilizes a meta-learning gradient
matrix to adjust the direction of the model’s learning gradient
(referred to as warp loss). In the succeeding exposition of the
experimental fndings, all experimental outcomes are refned,
except those that lack a particular reference to the phase of
incremental learning.

3.1. Problem Formulation. For a continuous task stream T ,
task Tt (Tt ∈ T) is delivered to the object detector at moment
t, where Tt is composed of the incremental subtask set Ti

(i� 1, 2, · · ·, n; Ti ∈ Tt) and task Tt is composed of the image
dataset D with labels at moment t. Te images contain
several objects from diferent classes, but the labels are only
valid for objects in task Ti. Moreover, we set the update rule
of MOD to be determined by θ. Te parameter θ, which is
used to defneMOD, is divided into the task parameter C and
the warp parameter ϖ; that is, θ � ψ ∪ϖ, and ψ ∩ϖ≠∅. In
terms of the learning process, the model learns the task
parameter ψ in the frst stage and the warp parameter ϖ in
the second stage.

Te specifc learning process can be described as follows: at
time t, when there is a taskTt, the object detector needs to learn
the input picture MOD(I), which can be regarded as an ag-
gregate function. For two-stage Faster-RCNN,MOD(I) can be
formulated as a set function consisting of a backbone network
MBackbone, regional proposal network MRPN, and RoI head
MRoI Head; i.e., MOD(I) � (MBackboneMRPN MRoI Head)(I).Te
input I is subjected to feature extraction by MBackbone to
generate the feature map F. MRPN uses these features to
generate N candidate regions that may contain objects and the
corresponding scores, and each candidate region is subjected to
MRoI Head to calculate the probability of being assigned to one
of the classes in taskTi≤t and to perform regression calculations
on its border positions. For incremental object detection, it is
challenging to maintain the old task performance in a con-
tinuous task stream T without accessing all the data, and the
incremental target detector needs to consider the classifcation
of multiple networks with border regression on old knowledge
memory compared to the normal incremental classifcation
problem, such as the classifcation regression problem of
MBackbone and the old class feature extraction problem ofMRPN
andMRoI Head on old knowledge in the Faster-RCNNmode. In
our method, we employ a knowledge distillation strategy by
freezing the past network model as the teacher network to
guide the current task model as the student model. For the
purpose of subsequent theoretical elaboration, elements labeled
with “te” are defned as elements related to the teacher network,
such as the teacher goal detector Mte

OD, and elements labeled
with “st” are defned as elements related to the student network,
such as the student goal detector Mst

OD.
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3.2. New Task Loss. Te learning of new tasks by the model
can be viewed as the application of a loss function to learn
model parameters. Specifcally, the object detector uses the loss
function to minimize the classifcation error and the bounding
box positioning error for learning. Let p� (p0, . . ., pk) denote
the predicted probability of k + 1 classes (k real classes and 1
background class); l� (lx; ly; lw; lh) denotes the predicted
bounding box position after pooling features for each RoI. Te
true labels are p∗ (true class) and l∗ (true class bounding box
position), and LRoI head is defned as follows:

LRoI Head � Lcls p, p
∗

( 􏼁 + λ p
∗ ≥ 1􏼂 􏼃Lloc l, l

∗
( 􏼁, (1)

where Lcls(p, p∗) � −logp/p∗ is the log loss of the pre-
dicted class versus the true class, and Lloc is the smooth L1
loss; when p∗ � 0, i.e., the background, the bounding box
regression loss does not need to be calculated. Similarly, the
training lossMRPN yields a prediction score o ∈ [0; 1], which
indicates whether the selected region contains instances and
corresponds to the bounding box prediction r. Tis loss is
defned as follows:

LRPN � Lcls o, o
∗

( 􏼁 + λo
∗
Lloc r, r

∗
( 􏼁, (2)

where o∗ indicates whether the region contains real labels; if
the region contains real labels, o∗ � 1, and it is 0 if the region
does not contain real labels. r∗ is the real bounding box
regression target. Te weighting parameter λ is set to 1 in all
subsequent experiments.

3.3. MultinetworkMean Distillation Loss. Similar to the way
new tasks are learned, our model retains the performance of
previous tasks, while new tasks are learned by calculating the
mean distillation loss of multiple networks. Similar to Faster
ILOD [10] and iOD [5], we use knowledge distillation to
soften the softmax output by inserting a temperature factor
T into the log output in equation (3) to maintain the model’s
performance on past tasks in a continuous task stream.
However, unlike Faster ILOD, which uses multinetwork
adaptive distillation, and iOD, which only distills the feature
map and RoI head, we strengthen the distillation output at
both ends MBackbone and MRoI Head to ensure the accuracy of
backbone feature extraction at the very frst input and RoI
head detection at the fnal output. On the other hand, to
ensure that the anchor of the MRoI Head input contains past
memory, we use adaptive zero mean distillation in the
middle RPN layer to alleviate the overprotection of past
knowledge while preserving the RPN’s memory of past
knowledge by adaptively increasing the distillation loss.

