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Pelvis fracture detection is vital for diagnosing patients and making treatment decisions for traumatic pelvis injuries. Computer-
aided diagnostic approaches have recently become popular for assisting doctors in disease diagnosis, making their conclusions
more trustworthy and error-free. Inspecting X-ray images with fractures needs a lot of time from experienced physicians.
However, there is a lack of inexperienced radiologists in many hospitals to deal with these images.Terefore, this study presents an
accurate computer-aided-diagnosing system based on deep learning for detecting pelvis fractures. In this research, we construct an
explainable artifcial intelligence (XAI) framework for pelvis fracture classifcation.We used a dataset containing 876 X-ray images
(472 pelvis fractures and 404 normal images) to train the model. Te obtained results are 98.5%, 98.5%, 98.5%, and 98.5% for
accuracy, sensitivity, specifcity, and precision.

1. Introduction

Te pelvis is a complex and functionally informative bone
that contributes directly to human movement and child
delivery [1]. Te human pelvis is located in the lower ab-
domen, between the spine and the lower limbs [2]. It
comprises the right and left innominate bones, the sacrum,
and the coccyx. Te innominate bones consist of the pubis,
ischium, and ilium. Te sacrum and coccyx are part of the
axial skeleton and are variably fused vertebrae [3–6], as
shown in Figure 1.

Managing patients with pelvis fractures is one of the
most complex aspects of trauma care, which occurs in 3% of
skeletal injuries [8]. Te function of the pelvis is as follows:
(1) to protect and support the abdominal and pelvis organs
[6], (2) to provide attachment points for muscles, (3) to

transmit weight from the upper body to the lower limbs [3],
(4) locomotion, and (5) childbirth. As a result, pelvis has
great clinical signifcance to humans [1].

Pelvis fractures, such as osteoporosis, can occur mainly
in motor vehicle accidents, sports, or after minor falls in
people with fragile bones. Often, pelvis fractures are asso-
ciated with other severe injuries, which can lead to acute
bleeding and damage to the surrounding internal organs and
soft tissues [5, 9]. Pelvis fractures are considered a major
cause of mortality. According to a study of patients with
pelvis fractures in the United States [10], pelvis and ab-
dominal bleeding are mortality’s main causes in the frst six
hours. In addition, the mortality rate in injured patients with
pelvis fractures is 5-20% in all emergency cases [11]. Given
these factors, diagnosing pelvis injuries should be done
urgently without any delay. X-ray imaging is the most
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common routine and cheap modality used in emergency
units for the early detection of injuries. X-ray imaging
should be carefully evaluated to detect any fractures in the
pelvis [12]. Inspecting X-ray images with fractures needs
a lot of time from experienced physicians. However, there is
a lack of experienced radiologists in many hospitals to deal
with these images [13]. AI-based systems are widely used to
help radiologists and physicians detect fractures. In a recent
study, Rainey et al. [14] showed that using an AI-based
system reduces 20% of the time radiologists spend reviewing
medical images. Terefore, building an AI model to support
physicians in interpreting pelvis X-ray images can reduce
radiologists’ stress, decrease errors, and improve patient
care. Despite advances in AI, very limited methods have
been proposed for detecting pelvis fractures.

Kitamura [15] used a deep learning technique to identify
pelvis fractures on X-ray images, where the results were 0.70
and 0.85 for the posterior pelvis and acetabular categories,
respectively. Yamamoto et al. [16] proposed a method for
detecting pelvis fractures using 3D CNN on CT images. Te
test data’s accuracy, specifcity, recall, and precision are
69.5%, 77.7%, 56.4%, and 61.1%, respectively. Ukai et al. [17]
used DCNNs to detect pelvis fractures in CT images, where
the AUCwas 0.824 with 0.805 recall and 0.907 precision.Te
AUC with a single orientation was 0.652.

Deep learning has recently become a potential approach
for feature extraction from input images using various
models. Several neuron layers are utilized to create various
layers that extract small information from input images
while combining the features of earlier layers. Convolutional
neural networks, or CNNs, are these models. We aim to
support physicians in diagnosing pelvis injuries, especially in
emergencies. Additionally, deep learning models cannot be
used for high-risk judgments such as automated pelvis
fracture diagnosis because of their black-box nature. An
explainable artifcial intelligence (XAI) framework with deep
learning models is necessary to support deep learning
models. A set of procedures and methods known as XAI
makes it possible for diferent users to comprehend and have
faith in the outcomes and output produced by machine

learning algorithms. XAI could be pre- or post-hoc. Addi-
tionally, “model-agnostic” refers to a class of explainers with
broad use that are not explicitly created for a particular ML
technique.

