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Traditional approaches for emotion recognition utilize unimodal physiological signals.Te efectiveness of such systems is afected
by some limitations. To overcome them, this paper proposes a newmethod based on time-frequency maps that extract the features
frommultimodal biological signals. At frst, the fusion of electroencephalogram (EEG) and peripheral physiological signal (PPS) is
performed, and then, the two-dimensional discrete orthonormal Stockwell transform (2D-DOST) of the multimodal signal matrix
is calculated to obtain time-frequency maps. A convolutional neural network (CNN) is then utilized to extract the local deep
features from the absolute output of the 2D-DOST. Since there are uninformative deep features, the semisupervised dimension
reduction scheme reduces them by balancing the generalization and discrimination. Finally, the classifer recognizes the emotion.
Te Bayesian optimizer fnds the proper SSDR and classifer parameter values to maximize the recognition accuracy. Te
performance of the proposed method is evaluated on the DEAP dataset considering the two- and four-class scenarios through
extensive simulations. Tis dataset consists of electroencephalograph (EEG) signals in 32 channels and peripheral physiological
signals (PPSs) in eight channels from 32 subjects.Te proposedmethod reaches the accuracy of 0.953 and 0.928 for two- and four-
class scenarios, respectively. Te results indicate the efciency of the multimodal signals for detecting emotions compared to that
of unimodal signals. Also, the results indicate that the proposed method outperforms the recently introduced ones.

1. Introduction

Emotion recognition is widely used in healthcare, teaching,
human-computer interaction, and other felds. Since the
physiological signals can refect the real emotional state of an
individual, they are widely used for emotion recognition.
Single modality approaches extract the series of features
from some channels. Tis approach cannot make full use of
the relevant information among channels. Multimodal
emotion recognition is an emerging interdisciplinary feld of
research in afective computing and sentiment analysis. It
aims at exploiting the information carried by signals of
diferent natures to make emotion recognition systems more
accurate. Tis is achieved by employing a powerful multi-
modal fusion method [1].

Tis paper proposes an emotion recognition scheme
based on multimodal signals consisting of electroencepha-
lograph (EEG) and peripheral physiological signals (PPSs).
Te proposed method utilizes the two-dimensional discrete
orthonormal Stockwell transform (2D-DOST) to consider
the intramodal and cross-modal correlation among the
multimodal signals, including EEG and PPS signals, and the
relations between the samples of each signal. Ten, a con-
volutional neural network (CNN) is considered to extract
the local deep features among the output of the 2D-DOST.
Since there are several redundant features in the set of deep
features, semisupervised dimension reduction (SSDR) is
used and a classifer recognizes the emotion. Te feature
reduction and classifcation performance depend on some
parameters obtained by the Bayesian optimization approach
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to maximize accuracy. We considered the binary and four-
class scenarios on the database for emotion analysis using
the physiological signals (DEAP) dataset to assess the per-
formance of the proposed method. Te results demonstrate
that the proposed method outperforms the recently in-
troduced methods. Hence, the contributions of this paper
are as follows:

(i) Proposing a new method for multimodal emotion
recognition using EEG and PPS

(ii) Using the 2D-DOST to analyze the intramodal and
cross-modal correlations

(iii) Extracting deep features by the CNN and then
reducing the number of deep features by a semi-
supervised method

(iv) Joint optimization of the parameters of SSDR and
classifer

(v) Performing extensive simulations to indicate the
performance of the proposed method.

Following this introduction, Section 2 presents the re-
lated works on multimodal emotion recognition. Section 3
describes the dataset and a detailed description of the
proposed method. Section 4 contains the results and dis-
cussion, and Section 5 concludes the paper.

2. Related Works

Te EEG is the most used physiological signal in single-
modal emotion recognition systems [2–6]. EEG and other
physiological signals, such as PPS, are usually used for
emotion recognition in multimodal systems. Te hierar-
chical fusion based on the CNN was proposed in [7] to
extract the potential information multimodal signals, in-
cluding the EEG and the PPS, and feature-level fusion was
performed to merge the deep and statistical features. Te
binary classifcation scenarios based on valence and arousal
dimensions were considered in the DEAP and MAH-
NOB-HCI datasets. Te method presented in [8] combines
the EEG and PPS with eye movement signals, and the joint
oscillation structure of multichannel signals was analyzed by
the multivariate synchrosqueezing transform (MSST). After
that, a deep CNN extracts the local features from the MSST.
Binary scenarios were evaluated based on the dimensions of
arousal and valence on DEAP and MAHNOB-HCI datasets.
An ensemble CNN was utilized in [9] to analyze the cor-
relation between EEG and PPS signals from the DEAP
dataset to develop multimodal emotion recognition. Te
multistage multimodal dynamical fusion network was
proposed in [10] to analyze the unimodal, bimodal, and
trimodal intercorrelations. It was shown that multistage
fusion performs better than single-stage fusion on the DEAP
dataset. Te multiple-fusion-layer-based ensemble classifer
of stacked autoencoder was proposed in [11] to recognize the
emotions from the DEAP dataset. PPSs such as galvanic skin
response (GSR), respiration patterns, and blood volume
pressure were utilized in [12]. Tis method combines some
continuous wavelet transforms (CWTs) and classifes them
using a CNN. Te four-class scenario on the DEAP dataset

was considered for performance evaluation. Te EEG, pulse,
skin temperature, and blood pressure are recorded by the
wearable sensor nodes in [13], and the fuzzy support vector
machine (SVM) performs the emotion recognition.