S
T
i �

exp zw/T( 􏼁

􏽐j exp zd/T( 􏼁
. (3)

In addition, we consider that the direct introduction of
knowledge distillation will cause the new model to update the
network parameters adaptively during the training process to
adapt to the new task, resulting in a large deviation of the
output from the output data distribution of the old model,
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Figure 1: Implementation principle (the model uses diferent data inputs through diferent learning stages in the learning process;
denotes the second stage of the meta-learning process; denotes the frst stage of the new task learning process, which is included in the
distillation process, and we set up the model to employ diferent distillation processes in diferent network structures).
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which makes the network output difcult to ft and unstable.
Terefore, we frst apply zero-mean fltering to the inputs of
MBackbone and MRPN to obtain the new outputs before cal-
culating the distillation loss. Specifcally, the zero mean is
obtained by subtracting the mean of all pixels for each pixel
fi, as shown in equation (4). Te model output after zero
averaging has all pixel points distributed with the origin as the
center point, preventing the situation where the data distri-
bution is all negative or all positive at a certain time while
keeping the original data distribution’s shape and the mean
value of all pixels after zero averaging zero. Tis makes the
model output more stable by facilitating the convergence of
the model weights during the back-propagation process.

􏽥yi � yi −
1
n

􏽘

n

i�1
yi. (4)

Terefore, to retain the model performance on the
previous task during the learning of the new task, we per-
form multinetwork distillation on the backbone network,
RPN, and RoI head network and add a mean value strategy
to remember past information.

3.3.1. Backbone Distillation Losses. F is the layer containing
the extracted object pixel features from the image, and F
contains each feature pixel fi. To obtain the object features
associated with the old and new classes, a distillation loss
constraint needs to be applied toMBackbone.We learnMθt

Backbone

by freezing the weight parameters of Mθt−1
Backbone and using the

teacher network to teach the student network. For the same
input I, the teacher network and the student network obtain
outputs Fte and Fst, respectively. Furthermore, MBackbone
serves as input to the subsequent classifcation and regression
steps, and an accurate description of the old and new class
features is particularly important for the subsequent steps, so
we strengthen the distillation of MBackbone. In addition, for

faster convergence, we obtain 􏽥Fte and 􏽥Fst by zero averaging
the features obtained by equation (4). Distillation loss is
defned as follows:

LBackbone dis � minΣ 􏽥fte,i − 􏽥fst,i􏼐 􏼑
2
, (5)

where 􏽥fte,i and 􏽥fst,i are defned as each of the pixel features in
􏽥Fte and 􏽥Fst, respectively, 􏽥fte,i ∈ 􏽥Fte, and 􏽥fst,i ∈ 􏽥Fst.

3.3.2. RPN Distillation Loss. MRPN suggests regions r� (r1,
r2, . . ., rj) for the old and new class features that I extracted
by MBackbone in the previous stage and determines whether
the corresponding region has a class score o� (o1, o2, . . ., oi).
As the frst stage of the two-stage target detector, whether the
proposed region network extracted by MRPN contains old
and new classes is particularly important for the next stage of
MRoI Head in the classifcation and regression of the old and
new classes; however, if the distillation constraint onMRPN is
excessive, it will lead to an increase in MRPN’s focus on the
old class member and afect the learning process of the new
task, so we adopt the idea of Peng et al. [10], who suggested
using the teacher network as a lower bound to adaptively
choose whether to apply distillation constraints to MRPN. In
contrast, we subject the output scores fromMte

RPN andMst
RPN

to distillation softening in equation (3) and zero averaging in
equation (4) and use the KL dispersion loss as the classi-
fcation loss. We determine the value on each dimension
regarding l for the anchor regression of MRPN, and we
regulate the regression by setting a threshold ξ. We take the
empirical value ξ � 1 and use the sum of the o value ofMte

RPN
overMst

RPN and ξ as the activation value in the distillation loss
calculation; however, higher values of Mst

RPN may be more
important for new task learning and are therefore not in-
volved in the distillation loss calculation. Te defnition of
RPN distillation loss is as follows:

LRPN dis � min
1
N

􏽘
i

􏽥o
T
te,ilog

􏽥o
T
te,i

􏽥o
T
st,i

+ 􏽘
j

Pj rte,j − rst,j􏼐 􏼑
2⎡⎢⎢⎣ ⎤⎥⎥⎦, if 􏽥o

T
te,i > 􏽥o

T
st,i,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pj �
1, if 􏽥o

T
te,i > 􏽥o

T
st,i + ξ􏼐 􏼑,

0, otherwise,

⎧⎪⎨

⎪⎩

(6)

where 􏽥oT
st,i and 􏽥oT

te,i are the scores of the output of MRPN
successively after the zero averaging treatment of equation
(4) and the distillation softening treatment of equation (3),
respectively, and the empirical value is T� 6 in our exper-
iments. N is the total number of anchors.