Te main contributions of this paper can be summarized
as follows:

(1) Building a new deep learning model based on
ResNet50 for detecting pelvis fractures

(2) An XAI model is created using the Grad-CAM
framework to explain why a deep learning model
predicts pelvic fractures and improves model accu-
racy, which can raise user confdence and boost the
diagnostic system’s safety

(3) Validating and evaluating the performance of the
proposed model on real-case X-ray images.

Tis paper is organized as follows: Section 2 provides the
methods used for pelvis fracture detection. Section 3 pres-
ents the proposed algorithm. Section 4 discusses the results
obtained and case study. Section 5 presents the conclusion
and future work.

2. Methods

Deep learning-based methods are widely used in medical
computer-aided diagnosis systems [18]. ResNet [19], In-
ception [20], Exception [21], and EfcientNet [22] networks
have gained popularity in classifying medical images.
Transfer learning improves classifcation capabilities, espe-
cially with small-size datasets [23, 24]. Transfer learning is
utilizing a previously learned model to solve a new problem.
Furthermore, deep learning models’ problematic “black-
box” nature necessitates the development of AI that can
be explained (XAI). Te neural network is known for its
categorization task for users and subject-matter experts to
examine the many elements.

Additionally, we provide an XAI framework for the
pelvis fracture classifcation problem in the current study
employing class activation maps. Ensuring the neural net-
work has acquired the correct characteristics of the many
illnesses considered rather than certain local noises in the
dataset is crucial. When tested with pelvis fracture other than
those present in the dataset, the neural network would fatally
misidentify some cases due to its erroneous learning of the
local noises in the dataset.

Tus, the suggested XAI framework verifes that the
neural network has learned the correct characteristics and
increases confdence in its predictions. AlexNet, GoogleNet,
and ResNet50 are black-box deep learning models. Te
transfer learning was applied to these models, and the XAI
was used to introduce the trusted model for medical pur-
poses [25, 26].

2.1. AlexNet. AlexNet was the frst convolutional network
developed by Krizhevsky [27]. AlexNet contains several
layers, such as fve convolutional layers, two normalization
layers, three max-pooling layers, two fully connected layers,
and a SoftMax layer. Te concept of spatial correlation in an
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Figure 1: Te anatomy of the pelvis [7].
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image frame was investigated using convolutional layers and
receptive felds. To increase performance, a GPU was used.

2.2. ResNet50. ResNet is also defned as residual mapping.
Tere are 48 convolution layers, 1 max pool layer, and 1
average pool layer in a ResNet model version called
ResNet50 [19]. Shortcut connections are used in ResNet’s
architecture to address the vanishing gradient issue, as
shown in Figure 2.

A residual block, used repeatedly throughout the net-
work, serves as the fundamental ResNet building block. Te
network learns the mapping from x F(x) +G(x), as opposed
to x⟶ F(x) alone. Te function G(x)� x is an identity
function, and the shortcut connection is known as an
identity connection when the dimensions of the input x and
output F(x) are the same. Since it is simpler to zero out the
weights in the intermediate layer during training than to
push them to one, identical mapping is learned by doing so.
In ResNet, two mapping types were taken into consider-
ation. Te input x is padded with zeros to make the di-
mension match that of F(x), which is the frst nontrainable
mapping (padding). Trainable Mapping (Conv Layer) is the
second way, while G(x) is mapped from x using the 1× 1
Conv Layer. Te spatial dimensions are maintained or de-
creased throughout the network, the depth is maintained or
doubled, and the product of width and depth after each
convolutional layer is maintained.

2.3. GoogleNet. Google’s research team proposed Google-
Net, also known as Inception V1 [20]. Te goal behind the
GoogleNet architecture is to have flters of various sizes that
may function at the same level. Te network gets bigger
rather than deeper with this concept. Each inception module
can capture diferent levels of salient features. Te 5× 5 conv
layer captures global features, but the 3× 3 conv layer is
more likely to capture scattered (distributed) features. Te
max-pooling operation captures the low-level features that
are distinctive in a neighborhood. All these features are
retrieved and concatenated at a certain level before being
passed to the following layer.