Audio- and video-based signals are used separately or
combined with the physiological signals for multimodal
emotion recognition [14–16]. Te EEG and facial expres-
sions were used in [17] for multimodal emotion recognition.
Te combination of the CNN and the attention mechanism
extracts the essential features from facial expressions, and
a CNN extracts the spatial features from EEG signals. Te
features of diferent modalities are merged at the feature
level. Binary scenarios on DEAP and MAHNOB-HCI
datasets were considered for performance evaluation. An-
other method based on EEG signals and facial expressions
was presented in [18]. Te authors in [19] used facial ex-
pressions, GSR, and EEG signals with a hybrid fusion
strategy. Tey considered the three emotions on the
LUMED-2 dataset and four classes on the DEAP dataset. In
[20], the 3D-CNN extracts the spatiotemporal features from
the EEG signals and the video. A hybrid multimodal data
fusion method was presented in [21] to fuse the audio and
video signals from the DEAP dataset using a latent space
linear map. Te principal component analysis (PCA) and
CNN were used in fusion and feature extraction from EEG
and audio signals in [22] and then the grey wolf optimization
algorithm was employed for selecting combined features.
Te heart rate can be detected from the photo-
plethysmography (PPG) signal; hence, some research used
PPG. A method based on PPG and GSR signals was pro-
posed in [23], which uses the 1D-CNN autoencoder model
and lightweight model obtained using knowledge distilla-
tion. Te performance of the model is evaluated on DEAP
and MERTI-Apps datasets. Te heart rate was extracted
from PPG signals in [24], and then the combination of the
1D-CNN and long short-termmemory (LSTM) was adopted
for classifcation on MAHNOB-HCI. Te features in time
and frequency domains were extracted from PPG and GSR
signals in [25] for emotion recognition. It was shown that
feature selection with random forest recursive feature
elimination and classifcation by the SVM yields the highest
accuracy. Table 1 summarizes the recently introduced re-
search on multimodal emotion recognition from biological
signals. It is observed that DEAP is the most used dataset.
Also, most works focusing on time-domain and time-
frequency analyses were adopted in [8, 12]. Te feature
concatenation was considered after feature extraction from
each modal, and cross-modal correlation was not considered
in the feature extraction process.

3. Proposed Method

3.1. Dataset. To evaluate the performance of the proposed
method, we consider the DEAP dataset [26]. Researchers at
the Queen Mary University of London developed this
publicly available dataset to analyze the emotions of 32
subjects on a scale of one to nine for valence and arousal.Te
40 videos with the duration of 63 seconds were selected as
trigger stimuli during the experiments. Tis dataset contains
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EEG and PPS signals. EEG signals were recorded using 48
electrodes. PPSs are horizontal electrooculography (hEOG),
vertical EOG (vEOG), zygomaticus major electromyography
(zEMG), trapezius EMG (tEMG), galvanic skin response
(GSR), respiration belt, plethysmograph, and temperature.
All signals were downsampled to 128Hz. EEG and PPS
signals were passed through bandpass and lowpass flters,
respectively. Te middle 30 seconds of the 63 seconds of
recorded data were considered for further processing. Since
it was generally adopted that each subject reaches a stable in
the middle of the video, the selected part of the signals was
partitioned into segments with a duration of three seconds
so that consecutive segments have a 50% overlap with each
other.Terefore, there are 40 trials for each subject, each trial
with 19 segments with 384 samples.

Tis paper considers two scenarios based on valence and
arousal for rating the emotional signals. Te binary scenario
classifes the multimodal signals based on the valence rating
into positive and negative emotions, as shown in Figure 1(a).
Conversely, the four-class scenario considers the 2D
valence-arousal model for classifying emotions into one of
the following categories: sad, calm, happy, and angry, as
shown in Figure 1(b).

3.2. Proposed Method. Here, the proposed method for
multimodal emotion recognition from EEG and PPS signals
is explained in detail.Te general framework of the proposed
method is shown in Figure 2, which consists of the following
four main steps: data fusion, feature extraction, feature
reduction, and classifcation.