3.3.3. RoI Head Distillation Loss. MRPN generates proposals
for the old and new classes passed through poolingMRoI Head
to obtain the fnal classifcation probabilities (pte, pst) and

border regression values (lte, lst) for the teacher and student
networks. In our approach, we focus more on the classif-
cation and regression of the old classes, considering
MRoI Head as the fnal stage of the two-stage object detector.
In addition to the normal distillation loss calculation, we
calculate the mean of each channel with respect to the class
by equation (7) to increase MRoI Head and to focus on the
overall trend of the fnal classifcation probability and border
regression. Te temperature factor T is also introduced into
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the log output of equation (3) to soften the “softmax” output
and obtain more information about past knowledge.

hi �
1
C

􏽘

C

j�1
hi,j, (7)

where C denotes the number of channels and i denotes the
i-th parameter of the j-th channel. Te MRoI Head loss is
therefore defned as follows:

LRoI dis � min
1
2

􏽘
i

p
T
te,ilog

p
T
te,i

p
T
st,i

+ 􏽘
i

p
T
te,ilog

p
T
te,i

p
T
st,i

⎛⎝ ⎞⎠⎡⎢⎢⎣

+
1
2

􏽘
j

lte,j − lst,j􏼐 􏼑
2

+ 􏽘
j

lte,j − lst,j􏼐 􏼑
2⎛⎝ ⎞⎠,

(8)

where pT
te,i, p

T
st,i, lte,j, and lst,j are all variables processed by the

mean value of equation (7). Te parameters labeled with T
are all variables processed through equation (1).

3.4.TotalMissionLoss in theFirstPhase. Te frst stage of our
model’s learning process for the task parameters can be
characterized as learning the current task through each
stage, followed by correcting the model parameters to
maintain past task performance through the distillation loss
in each stage. Tis allows the loss of the overall task to be
defned as a linear combination of the loss of the new task
and the multinetwork mean distillation loss. To balance the
model performance in the past and present tasks, we employ
a convex combination similar to that in [5] to set the stability
and plasticity trade-of parameter α. Here, the total loss in
the frst stage is defned as follows:

Lall task � (1 − α) LRoI Head + LRPN( 􏼁

+ α LBackbone dis + LRPN dis + LRoI dis( 􏼁,
(9)

where α is defned as 0.1 in our experiments and is defned in
Section 4.3.

3.5. Gradient Matrix Warp Loss. For the second phase of
learning, the warp parameter ϖ, as depicted in Figure 2, is
confgured in the network warp layer in MRoI Head to learn
the preprocessing matrix (P(θ;∅)). By establishing an
image store, a small number of images are saved for each
class during the distillation learning procedure Istore. Images
are taken from Istore and put in the set feature store Fstore.

In the distillation learning process, a small number of
images are stored for each class by setting up an image store
Istore, and the images stored in Istore are stored in the set
feature store Fstore after feature extraction by MBackbone.
Notably, Fstore defnes a fxed size queue Nfeat for each class
to mitigate the class imbalance problem. Te stored queue
characteristics are incorporated directly into the task learner
by utilizing the meta-learning parameterization of P(θ;∅),
which warps the gradient toward the steepest direction and
enables the parameters to be updated in the most suitable
direction for diferent learning tasks.

Each image in Istore is passed through MBackbone and
MRPN to generate the RoI pooled features and associated
labels, which are then queued into Fstore. Let f be the RoI
pooled features, where f generates the predicted classifca-
tion value p and the border prediction l through MRoI Head.
Te warp loss can then be calculated from the features and
labels stored in Fstore, and lwrap is calculated as follows:

Lwarp � 􏽘

f,p∗,l∗( )∼FStore

Lcls p, p
∗

( 􏼁 + p
∗ ≥ 1􏼂 􏼃Lloc l, l∗( 􏼁( 􏼁,

s.t., (p, l) � MRoI Head(f),

(10)

whereLcls is the log regression loss andLloc is the smoothL1 loss.

