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High-precision time sequence forecasting is a complicated cyber-physical system (CPS) task. Due to the diversity of data scales
and types, the classic time-series prediction model meets the challenge to deliver accurate prediction results for many forms of
time-series data. Tis work proposes a hybrid model with long short-term memory (LSTM) and embedded empirical mode
decomposition (EEMD) based on the entropy fusion feature. First, we apply EEMD in entropy fusion feature long short-term
memory (ELSTM) to lessen pattern confusion and edge efects in traditional empirical mode decomposition (EMD).Te sequence
is then divided into intrinsic mode functions (IMF) by using EEMD.Ten, feature vectors are constructed between IMFs and their
respective information entropy for feature merging. LSTM is used to build a full connection network for each entropy fusion
feature IMF subsequence for prediction and each type of IMF subsequence as the feature dimension to obtain its prediction
results. Finally, the output results of all IMF subsequences are reconstructed to obtain the fnal prediction result. Compared with
the LSTM method, the performance of the proposed method has been improved 64.33% on the evaluation metric MAPE. Te
proposedmodel has also delivered the best prediction outcomes across four diferent time-series datasets.Te experimental results
conclusively show that the proposed method outperforms other models compared.

1. Introduction

1.1. Research Motivation and Problem Statement

1.1.1. Motivation. Time-series forecasting (TSF) is a recent
dynamic technique for managing CPS, intelligent process-
ing, fnancial analysis [1], and equipment fault diagnosis
[2, 3]. Hrabia et al. [4] pointed out that if an efective analysis
model and prediction of COVID-19 can be developed, the
epidemic prevention policy can be adjusted accordingly. TSF
will play a constructive role in predictive decision-making.
In addition, for CPS, the CPS sensor network will collect
diferent types of data. In order to organize system resources
more logically, it is necessary to develop a reliable regression
prediction analysis model. Huang et al. [5] proposed an
EMD method to perform modal decomposition on the
original complex signal data and, fnally, obtain multiple

intrinsic mode function (IMF) individuals with gentle
characteristics.Te EMDhelps to decompose and extract the
inherent information of data sequences; with the same
purpose as neural networks in solving TSF problems, we
consider using existing deep learning methods combined
with EMD-derived methods for prediction to achieve more
reliable prediction performance. Lu et al. [6] proposed a new
hybrid approach Prophet-EEMD-LSTM based on de-
composition methods and the prediction model. Te fusion
model can economically improve the prediction ability of
the algorithm.

1.1.2. Problem Statement. Although the fusion model using
the EMD method can improve the prediction ability of the
model to a certain extent, the inherent problems of the EMD
method, such as mode mixing and boundary efect, will
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afect the prediction ability of the model. Terefore, it is
necessary to develop a model with better decomposition
ability to extract the hidden features of time series [7].
Moreover, the mode decomposition method itself cannot
achieve orthogonal decomposition in the time domain de-
composition and there is incomplete decomposition.
Terefore, there must be a correlation between the IMF, and
how to make full use of this feature to further extract data
features is also the focus of our consideration.

1.2. Research Challenge and Gaps

1.2.1. Challenges. In common application scenarios, the se-
quence characteristics are typical nonstrictly stable and
nonlinear data types, with high discretization features [8].
EMD is usually used to analyze complex signals with nonstrict
stationary characteristics and a high degree of nonlinear
dispersion in traditional signal processing. Zhao et al. [9] used
a hybrid process based on the EMD and LSTM neural net-
work method. By using the original EMD methodology, the
feature extraction ability was improved and the prediction
error was decreased. However, there is mode aliasing in signal
decomposition. Tis problem will be particularly prominent
when the original signal contains more high-frequency
components. Tis problem can be dealt with by the
VMD-LSTM method proposed by Niu et al. [10]. Te in-
trinsic mode function (IMF) in signal decomposition has
boundary efects between their components, which will afect
the prediction accuracy [11]. Ensemble empirical mode de-
composition (EEMD) aims to prevent the mode overlap
problem that results from the EMD method’s insufcient
breakdown of data properties [12]. Te method enhanced the
extraction of periodic sequence characteristics and trends
using the conventional EMD approach as a foundation. In an
attempt to lessen aliasing across IMF components and
EEMD-LSTM proposed superimposing Gaussian noise on
the original signal [13, 14]. Based on the EEMD components
[14], the data are divided into high-frequency and low-
frequency sequences using the enhanced Bi-LSTM.

1.2.2. Research Gap. Existing research usually focuses on
how to improve the bias of modal aliasing and boundary
efects on network models through more optimized de-
composition models. However, current mainstream modal
decomposition fusion models ignored the correlation be-
tween IMF components obtained from pattern de-
composition. At the same time, this kind of decomposition
method cannot achieve complete decomposition (orthog-
onal decomposition). Moreover, in the framework of the
current EMD-LSTM method, each IMF uses independent
prediction methods to reconstruct. Tis step places too
much emphasis on the characteristic results of the modal
component itself, which will cause the prediction result to be
skewed to the ofset or special mode for incomplete modal
decomposition. In general, the abovementioned model will
inevitably have the defect of ignoring the interaction be-
tween IMFs. Furthermore, the hidden features between the
time-series features of IMFs are also ignored in the con-
struction of most fusion models.

1.2.3. Research Novelty

(1) A hybrid time-series prediction model with EEMD
and LSTM based on entropy fusion feature is pro-
posed, namely, EEMD-ELSTM. It consists of four
parts: (1) EEMD, (2) entropy feature fusion, (3)
LSTM network, and (4) prediction outcome
reconstruction.