3.2.1. Fusion. Previous works based on multimodal signals
usually extract the features from diferent modalities sepa-
rately and then merge the extracted features. In this manner,
the cross-modal correlation is not considered. Also, there are
many redundant features. To overcome this drawback, we
propose to merge the multimodal signals before any feature
extraction process. Let XEEG and XPPS denote the matrices
with the size of 32× 384 and 8× 384, respectively. After
fusion, there is the matrixXm with the size of 40× 384, which
is considered for further processing.

3.2.2. Feature Extraction. Te Stockwell transform was in-
troduced to overcome the drawbacks of short-time Fourier

transform (STFT) andwavelet transformwhile benefting their
advantages and characteristics [27]; however, there are some
diferences. STFT uses a fxed window size for signal analysis,
resulting in a tradeof between time and frequency resolution.
In contrast, the Stockwell transform uses the variable-length
window; hence, diferent frequency components can be an-
alyzed with diferent time resolutions, which is necessary for
transient and stationary signals. Since the Stockwell transform
uses the Gaussian window, it provides a localized time-fre-
quency map (TFM). In contrast, the STFTspreads the spectral
energy over multiple time-frequency bins due to the use of
rectangular windows. Tis Stockwell transform characteristic
accurately identifes signal components’ time and frequency
characteristics. Te STFT sufers from smearing due to the
rectangular analysis window. Te Stockwell transform miti-
gates this issue using a window that smoothly tapers of. Te
Stockwell transform retains phase information, while STFT
distorts the phase due to the windowing process [28, 29].

For a continuous-time signal x(t), the continuous
Stockwell transform, S(τ, f), is computed as follows [30]:

S(τ, f) �
|f|

2π
􏽚
∞

−∞
x(t)e

(t− τ)2/2σ2
e

− j2πftdt � A(τ, f)e
jθ(τ,f)

,

(1)

where j �
���
−1

√
, t, and τ are the time variables, f denotes the

frequency, and σ � 1⁄ | f | is the scale factor. Also, A(τ, f) and
ejθ(τ,f) are the magnitude and phase of the Stockwell
transform, respectively. Te output of the Stockwell trans-
form is a complex-valued matrix whose rows and columns
are concerned with time and frequency, respectively.

For the discrete signal x[k], k � 0, 1, . . . , N − 1, obtained
from x(t), by sampling, with the discrete Fourier transform
(DFT) of X[n], n � 0, 1, . . . , N − 1, the discrete Stockwell
transform for x[k], S[k, n], for n≠ 0, can be calculated by
replacing τ⟶ k and f⟶ n/N as follows [30]:

S[k, n] � 􏽘
N−1

m�0
X[m + n]e

2π2m2/n2
e

j2πmk/N
� A[k, n]e

[− k,n/N]
.

(2)

For n � 0, the Stockwell transform equals the DC value
of DFT as S[k, 0] � 1/N􏽐

N−1
m�0x[m]. Te 2D Stockwell

transform for the 2D image f(x, y) is computed as follows
[30]:

S u, v, fu, fv( 􏼁 �
fu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 fv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2π
􏽚
∞

−∞
􏽚
∞

−∞
f(x, y)e

(u− x)2(v− y)2/2
e

− j2π fux+fvy( )dx dy. (3)

Te shift parameters u and v control the centre po-
sition of Gaussian windows on diferent axes. Also, fu and
fv (fu ≠ 0 and fv ≠ 0) denote the frequencies. Tere is
considerable redundancy in the time-frequency matrix
provided by the Stockwell transform. Te DOST is

proposed in [31, 32] to overcome this drawback. Te
DOSTprovides spatial frequency representation similar to
the wavelet transform [32]. Te 2D-DOST of an N ×N
image f(m, n), with 2D Fourier transform F(m, n), is
defned as follows:
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S u, v, fu, fv( 􏼁 �
1

�������
2px+py− 2

􏽰 􏽘

2px−2−1

m�−2px−2

􏽘

n�−2py−2
−1

n�−2py−2

F m + vx, n + vy􏼐 􏼑e
j2π mu/2px−1+nv/2py−1( ). (4)

Here, vx � 2px−1 + 2px− 2 and vy � 2py−1 + 2py− 2 are the
horizontal and vertical frequencies, respectively, and px and
py � 0, 1, log(N−1). For this image, there are N2 DOST
points. Te 2D-DOSTgives information about the frequencies
S(u, v) in the bandwidth of 2px−1 × 2py−1 frequencies [30].