4. Experimental Analysis

4.1. Datasets and Evaluation Metrics. We evaluated our
method on the PASCAL VOC 2007 [41] and MS COCO 2014
[42] datasets. PASCAL VOC 2007 contains 9963 images with
24640 instances of annotations and 20 classes. According to
the setup in [41], 50% of the dataset is divided into training
and validation sets, and the rest is used for testing. MS COCO
2014 contains objects from 80 classes with 83,000 images in
the training set and 41,000 images in the validation set.

For the evaluation metrics, the average accuracy of the
50% IOU threshold (mAP@50) was used as the main
evaluation metric for both datasets. For MS COCO, we set
multiple IOUs (AP, AP50, and AP-0.75) and sizes (APs:
small, APm: medium, and APl: large) as evaluation metrics.

4.2. Incremental Experimental Scenario Setting. Similar to
[5], we simulate incremental scenarios for PASCAL VOC and
MS COCO, where the dataset Dt provides a set of selected
classes C to be used for task Tt and passed to the learner at
moment t. For each image in the dataset Dt that may contain
multiple classes, one or several classes belonging to C will be
learned as the task object class, and those instances of classes
that do not belong to C will not be marked for learning.

According to the diferent difculty levels of the classif-
cation task, we considered the efect of the learning intensity of
initial base class tasks and incremental tasks on the model
output results and defned class fow tasks and batch tasks.
Class fow tasks can be interpreted as having incremental tasks
Ti that fow into the model after learning the base class task T0
with 1 to 2 additional classes per task, whereas batch tasks
contain only one incremental task with 1 to 2 additional classes.
As indicated in Table 1, we devised seven incremental scenarios
based on the degree of difculty of the incremental experiment
scenarios according to the divided class fow tasks and batch
tasks.Te dataset used in experiments a to f includes the frst 20
classes of PASCAL VOC and the dataset used in experiment g

includes 80 classes from the MS COCO dataset.

4.3. Discussion and Analysis

4.3.1. Stability Analysis of the Zero Mean. To validate the
infuence of the zeromean on the stability of themodel output,
we conducted fve consecutive replications of experiments (d)
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through (f) and created box plots, as depicted in Figure 3,
based on the output data. As seen from the fgure, in ex-
periment (d), our method has a more obvious advantage; its
lowest mAP50 value is 64.7%, but this value is higher than the
highest value of 63.63% obtained by the iOD method. In
experiment (e), our approach’s stability is not only comparable
to but substantially superior to that of the iODmethod, which
exhibits an outlier (62.68%). In experiment (f), the gap be-
tween our method and iOD in terms of stability is wider, and
the stability of our model is still better than that of iOD, al-
though the maximum value of 68.28% obtained by iOD is
higher than the lowest value of 68.18% obtained by our
method in terms of accuracy. Tis indicates that in the in-
cremental task containing only one class, the gap between
diferent methods fuctuates slightly, but the results from
Figure 3(c) show that our method still outperforms iOD in
terms of overall accuracy. Te results of the stability experi-
ments reported in Figure 3 show that ourmethod outperforms
the iOD method in terms of output stability for all iOD
methods without a zero mean, and the overall accuracy of the
fve experiments in all three scenarios is higher than that of the
iOD method, which fully demonstrates the reliability and
stability of our method.

To search for the optimal stability equilibrium parameter
α of equation (9), we conducted several experiments on the
value of α based on the incremental task approach of ex-
periment (d). Table 2 displays the individual experimental
outcomes. Te table demonstrates that as α gradually

increases, our model’s experimental accuracy gradually
declines from 65.0% to 60.7%. Based on the experimental
results, we ultimately set the value to 0.1 in all tests.

4.3.2. Ablation Experiment. To confrm the increase in ac-
curacy of the approaches introduced by our method (the RPN
and zero mean), we carried out ablation experiments. As
shown in Table 3, we still used the task form based on the
incremental experiment (d). Te results of the experiment are
the mAP values of the base class T0 (frst 10 classes), the
incremental task T1 (last 10 classes), and the overall 20 classes.
As seen from the table, when only zero averaging is in-
troduced, the learning ability of the new task is improved, and
the mAP of T1 reaches 67.33%. When RPN adaptive distil-
lation loss is introduced, the stability of past knowledge is
improved, and the mAP of T0 reaches 62.20%. When both
strategies are implemented, the highest mAP values are
attained for the new task T1, and all 20 classes (68.28% and
65.00%, respectively), and the experimental results are con-
sistent with the conclusions of our theoretical analysis in
Section 3.3. In regard to the remaining two approaches [9, 10],
it is worth noting that Faster ILOD [10] and the method by
Shmelkov et al. [9] exhibit a comparative advantage in pre-
serving performance on previous tasks. However, in practical
production scenarios, emphasis is placed on the signifcance of
new tasks. Consequently, our proposed method not only
enhances the model’s performance on new tasks but also

Istore

...

