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Functional near-infrared spectroscopy (fNIRS) is a low-cost and noninvasive method to measure the hemodynamic
responses of cortical brain activities and has received great attention in brain-computer interface (BCI) applications. In
this paper, we present a method based on deep learning and the time-frequency map (TFM) of fNIRS signals to classify the
three motor execution tasks including right-hand tapping, left-hand tapping, and foot tapping. To simultaneously obtain
the TFM and consider the correlation among channels, we propose to utilize the two-dimensional discrete orthonormal
Stockwell transform (2D-DOST). Te TFMs for oxygenated hemoglobin (HbO), reduced hemoglobin (HbR), and two
linear combinations of them are obtained and then we propose three fusion schemes for combining their deep in-
formation extracted by the convolutional neural network (CNN). Two CNNs, LeNet and MobileNet, are considered and
their structures are modifed to maximize the accuracy. Due to the lack of enough signals for training CNNs, data
augmentation based on the Wasserstein generative adversarial network (WGAN) is performed. Several simulations are
performed to assess the performance of the proposed method in three-class and binary scenarios. Te results present the
efciency of the proposed method in diferent scenarios. Also, the proposed method outperforms the recently introduced
methods.

1. Introduction

1.1. Motivation. Te human brain is the most complex
organ in the body, consisting of billions of neurons and
unique computing capabilities such as parallel processing
and learning. Terefore, researchers have always been
interested in analyzing it from an early age. Diferent areas
such as neuroscience, artifcial intelligence, cognitive
science, and the brain-computer interface (BCI) have been
explored to understand the brain better [1]. BCI is a tool
that translates thoughts and provides an interface for
communicating with the outside world. Recent advances
in BCI have led to a better understanding of neural
functions and connections in the brain. BCI is an ex-
tensive study and requires knowledge of computer en-
gineering, neuroscience, psychology, signal processing,
and clinical rehabilitation [2].

Te functional near-infrared spectroscopy (fNIRS) is
a noninvasive imaging technique that measures changes in
blood oxygenation levels in the brain. It uses near-infrared
light to penetrate the scalp and skull, allowing for the de-
tection of hemodynamic responses associated with brain
activity. Tis noninvasiveness makes fNIRS a safe and
comfortable option for users, as it does not require any
surgical procedures or direct contact with the brain. fNIRS
has good spatial and temporal resolution. It can provide
information about the location and timing of brain activity,
allowing for the identifcation of specifc brain regions in-
volved in cognitive processes. Tis spatial and temporal
resolution is crucial for BCI applications, as it enables the
accurate decoding and interpretation of brain signals for
controlling external devices or communicating with the
environment. It can be implemented in various settings,
including home environments, clinics, or even during real-
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world tasks. Tis fexibility makes fNIRS a practical choice
for BCI applications, as it allows for more natural and
ecologically valid experiments and interactions. Also, fNIRS
is less susceptible to motion artifacts compared to other
imaging techniques. It can tolerate small head movements
and is less afected by electrical interferences or muscle
artifacts. Tis robustness to motion artifacts makes fNIRS
suitable for real-time applications, where users may engage
in natural movements or activities while using the BCI
system [3]. Tese characteristics make fNIRS a promising
tool for developing practical and user-friendly BCI systems.

1.2. Related Works. In general, BCI systems include signal
acquisition, signal processing, and output units. Te
recorded signals are low-power with a poor signal-to-noise
ratio (SNR), nonstationary, nonlinear, and time-varying.
Terefore, to improve the real-time processing of these
systems, feature extraction methods should refect the time-
frequency characteristics and spatial features. Temporal
frequency analysis is widely used in BCI research. Tese
methods are short-time Fourier transform (STFT), wavelet
transform, and Hilbert–Huang transform (HHT). Teir
results can be expressed as power spectrum density (PSD)
and are the most efective in processing nonstationary and
nonlinear signals.

Some works considered traditional feature extraction
schemes based on statistical methods. In [4], the diference
between the two mental tasks of computation and rest state
was analyzed based on fNIRS signals. Te authors extracted
six features from each channel of the fNIRS signal. Te
results showed that multilayer perceptron (MLP) performs
better than support vector machine (SVM) and k-nearest
neighbor (kNN). In [5], the fNIRS signals with 22 channels
were collected during three mental tasks: number sub-
traction, word generation, and rest. Te MLP model based
on superfcial features determined the task. Subsequently,
the authors controlled the robot remotely via fNIRS signals.
In [6], the combination of three-channel fNIRS and 123-
channel electroencephalography (EEG) signals was used to
classify the left/right brain excitatory signals. Sixteen features
were extracted from fNIRS signals, and an MLP with four
hidden layers was used for classifcation. In [7], the con-
centration changes of oxygenated hemoglobin (HbO) and
reduced hemoglobin (HbR) were measured, while volun-
teers repeated each of the three types of overt movements,
including left- and right-hand unilateral complex fnger-
tapping, and foot-tapping, by considering 20-channel fNIRS
signals from 30 volunteers classifed by SVM. In [8], the
authors aimed to distinguish the four brain activities in-
cluding mental arithmetic (MA), motor imagery of left hand
and right hand, and rest from fNIRS signals. After pre-
processing, the six diferent statistical features are obtained
in the time domain and 13Mel-frequency cepstral coefcient
(MFCC) features are obtained in the frequency domain, and
then, classifcation is performed by SVM and kNN.Te least

absolute shrinkage and selection operator (LASSO) homo-
topy-based sparse representation was employed in [9] for
channel selection. Classifcation profts from statistical
spatial features of concentration of blood oxygenation from
fNIRS in walk and rest state tasks. In the presence of
complicated and nonstationary signals, the mentioned
methods based on statistical features cannot achieve the
efcient accuracy.

Time-frequency analysis of fNIRS signals was considered
in several works. In [10], the frontal hemodynamic responses
were recorded considering 19-channel fNIRS signals from
nine patients during mental tasks. Te authors used con-
tinuous wavelet transform for multiscale decomposition and
a soft-threshold algorithm for denoising. Tey considered
the MLP, linear discriminant analysis (LDA), and SVM and
compared their performances. Te multilevel mental
workload classifcation was performed in [11] by using bi-
variate functional brain connectivity features in three time-
frequency bands. Tey utilized the public hybrid dataset
consisting of EEG-fNIRS to evaluate their proposed method.
Te mentioned approaches extract the nondeep features
from time-frequency components and, as a result, fail to
perform the correct classifcation in complex scenarios [12].