As mentioned, the input of the 2D-DOST is an N×N
image, and usually, N is a power of two for computational
efciency. Hence, each Xm with the size of 40× 384 is
partitioned into six partitions, resulting in X(i)

m , i � 1, . . . , 6,

each with the size of 40× 64. Finally, each X(i)
m was resized to

the size of 64× 64. After that, the 2D-DOST is computed for
each X(i)

m to obtain S(i)
m . Finally, the time-frequency matrix,

Sm, of trial Xm is computed as follows:

Sm �
1
6

􏽘

6

i�1
S(i)

m . (5)

CNNs provide several benefts for analyzing TFMs.
CNNs are particularly efective at capturing local patterns
and features. TFMs contain localized structures; hence,
CNNs can automatically learn and extract relevant local
features from these maps. Tis enables the model to capture
time-varying patterns and frequency-specifc information.
TFMs often exhibit hierarchical structures, where low-level
features correspond to basic signal components and higher-

level features capture more complex relationships and
patterns. CNNs can learn these hierarchical representations
by stacking multiple convolutional layers. Tis allows them
to capture both low-level details, such as individual fre-
quency components, and high-level features that represent
more abstract signal characteristics. TFMs are susceptible to
noise and variations introduced during signal acquisition or
processing. CNNs have demonstrated robustness to noise
and variations. By leveraging local receptive felds and
pooling operations, CNNs can efectively suppress noise and
capture invariant features in TFMs. Tis robustness en-
hances the model’s ability to analyze the TFM in the
presence of noise or variations [33–35].

Te CNN extracts the multiscale localized spatial fea-
tures from the input image using diferent layers, including
image input, convolutional, batch normalization, rectifed
linear unit (ReLU), pooling, fully connected, and softmax.
Te convolutional layers generate high-level features by
detecting local patterns such as lines and edges. Te small-
sized flters, or kernels, are employed for this purpose. Te
minibatch process normalizes the output of convolution
layers to reduce the sensitivity to the initialization and in-
crease the training speed. Tere is a nonlinear activation
flter, called ReLU, after this layer, with the input-output
relation function as rout � max 0, rin􏼈 􏼉. Tere are many high-

EEG signal
(32 Channels)

PPS signals
(8 Channels)

Multimodal 
signal matrix
(40 channels)

Fusion

Time-frequency
analysis

Deep feature
extraction

Feature reductionClassification

Feature extraction

Figure 2: General framework of the proposed multimodal emotion recognition.

Valence
PositiveNegative

(a)

Valence

Arousal

Angry Happy

CalmSad

(b)

Figure 1: Diferent scenarios based on valence and arousal values. (a) Binary scenario. (b) Four-class scenario.
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level features at the output of the ReLU layer with high
correlation, and training such features requires more
computational resources. Terefore, the pooling layer is
employed to reduce the number of high-level features at the
output of the ReLU layer. Tis layer generally performs the
downsampling with functions such as average pooling,
global maximum pooling, maximum pooling, and global
average pooling, in which the max-pooling is the most
frequently used. Tis function selects the maximum value in
the pooling window. Te output of the last pooling layer is
given to the fatten layer that converts the feature maps from
thematrix form to the vector one.Te elements of this vector
are the input of fully connected and softmax layers that act as
the traditional multilayer perceptron.

Designing the new structures for the CNN and training
them is time consuming and requires a huge number of la-
belled training samples. Transfer learning is utilized to solve
this challenge. Generally, transfer learning is using the pre-
trained CNN for a new problem. To this end, only the number
of neurons in the last dense layer is modifed according to the
number of classes of the new problem and the whole or some
weights of the pretrained network are refned considering the
training data of the new scenario. Also, the training samples are
resized considering the size of the input image layer. After
training, the features at the fatten layer’s output are considered
deep features and used for further processing.

3.3. Feature Reduction. Some high-level deep features ob-
tained from the fatten layer may be highly correlated, in-
creasing the redundancy in the feature vector given to the
classifer. Te redundant features increase the training
complexity and probability of overftting. Hence, they
should be removed from the feature vector. Te semi-
supervised methods combine the efciencies of both su-
pervised and unsupervised methods and balance the
discrimination and generalization. Tis paper uses the
semisupervised dimensionality reduction (SSDR) proposed
in [33] for feature reduction.

Let nt and n0, respectively, denote the number of training
samples and the number of deep extracted features. Accord-
ingly, s1, . . . , snt

∈ Rn0 are training feature vectors and
S1 � [s1, . . . , snt

]. In this method, the nM pairs of training
samples belonging to the same class and nC samples from
diferent classes, respectively, construct the must-link con-
straints, M, and the cannot-link constraints, C. SSDR obtains
the new feature vectors setG� ?T?, whereW1 � [w1, . . . ,wnr

],
?TW� 1, is the projection matrix, and the new features should
preserve the structure of the original features. To this end, the
objective function (?) is defned as follows:

J(W) �
1
n
2
t

􏽘

si ,sj( 􏼁

WTsi − WTsj􏼐 􏼑
2

+
α
2nC

􏽘

si ,sj( 􏼁∈C

WTsi − WTsj􏼐 􏼑
2

−
β

2nM

􏽘

si ,sj( 􏼁∈M

WTsi − WTsj􏼐 􏼑
2
.