(2) EEMD method can reduce mode aliasing and
boundary infuence, and the entropy feature fusion
method calculates the entropy of the IMF compo-
nents obtained, and then adjusts the balance weight
between the IMF components with high entropy and
low entropy in the fully connected network by in-
creasing the entropy sorting fusion method, thereby
ensuring strong correlation between the dimensional
components of the fully connected LSTM network
and improving the reliability of LSTM prediction
results.

(3) Te eigenvector frames between similar modal
functions are processed by fully connected modal
decomposition LSTM to improve the prediction
accuracy of the fnal reconstruction data.

1.2.4. Main Contributions. Te main contributions of this
work are summarized as follows:

(1) Te EEMD algorithm can decompose hidden in-
formative features from time-series data onto mul-
tiple characterized IMF components

(2) Te ELSTM phase of the algorithm can map the
hidden characteristics of IMF components and pass
on the same characteristics among components
using entropy fusion, relying on the learning char-
acteristics of the LSTM network

(3) In the LSTM stage, the algorithm is able to map the
hidden characteristics between IMF components
through entropy fusion according to the learning
characteristics of the LSTM network and transfer the
commonality between the components

(4) Te proposed optimization algorithm can be applied
to diferent datasets and has general applicability

2. Related Work

Te current research in the time-series prediction feld can
be divided into three main categories [15, 16].

2.1. Statistical Model-Based Method. Prajapati and Kanojia
[17] examined the index that has the largest infuence on the
fuctuation of COVID-19 for India by using autoregressive
integrated moving average (ARIMA) and autoregressive
(AR) models. Behzadi et al. [18] proposed a general in-
formation theory framework based on the generalized linear
model (GLM), which was applied to the causal inference of
heterogeneous datasets and verifed on celestial data. Kap
et al. [19] proposed the additive noise model (ANM) on
noise level for time-series analysis, which confrmed the
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efect and signifcance of the noise overlaid on the extraction
sequence in the time-series prediction model. Hanapi et al.
[20] proposed the fuzzy sliding window autoregressive
conditional heteroskedasticity model for time-series pre-
diction and applied it to aerial data. Studies based on time-
series decomposition [21] that used the Prophet model can
handle time-series data with default values and predict itself.
However, time-series data often contain many components
with cyclical characteristics and nonsignifcant trends, which
are not well taken into account by the aforementioned
models.

2.2. Deep Learning-Based Method. Most of the time-series
data streams collected by sensor networks in CPS are highly
discrete and nonstationary, which makes accurate trend
forecasting difcult to achieve. Te spatiotemporal prop-
erties of the time-series data are not simply relative to real-
time data about the current temporal nodes but are based on
the traditional Markovian nature [22]. It will result in the
loss of data feature information. Huang et al. [23] elaborated
on related methods based on artifcial neural networks
(ANN), such as recursive neural networks (RNN) in the feld
of deep learning. Depending on the connections between
hidden units in the network, it will allow the network to
inherit the information characteristics of related events.
Zeng et al. [24] proposed a linear combination model based
on the Prophet model and LSTM, which provided a new idea
for regression analysis in constructing the fusion model of
diversifed LSTM networks. Li et al. [25] used wavelet
transform to process the signal for the regression analysis of
user trafc. Zhang et al. [26] decomposed several IMF se-
quences through variational modal decomposition (VMD)
in the study of nonstationary wind speed series. Tey
conducted secondary denoising for each IMF and then
trained in the improved residual neural network (PCA-BP-
RBF), which signifcantly increased the prediction perfor-
mance. Although the VMDmethod can efectively eliminate
the problem of modal aliasing, there are signifcant difer-
ences between the decomposition results obtained by
redefning the IMF function and EMD and its variants. In
addition, before performing VMD decomposition on the
sequence, the number of modal components K needs to be
set frst. However, this step needs to be based on a great deal
of prior experience, and in some applications, specifying the
number of IMFs is an advantage. However, for certain
scenarios where the number of hidden modes of the signal is
not predicted, calculating and setting this optimal K-value
will actually increase the time cost of modeling. Moreover,
this kind of model has a high degree of complexity and is
even unsuitable for systems with low time delay
requirements.

2.3. Machine Learning-Based Method. Te least squares
support vector machine (LSSVM) was created by Gong et al.
[27]. To optimize parameters on the basis of the particle
swarm optimization (PSO) algorithm, Montesinos López
et al. [28] addressed the issue of high algorithm time
complexity by using the sequential minimal optimization

(SMO) algorithm to optimize objectives following the
quadratic programming problem of the support vector
machine (SVM) and support vector regression (SVR). Pekel
[29] used decision tree regression (DTR) to predict soil
moisture. Jumin et al. [30] conducted the regression study of
solar radiation using the boosted decision tree regression
(BDTR) model. Qiu et al. [31] optimized the extreme gra-
dient boosting (XGBoost) model and improved the pre-
diction accuracy compared with other XGBoost-based
models. Tis kind of method does not require a massive
amount of data, but their model structures are complex.

For the three methods described above, we draw the
following conclusions. First, machine learning and statistical
learning have a large overlap, or machine learning is based
on statistical learning. Second, statistical learning is theory-
driven, making assumptions about data distribution,
explaining cause and efect with strong mathematical theory
support, and focusing on parameter inference. Tird, ma-
chine learning is data-driven, relying on big data scale to
predict the future, weakening the convergence problem, and
focusing on model prediction. Fourth, deep learning is
a subfeld of machine learning; that is, feature extraction
relies more on hidden layer models, weak explanatory
properties, and tends to black boxes.