Methods based on neural networks and deep learning
were also introduced for utilizing fNIRS signals in BCI
applications. In [13], multistage fusion was performed to
classify left- or right-hand motor-imagery tasks consid-
ering the EEG and fNIRS signals. Te results showed that
the y-shaped neural network with early stage feature
fusion has the best performance compared to the others.
In [14] participants were asked to do left- and right-hand
motor imagery experiments, and the corresponding fNIRS
signals were recorded. Te classifcation is based on
a convolutional neural network (CNN). A deep belief
network (DBN) based on a restricted Boltzmann machine
(RBM) was used in [15] to classify fNIRS signals of fexion
and extension imagery involving the left and right arms.
Te features of HbO concentration were used to train two
RBMs. In [16], the authors attempted to classify the
gender through four-channel fNIRS signals. Te authors
used a three-layer denoising autoencoder (DAE) to extract
distinct features to accommodate gender recognition by
MLP. Te authors in [17] extracted the features from fve
fNIRS signals by employing the convolutional autoen-
coder (CAE) and echo state network (ESN) autoencoder
for driver cognitive load levels. In [18], a framework
consisting of machine and deep learning methods clas-
sifed the fNIRS signals of motor execution for walking
and rest tasks. Tey demonstrated deep learning ap-
proaches including the CNN, LSTM, and Bi-LSTM with
the results of 88.50%, 84.24%, and 85.13%, respectively,
that reached higher accuracy compared to kNN, SVM, and
LDA. Tese methods considered the neural network and
deep learning approaches; however, they did not consider
the time-frequency analysis to consider nonstationary
nature of biological signals.
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1.3. Contributions. Most biological signals, especially fNIRS
signals, are recorded in several channels. When the signals of
each channel are analyzed separately, the correlation be-
tween channels is not considered and some information is
missing. Hence, in this research, it is proposed to use the
two-dimensional discrete orthonormal Stockwell transform
(2D-DOST) to obtain the time-frequency map (TFM) fNIRS
signals of motor execution tasks by considering the corre-
lation between channels in the time domain. Each TFM can
be regarded as a feature set and we can give it directly to
a CNN for classifcation. Te fNIRS signals are decomposed
into HbO and HbR signals as well as their combinations.
Hence, there are some TFMs, and appropriate fusion
schemes are required to aggregate their information. In this
paper, three fusion schemes are employed: early, joint, and
late fusions. In these fusion schemes, feature extraction and
classifcation are performed by two CNNs including
MobileNet and LeNet. Since the channel selection considers
several channels for obtaining TFM, it is proposed to modify
the structure of CNN to achieve efcient accuracy. Also, data
augmentation based on the Wasserstein generative adver-
sarial network (WGAN) is performed to increase the gen-
eralization of CNN training. Te results show the efciency
of the proposed method for feature extraction and fusion of
extracted TFMs.

Te rest of this paper is organized as follows. Section 2
explains the dataset and preliminaries used in this paper.
Section 3 presents the proposed method in detail. Section 4
contains the results, and fnally, Section 5 concludes
the paper.

2. Dataset and Preliminaries

2.1.Dataset. In this paper, we considered the dataset used in
[7] in which a total of 30 volunteers participated to collect
the dataset. Each volunteer performed the following tasks
25 times in random order: right-hand fnger-tapping (RHT),
left-hand fnger-tapping (LHT), and foot-tapping (FT).
Terefore, we have a three-class classifcation scenario along
with binary scenarios. For person-specifc classifcation,
there are only 25 measurements for each class which may be
not enough for the training of a CNN. On the other hand, if
the data of all subjects are merged, there are 750 recordings
from each class. Te fNIRS data were recorded by a three-
wavelength continuous-time multichannel fNIRS system
(LIGHTNIRS, Shimadzu, Kyoto, Japan) consisting of eight
light sources (Tx) and eight detectors (Rx). Four Tx and Rx
were placed around C3 on the left hemisphere, and the rest
were placed around C4 on the right hemisphere. Figure 1
depicts the channel locations of the fNIRS. Ch01–10 and
Ch11–20 are located around C3 (Ch09) and C4 (Ch18),
respectively. Te channels are created by a pair of adjacent
light sources (Tx) and detectors (Rx) placed 30mm away
from each other.

Te experiment diagram is shown in Figure 2. A single
trial comprised an introduction period (− 2 to 0 s) and a task
period (0 to 10 s), followed by an inter-trial break period (10 to
27–29 s). Among RHT (⟶), LHT (⟵), and FT (↓),
a random task type was displayed during the introduction

period, which the volunteers were required to perform. For
RHT/LHT, the volunteers performed unilateral complex
fnger-tapping. Tey tapped their thumbs with other fngers
one by one in the direction from the index fnger to the little
fnger and repeated it in the reverse order. Te tapping
continued at a steady rate of two Hz. For FT, the volunteers
tapped their foot on the same side of their dominant hand
constantly at a one Hz rate. Considering the 20 channels,
measuring both oxygenated hemoglobin (HbO) and reduced
hemoglobin (HbR), 10 s for task duration, and sampling
frequency of 13.33Hz, the duration of the task contains about
133 samples, and data of each task contain 40×133 matrix.