(6)

Te parameters α and β balance the cannot- and must-
link constraints. Te concise form of the objective function
can be expressed as follows:

J(W) �
1
2

􏽘

xi ,xj( 􏼁

WTsi − WTsj􏼐 􏼑
2
Yi,j � WTSLSTW,

(7)

where L � D − S denotes the Laplacian matrix, and D is the
diagonal matrix obtained as Dii � 􏽐jYi,j. Te elements of
matrix Y are obtained as follows:

Yi,j �

1
n
2
t + nC

, if si, sj􏼐 􏼑ϵC,

1
n
2
t + nM

, if si, sj􏼐 􏼑ϵM,

1
n
2
t

, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

It is observed that the performance of SSDR depends on
parameters α and β. Hence, Bayesian optimization is utilized
to fnd their optimum value that maximizes the accuracy.

3.4. Classifcation. Here, several classifers, including SVM,
kNN, ANN, decision tree, and random forest, are considered
separately to obtain the performance of the proposed
method. Te performance of these classifers depends on
their parameters. For the SVM, the kernel type and box
constraint; for kNN, the number of neighbours, distance
metric, and weighting scheme; for the decision tree, the
maximum number of splits; and for the random forest, the
minimum number of leaf sizes and number of predictors to
sample should be optimized. A joint optimization based on
Bayesian fnds its optimum value, as shown in Figure 3. It
should be mentioned that the structure of the ANN is chosen
according to the dense layers in the corresponding CNN.

4. Results and Discussion

Tis section explains the simulations performed to assess the
performance of the proposed method and the obtained
results. Te confusion matrix, accuracy (Acc), sensitivity
(Sens), precision (Prec), kappa, and F1 scores are calculated
and reported. Tese metrics are calculated as follows:

Acc �
TP + TN

TP + TN + FP + FN
,

Sens �
TP

TP + FN
,

Prec �
TP

TP + FP
,

Kappa �
Acc − Ar

1 − Ar

�
Acc − 1/Nc

1 − 1/Nc

,

F1 � 2
Prec × Sens
Prec + Sens

,

(9)
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where the number of correctly classifed and rejected
multimodal signals is, respectively, denoted by true positive
(TP) and true negative (TN). Conversely, the number of
incorrectly identifed and incorrectly rejected multimodal
signals is given by false positive (FP) and false negative (FN),
respectively. Also, Ar � 1/Nc is the random accuracy, where
Nc is the number of classes.

4.1. Simulation Setup. We adopt the cross-subject validation
protocol to determine the train and test data. Hence, the
proposed method is subject independent and considers the
data of one subject for testing and the data of the remaining
subjects train the model. Tis validation scheme repeats this
procedure for all subjects as test data, and fnally, the results
are averaged. Tis paper considers some frequently used
pretrained CNNs for deep feature extraction from the
2D-DOST content, including AlexNet, VGG19, ResNet18,
Inception-v3, and EfcientNet-B0. Table 2 contains the
parameters used in the tuning process of deep feature
extractors.

4.2. Fusion Model. Tere are several ways to combine EEG
and PPS signals to construct the matrix Xm such as EEG-
PPS, Xm � [XEEG; XPPS], and PPS-EEG, Xm � [XPPS; XEEG].
Te other way is that channels of EEG and PPS signals are
randomly located at the rows of the matrix Xm. Tere are
several placements for this purpose. We examined several
placements, and the highest accuracy was reported. Also, the
results of using only EEG and PPS signals are obtained. Te
results given in Table 3 depict that the EEG-PPS fusion yields
the highest accuracy equal to 0.953 and 0.928 for two- and
four-class scenarios, respectively. It is observed that random
and PPS-EEG fusions have close accuracy, where the ac-
curacy of the EEG-PPS scheme is slightly higher. Tis fusion
scheme preserves the intramodal correlations among dif-
ferent channels and also considers the cross-modal corre-
lations among the signals of diferent modalities. In contrast,
a random manner cannot preserve the intramodal corre-
lations among channels due to the random location of
signals.

Also, comparing the results of only EEG and only PPS
signals indicates that EEG signals are more informative than
the PPSs; hence, their fusion reaches a higher accuracy than
using only one. It should be noted that the maximum ac-
curacy of both scenarios is obtained considering the deep
features extracted by Inception-V3 CNN and SVM classifer.

Te structure of Inception-v3 [36] is given in Table 4. It
should be noted that the output size of each module is the
input size of the next one. Te structure of inception
modules is also given in Figure 4.