From the three main research categories mentioned
above, it is not difcult to draw the following conclusions.
Machine learning and deep learning methods have shown
great advantages in related research. Moreover, the research
of fusion algorithms based on modal decomposition opti-
mization and neural networks also refects its excellent re-
liability. Terefore, in this paper, we try to combine the
related methods of modal decomposition and LSTM
methods.

Te EMD decomposition of the correlation prediction
model of the sequence data with time characteristics has
been developed in recent years [32–34]. Zhang et al.’s [35]
derived model of EMD decomposition improved the gating
cycle unit (GRU) and combined EMD with the regression
prediction model of PM2.5. Ali et al. [36] pointed out that
they a proposed new version of EMD based on the Akima
spline interpolation technique and LSTM network, and at
the same time, this method enhances the efectiveness of
the improved model. Dedovic et al. [37] used EMD and
ARIMA to predict air quality. Liu et al. [38] stated that
combining the EMD model and ANN can improve the
prediction efect. However, most works are based on single
type data and there are still modal aliasing and boundary
efects. In addition, the relevant algorithms did not fully
use the neural network characteristics to mine data fea-
tures. Terefore, this paper proposes EEMD-ELSTM to
ameliorate the prediction accuracy and universality of
the model.

3. Method

Te global EEMD-ELSTM framework is described as
follows:

(1) EEMD using Gaussian white noise is used to de-
construct the source series data for the period
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(2) In the decomposed IMF, the entropy value is ana-
lyzed and classifed according to the entropy value

(3) Te LSTM network is then used to conduct full
connection prediction for IMF subcolumns of each
category to obtain prediction results

(4) All IMF subcolumns are then combined and
reconstructed to obtain the fnal forecast result

Te abovementioned process is summarized in
Algorithm 1.

3.1. LSTM and EMD Relational Model

3.1.1. LSTM. Lobo Neto et al. [39] pointed out that LSTM
further optimizes the network performance of RNN and
impressive results have been obtained on various time-series
problems. Generally, an LSTM network is composed of
storage units. Tree special cell structures are responsible for
updating network data: output gate, input gate, and for-
getting gate. Its structure is displayed in Figure 1, where ⊙
indicates Hadamard product and + is matrix addition.

Inputs for LSTM typically consist of ct− 1 state parameter,
ht− 1 state parameter, and xt state parameter. Te three
outputs are the ct state parameter, the ht state parameter, and
the yt state parameter, where the xt state parameter rep-
resents the current round’s input, the ht− 1 state parameter
represents the round’s state quantity output, and the ct− 1

state parameter represents the round’s global information
carrier. Ten, the yt state parameter represents the current
round’s output, the ht state parameter represents the round’s
status output, and the ct state parameter represents the
round’s global information carrier.

Te LSTM calculating process is as follows. First, the four
states for splicing training are obtained by utilizing the
current input’s xt state parameter of the LSTM and the ht− 1

state parameter got past from the preceding state parameter,
and these four states’ parameters are expressed as
zf, zi, zo, z. After being multiplied by the weight matrix, the
splicing vector is turned into a single parameter through
a sigmoid activation function as a gating state. z turns the
output into such a number between both −1 and 1 through
using the tanh activation function.

Second is the forgetting stage, that is, the forgetting gate.
Selectively forgetting the information from the preceding
node is the primary task of this step. Depending on the
abovementioned state parameter zf, f is expressed as forget,
which is used as the control function of the forgetting gate to
decide whether the data in the previous state ct− 1 needs to be
forgotten and output a value between 0 and 1, where 1 means
to be completely retained and 0 means to be completely
forgotten. Te zf function is expressed as follows:

z
f

� σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑. (1)

Te third stage is selecting the memory stage and in-
putting the gate. Tis stage will selectively memorize the
input time-series data. It is mainly used to selectively
memorize the input xt. Te selected gating signal is rep-
resented by the state parameter z, the current input is

represented by the state parameter zi, and i is information.
Te next stage of transmission ct can be obtained by adding
the abovementioned two steps.

z
i

� σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁, (2)

z � tanh Wz · ht−1, xt􏼂 􏼃 + bz( 􏼁, (3)

c
t

� z
f ⊙ c

t− 1
+ z

i ⊙ z. (4)

Te fnal stage is the output stage and this stage will
decide whether the data will be output as the current state.
Te decision is mainly made through the state parameter zo.
In addition, the ct obtained in the previous stage is scaled
through the tanh activation function mentioned above.
Compared with the traditional RNN, yt output is also ob-
tained through the change of ht.

z
o

� σ Wo · ht−1, xt􏼂 􏼃 + bo( 􏼁, (5)

h
t

� z
o ⊙ tanh c

t
􏼐 􏼑, (6)

y
t

� σ W
′
h

t
􏼒 􏼓. (7)

On the basis of the traditional RNN chain structure,
LSTM uses a special gate structure memory unit to replace
the originally hidden nodes, which enhances the overall
network’s ability to retain time-series data information and
extends the network’s long-term memory ability.

3.1.2. EMD. It disintegrates the sequence data into multiple
subcolumns according to the characteristics of the time scale
itself and does not need other basis functions at the same
time. In the structure of the decomposition algorithm, the
main part is empirical decomposition.