2.2. 2D-DOST. Stockwell transform (ST) was introduced in
[19] and originates from STFT and wavelet transform. It is
very efcient in terms of resolution at low frequencies and
also has a higher resolution at high frequencies; for this
reason, it is possible to access the frequency components in
the time-frequency domain. However, it is highly redundant
because it requires a lot of time and storage space. Discrete
orthonormal ST (DOST), a downsampled version of ST, was
proposed to overcome this problem. Because low frequen-
cies have a high period, sampling is performed at a lower
rate, and similarly, for high frequencies, high-rate sampling
is performed by DOST. Suppose z(t) is a continuous-time
signal; its ST is calculated as [20]

S(τ, f) �
|f|

2π

∞

− ∞
z(t) e

− (t− τ)2/2σ2( ) e
− j2πfτ

d t, (1)

where j �
���
− 1

√
, t, and τ are the time variables, f denotes the

frequency, and σ � 1/|f| is the scale factor. Te output of ST
is the complex-valued matrix whose rows and columns are
related to time and frequency, respectively. On the other
hand, assume that the discrete signal z[k],
k � 0, 1, . . . , N − 1, is obtained from z(t) by sampling. By
replacing τ⟶ k and f⟶ n/N, the discrete ST for z[k],
S[k, n], for n≠ 0 is calculated as [20]

Figure 1: Te placement of sources and detectors to record fNIRS
signals [7].
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S[k, n] � 
N− 1

m�0
Z[m + n]e

2π2m2/n2( ) e
(j2πmk/N)

, (2)

where Z[n], n � 0, 1, . . . , N − 1, is the DFTof z[k]. For n� 0,
we have S[k, 0] � 1/n

N− 1
m�0z[m], which equals to DC value of

the Fourier transform. Tere are N2 ST coefcients for
a signal of length N. Computing each coefcient requires the
computational complexity of the order (N), and hence total
computational complexity is of order (N3). Let f(x, y)

denote a 2D image, and its 2D ST is calculated as [21]

S u, v, fu, fv(  �
fu


 fv




2π

∞

− ∞

∞

− ∞
f(x, y)

· e
(u− x)2(v− y)2/2( )e

− j2π fux+fvy( dxdy,

(3)

where u and v are shift parameters used to move the
Gaussian window on the x and y axes. Also, frequency
parameters fu and fv are the frequencies related to shift
parameters that control the spatial expansion of the window.
S(u, v, fu, fv) is a 4D complex-valued matrix. Te
2D-DOST of an N×N image, f(x, y), is defned as follows
[20]:

S u, v, fu, fv(  �
1

�������
2px+py− 2

 

2px − 2− 1

m�− 2px − 2



2py − 2
− 1

n�− 2py − 2

· F m + vx, n + vy e
j2π mu/2px − 1( )+ nv/2py − 1( )( ),

(4)

where vx � 2px− 1 + 2px− 2 and vx � 2py− 1 + 2py− 2 are the
horizontal and vertical frequencies, respectively, and
px, py � 0, 1, . . ., log(N − 1). Also, F(m, n) is the 2D Fourier
transform of the image f(x, y). It should be noted that the
dimension of DOST points is equal to that of the input
image. By integrating all the values px and py, a local spatial
frequency range consisting of positive and negative fre-
quency components from (fu, fv) � 0 to (fu, fv) �

(N/2, N/2) can be constructed. 2D-DOST provides in-
formation about frequencies in the bandwidth of 2px− 1 ×

2py − 1 frequencies [20].

2.3.CNN. CNN is one of themost efcient machine learning
methods for feature extraction and classifcation of images.
Figure 3 presents a typical CNN, and its main layers are
explained in the following. Convolution layers scan the

pixels using a kernel that passes over the image and create
feature maps which are then used to predict the feature class.
Due to the large amount of information obtained from the
convolution layer, the pooling layer each time retains the
important information and reduces redundant information.
Te fully connected layer acts similar to traditional MLP and
predicts the output class using the extracted deep features. In
this paper, two CNNs and their modifed versions are used
for deep feature extraction which is explained in the
following.

MobileNet [22] is a class of efcient models used in
mobile and embedded vision applications. Te number of
parameters is signifcantly reduced because of using sep-
arable convolutions in this model when compared to the
network with regular convolutions with the same depth. In
contrast to the standard convolution combination, in
which the combination and fltering are done simulta-
neously in the same stage, in these networks, by using the
ability of deep separation, in one stage, the flter operation
is performed and then the combination operation is per-
formed on the other stage. Tis separation has a strong
efciency in reducing computational complexity. Te
structure of MobileNet is given in Table 1, where conv. and
conv. dw denote the standard and depthwise convolutions,
respectively.

Te LeNet-5 architecture was introduced in [23]. It is
one of the earliest and most basic CNN architectures
consisting of seven layers. Te frst layer consists of an
input image with a size of 32 × 32. It is convolved with six
flters of size 5× 5 resulting in a dimension of 28 × 28× 6.
Te second layer is a pooling operation with a flter size of
2 × 2 and a stride of two. Hence, the resulting image di-
mension will be 14 ×14× 6. Similarly, the third layer also
involves a convolution operation with 16 flters of size 5× 5
followed by a fourth pooling layer with a similar flter size
of 2× 2 and stride of two. Tus, the resulting image di-
mension will be reduced to 5 × 5×16. Once the image
dimension is reduced, the ffth layer is a convolution with
120 flters with the size of 5× 5. Te sixth layer is a fully
connected layer with 84 units. Te fnal layer is a fully
connected layer with ten neurons and a softmax activation
function.

3. Proposed Method

Here, we explain the proposed method for fNIRS signal
classifcation. Te general overview of the proposed method
is given in Figure 4.

Action marker

Introduction

-2 0

Task

Stop marker

10

Rest

27-29 Time
Inter-trial interval

Figure 2: Experiment diagram.
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3.1. Preprocessing and Channel Selection. A third-order
Butterworth flter with a passband of [0.01, 0.1] Hz was
utilized to preprocess the recorded signals. Tis frequency
range is useful for fNIRS signals due to its relevance to the
hemodynamic response in the brain and the characteristics

of the signals themselves. Te hemodynamic response in the
brain, which is the basis for fNIRS measurements, has a slow
time course. It is primarily driven by changes in cerebral
blood fow and oxygenation levels. Tese changes occur over
a longer time scale compared to fast neuronal activity. Tis
frequency range captures the low-frequency oscillations
associated with these hemodynamic changes, allowing for
the detection and analysis of relevant brain activity. Addi-
tionally, fNIRS signals are susceptible to various sources of
noise and artifacts, such as physiological processes, motion
artifacts, or environmental interference such as DC de-
viations. Tis range helps to flter out high-frequency noise
and focus on the slower hemodynamic fuctuations of in-
terest. Tis range is commonly associated with the physi-
ological processes and neural activity related to cognitive
functions, making it a suitable range for studying brain
responses in fNIRS-based experiments.