2.4.XAI-BasedMethods. Despite the challenge of identifying
which features of a model’s input drive its decisions, deep
neural networks (DNNs) are an essential machine learning
technique. Such diagnosis is crucial in various real-world
areas, from law enforcement to healthcare, to ensure that
appropriate factors for the usage environment infuence
DNN decisions. As a result, research on the methods and
studies that explain a DNN’s judgments have grown into
a vibrant and expansive feld. Competing defnitions of what
it means to “explain” a DNN’s activities and to evaluate an
approach’s “ability to explain” add to the feld’s complexity
purpose [26].

In deep neural networks, gradients are vectors whose
magnitude is the partial derivative of the function f(x) and
points in the direction of that function’s greatest rate of

increase. Grad-CAM uses class specifcs to produce locali-
zation maps of the signifcant regions of the image based on
this information that fows through a generic convolutional
network. By displaying visualizations that support output
predictions, Grad-CAM makes black box models more
transparent. In other meaning, Grad-CAM combines class
discriminative capabilities with pixel-space gradient visu-
alization. Grad-CAM can be used with a wide range of CNN
architectures, including structured output, multimodel
output CNNs, and fully connected layers, such as the
AlexNet, ResNet, GoogleNet, VGGNet, and reinforcement
learning. So, we used Grad-CAM to explain and visualize the
ability of the proposed method to localize the signifcant
region.

3. The Proposed Algorithm

In this research, feature extraction is carried out using the
GoogleNet, ResNet50, and AlexNet networks.Te ImageNet
dataset is used to train these networks. Te network layers’
flters are used to identify input features, such as colors and
shapes.

Te pre-trained network is then used to classify various
pelvis in a new dataset into fractions and normal. Except for
the fnal three layers (fully connected layer (FCL), SoftMax
(SM), and classifcation), the training parameters from the
original pre-trained model are frozen [28].

Te network’s recently added layers are then trained
using the images from the new dataset. In addition, these
layers are integrated with the previously trained layers in the
pretrained network to classify the new classifcation classes.
Terefore, there are not many newly trained dense layers.

As a result, compared to CNN training from scratch, the
training process may be established relatively quickly, and
very little training data are required. Te new FCL, SM, and
classifcation output layers are subsequently trained using
the extracted features [29].

Te stochastic gradient-descent method with momentum
(SGDM), essentially an enhanced form of SGD with fxed
learning parameters, is used for fne-tuning. Te SGDM aims
to boost velocity across all dimensions, even those with
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Figure 2: Residual learning in ResNet50 [19].
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constant gradients [30, 31]. All these experiments use the
same hyperparameter setting. Figure 3 shows the transfer
learning process of GoogleNet, AlexNet, and ResNet50.

3.1. Grad-CAM-Based Method for XAI. Using class activa-
tion maps, we create an XAI framework for the pelvis
classifcation problem. Employing the gradient-weighted
class activation mapping (Grad-CAM) approach to validate
that the proper input pelvic segments are becoming activated
while classifying them to their related label. When the
network net analyses the classifcation score for the class
indicated by the label, Grad-CAM delivers the gradient-
weighted class activation mapping of the change in the
classifcation score of an image X. We use this function to
validate that your network is focusing on the appropriate
areas of a picture and to explain network predictions. Te
Grad-CAM interpretability technique uses the gradients of
the classifcation score concerning the fnished convolu-
tional feature map. Te portions of an image that have
a signifcant value on the Grad-CAM map have the most
efect on the network score for that class.

4. Experimental Results

An IBM-compatible computer with a Core i7 CPU, 16GB of
DDRAM, and an NVIDIA GeForce MX150 graphics card
was used for the research. Te application was executed on
a MATLAB 2022 (x64-bit). Te performance of three dis-
tinct transfer learning models, AlexNet, GoogleNet, and
RestNet50 was compared to the dataset. Te experimental
fndings and analysis of our models’ use of Kaggle-sourced
data are presented in this section.

A batch size of 32 models was trained across 10
epochs. Training accuracy, training error, validation
error, and validation error were calculated for each ep-
och. We used a categorical cross entropy loss function
and a stochastic gradient-descent technique with a mo-
mentum (SGDM) optimizer with a learning rate (LR) of
0.001. A learn rate drop factor approach using was uti-
lized by LR to speed up and bring the optimizer closer to
the global minimum.