Usually for a data sequence with temporal characteris-
tics, M � m1, m2, . . . , mn􏼈 􏼉, EMD can decompose multiple
subcolumns of IMF and a residual component, stack stag-
gers through multiple IMF subcolumns, and reconstruct the
original sequence x(t) as

X � 􏽘
N

i�1
Ci(t) + rn(t). (8)

Among them, rn(t) is able to be such stagger component,
displaying the general current of such sequence resources.

Te EMD method is used with the aim of extracting,
from the raw signal, the high- and low-frequency sequences
of such signal, as well as the various scale components, and
arranging them in the plain sequence of frequency from high
to low, so as to obtain the plain sequencer of IMF.

Te main problems of the EMD algorithm mentioned in
Section 2 can be described as follows [40–42]:

(1) Boundary efects: the endpoints of the entire time-
series data are usually not extreme points. Terefore,
the constructed envelope function diverges at the
beginning and at the end of the sequence due to the
uneven distribution of the endpoints. Te deviation
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caused by this phenomenon will continue to be
superimposed in the decomposition course, which
will eventually interfere with the decomposition
reliability.

(2) Mode aliasing: IMF after overall sequence data de-
composition has incomplete decomposition and
components of diferent scales and frequencies are
mixed in a subcolumn. When the abovementioned
phenomena occur in multiple subcolumns at the
same time, the EMD algorithm will lose its physical
meaning.

3.1.3. EEMD. To address the abovementioned issues, we use
superimposed noise to extend the EEMD of the sequence.
Te EEMD used in this paper superimposes Gaussian white
noise. Tese are the precise processes of breakdown.

Given the input time-series data M � m1, m2, . . . , mn,􏼈 􏼉,
the Gaussian white noise Wi, i � 1, 2, ..., n is loaded with an
additive mean of 0 into the sequence M.

Hi � M + Wi, (9)

where i represents the amount of Gaussian white noise
added. Comparisons between EMD and EEMD based on the
UCI power network dataset are shown in Figure 2. Te
EEMD method extends the extremes of the original EMD
process during decomposition to alleviate the extreme
trailing efect and mode overlap at the endpoints.

In addition, for the IMF subcolumns that can be ob-
tained by the decomposition of the abovementioned two
methods, it is obvious that the EEMD method can obtain
more subcolumns. At the same time, the IMF subsequences
obtained by the modal decomposition algorithm are gen-
erally diferent and random.

(a) EEMD model
(b) EMD model

Te EEMD method extends the extremes of the original
EMD process during decomposition to alleviate the extreme
trailing efect and mode overlap at the endpoints. It can be
seen from Figure 2 that the boundary efect and modal
aliasing problems that arise during the decomposition of the
EMD algorithm are efectively improved in the EEMD
model after superimposing Gaussian white noise.

IMFi � imfi1, imfi2, . . . , imfij􏽮 􏽯,

j � 1, . . . , n.
(10)

Te abovementioned steps are then repeated until the
entire time-series data are decomposed N times. Each time,
a new Gaussian white noise is added to the series, and fnally,
the entire IMF subcolumn can be obtained.

IMFi � imfi1, imfi2, . . . imfij􏽮 􏽯,

i � 1, . . . , N; j � 1, . . . , n.
(11)

Integrated averaging on imfij is performed as men-
tioned in the above steps to obtain imf of the overall se-
quence M.

Input: data steam M � {m1, m2, . . . , mn, . . .}, mn ∈ R, epoch I, the number of iterations K, error parameters σ, cycle index N, number
of decomposition n, white Gaussian noise W, and entropy classifcation number E

Output: Predicted result O

(1) M←m1, m2, . . . , mn, . . . , mn ∈ R//input data
(2) O← { }//output data
(3) for each i ∈ N do
(4) Hi←m + Wi

(5) for j ∈ I do Hij←EEMD(Hi)

(6) end for
(7) end for
(8) for j ∈ n do
(9) Et← (Entropyfeaturefusion(IMFj))

(10) end for
(11) for each t ∈ E do
(12) O← 􏽐 ELSTM(IMFj, Et)

(13) end for

ALGORITHM 1: EEMD-ELSTM approach.

zf zi

+

z

ht-1 xt

zo

ct

ytSigmoid

ct-1 ct-1tanh

Figure 1: LSTM structure.

International Journal of Intelligent Systems 5



IMF � imfj􏽮 􏽯 j � 1, . . . , n, (12)

imfj � 􏽘
N

i�1
imfij􏼐 􏼑/2N􏼐 􏼑. (13)

3.2. EEMD-ELSTM Algorithm. By integrating the EEMD
and ELSTM models, the EEMD-ELSTM model can be
created. Overall, EEMD-ELSTM can be divided into three
steps: (1) EEMD data decomposition, (2) entropy feature
fusion, and (3) combining the LSTM prediction results of
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Figure 2: Ensemble empirical mode decomposition examples: (a) EEMD model and (b) EMD model.
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each IMF subcolumn. Te EEMD-ELSTM model algorithm
fow structure presented in this paper is depicted in Figure 3.

In Section 3.1, to break down the data series, we employ
the EEMD approach, m � {m1, m2, . . . , mn, . . .}, and gain the
imf � imfj􏽮 􏽯, j � 1, n. Ten, we use the ELSTM algorithm
to anticipate each imfj, j � 1, . . . , n, providing each IMF
series’ forecast outcomes.