Tables 5 and 6 present the confusion matrix of the
proposed method for two- and four-class scenarios, re-
spectively. It is observed that the accuracy of the detection of
negative emotions is slightly higher than positive ones in the
two-class scenario. Notably, the minimum sensitivity is
94.7%, higher than the recently introduced works. Te
angry, happy, calm, and sad emotions are most accurate in
the four-class scenario. Also, the values of kappa and F1
scores indicate the efciency of the proposed method.

4.3. Accuracy for Diferent Pairs of Classifers and the CNN.
Tables 7 and 8 present the accuracy and kappa score of the
proposed method for diferent pairs of CNN and classifer to
fnd the set of CNN and classifer that reaches the highest
accuracy. Notably, each pair’s reported accuracy is the
maximum obtained by the optimization of SSDR and
classifer parameters in the EEG-PPS fusion scheme. It is
observed that in both scenarios, the combination of
Inception-v3 and the SVM yields the highest accuracy. Te
ResNet18 and EfcientNet-B0 have a close performance that
is lower than Inception-v3 and higher than AlexNet and
VGG19. Also, the performance of VGG19 is better than
AlexNet. For all CNNs, the SVM with Gaussian kernel
reaches the highest accuracy, and after that, ANN has the
highest accuracy in most cases.

Table 9 discusses the efect of feature reduction on the
performance of the proposed method. We considered the
proposed method without feature reduction, with un-
supervised PCA, with supervised LDA, with the combina-
tion of PCA and LDA, with static SSDR, in which parameters
are not optimized, and with optimized SSDR. It is observed
that generally, using feature reduction increases the accu-
racy. Since LDA is supervised, it has higher accuracy than
unsupervised PCA. However, the generalization of LDA is
lower than PCA. To overcome this issue, a combination of
them, PCA+LDA, can be used that reaches a higher ac-
curacy than when used alone. Te parameters of static SSR
are set randomly, and it is observed that its performance is
slightly lower than the hybrid PCA+LDA scheme.

4.4. Performance Comparison. Table 10 compares the per-
formance of the recently introduced multimodal emotion
recognition approaches. As observed, the EEG is the fre-
quently used modality in multimodal emotion recognition
systems. Most multimodal schemes considered the EEG and
other biological signals such as EOG, PPS, GSR, and facial
expressions. Also, the EEG and PPS signals are the most
used. Generally, the EEG+PPS scheme reaches a higher
accuracy than the other combinations of biological signals. It
is observed that the proposed method has more accuracy
than the recently introduced works.

Output of 
flatten layer SSDR Classifier Accuracy

Optimization

Figure 3: Te procedure used to optimize the parameters of SSDR
and classifer.
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Table 4: Structure of Inception-v3.

Types Patch size/stride
(or remarks) Input size

Convolution 3× 3/2 299× 299× 3
Convolution 3× 3/1 149×149× 32
Convolution padded 3× 3/1 147×147× 32
Maximum pooling 3× 3/2 147×147× 64
Convolution 3× 3/1 73× 73× 64
Convolution 3× 3/2 71× 71× 80
Convolution 3× 3/1 35× 35×192
3× inception As in Figure 3(a) 35× 35× 288
5× inception As in Figure 3(b) 17×17× 768
2× inception As in Figure 3(c) 8× 8×1280
Maximum pooling 8× 8 8× 8× 2048
Linear Logits (unnormalized log-probabilities) 8× 8× 2048
Softmax Classifer 8× 8× nc

Table 2: Parameters used for tuning the deep feature extractors.

Parameters Values
Optimizer Stochastic gradient descent with momentum (SGDM)
Loss function Cross-entropy
Batch size 32
Momentum 0.80
Learning rate 10−4

Number of epochs 60

Table 3: Accuracy of diferent fusion models.

Fusion models
Accuracy

Two class Four class
Only EEG 0.923 0.894
Only PPS 0.875 0.847
EEG-PPS 0. 53 0. 28
PPS-EEG 0.942 0.921
Random 0.937 0.915
Te bold values represent the highest accuracies.

Base

Pool

Filter 
Concatenation

3 × 3

3 × 3 3 × 3

1 × 1

3 × 3

1 × 1 1 × 1

(a)

Base

Pool

Filter 
Concatenation

1 × 11 × 1 1 × 1

1 × 1

7 × 1

7 × 1 7 ×1

1 × 7

1 × 7 1 × 7

(b)

Base

Pool

Filter 
Concatenation

1 × 3 3 × 1

3 × 3 1 × 3 3 × 1 1 × 1

1 × 1 1 × 1 1 × 1

(c)

Figure 4:Te structure of inceptionmodules used in Inception-v3 CNN. (a) First inceptionmodule. (b) Second inceptionmodule. (c)Tird
inception module.
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Table 7: Classifcation accuracy and kappa score of the two-class scenario for diferent CNNs and classifers.