Ten, the time segmentation from the beginning of work
(for example, 0 seconds) was done on the values of HbO and
HbR changes.Te period includes HbO and HbR changes in
three classes (RHT, LFT, FT) that were performed during 25
tests. Te signal-to-noise ratio (SNR) is calculated as follows:

SNR � 10 log10
Ps

Pn

 , (5)

where Ps and Pn represent the power of fltered data (signal
estimation) and unfltered data (noise estimation), re-
spectively. Tis procedure was done for all channels, and
several channels with the highest SNR were used for feature
extraction considering the classifcation scenario.

3.2.TFMCalculation. For each of the HbO andHbR signals,
the data obtained from 20 channels include 133 samples.Te
number of rows and columns of 2D-DOSTmust be a power
of two, and hence four, eight, and sixteen channels with 128

Input
Hidden layers
feature maps

Final layers
classes units

Fully connected
Pooling
Convolution

Figure 3: Structure of the typical CNN.

Table 1: Te structure of MobileNet.

Layer type/stride Filter shape Input size
Conv./2 3× 3× 3× 32 224× 224× 3
Conv. dw/1 3× 3× 32 dw 112×112× 32
Conv./1 1× 1× 32× 64 112×112× 32
Conv. dw/2 3× 3× 64 dw 112×112× 64
Conv./1 1× 1× 64×128 56× 56× 64
Conv. dw/1 3× 3×128 dw 56× 56×128
Conv./1 1× 1× 128×128 56× 56×128
Conv. dw/2 3× 3× 256 dw 56× 56×128
Conv./1 1× 1× 128× 256 28× 28×128
Conv. dw/1 3× 3× 256 dw 28× 28× 256
Conv./1 1× 1× 256× 256 28× 28× 256
Conv. dw/2 3× 3× 256 dw 28× 28× 256
Conv./1 1× 1× 256× 512 14×14× 256

5×
Conv. dw/1 3× 3× 512 dw 14×14× 512
Conv./1 1× 1× 512× 512 14×14× 512

Conv. dw/2 3× 3× 512 dw 14×14× 512
Conv./1 1× 1× 512×1024 7× 7× 512
Conv. dw/2 3× 3×1024 dw 7× 7×1024
Conv./1 1× 1× 1024×1024 7× 7×1024
Average pooling/1 Pool 7× 7 7× 7×1024
Fully connected/1 1024×1000 1× 1× 1024
Softmax/1 Classifer 1000×1

fNIRS signals Preprocessing Calculate TFM Feature extraction
and classification

Figure 4: Te steps of the proposed method for BCI based on
fNIRS signals.
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samples can be considered for obtaining the TFM of HbO
and HbR signals, and the channels were selected based on
the SNR criteria. An example of the HbO and HbR signals
considering the top four channels is shown in Figures 5–7.
Also, some TFMs considering the top four, eight, and 16
channels for diferent MI are shown in Figures 8–10. It is
observed that TFMs of diferent MI are diferent from each
other; hence, they can be used for classifcation.

3.3. Feature Extraction and Classifcation. Here, we explain
the procedures considered for feature extraction and
classifcation after obtaining TFMs. Let SO and SR, re-
spectively, denote the 2D-DOST of HbO and HbR sig-
nals. In this paper, we consider four TFMs including
SO, SR, SO + SR, and SO − SR. To use the information of
these TFMs for classifcation, we considered three fusion
schemes, including early fusion, joint fusion, and late
fusion [20]. Te MobileNet and LeNet-5 are considered
as base structures and we modify them based on the
fusion scheme and the size of TFMs. Te additive
combination of SO and SR, denoted as SO + SR, captures
the additive information from both HbO and HbR sig-
nals. Tis fusion scheme allows for the integration of
complementary information from these two sources,
potentially enhancing the discriminative power of the
features. In a classifcation scheme, this combined fea-
ture can provide a more comprehensive representation of
the underlying neural activity by considering both ox-
ygenation and deoxygenation dynamics simultaneously.
Te diferential combination SO − SR represents the dif-
ference between HbO and HbR signals. Tis diferential
information can highlight variations in oxygenation
patterns that may be critical for distinguishing between
diferent cognitive or motor tasks. In a classifcation
context, this feature can be particularly useful when
changes in the balance between oxygenated and reduced
hemoglobin are relevant to the classifcation task. In
summary, the rationale for using SO + SR and SO − SR lies
in their ability to provide a more comprehensive view of
the hemodynamic responses by considering both addi-
tive and diferential aspects of the HbO and HbR signals.
Tese combined features may capture unique patterns
that are relevant to the classifcation scheme, potentially
improving the accuracy and discriminative power of the
classifcation model.

3.3.1. Early Fusion. In early fusion, the fusion operation is
performed at the feature level. Te inputs contain the main
features or are extracted as features from diferent ways [20].
Tey join together and form the fnal feature maps before
feeding into a machine learning model. Based on the con-
sidered channels for computing 2D-DOST, each TFM has
the size of nch × 128. Te considered early fusion merges the
four TFMs to construct the CNN input as follows:

Searly �

So

SR

So + SR

So − SR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

It should be noted that the size of the matrix Searly is
4× nch ×128. Te procedure of classifcation with early fu-
sion is shown in Figure 11. In this procedure, the CNN is
trained considering the common training algorithms.

3.3.2. Joint Fusion. Te early fusion scheme concatenates
TFMs at frst and then extracts the deep features using
one CNN. Te procedure of joint fusion is shown in
Figure 12. In contrast to early fusion, this scheme passes
each TFM through a CNN and obtains the deep features
for each TFM. Let x1, x2, x3, and x4 denote the deep
feature vectors corresponding to the inputs SO, SR,
SO + SR, and SO − SR, respectively. Tese vectors are ob-
tained from the fatten layer of CNNs and the structure of
CNNs does not contain the fully connected layers. Since
the structure of CNN is the same for all inputs, all feature
vectors have the same number of features. Tese vectors
are then concatenated to form the fnal feature vector xf

(feature fusion block). Te vector xf is given to the
classifer to predict the output class. Te classifer is the
traditional MLP, and the structure is the same as fully
connected layers of considered CNN. In the training
process, the parameters of all CNNs and classifers are
tuned simultaneously.