Regression 
Head

Fcls

Freg

Classification
Head

Storage 

Nimg

Fstore

Task level

Residual blocks

Warp level

Backbone RPN

RoI Head

Figure 2: Gradient meta-learning mechanism (the images included within Istore were inputted into the student network via the Istore. During
this process, all network weights, except for those in the warp layer of the RoI head network, were kept fxed. Tis was done to enhance the
model’s performance on the new task using the newly acquired image data).

Table 1: Experimental setup.

Task Experiment Number of classes in T0 Incremental tasks Ti Number of classes in Ti

Class_fow tasks
a 10 T1, . . ., T10 1
b 10 T1, . . ., T5 2
c 15 T1, . . ., T5 1

Batch tasks

d 10 T1 10
e 15 T1 5
f 19 T1 1
g 40 T1 40
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maintains a certain level of performance on previous tasks.
Tis improvement results in a more substantial enhancement
of overall task performance compared to the aforementioned
approaches [10, 11], with superior performance demonstrated
on all tasks. Furthermore, the results from Experiment 3 and
Experiment 4 in Table 3 demonstrate that the inclusion of the
zero mean in Experiment 3 leads to a decrease of approxi-
mately 0.5% in T0 accuracy in Experiment 4, while the T1
accuracy shows an improvement of approximately 2%. Tis
improvement can be attributed to the utilization of the RPN
adaptive distillation loss, which enhances the model’s focus on
the old task (T0: 62.20% in Experiment 3). Te introduction of
zeromean learning causes themodel to focus on the new input
data, thereby allowing the model weights to be better adapted
to the new task during distillation computation, resulting in
a 2% enhancement in the performance of the new task.
However, importantly, the performance of the old task is still
maintained to some extent, albeit with a decrease of 0.5%. In
comparison to Faster ILOD [10] and the model by Shmelkov

et al. [9], our method achieves superior performance in T1,
surpassing them by 13.81% and 5.14%, respectively. In ad-
dition, our method outperforms both approaches in terms of
overall performance, surpassing them by 2.88% and 1.85%,
respectively.

To provide additional evidence for the efectiveness of our
approach, we conducted a more detailed analysis of the in-
cremental learning phase in the ablation experiments (refer to
Table 4). Te results indicate that the average precision (AP)
values obtained by the model for identifying the old classes
during the incremental class learning phase exceed 9.09. Tis
can be attributed to the model’s ability to generate probability
distributions that are highly similar for these classes while still
exhibiting subtle diferences that enable partial identifcation of
the old classes. Tis phenomenon may arise from the inherent
limitations of the student model in accurately replicating
the probability distribution of the teacher model during the
knowledge distillation procedure. Te student model can only
approximate the output distribution of the teacher model.

65.0

64.5

64.0

63.0

63.5A
P5

0 
(%

)

iOD Ours

(a)

64.5

64.0

63.0

63.5

A
P5

0 
(%

)

iOD Ours

(b)

A
P5

0 
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iOD Ours

68.5

68.0

67.5
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Figure 3: Stable output experiment (the height of the box plot represents the stability of the model output). (a) Experiment (d) stability
experiment. (b) Experiment (e) stability experiment. (c) Experiment (f) stability experiment.

Table 2: α stability analysis (%).

α Aero Cycle Bird Boat Bottle Bus Car Cat Chair Cow T0

0.1 64.4 69.4 58.1 42.0 50.1 69.0 82.9 68.9 47.8 64.5 61.7
0.2 66.1 70.0 61.4 41.0 46.9 70.8 78.6 73.1 41.9 72.7 62.3
0.4 64.0 69.9 60.9 39.2 46.5 71.7 77.6 42.7 72.0 61.7
0.6 67.7 69.5 61.6 41.5 48.9 73.1 79.4 73.6 46.0 70.2 63.2
0.8 68.7 69.9 63.2 43.3 50.4 73.1 79.2 71.0 45.4 66.1 63.0
A Table Dog Horse Bike Person Plant Sheep Sofa Train tv T1 All
0.1 58.1 70.7 79.1 75.0 82.6 45.5 66.2 69.4 68.4 67.8 68.3 65.0
0.2 57.4 73.6 78.8 74.5 79.5 43.1 60.1 67.5 70.6 65.5 67.1 64.7
0.4 56.7 73.3 79.5 74.6 80.1 44.3 58.7 66.3 70.8 67.8 67.2 64.4
0.6 50.3 71.9 75.5 70.9 75.0 40.8 59.0 64.4 64.2 64.0 63.6 63.4
0.8 41.9 67.5 67.7 67.0 70.8 34.5 55.9 56.6 60.4 61.1 58.3 60.7

Table 3: Ablation experiments (%).