Lj � ELSTM imfj􏼐 􏼑, j � 1, . . . , n. (14)

After the calculation iteration, the Lj component of each
imfj􏽮 􏽯 subsequence is obtained. We then perform entropy
analysis on the abovementioned imf subsequence and take
the two highest entropy score subsequences of imf sub-
sequence as the feature dimension, and further construct the
feature vector of the ELSTM model. Te specifc imple-
mentation steps of the entropy value feature fusion model
defned in this section are as follows: frst, calculate the
entropy value of each IMF component and then screen the
two maximum entropy values after obtaining the entropy
value score. Second, for the model of this part, based on
modal decomposition, we will get a residual under the ideal
decomposition condition since a good residual is usually
close to a linear function of one variable. At the same time,
based on entropy theory. We can know that under the ideal
condition of decomposition, the residual will be a maximum
entropy sequence. However, in order to fully exploit other
hidden data features after decomposition, we further select
an IMF component with the second highest score as an
auxiliary dimension. Tird, the specifc step of constructing
the feature vector is to add two high entropy components as
the feature vector for the LSTM sequence structure with
three inputs and one output for the low entropy sequence
training, while when constructing the LSTM sequence
structure for the high entropy components, all IMF com-
ponents are calculated as their auxiliary dimensions. For the
low entropy sequence, the feature trend for the high entropy
sequence is increased, while the high entropy sequence
acquires the high-frequency features of the rest of the se-
quences. So as to achieve the model optimization, we ulti-
mately expect and improve the robustness of information
physical system modeling.

Te value of the fnal predicted sequence data m can be
expressed as

Fm � 􏽘
n

j�1
Lj􏼐 􏼑. (15)

Te prediction formula for M � 􏽐(imfj) series is as
described above so that the abovementioned L can be
regarded as the prediction value of IMF of each subcolumn.
Te amount of import data n determines the algorithm
complexity of the traditional EMD model, which is O(n2).
Our EEMD model performs multiple iterations and cycles
on the original EMDmodel with Gaussian white noise added
and subtracted.

As a result, the EEMD method has an O(k∗ n2 + k)

complexity, in which k seems to be the number of cycles. In
the entropy fusion model, calculating the entropy once and

dividing the threshold according to the entropy value is
approximate to the K-means classifcation algorithm.
Consequently, this decomposition algorithm complicacy is
defned as O(n). Since such complexity that belongs to the
LSTM depends on the input size n and the hidden sizem, its
complicacy is approximately 4(m∗ n + m2 + m), and each
prediction of the ELSTM network will increase by n − 1
dimensions; thus, ELSTM has a complexity of
(m∗ n + m2 + m∗ (n − 1)) + n. When it is reduced to
m2 + m∗ n + m + m∗ (n − 1), where m∗ n and m(n − 1) are
equal levels, the complicacy of the method is
O(k∗ n2 + m2 + m∗ n).

4. Experiment

4.1. Experimental Settings. Te datasets used in this work are
provided by the University of California. Te experimental
results show that the proposed approach overcomes the
drawbacks of the conventional EEMD-LSTM method and
further improves its accuracy compared with the state-of-
the-art (SOTA) algorithms. Four diferent types of datasets
of Tetouan and Morocco from the UCI database (2017) are
used in this work: (1) the power grid power consumption, (2)
the temperature, (3) the wind speed, and (4) the humidity.
Te datasets are listed in Table 1. Te schematic design is
shown in Figure 4. Te dataset that is used in this com-
parative study is related to power distribution networks of
Tetouan city which is located in north Morocco. Te his-
torical data used have been taken from the Supervisory
Control and Data Acquisition System (SCADA) every
10minutes for the period between 2017-01-01 and 2017-12-
31. We used 1000 sample sequences from this dataset in
our study.

It can be seen from Figure 4 that the characteristics of
nonstrict stability and nonlinearity are in line with the
problem we expect to solve. In order to better visualize the
distribution of the aforementioned dataset we used, we also
conducted box plot analysis on the data samples. Te results
are shown in Figure 5, and it can be seen from the box plot
analysis results that there are great nonperiodic and discrete
characteristics in the wind speed data in the abovementioned
data distribution. In summary, the temporal characteristics
of the four research objects are consistent with the problems
that our proposed research model expects to solve in cyber-
physical systems.

From Figure 6, we know that, from the decomposition
results, the power consumption data have the most typical
periodic characteristics, followed by local periodic charac-
teristics of wind speed and temperature. Wind speed data
have strong discreteness and nonperiodicity, and there are
outliers in the data sequence.

Based on the decomposition results of Figure 5, we
perform the entropy value calculation operation on the IMF
component in Table 2, and combined with our previous
description of the entropy fusion feature model, we can
clearly know from the entropy theory that when there is
a sequence with strong periodicity IMF, the entropy cal-
culation result will inevitably be a low value, and the amount
of hidden information contained in it itself is also low. In
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addition, through the entropy calculation score, we can also
clarify the periodic characteristics of local cycles and
problems between power consumption data and tempera-
ture and humidity, but the frequency bands are diferent,
and the wind speed data has a modal gradient completely
diferent from the above three, so the four data sets can
represent the complex and changeable real environment in
the cyber-physical system to a certain extent. Tis is one of
the reasons why we chose the abovementioned four datasets
as the model test objects.

To evaluate the reliability and dependability of the
proposed model, the root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error

(MAPE) functions, and Pearson correlations (CORR) are
used as the indicators [43–45].

RMSE �
1
N

�����������

􏽘

N

i�1
yi − 􏽢y1( 􏼁

2

􏽶
􏽴

, (16)

MAE �
1
N

􏽘

N

i�1
yi − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (17)

MAPE �
100%
N

􏽘

N

i�1

yi − xi
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

xi
, (18)

Table 1: Information from four categories of statistical data sources.