We dynamically reduced the LR every four epochs based
on the validation accuracy to maintain the beneft of a high
LR’s faster computation time. If the validation loss did not
decrease after four epochs and the data was shufed between
each epoch, we decided to cut the LR by 0.1 using the
“LearnRateDropFactor” function.

4.1. Datasets. Te dataset was obtained from Kaggle [32].
Te dataset’s name in Kaggle is “ChestPelvisCSpineScans.” It
contains 876 images and 501MB in size. Te images are
organized into two groups. Te frst group includes 404
normal images (Figure 4). Te second group includes 472
pelvis fracture images (Figure 5).

4.2. Results and Discussion. Te performance of the pro-
posed method was computed using quantitative and qual-
itative. Accuracy, sensitivity, specifcity, and precision were
computed as quantitative measures, while the ROC curve
was used as a qualitative measure [33]. Values of false
positives (fp), false negative (fn), true positive (tp), and
true negative (tn) are used to compute the following mea-
sures from the confusion matrix:
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Figure 3: Te proposed transfer learning model.
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Figure 4: Samples from the frst group (normal images).

Figure 5: Samples from the second group (fracture images).
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Accuracy �
tp + tn

tp + fp + fn + tn

,

Sensitivity �
tp

tp + fn

,

Specif icity �
tn

fp + tn

,

Precision �
tp

tp + fp

.

(1)

In the frst experiment, we removed the last three layers
from AlexNet and added new ones for classifying the pelvis
into fracture and normal. We resized all images in the dataset
to 227× 227× 3 to match the width and height of the AlexNet
input layer. Te dataset is divided into 70%, 15%, and 15% for
training, validating, and testing the refned AlexNet.

Due to the class imbalance, each class’s performance
metrics are calculated separately. Te average of these mea-
surements is then determined. Figure 6 shows the confusion
matrix for training and testing the refned AlexNet using the
pelvis dataset, while Table 1 provides an overview of the
average accuracy, sensitivity, specifcity, and precision values.

In the second experiment, we adopted ResNet50 by
removing the last three layers and adding three layers for the
pelvis fracture and normal classifcation. All images’ width,
height, and channels have been resized to 224× 224× 3 to
match the input layer of ResNet50.

Figure 7 shows the confusion matrix for training and
testing the refned AlexNet using the pelvis dataset. Because
of the imbalance between the class’s images, Table 1 provides
an overview of the average accuracy, sensitivity, specifcity,
and precision values. Figure 8 indicates the receiver oper-
ating characteristic (ROC) curve for the refned AlexNet and
ResNet50.

Figure 9 contains three curves for the proposed models
AlexNet, ResNet50, and GoogleNet. Tese curves visualize the
performance measures for the three proposed methods. Tese
curves were plotted by the true positive rate (sensitivity) against
the false positive rate (1-specifcity). As shown, the performance
measures of AlexNet were the lowest, proving the values ob-
tained from the confusion matrix. Te performance measures
of ResNet50 enhancedmore thanAlexNet.TeResNet50 curve
indicates that the sensitivity and 1-specifcity are increased
compared to the values obtained from the AlexNet confusion
matrix. Te fnal proposal for GoogleNet obtained the best
measures, as indicated in the ROC curve. Tis curve visualizes
the obtained values in the confusion matrix.

4.3. XAI Framework. In AI and machine learning, XAI is
a new and developing feld. Constructing trust among humans
about the choices made by artifcial intelligence models is vital.
It can only be performed by making ML models’ black boxes
more transparent. Explainable AI frameworks are tools that

attempt to explain how the model works. Tese tools generate
reports about how the model works.

Deep learning networks are frequently referred to as
“black boxes” because they do not provide any means of
determining which component of an input to the network was
responsible for the prediction made by the network or what it
has learned. Tese models frequently fail spectacularly
without warning or explanation when they make incorrect
predictions. Class activation mapping is one method for
obtaining visual explanations of the predictions made by
convolutional neural networks. Mistaken, apparently non-
sensical forecasts can frequently have sensible clarifcations.
We utilized the class activationmapping to see if a certain part
of an input image confused the network and caused it to make
an inaccurate prediction. Terefore, we utilized Grad-CAM.

Te Grad-CAM method, which yields class activation
maps, is used to create the XAI framework for the pelvis
classifcation job [26]. Grad-CAM creates a map of weights,
highlighting the key areas in the input that the CNN utilized
to predict its class label. Grad-CAM leverages the gradient
values fowing into the fnal convolutional layer to create
these class activation maps.