Classifers
CNN

AlexNet VGG19 ResNet18 Inception-v3 EfcientNet-B0
Acc Kappa Acc Kappa Acc Kappa Acc Kappa Acc Kappa

SVM 0.891 0.782 0.903 0.806 0.918 0.836 0. 53 0. 06 0.915 0.830
ANN 0.889 0.778 0.895 0.790 0.909 0.818 0.915 0.830 0.911 0.822
kNN 0.879 0.758 0.892 0.784 0.914 0.828 0.912 0.824 0.908 0.816
Random forest 0.881 0.762 0.897 0.794 0.901 0.802 0.909 0.818 0.908 0.816
Decision tree 0.874 0.748 0.867 0.734 0.899 0.798 0.901 0.802 0.901 0.802
Te bold values represent the highest accuracies.

Table 8: Classifcation accuracy and kappa score of the four-class scenario for diferent CNNs and classifers.

Classifer
CNN

AlexNet VGG19 ResNet18 Inception-V3 EfcientNet-b0
Acc Kappa Acc Kappa Acc Kappa Acc Kappa Acc Kappa

SVM 0.876 0.752 0.881 0.762 0.901 0.816 0. 28 0.856 0.904 0.808
ANN 0.875 0.750 0.886 0.774 0.885 0.802 0.901 0.801 0.898 0.796
kNN 0.864 0.728 0.866 0.732 0.875 0.782 0.891 0.783 0.884 0.768
Random forest 0.847 0.694 0.875 0.751 0.901 0.778 0.889 0.779 0.882 0.764
Decision tree 0.847 0.694 0.853 0.701 0.871 0.764 0.882 0.764 0.889 0.778
Te bold values represent the highest accuracies.

Table 9: Te efect of feature reduction on the accuracy.

Method
Scenario

Four-class Two-class
Acc Kappa Acc Kappa

Without feature reduction 0.806 0.612 0.831 0.662
PCA 0.837 0.674 0.859 0.718
LDA 0.852 0.704 0.872 0.744
PCA+LDA 0.873 0.746 0.897 0.794
Static SSDR 0.869 0.738 0.885 0.770
Optimized SSDR 0. 28 0.856 0. 53 0. 06
Te bold values represent the highest accuracies.

Table 5: Confusion matrix of the two-class scenario.

Predicted emotion
Sens Prec Kappa F1 scorePositive Negative

Actual emotion Positive 0.947 0.053 0.947 0.958 0.894 0.953
Negative 0.041 0.959 0.959 0.948 0.918 0.953

Table 6: Confusion matrix of the four-class scenario.

Predicted emotion
Sens Prec Kappa F1 scoreHappy Angry Calm Sad

Actual emotion

Happy 0.933 0.021 0.028 0.018 0.933 0.931 0.862 0.932
Angry 0.019 0.937 0.018 0.026 0.937 0.922 0.844 0.929
Calm 0.032 0.02 0.923 0.025 0.923 0.928 0.857 0.926
Sad 0.018 0.038 0.025 0.919 0.919 0.931 0.861 0.925
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5. Conclusion

Tis paper proposed a new method for emotion recognition
from multimodal signals, including EEG in 32 channels and
PPS in eight channels. Te proposed method employs the
2D-DOST to analyze the relations between the multimodal
signals. Ten, a CNN was used to extract the deep local
features from the absolute of the 2D-DOST. After feature
reduction by SSDR, a classifer determines the emotion by
solving an optimization problem. Te results showed that
the extracted deep features by the Inception-v3 network and
their classifcation by the Gaussian SVM reached the highest
accuracy equal to 0.953 and 0.928, respectively, for two- and
four-class scenarios on the DEAP dataset. Several fusion
schemes to combine the EEG and PPS signals were exam-
ined, and it was observed that the scheme [XEEG; XPPS] has
the maximum accuracy. Also, it was shown that optimized
SSDR has higher accuracy than the frequently used feature
reduction schemes such as PCA and LDA. Te results in-
dicate the efciency of multimodal emotion recognition
compared to the unimodal approach. Also, the proposed
method outperforms the recently introduced methods.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Behrooz Zali-Vargahan was responsible for conceptualiza-
tion, investigation, methodology, software, and writing the
original draft; Asghar Charmin was responsible for con-
ceptualization, methodology, validation, and supervision;
Hashem Kalbkhani was responsible for conceptualization,
software, visualization, and review writing and editing; and
Saeed Barghandan was responsible for the methodology and
review writing and editing.

References

[1] X. Zheng, X. Yu, Y. Yin, T. Li, and X. Yan, “Tree-dimensional
feature maps and convolutional neural network-based emo-
tion recognition,” International Journal of Intelligent Systems,
vol. 36, no. 11, pp. 6312–6336, 2021.

[2] B. Zali-Vargahan, A. Charmin, H. Kalbkhani, and
S. Barghandan, “Deep time-frequency features and semi-
supervised dimension reduction for subject-independent
emotion recognition from multi-channel EEG signals,” Bio-
medical Signal Processing and Control, vol. 85, Article ID
104806, 2023.