Data Power consumption
(kW · h) Temperature (°C) Wind speed (M/s) Humidity (%)

Max 44831.89 18.40 0.16 88.86
Min 18045.57 4.21 0.07 50.65
Mean 30100.37 11.34 0.09 73.57
Var 49432194.31 12.05 0.18 87.39
Std 7030.80 3.47 0.42 9.35
Median 29966.58 11.53 0.08 75.21

Original
data

EEMD

Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imfn

Information 
Entropy Feature 

Fusion

Feature 1 Feature 2 Feature 3 Feature n

Imf1 Imfi Imfm

LSTM1 LSTMi LSTMm

Final prediction

Figure 3: Proposed EEMD-ELSTM algorithm.
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CORR(Pearson) �
cov yi, 􏽢yi( 􏼁

N
������������
var yi( 􏼁var 􏽢yi( 􏼁

􏽱 , (19)

where yi is the foresting outcome, 􏽢yi is the authentic value
resource, cov(yi, 􏽢yi) is the covariance, and var(yi) and
var(􏽢yi) represent the variance.

4.2. Parameter Setting. Te noise added to the experiment is
assumed to be zero-mean Gaussian noise. In addition, an
unlimited amount of data decompositions is allowed to
pursue total decomposition. Te EEMD-ELSTM model in
this paper is validated by shufe-split cross-validation and all
the result parameters are the optimal value of the result of
10-fold validation.

90

85

80

75

70

65

60

55

50

H
um

id
ity

 (%
)

0 200 400 600 800 1000
Time (10 minutes)

0 200 400 600 800 1000
Time (10 minutes)

0 200 400 600 800 1000
Time (10 minutes)

0 200 400 600 800 1000
Time (10 minutes)

18

16

14

12

10

8

6

4

45000

40000

35000

25000

30000

20000Po
w

er
 co

ns
um

pt
io

n 
(k

W
. h)

Zone 1 Power consumption data

0.16

0.14

0.12

0.10

0.08

W
in

d 
sp

ee
d 

(M
/s

)

Te
m

pe
ra

tu
re

 (°
C)

Temperature data

Wind speed data Humidity data

Figure 4: Time-series data fow statistics of four diferent datasets.

Power
consumption

Temperature Wind speed Humidity

1.0

0.8

0.6

0.4

0.2

0.0

Figure 5: Box plot distribution of data samples.

International Journal of Intelligent Systems 9



In our comparative experiments and related ablation
validation experiments, we set the following parameters.

Te batch scale is set to 25, the epoch scale is set to 50, the
validation split is 0.1, and the loss function is a mean square
error (MSE), and the optimizer chose the Adam and Dense
value as 1. Tere are 40 neurons in the LSTM and ELSTM
variable parameter settings. Te SVR parameters are C� 100,
degree 3, gamma 1, and the kernel is rbf. Te ARIMA pa-
rameters are p � 2, q � 2, and d � 0. For the Prophet model and
the XGBoost model, we also give their hyperparameter def-
nitions in Table 3. Te data are divided into two halves for
training (ffty percent) and testing (ffty percent). All experi-
ments aremade in theAnacondawith TensorFlow 2.1 platform.

4.3. Ablation Experiment. Te ablation experiments are
compared and analyzed on the dataset power consumption
for LSTM, ELSTM, EEMD-LSTM [46], and EEMD-ELSTM
algorithms. Te results are listed in Table 4.

Te results show that the entropy fusion model and
EEMD approach have enhanced the LSTM computation
optimization. Te prediction precision of the LSTM model
can be improved by introducing the EEMD-ELSTM algo-
rithm. In addition, it can be known from the indicated
parameters in Table 4 that the EEMD-ELSTM method has
the most optimized results among the abovementioned
methods, and the ELSTMusing the entropy fusionmethod is
also optimized to a certain extent.
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Figure 6: Decomposition results of the EEMD method for four diferent datasets: (a) temperature analysis, (b) humidity analysis, (c) wind
speed analysis, and (d) power consumption analysis.

Table 2: IMF component entropy score obtained from time-series data decomposition.

IMFs Power consumption Temperature Humidity Wind speed
IMF1 0.030 0.069 0.060 0.006
IMF2 0.037 0.099 0.037 0.011
IMF3 0.023 0.043 0.041 0.014
IMF4 0.084 0.075 0.055 0.023
IMF5 0.158 0.159 0.092 0.032
IMF6 0.183 0.078 0.165 0.051
IMF7 0.220 0.198 0.248 0.138
IMF8 0.266 0.280 0.303 0.203
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4.4. Results and Discussion. From the experimental valida-
tion results in Figure 7, the prediction results show that the
EEMD-ELSTMmodel gives the regression closer to the truth
data than the LSTM model. Combined with the comparison
of the iteration results in Table 4, it is claimed that the
proposed approach outperforms the LSTM model in terms
of prediction accuracy.

Figure 8 shows the comparison with the statistical
method ARIMA, machine learning method SVM, deep
learningmethod LSTM, Prophet, and decision tree approach
XGBoost models.

Among the fve models, it can be concluded that the
prediction results of EEMD-ELSTM are the closest to the
truth. Te prediction error of the EEMD-ELSTM model in
Table 5 is also at the smallest level. Six models are compared
in terms of RMSE, MAE, and MAPE in Table 5.

In order to further discuss the infuence of LSTM net-
work parameters on the model results, we adjust the Batch
size and the number of neurons to verify the efectiveness of
the model, and in order to prove that the baseline model
LSTM has certain advantages over the traditional ARIMA
model, we add the following experiments, which are

Table 3: Experiment settings of each control model.