Methods/experiment RPN Zero_meaning T0 T1 All
Faster ILOD [10] — — 69.76 54.47 62.12
Shmelkov et al. [10] — — 63.16 63.14 63.15

Experiment

1 × × 57.77 65.32 61.55
2 × √ 61.50 67.33 64.41
3 √ × 62.20 66.30 64.25
4 √ √ 61.71 68.28 65.00
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Hence, as depicted in Table 4, the incorporation of RPN
adaptive distillation (Experiment 3) during the incremental
learning phase enables the model to efectively recognize the
old classes, resulting in the identifcation of 9 classes. More-
over, the overall accuracy of recognizing the old classes is
enhanced by 2.83% compared to the mAP value obtained in
Experiment 1, incorporating the zero mean (Experiment 4)
results in an enhancement of the model’s performance on the
new task, reaching 72.27. Moreover, the performance on the
old task experienced only a marginal decrease of 0.11%. Tis
outcome indicates that our approach successfully achieves
a better trade-of between plasticity and stability, efectively
addressing the requirements of both maintaining performance
on the old task and facilitating adaptation to the new task.

4.4. Analysis of the Experimental Results of IncrementalObject
Detection. We employ stochastic gradient descent (SGD)
with 0.9 momentum. Te initial learning rate is set to 0.02
and is then decreased to 0.0002. Each job receives 18,000
iterations of base-class training on the PASCAL VOC
dataset, followed by 100 iterations per image and a total of
90,000 iterations for each of the two tasks. For 2080Ti, the
model training procedure is executed on a single GPU, and
since each GPU simultaneously analyses two images, the
batch size is two. Te Nfeat and Nimg queue sizes of the
feature store Fstore and image store Istore are set to 10. Te
evaluation process considers 100 detections per image, and
the NMS threshold is 0.4. Te coefcient of stability α is 0.1.

4.4.1. Class Flow Tasks. Incremental simulations, in which
the model learns the top 10 or frst 15 classes from the
PASCAL VOC dataset as base classes, are performed, and the
detector is fed one or two classes at a time. Tables 4–6 show
the experimental results for the class fow task. Te frst row
displays the joint learning of 20 classes as the incremental
learning upper bound; the second row displays the model
learning the base classes, where the base class is the frst 10
classes in experiments (a) and (b) and the frst 15 classes in
experiment (b); and the following rows display each class in
turn according to its ordinal number in the class fow task.
Te table shows the change in mAP values for all classes as
well as the AP values of each class incrementally for each task.
Figure 4 depicts the trend in the efects of each incremental
task carried out by the model during the class fow in-
cremental task on the base class, the old class, and all classes.

As seen from the data in Table 5, in the increment scenario
of experiment (a), we set the base class T0 � 10, and our mAP
value is higher than that of the iOD method for all class
increment processes. However, the overall task mAP value
gradually decreases with the input of Ti at each increment step
when Ti � 1.Te largest mAP diference can reach 3.6%, while
the average mAP value is 2.36% larger than that of the iOD as
the class increments increase. Te unique changing process of
experiment (a) is depicted in Figure 4(a). As shown, the
diference in mAP between our model and the base class, old
class, and all classes steadily widens as Ti is added, demon-
strating that our model is more stable in the case of an in-
cremental task fow. In the incremental scenario of experiment
(b), we enhanced the complexity of the incremental task by
setting Ti to 2. Table 6 shows that as the difculty of the
incremental task increases, our model has a clear advantage
over experiment (a) in terms of the overall accuracy, with an
average mAP diference of 4.5%. In the details of experiment
(b) depicted in Figure 4(b), the gaps in mAP between our
model and experiment (a) for the base class, old class, and all
classes are more pronounced. Specifcally, in learning the T2
task, the all-class gap reaches 5.1%. In comparison to ex-
periment (a), it can be observed that as the incremental task
learning difculty grows, the mAP value of the model for the
overall task declines at a faster rate. Experiment (c) enhances
the difculty of learning basic classes by increasing T0 to 15
andTi to 1.When the number of base classes learned increases
to 15 classes, the partial gap of our models’ mAP over that of
iOD gradually increases with the learning of new classes,
reaching a maximum of 3.9% in Table 7. In the details of
experiment (c) shown in Figure 4(c), the mAP of our model is
better than that of iOD for the base class, old class, and all
classes. In the class fow task experiment, we can observe that
relative to Ti � 1 in experiment (a), when the difculty of
learning Ti is increased, as in experiment (b), the model
learning efect decreases signifcantly for each learned Ti, as
depicted in Figure 4(b); however, the fnal mAP of the all-class
scenario is comparable to that obtained in experiment a and
remains at 46.9%. Compared with T0 � 10 learned classes in
experiment (a), increasing the base class task learning dif-
culty, as in experiment (c), decreases the learning efect of the
very frst task while keeping the number of total tasks and Ti

learned classes constant. However, as the incremental task
stream decreases, themodel’s fnal learning efect is better than
that of the class stream with many tasks, as in Figure 4(c), and
it remains at 54.8%.