[3] Y. Zhou, F. Li, Y. Li et al., “Progressive graph convolution
network for EEG emotion recognition,” Neurocomputing,
vol. 544, Article ID 126262, 2023.

[4] S. Liu, Y. Zhao, Y. An et al., “A global to local feature 395
aggregation network for EEG emotion recognition,” Bio-
medical Signal Processing and Control, vol. 396 85, Article ID
104799, 2023.

[5] X. Zheng, X. Liu, Y. Zhang, L. Cui, and X. Yu, “A portable HCI
system-oriented EEG feature extraction and channel selection
for emotion recognition,” International Journal of Intelligent
Systems, vol. 36, no. 1, pp. 152–176, 2021.

[6] D. Li, L. Xie, Z. Wang, and H. Yang, “Brain emotion per-
ception inspired EEG emotion recognition with deep re-
inforcement learning,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–14, 2023.

[7] Y. Zhang, C. Cheng, and Y. Zhang, “Multimodal emotion
recognition using a hierarchical fusion convolutional neural
network,” IEEE Access, vol. 9, pp. 7943–7951, 2021.

[8] Y. Zhang, C. Cheng, and Y. Zhang, “Multimodal emotion
recognition based on manifold learning and convolution
neural network,” Multimedia Tools and Applications, vol. 81,
no. 23, pp. 33253–33268, 2022.

[9] H. Huang, Z. Hu, W. Wang, and M. Wu, “Multimodal
emotion recognition based on ensemble convolutional neural
network,” IEEE Access, vol. 8, pp. 3265–3271, 2020.

[10] S. Chen, J. Tang, L. Zhu, and W. Kong, “A multi-stage dy-
namical fusion network for multimodal emotion recogni-
tion,” Cognitive Neurodynamics, vol. 17, no. 3, pp. 671–680,
2022.

[11] Z. Yin, M. Zhao, Y. Wang, J. Yang, and J. Zhang, “Recognition
of emotions using multimodal physiological signals and an
ensemble deep learning model,” Computer Methods and
Programs in Biomedicine, vol. 140, pp. 93–110, 2017.

Table 10: Performance comparison of the proposed method and recently introduced ones.

Authors Modality Accuracy
Wu et al. [37] EEG+EOG 0.866 (two classes)
Hatipoglu Yilmaz and Kose [38] EEG+EOG 0.915 (two classes)
Ma et al. [39] EEG+PPS 0.923 (two classes)
Qiu et al. [40] EEG+PPS 0.856 (two classes)
Li et al. [41] EEG+PPS 0.949 (two classes)
Zhang et al. [7] EEG+PPS 0.847 (two classes)
Zhang et al. [8] EEG+PPS 0.901 (two classes)
Jalal and Peer [12] PPS 0.842 (four classes)
Cimtay et al. [19] EEG, GSR, facial 0.915 (four classes)

Proposed method EEG+PPS 0.953 (two classes)
0.928 (four classes)

10 International Journal of Intelligent Systems



[12] L. Jalal and A. Peer, “Emotion recognition from physiological
signals using continuous wavelet transform and deep learn-
ing,” in Proceedings of the HCI International 2022-Late
Breaking Papers. Multimodality in Advanced Interaction
Environments: 24th International Conference on Human-
Computer Interaction, HCII 2022, pp. 88–99, Springer, Berlin,
Germany, July, 2022.

[13] Y. Dai, X. Wang, P. Zhang, and W. Zhang, “Wearable bio-
sensor network enabled multimodal daily-life emotion rec-
ognition employing reputation-driven imbalanced fuzzy
classifcation,” Measurement, vol. 109, pp. 408–424, 2017.

[14] M. J. Al-Dujaili and A. Ebrahimi-Moghadam, “Speech
emotion recognition: a comprehensive survey,” Wireless
Personal Communications, vol. 129, no. 4, pp. 2525–2561,
2023.

[15] S. Liu, P. Gao, Y. Li, W. Fu, andW. Ding, “Multi-modal fusion
network with complementarity and importance for emotion
recognition,” Information Sciences, vol. 619, pp. 679–694,
2023.

[16] N. Saleem, J. Gao, R. Irfan et al., “DeepCNN: spectro-temporal
feature representation for speech emotion recognition,” CAAI
Transactions on Intelligence Technology, vol. 8, no. 2,
pp. 401–417, 2023.

[17] S. Wang, J. Qu, Y. Zhang, and Y. Zhang, “Multimodal
emotion recognition from EEG signals and facial expres-
sions,” IEEE Access, vol. 11, pp. 33061–33068, 2023.

[18] Y. Tan, Z. Sun, F. Duan, J. Solé-Casals, and C. F. Caiafa, “A
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