Method Hyperparameter setting
EEMD-ELSTM
EEMD-LSTM
ELSTM
LSTM

Hidden layer: 1
Hidden layer neuron: 40, 50

Learning rate: 0.0001
Batch size: 25, 5

Prophet

Changepoint prior scale: 64
Interval width: 3
Growth: linear

Changepoints: 25

XGBoost

Estimators: 50
Max depth: 6

Min child weight: 0.5
Eta: 0.2

ARIMA
P-autoregressive term: 2
Q-moving average term: 2
D-diferential times: 0

SVR

Kernel: RBF
Degree: 3
C: 100

Gamma: 1

LSTM-TCN

Filters: 128
Kernel size: 3
Hidden layer: 1

Learning rate: 0.002
Dilation rate: 1, 2, 4

LSTM units: 64, 128, 256

Table 4: Prediction evaluation at diferent iteration times.

Index Algorithm epoch10 epoch15 epoch20 epoch25 epoch50 epoch75 epoch100

RMSE

EEMD-ELSTM 1931.74 1165.97 909.42 841.73 575.16 550.01 556.59
EEMD-LSTM 1951.56 1634.48 1184.47 1067.86 651.13 609.33 630.51

ELSTM 5438.14 5367.18 5295.41 4956.89 4632.53 4376.05 4533.58
LSTM 5582.33 5582.28 5301.50 5009.36 4739.33 4497.84 4634.36

MAE

EEMD-ELSTM 1650.04 942.45 702.52 640.11 449.06 411.75 439.26
EEMD-LSTM 1654.95 1392.24 962.65 863.52 528.75 480.41 497.95

ELSTM 4598.59 4565.94 4541.52 4372.06 4222.25 3909.26 4286.08
LSTM 4662.28 4660.97 4542.76 4433.95 4366.71 4189.13 4325.04

MAPE (%)

EEMD-ELSTM 4.77 2.77 2.03 1.85 1.29 1.22 1.31
EEMD-LSTM 4.81 4.01 2.81 2.55 1.55 1.54 1.55

ELSTM 12.66 12.60 12.51 12.14 12.01 11.80 11.92
LSTM 12.75 12.72 12.53 12.33 12.45 11.89 12.32

CORR(Pearson)

EEMD-ELSTM 0.96 0.99 0.99 0.99 0.99 0.99 0.99
EEMD-LSTM 0.96 0.97 0.98 0.99 0.99 0.99 0.99

ELSTM 0.91 0.91 0.92 0.94 0.96 0.97 0.97
LSTM 0.88 0.88 0.91 0.94 0.96 0.97 0.97
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performed when the Batch size� 5 and the number of
neurons is 50. In addition, we have added a set of SOTA
from 2023 as a comparison model of LSTM-TCN [47].

From Figure 9 and Table 6, through the comparison of
indicators, it is not difcult to fnd that the LSTM-TCN
model has certain advantages over XGBoost in the perfor-
mance of periodically signifcant time-series data prediction
ability, and after parameter adjustment, the LSTMmodel has
certain advantages over the traditional ARIMAmodel, but it
can also be seen that the baseline model always has some
disadvantages over the fusion model and ensemble algo-
rithm in terms of the versatility and validity of diferent data.

It can be seen from Table 5 that the EEMD-ELSTM
model outperforms other compared models on all datasets
in terms of accuracy. Moreover, compared with other
models, the EEMD-ELSTM method has good universality.
Te best evaluation values were obtained on four diferent
datasets. At the same time, EEMD-ELSTM also has certain
advantages over the evaluation value of the current advanced
algorithm XGBoost model.

From the comparison of evaluation indicators in Tables 5
and 6, it can be seen that compared with the LSTM-TCN
model, the proposed model has better applicability in the
practical application of CPS. In addition, the results of the

ARIMA model are not reliable in the presence of complex
stationarity for the data.

Te visual comparison is presented in histograms in
Figure 10. Te information is formed into a histogram to
more efectively represent the prediction outcomes of the
approaches in Tables 5 and 6. It can be seen from the
histogram that the EEMD-ELSTM method gains the most
optimized values of RMSE, MAE, and MAPE.

4.5. Friedman Validation and Post Hoc Nemenyi Test. We
conducted the Friedman test [48] to investigate the ad-
vantages and disadvantages of the proposed model. Table 7
presents the Friedman validation result for the six models on
four diferent datasets, and the result of Friedman test
verifcation is stat� 22.691, p � 0.001.

On the basis of the order value in Table 7, we calculate
the critical diference by the post hoc Nemenyi algorithm
and we get the result in Figure 11.

Each algorithm’s mean value is diferent, and the EEMD-
ELSTM model has the lowest mean value. Te mean values
of other methods’ are the XGBoost decision tree approach,
ARIMA method (statistical methods), LSTM model and
LSTM-TCN model, Prophet model (deep learning method),
and the SVR model (machine learning method) from low to
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Figure 7: Prediction results of EEMD-ELSTM and LSTM models.
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Table 5: Comparative experimental results of diferent models.