3.3.3. Late Fusion. Te late fusion scheme, which is known
as a combination at the decision level, utilizes one CNN to
predict the output for each TFM separately as shown in
Figure 13. In this scheme, the size of the feature vector given
to dense layers is smaller than the joint fusion, but this
scheme does not consider the possible correlation among
deep features of TFMs. For the fnal decision, depending on
the situation, diferent methods such as majority vote, av-
eraging, weighted voting, or meta-classifcation based on
model predictions are used. Let the vectors p1, p2,p3, and p4
contain the prediction scores of diferent classes assigned by
each four CNNs, respectively. It should be noted that all
vectors have the size of nc × 1, where nc is the number of
classes. Te aggregation scheme calculates the sum of pre-
diction scores to obtain the fnal score, pagg, as

pagg(k) � 
4

i�1
pi(k), k � 1, . . . , nc. (7)

Finally, the predicted class ypred is the one that maxi-
mizes pagg as

ypred � argmax pagg . (8)
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Figure 5: Te HbO and HbR channels of RHT.
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Figure 6: Te top four HbO channels of LHT.
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Figure 7: Te top four HbO channels of FT.
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Figure 8: TFMs of diferent signals considering the top four channels. (a) HbO of FT. (b) HbO of LHT. (c) HbO of RHT. (d) HbR of FT.
(e) HbR of LHT. (f ) HbO of RHT.
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Figure 9: TFMs of diferent signals considering the top eight channels. (a) HbO of FT. (b) HbO of LHT. (c) HbO of RHT. (d) HbR of FT.
(e) HbR of LHT. (f ) HbO of RHT.
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Figure 10: TFMs of diferent signals considering the top 16 channels. (a) HbO of FT. (b) HbO of LHT. (c) HbO of RHT. (d) HbR of FT.
(e) HbR of LHT. (f ) HbO of RHT.
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4. Results

4.1. Simulation Setup. Te three two-class scenarios and
one three-class scenario are considered for classifcation
as follows for distinct purposes: (RHT, LHT), (RHT, FT),
(LHT, FT), and (RHT, LHT, FT). Te three-class scenario
enables us to capture intricate nuances in our data,
allowing diferentiation between multiple states or ac-
tivities. Simultaneously, binary scenarios address specifc
research questions with simpler distinctions. Tis dual
approach provides versatility, accommodating a wide
range of research objectives and allowing for comparative
analysis of classifer performance. Overall, it enriches our
research by ofering a comprehensive exploration of our
dataset, catering to both complex and focused research
questions.

Te performance of LeNet andMobileNet is obtained for
each scenario for the diferent number of channels and
fusion schemes. Also, the structure of the modifed CNNs
yielding the highest accuracy is presented. In this paper,
subject-independent classifcation is performed. Hence,
train and test data were determined by the cross-subject
validation protocol. Tis protocol trains the model with data
from 29 subjects, and data from one subject evaluate the test
accuracy of the model. Tis procedure is repeated for each
subject as test data and average results are reported. Con-
sidering 25 trials for each task per subject, there are 750
signals from each task; hence, there are 725 and 25 signals
from each task for training and testing, respectively. It
should be mentioned that the data augmentation proposed
in [24] is utilized to increase the number of training signals.
Table 2 contains the parameters used for training CNN. Te
learning rate balances the convergence to the optimal so-
lution and stability. Regularization parameter controls the
overftting and encourages generalization. Te maximum
number of epochs efectively updates the model without
overftting. Batch size balances the training speed by parallel
processing and computational complexity. Te momentum
enhances the convergence and escape from local minima.
Learning rate drop factor and drop period are used for fne-
tuning the learning rate for efective convergence. SGDM
optimizer combines the benefts of stochastic gradient de-
scent with momentum. Cross-entropy loss function is
suitable for classifcation tasks, measuring dissimilarity
between predicted and actual class distributions.

Te performance of the proposed method is presented in
terms of confusion matrix, accuracy (Acc.), sensitivity
(Sens.), precision (Prec.), Kappa score (Kp), and F1-score,
which are calculated as follows [25]:

Acc. �
TP + TN

TP + TN + FP + FN
,

Sens. �
TP

TP + FN
,

Prec. �
TP

TP + FP
,

Kp �
Acc − Ar

1 − Ar

�
Acc − 1/nc

1 − 1/nc

,

F1 � 2
Prec × Sens
Prec + Sens

,

(9)

where the true positive (TP) and true negative (TN), re-
spectively, denote the number of correctly classifed and
rejected fNIRS signals. Also, the false positive (FP) and false
negative (FN), respectively, denote the number of in-
correctly identifed and incorrectly rejected fNIRS signals.
Also, Ar � 1/nc is the random accuracy, where nc is the
number of classes.

4.2.Channel Selection. Asmentioned in Section 2, the fNIRS
signals were recorded in 20 channels and our criterion for
channel selection was SNR. Since the number of rows and

CNN Predicted
classSearly

Figure 11: Te procedure of classifcation with early fusion.

CNN without
dense layers

CNN without
dense layers

CNN without
dense layers

CNN without
dense layers

D
ee

p
fe

at
ur

es
D

ee
p

fe
at

ur
es

D
ee

p
fe

at
ur

es
D

ee
p

fe
at

ur
es

Fe
at

ur
e f

us
io

n

Classifier

Loss

Loss

Loss

Loss

S0 – SR

S0 + SR

S0

SR

Figure 12: Te procedure of joint fusion.

S0 – SR

S0 + SR

S0

SR

CNN

CNN

CNN

CNN Prediction
scores

Prediction
scores

Prediction
scores

Prediction
scores

A
gg

re
ga

tio
n

Predicted
class

Figure 13: Te procedure of late fusion.

International Journal of Intelligent Systems 9



columns of input of 2D-DOSTshould be a power of two, we
consider the four, eight, and 16 top channels based on SNR
value for ternary and binary classifcation. To this end, the
SNR of channels was sorted in descending order and most
repetitive channels among all subjects are considered. Fig-
ure 14 demonstrates the repetition of high-SNR channels
among subjects. Te selected channels are also given in
Table 3.

As given in [7], the motor cortex regions in contralateral
hemispheres were well activated when the subjects perform
fnger-tapping and distinct HbR values were observed at
channels 5, 6, 15, and 16 located in the anterior areas of C3
and C4. According to Table 3, these channels are among
high-SNR ones.