Table 4: Ablation comparison experiments in incremental learning stages (%).

Experiments Aero Cycle Bird Boat Bottle Bus Car Cat Chair Cow T0

1 0.00 9.09 0.00 0.00 9.09 0.00 9.09 9.09 9.09 0.00 4.55
2 9.09 9.09 0.00 3.22 9.09 0.62 9.09 8.08 9.09 9.09 6.65
3 9.09 9.09 6.06 4.06 9.09 0.00 9.09 9.09 9.09 9.09 7.38
4 9.09 9.09 9.09 0.00 9.09 0.00 9.09 9.09 9.09 9.09 7.27
Experiments Table Dog Horse Bike Person Plant Sheep Sofa Train tv T1 All
1 60.21 71.85 80.81 76.25 84.69 50.05 74.70 71.60 69.25 65.29 70.47 37.51
2 62.81 72.58 82.15 76.29 86.56 49.86 76.61 73.63 69.78 69.79 72.01 39.33
3 60.54 70.09 81.95 75.94 85.81 49.29 75.92 72.39 70.69 68.91 71.15 39.26
4 61.22 71.56 82.40 77.38 86.20 51.47 75.59 74.43 72.40 70.03 72.27 39.77
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4.4.2. Batch Tasks. In the batch task settings, we considered
class batch learning of the model on the PASCAL VOC and
MS COCO datasets with diferent numbers of base classes
and incremental classes. T0 validates the accuracy of our
method.

Table 8 shows our results on the COCO dataset for the
experiment (g). Specifcally, we set up incremental sce-
narios with T0 � 40 and T1 � 40 and used the standard
COCO dataset evaluation method with multiple IOU
metrics (AP, AP50, and AP-0.75) and sizes (Aps: small,
Apm: medium, and Apl: large) for a comprehensive
evaluation. As seen in Table 9, our model continues to show
excellent performance even for the high-volume class
learning scenarios in the complex COCO dataset. It out-
performs the iOD technique by more than 2% across all
scales of evaluation, and its AP50 performance is 4.7%
greater than that of the iOD method.

On the PASCAL VOC dataset, we report the results
compared with those of the model by Shmelkov et al. [9],
Faster ILOD [10], and iOD [5] in terms of mAP, while on the
MS COCO dataset, we compare our results with those of
iOD [5] with the standard COCO dataset evaluation
method. Tables 9–11 show the experimental results of our
comparisons.

In experiment (d), we set up a batch task increment
scenario with T0: T1 �10 :10. Table 9 reveals that our model
achieved the best learning efect in all experiments compared
to the other methods; the mAP score reached 65.0%, and the
best learning efect was that on the new tasks, where mAP
reached 68.3%. Our method is also superior to iOD in the
maintenance of old task performance, with the old class
mAP reaching 61.0%.

In experiment (e), we adjusted the class learning ratio of
T0 and T1 (T0: T1 �15 : 5). In the results of experiment (e)

A
P5

0 
(%

)

Class Number

base_class (Ours)
base_class (iOD)
old_class (Ours)

old_class (iOD)
all_class (Ours)
all_class (iOD)

1-10 11 12 13 14 15 16 17 18 19 20

70

65

60

55

50

45

(a)

A
P5

0 
(%

)

Class Number

base_class (Ours)
base_class (iOD)
old_class (Ours)

old_class (iOD)
all_class (Ours)
all_class (iOD)

67.5

62.5

60.0

57.5

55.0

52.5

50.0

65.0

1-10 11-12 13-14 15-16 17-18 19-20

(b)

70

65

60

55

50

45

A
P5

0 
(%

)

1-15 16

Class Number

1817 19 20

base_class (Ours)
base_class (iOD)
old_class (Ours)

old_class (iOD)
all_class (Ours)
all_class (iOD)

(c)

Figure 4: Te efect of class fow incremental task learning on base classes, older classes, and all classes. (a) 10-1++. (b) 10-2++. (c) 15-1++.
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shown in Table 10, our method is slightly inferior to the
methods in [9, 10] in terms of overall task mAP, but it is
superior to the most recent method, iOD, in terms of
retaining the old task performance and new task learning
efect. It obtained 64.5% overall task mAP, 66.9% old task
mAP, and 64.5% new task mAP.

In experiment (f ), we increased the number of classes
learned inT0 to 19 classes. In the results reported in Table 11,
our model is comparable to the other methods in overall task
learning and old-class task performance, but it is optimal in
terms of mAP. It obtains 68.9% mAP for the overall task and
68.9% mAP for the old-class task.