Index Model Power consumption
(kW · h) Temperature (°C) Wind speed

(M/s) Humidity (%)

RMSE

EEMD-ELSTM 575.15 0.51 0.0038 1.29
LSTM 4739.34 4.34 0.0068 7.85
ARIMA 1217.73 0.72 0.0054 4.98
SVR 7206.11 3.42 0.0344 8.91

XGBoost 866.60 0.55 0.0051 1.91
Prophet 10793.95 6.67 0.0079 15.25

MAE

EEMD-ELSTM 449.06 0.35 0.0026 0.99
LSTM 4366.71 4.43 0.0042 7.38
ARIMA 928.45 0.49 0.0041 2.62
SVR 6270.58 3.32 0.0339 8.83

XGBoost 666.23 0.38 0.0032 1.43
Prophet 9777.84 6.08 0.0065 11.85
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Table 5: Continued.

Index Model Power consumption
(kW · h) Temperature (°C) Wind speed

(M/s) Humidity (%)

MAPE (%)

EEMD-ELSTM 1.29 2.47 3.04 1.27
LSTM 12.44 27.41 4.73 9.08
ARIMA 2.42 4.92 5.04 3.89
SVR 15.15 18.38 43.48 12.06

XGBoost 2.10 2.48 3.623 1.79
Prophet 33.31 48.03 7.68 13.71
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Table 6: Improved comparative experiment with tuning parameters.

Index Model Power consumption
(kW · h) Temperature (°C) Wind speed

(M/s) Humidity (%)

RMSE

EEMD-ELSTM 501.79 0.51 0.0040 1.08
LSTM 1140.19 0.72 0.0072 2.78
ARIMA 1217.73 0.72 0.0054 4.98
ELSTM 1108.35 0.68 0.0060 2.52

LSTM-TCN 680.20 0.43 0.0052 2.08

MAE

EEMD-ELSTM 399.93 0.24 0.0028 0.87
LSTM 758.65 0.45 0.0042 2.05
ARIMA 928.45 0.49 0.0041 2.62
ELSTM 727.27 0.43 0.0036 1.86

LSTM-TCN 513.91 0.34 0.0032 1.51

MAPE (%)

EEMD-ELSTM 1.27 1.61 3.58 1.16
LSTM 2.41 4.57 5.88 2.99
ARIMA 2.42 4.92 5.04 3.89
ELSTM 2.39 4.48 5.75 2.70

LSTM-TCN 1.71 3.02 4.62 2.55
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high. Te critical diference (CD) shows that the proposed
algorithm has obvious diferences compared with the
existing SOTA. Tese Friedman and post hoc Nemenyi
outcomes explain that the EEMD-ELSTM method is more
practical and trustworthy than the generic
forecasting model.

5. Conclusion

Te entropy fusion feature-based hybrid time-series pre-
diction approach for EEMD and LSTM is proposed in this
paper. First, a modal decomposition method EEMD based on
Gaussian white noise is constructed. Ten, the IMF sub-
column components of some input data are obtained by using
this algorithm.Te IMF subcolumn components generated by
decomposition are analyzed by entropy. Te component of
the IMF subcolumn with the largest entropy value is extracted
as the auxiliary dimension, the eigenvector of the ELSTM
model is constructed, and the fnal prediction result is ob-
tained by model prediction and reconstruction. In addition,
four time-series stream datasets with varying data sizes and
six SOTA predictionmodels are chosen for comparison in the
experimental verifcation section. Te experimental results
showed that the proposed model outperforms others in re-
liability and validity. Moreover, based on theMAPE index, we
calculated the optimization percentage of the results under
each dataset and diferent parameter confgurations by
comparing the results of the baseline model LSTM obtained
by the experiment and the results of our improvedmodel, and
fnally, we improved the MAPE parameters by 66.43%
compared with the baseline model.

Te abovementioned experimental verifcation shows
that the EEMD-ELSTM model has the following
characteristics:

(1) Validity: from the analysis of evaluation indices in
Tables 5 and 6 and Figures 10, and 11, the optimi-
zation EEMD-ELSTM method clearly outperforms
the generic nonfused network prediction model in
forecasting validity.

(2) Universality: from the evaluation index results and
Friedman test results of the abovementioned com-
parison experiments, it can be clearly known that
among the four diferent types of datasets, the
EEMD-ELSTM algorithm always has a good pre-
diction efect, has good universality, and can be
applied to datasets of diferent scales.

(3) Causality: the efectiveness of the optimization part
and the improved strategy mechanism proposed in
the article can be seen from the comparison of ab-
lation experiments set in the article. Ablation re-
search is the most direct way to understand the
causality in the system and generate reliable pre-
dictions. Te causality of each part of the model was
proved by ablation.

6. Further Study

(1) Such time complicacy of the LSTMmethod is regarded as
generally large, and it depends on the machine computing
power, increasing network neurons, and iteration times to
improve the operation efect. In future research, it is

Table 7: Friedman validation results.

EEMD-ELSTM LSTM ARIMA SVR XGBoost Prophet LSTM-TCN
Power consumption 1 4 3 6 3 7 2
Temperature 1 4 3 6 2 7 3
Wind speed 1 5 4 7 2 6 3
Humidity 1 4 3 6 2 7 3
Mean value 1 4.25 4.75 6.25 2.25 6.75 2.75

0 1 2 3 4 5 6 7

LSTM-TCN

LSTM
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Friedman and Posthoc Nemenyi test

Figure 11: Friedman and posthoc Nemenyi test.
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considered to further optimize the operation process of
relevant machine learning models to improve the model
efect or to replace the traditional neural network part of the
current common hybrid models. (2)Tis article only aims at
one-dimensional time-series data fow, which has certain
limitations. Predictive studies with a wealth of multidi-
mensional data are among the hot studies of the present time
series, as a result, we are considering including multidi-
mensional data decomposition prediction as the next topic
for research.
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