4.3. Accuracy of LeNet. Table 4 presents the accuracy of
LeNet and its modifed version, accuracy in parentheses,
in diferent scenarios for diferent number of channels and
fusion schemes. As observed, the modifed version reaches
a higher accuracy than the original structure. Also, the
binary scenarios have higher accuracy than the three-class
scenario. It is observed that, in general, increasing the
number of channels enhances the classifcation accuracy.
Increasing the number of channels provided more in-
formation about brain activity, and hence classifcation
accuracy increased. On the other hand, computational
complexity increases. From fusion schemes, the joint
fusion that extracts deep features from each TFM sepa-
rately yields the highest accuracy, and the early fusion
outperforms the late fusion. Since the joint fusion scheme
concatenates the four vectors of deep features, it has
a higher complexity compared to other fusion schemes.
Te three-class scenario reaches the highest accuracy of
90.71%. Also, the scenarios (RHT, LHT), (RHT, FT), and
(LHT, FT) have the highest accuracy of 95.72%, 94.88%,
and 93.19%, respectively. Also, the standard deviation of
classifcation accuracies obtained in cross-validation is
given for modifed network. Te smaller values of stan-
dard deviations depict the generalization of the proposed
method.

Table 5 presents the structure of modifed LeNet used for
feature extraction and classifcation in joint fusion. Te
input layer passes the input TFMwith the size of 128×16×1

to the frst convolution layer. Tis structure for classifcation
consists of two convolutions, two average pooling layers, and
one fatten layer. Each CNN generates the deep feature
vector with the size of 600×1, and considering four CNNs
for feature extraction, according to Figure 4, the input of the
frst fully connected layer is (4× 600)× 1. Te last fully
connected layer acts as the output layer, and its output has
the size of nc × 1.

4.4. Accuracy of MobileNet. Te accuracy of MobileNet for
diferent structures is given in Table 6. It is observed that the
modifed structure yields a higher accuracy than the original
structure. Te accuracy of the proposed method for the
three-class scenario is 93.02%. Also, the accuracy for the
scenarios (RHT, LHT), (RHT, FT), and (LHT, FT) is 98.73%,
96.67%, and 95.65%, respectively. Tese accuracies are ob-
tained in joint fusion with the top 16 channels. As observed,
similar to LeNet, the proposed method has a higher accuracy
for two-class scenarios compared to the three-class scenario.
Comparing Tables 4 and 6, the standard deviations of
modifed MobileNet are lower than those of the modifed
LeNet.

Te structure of modifedMobileNet yielding the highest
accuracy in the joint fusion scenario is given in Table 7. Te
size of the input layer is 128×16. Each Conv. layer is
a standard convolutional layer with batch normalization and
rectifed linear unit (ReLU). Also, the Conv. dw denotes the
depthwise separable convolutions with depthwise and
pointwise layers followed by normalization and ReLU.

4.5. Confusion Matrix. Te confusion matrices of the pro-
posed method with joint fusion and 16 channels for diferent
classifcation scenarios are given in Tables 8–11. It is ob-
served that in the three-class scenario, the RHT and LHT
signals have higher sensitivity than the FT, while in binary
scenarios (RHT, FT) and (LHT, FT), the FT has higher
sensitivity than the RHT and LHT. Also, in both three-class
and binary (RHT, LHT) scenarios, the RHT has higher
sensitivity than the LHT.Te sensitivity values for all signals
in all classes are higher than 94%, except the FT in the three-
class scenario.

4.6. Efect of Data Augmentation. Te CNNs require more
data for training compared to traditional artifcial neural
networks to avoid issues such as overftting and underftting
and increase the training accuracy and generalization. As
mentioned in this paper, the method based on WGANs
proposed in [24] is employed for data augmentation. Tis
network consists of two parts: critic and generator. Te
former learns the structure of data and the latter generates
the artifcial data, and both were confgured as fully con-
nected feedforward neural network with three layers [24] as
given in Table 12, where Ntime andNch represent the number
of the time samples (�133) and channels (depends on the
number of used high-SNR channels), respectively. A bias
term was also added to the input and hidden layers. Random

Table 2: Parameters used for training.

Parameter Value
Learning rate 0.001
Regularization parameter 0.002
Maximum number of epochs 100
Batch size 64
Momentum 0.85
Learning rate drop factor 0.2
Learning rate drop period 20

Optimizer Stochastic gradient descent with
momentum (SGDM)

Loss function Cross-entropy
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numbers sampled from a uniform distribution in the range
[− 1, +1] represented input to the generator z that was
a vector with Nz dimension (�100) [24].

As mentioned, there are 725 training samples at each
cross-validation which are used for training critic network
and the accuracy was reported for diferent number of
generated samples. Te efect of the number of augmented
signals per training signal on the accuracy of diferent
scenarios is shown in Figure 15. It is observed that for the
lower number of augmented samples, the accuracy is low,

and increasing the number of augmented samples increases
the accuracy for all scenarios considering the diferent
number of channels. Hence, using data augmentation is
necessary to train the model for the classifcation of motor
fNIRS signals based on deep learning.

4.7. Performance Comparison. Table 13 compares the per-
formance of the proposed method with recently introduced
ones on the considered dataset to demonstrate the efciency
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Figure 14: Te number of repetition of high-SNR channels among all subjects. (a) HbO signal, top four channels. (b) HbR signal, top four
channels. (c) HbO signal, top eight channels. (d) HbR signal, top eight channels. (e) HbO signal, top 16 channels. (f ) HbR signal, top 16
channels.

Table 3: Te selected channels based on SNR values.