Selvaraju et al. [26] describe Grad-CAM in depth. We
chose a few samples of pelvis that our CNN properly
identifed, and then we used Grad-CAM to obtain their class
activation maps. Grad-CAM can be slightly modifed to
produce explanations that indicate support for locations
where the network might revise its forecast.

Terefore, removing concepts from those areas would
increase the model’s confdence in its forecast. Tis type
of explanation is referred to as a counterfactual expla-
nation. Concerning feature maps A of a convolutional
layer, we specifcally negate the gradient of yc (score for
class c). As a result, the signifcance weights ∝c

k are now
[26] as follows:
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Figure 6: Confusion matrix of the pelvis classifcation using
AlexNet and transfer learning.
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=

Pooling layer

Gradients

(2)

Tis procedure is shown in Figure 10. Te pelvis re-
gions in the image that CNN used to forecast that specifc
disease successfully were indicated by the average acti-
vation obtained. Te analysis is done on the average ac-
tivation along the acquired pelvis segments. Creating an
XAI framework for the pelvis classifcation task is im-
portant for medical purposes. Figure 11 shows that the
proposed method can detect the pelvis part from the
whole image. To evaluate and show how to classify the
normal and fractured pelvis using the provided method.

Table 1: Quantitative values of the performance measure.

Refned models Accuracy (%) Sensitivity (%) Specifcity (%) Precision (%)
AlexNet 54.19 50 50 54.19
ResNet50 94.7 94.5 94.5 95
GoogleNet 98.5 98.5 98.5 98.5

Confusion Matrix

pelvis fracture

69
51.9%

O
ut

pu
t C

la
ss

pelvis normal

4
3.0%

57
42.9%

3
2.3%pelvis fracture

pelvis normal

Target Class

Figure 7: Confusion matrix of the pelvis classifcation using
ResNet50 and transfer learning.

Confusion Matrix

pelvis fracture

65
48.9%

O
ut

pu
t C

la
ss

pelvis normal

2
1.5%

66
49.6%

0
0.0%pelvis fracture

pelvis normal

Target Class

Figure 8: Confusion matrix of the pelvis classifcation using
GoogleNet and transfer learning.
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Figure 11: XAI Framework for the proposed method using GoogleNet.

Figure 12: Normal pelvis X-ray.

Figure 13: Pelvic fracture X-ray.
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From the XAI of the proposed method, the proposed
method can detect the pelvis part correctly and classify the
new image.

4.4. Case Study. To evaluate and prove the proposed
method’s ability to detect pelvis fracture, we collected the X-
ray images used in the experiment from the radiology center
for 15 cases. It contains 15 X-ray images. Figure 12 shows
anteroposterior images of a normal pelvis. Te images are
considered normal due to the absence of fracture features,
loss of bone continuity, fssure lines, or dislocation in the
form of loss of pelvic alignment or sacroiliac joint
separation.

In conclusion, all the images present a normal pelvis
regarding fractures or dislocations. Figure 13 shows ante-
roposterior views of fracture pelvises of diferent types. Te
images considered fracture due to fracture criteria in the
form of complete loss of bone continuity and separation of
bone ends. We used ResNet50 and GoogleNet to classify
these cases. We observed that the proposed method based on
ResNet50 and transfer learning fails to classify three classes
of pelvis fracture. In contrast, the proposed method using
GoogleNet and transfer learning fails only in one normal and
fracture case.

5. Conclusions and Future Work

In this study, we proposed an explainable artifcial in-
telligence (XAI) framework for pelvis fracture detection. It
has been shown that the proposed technique can be used and
provides fast and accurate solutions to the detection of pelvis
image (X-ray) fractures. Te proposed system aims to
support physicians in diagnosing pelvis fractures, especially
in emergencies where inexperienced radiologists and phy-
sicians cannot deal with these images. We used a dataset
containing 876 X-ray images (472 pelvis fractures and 404
normal images) to train the model. Te results show an
accuracy of 98.5%, a sensitivity of 98.5%, a specifcity of
98.5%, and a precision of 98.5%. In the future, in addition to
pelvis fracture detection, a system can be developed that can
perform classifcation for major fracture types of the pelvis,
such as fracture of the iliac bone, fracture of the sacrum, and
fracture symphysis.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.
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