Te class fow task experiments and batch task experi-
ments demonstrate that the smaller the number of classes
learned by Ti in the incremental task phase, the smaller the
fuctuation of the model on the total mAP value during each
new task Ti learning process is, where the fuctuation is
the smallest for the scenario when Ti � 1. In contrast, when
the number of classes learned by Ti increases, the gap in the
overall mAP score of various methods increases signif-
cantly, and our method signifcantly outperforms the other
methods in various incremental scenarios in the experiment.

4.4.3. Time Performance Analysis. Table 12 presents a com-
parison of the training time between our method and the
iOD method during the incremental learning phase. Te
results indicate that our method requires slightly more time
for training, primarily due to the increased computational
parameters involved in the incremental learning phase.
However, the diference in training time between the two
methods is relatively small. Notably, our method achieves
a higher mean average precision (mAP) for the performance
on both the old and new classes compared to the iOD
method, with an improvement of 4.4%. In future studies, we
will continue to conduct additional investigations to decrease
the time necessary for model training while maintaining the
assurance of optimal model performance.

5. Conclusion

Te catastrophic forgetting problem is mainly addressed by
knowledge distillation in existing target detection models;
however, object detection models with multiple network ar-
chitectures require distinct types of distillation procedures. In
this work, we present a novel multiple networks mean dis-
tillationmethod for object detection that uses zero averaging to
process the model output parameters. Ten, it adds the pa-
rameters to the distillation loss to further improve the model
output stability while strengthening the distillation loss at the
input and output sides of the model network structure and
adaptively distilling the intermediate network structure to

better obtain accurate outputs. We combine meta-learning
with a multiple network mean distillation method. On the
two basic datasets, we set up numerous incremental tests, and
the outcomes show that our model performs better than the
alternative comparison models.
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K. Alahari, “End-to-end incremental learning,” in Proceedings
of the European Conference on Computer Vision (ECCV),
pp. 233–248, Springer, Munich, Germany, July 2018.

[29] Y. Xiang, Y. Miao, J. Chen, and Q. Xuan, “Efcient in-
cremental learning using dynamic correction vector,” IEEE
Access, vol. 8, pp. 23090–23099, 2020.

[30] D. Li, S. Tasci, S. Ghosh, J. Zhu, J. Zhang, and
L. R. I. L. O. D. Heck, “Near real-time incremental learning
for object detection at the edge,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, pp. 113–126,
Arlington, VA, USA, November 2019.

[31] Y. Wu, Y. Chen, L. Wang et al., “Large scale incremental
learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 374–382,
Washington DC, USA, June 2019.

[32] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning
a unifed classifer incrementally via rebalancing,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 831–839, IEEE, Long Beach,
CA, USA, August 2019.

[33] A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle,
“Podnet: pooled outputs distillation for small-tasks in-
cremental learning,” in Proceedings of the European Confer-
ence on Computer Vision, pp. 86–102, Springer, Glasgow, UK,
August 2020.

20 International Journal of Intelligent Systems



[34] D. Yang, Y. Zhou, A. Zhang et al., “Multi-View correlation
distillation for incremental object detection,” Pattern Recog-
nition, vol. 131, Article ID 108863, 2022.

[35] M. Andrychowicz, M. Denil, S. Gomez et al., “Learning to
learn by gradient descent by gradient descent,” Advances in
Neural Information Processing Systems, vol. 29, 2016.

[36] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-
learning for fast adaptation of deep networks,” in Proceedings
of the International Conference on Machine Learning PMLR,
pp. 1126–1135, Sydney, Australia, August 2017.

[37] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil,
“Bilevel programming for hyperparameter optimization and
meta-learning,” in Proceedings of the International Conference
on Machine Learning, pp. 1568–1577, PMLR, Baltimore, MD,
USA, July 2018.

[38] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” Advances in Neural Information Pro-
cessing Systems, vol. 30, 2017.

[39] A. Kedia and S. C. Chinthakindi, “Keep learning: self-
supervised meta-learning for learning from inference,” in
Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Maintenant,
pp. 63–77, Europe, UK, June 2021.

[40] Z. Xu, H. P. van Hasselt, and D. Silver, “Meta-gradient re-
inforcement learning,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[41] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “Te pascal visual object classes (VOC) chal-
lenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, 2010.

[42] T. Y. Lin, M. Maire, S. Belongie et al., “Microsoft coco:
common objects in context,” in Proceedings of the European
conference on computer vision (ECCV), pp. 740–755, Springer,
Tel Aviv, Israel, October 2014.

International Journal of Intelligent Systems 21