Number
of selected channels

Selected channels
HbO HbR

4 5, 15, 2, 4 5, 15, 4, 2
8 5, 15, 4, 8, 16, 2, 12, 1 5, 15, 4, 2, 8, 16, 19, 12
16 5, 6, 9, 3, 15, 16, 7, 18, 8, 10, 12, 19, 17, 20, 2, 4 3, 5, 6, 9, 7, 8, 15, 16, 18, 19, 12, 20, 4, 17, 2, 14
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of the proposed method for the classifcation of motor
execution fNIRS signals. Te results indicate that the pro-
posed method outperforms the recently introduced ones.
Te average changes of HbO and HbR signals with a length
of fve seconds were calculated as features in [26] and then
classifed by Bayesian neural networks. Te scenarios of
(RHT, FT) and (LHT, FT) were considered, and the max-
imum accuracy of 86.44% was obtained. Te diference of
HbO and HbR changes as well as vector size and angle are
considered as features of fNIRS signals in [27] and then are
classifed by LDA. Te maximum accuracy of 98.7% and

85.4% was obtained for two- and three-class scenarios, re-
spectively. In [7], the features were average changes of HbO
and HbR concentrations and the maximum accuracy of
84.4% and 70.4% was obtained for two- and three-class
scenarios, respectively. A method based on the transformer
self-attention mechanism was introduced in [28]. To en-
hance data utilization and network representation, this
method leverages spatial and channel representations of
fNIRS signals. Te results show that the method yields the
maximum accuracy of 75.49% for three-class scenario. Te
authors in [29] designed fNIRSnet considering the inherent

Table 4: Te accuracy of LeNet in diferent scenarios.

Scenario Number of channels
Fusion scheme

Early Late Joint

(RHT, LHT, FT)
4 75.27 (77.39± 4.16) 71.64 (73.03± 4.53) 77.57 (79.49± 4.02)
8 80.26 (81.95± 3.41) 77.82 (80.68± 3.75) 83.85 (86.14± 3.24)
16 84.74 (86.83± 2.26) 83.29 (85.59± 2.37) 87.95 (90.71± 2.08)

(RHT, LHT)
4 82.49 (84.72± 3.03) 77.79 (80.08± 3.22) 83.57 (85.36± 2.96)
8 85.09 (88.11± 2.51) 85.14 (86.63± 2.78) 90.67 (92.09± 2.29)
16 92.16 (93.64± 2.08) 89.07 (91.31± 2.43) 93.54 (95.72± 1.91)

(RHT, FT)
4 80.18 (82.90± 3.19) 77.26 (79.77± 3.35) 82.86 (85.17± 3.11)
8 85.37 (87.15± 2.77) 83.87 (85.35± 2.96) 89.93 (91.38± 2.47)
16 90.48 (92.68± 2.28) 88.03 (90.10± 2.65) 92.26 (94.88± 2.06)

(LHT, FT)
4 79.85 (81.82± 3.29) 76.58 (78.19± 3.48) 82.08 (84.65± 3.13)
8 84.97 (86.32± 2.91) 81.17 (83.64± 3.15) 87.61 (90.81± 2.52)
16 88.13 (90.18± 2.59) 86.58 (88.90± 2.85) 91.05 (93.19± 2.23)

Te accuracy of modifed LeNet is given in parentheses.

Table 5: Te structure of modifed LeNet used in joint fusion.

Operation Layer Input Filter size Output

Feature extraction

Convolution 128×16×1 5× 5×10 124×12×10
Average pooling 124×12×10 Pool 2× 2 62× 6×10
Convolution 62× 6×10 3× 3×10 60× 4×10

Average pooling 60× 4×10 Pool 2× 2 30× 2×10
Flatten 30× 2×10 — 600×1

Classifcation
Fully connected 2400×1 — 128×1
Fully connected 128×1 — 64×1
Fully connected 64×1 — nc × 1

Table 6: Te accuracy of MobileNet in diferent scenarios.

Scenario Number of channels
Fusion scheme

Early Late Joint

(RHT, LHT, FT)
4 79.01 (80.26± 3.38) 75.46 (77.29± 4.15) 81.08 (83.41± 3.84)
8 82.23 (83.75± 2.62) 81.90 (83.03± 3.44) 87.74 (89.53± 3.09)
16 88.05 (88.93± 2.14) 86.36 (88.35± 2.19) 91.12 (93.02± 1.95)

(RHT, LHT)
4 85.49 (86.93± 2.72) 80.92 (83.49± 3.13) 86.02 (88.73± 2.72)
8 88.91 (89.93± 2.36) 87.26 (89.07± 2.56) 92.82 (94.09± 2.14)
16 94.01 (95.03± 1.95) 91.91 (93.41± 2.28) 97.15 (98.73± 1.41)

(RHT, FT)
4 83.29 (84.83± 3.08) 80.26 (81.99± 3.11) 85.93 (87.25± 3.05)
8 87.54 (88.28± 2.34) 86.05 (87.26± 2.77) 92.06 (94.01± 2.26)
16 92.71 (93.82± 1.87) 90.98 (92.18± 2.49) 95.65 (96.67± 1.98)

(LHT, FT)
4 82.17 (83.25± 3.12) 79.15 (81.01± 3.24) 85.19 (87.25± 3.09)
8 87.90 (89.16± 2.68) 84.09 (85.17± 3.02) 91.01 (92.13± 2.33)
16 90.88 (92.09± 2.16) 89.91 (91.63± 2.47) 93.87 (95.66± 2.12)

Te accuracy of the modifed MobileNet is given in parentheses.
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delayed hemodynamic responses of fNIRS signals [30]. Te
local interpretable model-agnostic explanation (LIME) al-
gorithm was proposed for the feature selection for fNIRS

datasets in [31]. Te Gramian angular diference feld
(GADF) was used to encode multichannel fNIRS signals into
multichannel images.

Table 7: Te structure of modifed MobileNet used in joint fusion.

Layer input Input Filter size/stride Output
Conv. 128×16×1 3× 3× 32/2×1 64×16× 32
Conv. dw 64×16× 32 3× 3× 32/1× 1 64×16× 32
Conv. 64×16× 32 32×1× 64/1× 1 64×16× 64
Conv. dw 64×16× 64 3× 3× 64/2×1 32×16× 64
Conv. 32×16× 64 32×1× 128/1× 1 32×16×128
Conv. dw 32×16×128 3× 3×128/1× 1 32×16×128
Conv. 32×16×128 32×1× 128/1× 1 32×16×128
Conv. dw 32×16×128 3× 3×128/2×1 16×16×128
Conv. 16×16×128 16×1× 256/1× 1 16×16× 256
Conv. dw 16×16× 256 3× 3× 256/1× 1 16×16× 256
Conv. 16×16× 256 16×1× 256/1× 1 16×16× 256
Conv. dw 16×16× 256 3× 3× 256/2× 2 8× 8× 256
Conv. 8× 8× 256 8×1× 512/1× 1 8× 8× 512
Conv. dw 8× 8× 512 3× 3× 512/1× 1 8× 8× 512

5×
Conv. 8× 8× 512 8×1× 512/1× 1 8× 8× 512

Conv. dw 8× 8× 512 3× 3× 512/2× 2 4× 4× 512
Conv. 4× 4× 512 4×1× 1024/1× 1 4× 4×1024
Conv. dw 4× 4×1024 3× 3×1024/1× 1 4× 4×1024
Conv. 4× 4×1024 4×1× 1024/1× 1 4× 4×1024
Average pooling 4× 4×1024 Pool 4× 4 1× 1× 1024
Flatten 1× 1× 1024 — 1024×1
Fully connected 1024×1000 — 1024×1
Softmax Classifer — nc × 1

Table 8: Confusion matrix for three-class scenario.

Predicted class
Sens. (%) Prec. (%) F1-score (%)

RHT (%) LHT (%) FT (%)

Actual class
RHT 95.07 2.93 2 95.07 93.32 94.19
LHT 2.27 94.13 3.60 94.13 91.69 92.89
FT 4.53 5.60 89.87 89.87 94.13 91.95

Acc.� 93.02%, Kp � 0.8604

Table 9: Confusion matrix for (LHT, RHT) scenario.

Predicted class
Sens. (%) Prec. (%) F1-score (%)

RHT (%) LHT (%)

Actual class RHT 98.80 1.20 98.80 98.67 98.74
LHT 1.33 98.67 98.67 98.80 98.74

Acc.� 98.73%, Kp � 0.9746

Table 10: Confusion matrix for (RHT, FT) scenario.

Predicted class
Sens. (%) Prec. (%) F1-score (%)

RHT (%) LHT (%)

Actual RHT 96.40 3.60 96.40 96.91 96.65
Class LHT 3.07 96.93 96.93 96.42 96.67

Acc.� 96.67%, Kp � 0.9334
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Table 11: Confusion matrix for (LHT, FT) scenario.

Predicted class Sens. (%) Prec. (%) F1-score (%)
RHT (%) LHT (%)

Actual class RHT 95.20 4.80 95.20 96.09 95.64
LHT 3.87 96.13 96.13 95.24 95.68

Acc.� 95.66%, Kp � 0.9132

Table 12: Te structure of critic and generator networks used in this paper [24].

Layer
Network

Critic Generator
Input Ntime × Nch + 1 Nz + 1
Hidden Ntime + 1 Ntime + 1
Output 1 Ntime × Nch
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Figure 15: Te efect of data augmentation on the accuracy. (a) RHT, LHT, FT. (b) RHT, LHT. (c) RHT, FT. (d) LHT, FT.
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Also, the results of fve-fold cross-validation protocol are
given Table 13. As observed, this protocol outperforms the
cross-subject cross-validation, while due to the following
reasons, the cross-subject protocol is most popular than the
k-fold one in BCI applications [32–34].

(1) Generalization to new users: Cross-subject cross-
validation ensures that the model is tested on data
from individuals who were not part of the training
set. Tis helps assess the system’s ability to generalize
to new users, which is crucial for biomedical ap-
plications where the BCI needs to be applicable to
a wide range of individuals.

(2) Real-world variability: Biomedical applications often
involve real-world scenarios where users may exhibit
individual diferences, such as variations in brain
anatomy, physiology, or cognitive processes. Cross-
subject cross-validation allows for the evaluation of
the BCI system’s performance in capturing and
adapting to these inter-subject variabilities. It pro-
vides a more realistic assessment of how the system
will perform when deployed in diverse user
populations.

(3) Avoiding data leakage: In some cases, k-fold cross-
validation may lead to data leakage, where in-
formation from the test set inadvertently infuences
the training process. Tis can result in overly opti-
mistic performance estimates. Cross-subject cross-
validation helps mitigate this issue by ensuring that
the training and testing data come from diferent
individuals, reducing the risk of data leakage and
providing more reliable performance estimates.

(4) Clinical relevance: Biomedical applications often re-
quire BCI systems to be evaluated in a clinical context,
where the performance and reliability of the system

are critical. Cross-subject cross-validation allows for
a more rigorous evaluation of the BCI system’s per-
formance across diferent individuals, which is im-
portant for establishing its clinical relevance and
potential utility in real-world healthcare settings.

5. Conclusion

In this paper, a new method for the classifcation of motor
execution fNIRS signals was presented. Te presented
method is based on the joint fusion of TFMs of HbO, HbR,
HbO+HbR, and HbO − HbR. Te TFMs were obtained by
2D-DOST to simultaneously consider the correlation among
samples of diferent channels as well as the samples of each
channel. Joint fusion was considered to merge the deep
features extracted from four TFMs using CNN. Te open-
access dataset with 20-channel fNIRS signals of three motor
executions collected from 30 subjects was used for perfor-
mance evaluation. Te performance of LeNet, MobileNet,
and their modifed version was obtained for diferent
number of top channels and scenarios. Te results showed
that increasing the number of channels increases the ac-
curacy, and the proposed method reached the maximum
accuracy of 98.73% and 93.04% for two-class and three-class
scenarios, respectively, when modifed MobileNet is used
deep feature extraction and classifcation. Also, performance
comparison showed that the proposed method outperforms
the recently introduced methods.
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Table 13: Performance comparison between the proposed method and others.

Authors Method Accuracy
Siddique and Mahmud [26] Average changes of HbO and HbR, Bayesian neural network 86.44% (2 classes)

Nazeer et al. [27] Diference between HbO and HbR changes, LDA 98.7% (2 classes)
85.4% (3 classes)

Bak et al. [7] Average changes of HbO and HbR concentrations, SVM 84.4% (2 classes)
70.4% (3 classes)

Wang et al. [28] Te transformer self-attention mechanism 75.49% (3 classes)
Wang et al. [29] fNIRSnet 64.43% (3 classes)
Shin [30] LIME, SVM 86.0% (2 classes)
Wang et al. [31] GADF 78.22% (3 classes)

Proposed method 2D-DOST, feature fusion, CNN (fve-fold cross-validation) 99.07% (2 classes)
93.60% (3 classes)

Proposed method 2D-DOST, feature fusion, CNN (cross-subject cross-validation) 98.73% (2 classes)
93. 4% (3 classes)

Te bold values represent the maximum accuracy.
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