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Speech emotion recognition has lots of applications such as human-computer interaction and health management. Te current
methods are challenged with the problems of fuzzy decision boundary and imbalance between difcult and easy samples in the
training data. Tis paper frst proposes an additive angle penalty focus loss function (APFL), which strictly refnes the fuzzy
decision boundary by introducing angle penalty factors to improve the compactness within the class and enlarge the distance
between classes. It also assigns the larger loss to difcult samples to make the model pay more attention to them, as they are easily
misclassifed. Simultaneously, due to the lack of training samples, the framework of multimodal andmultitask learning with APFL
is further proposed, which extracts spectrogram features by deep neural network, text features by the pretrained language model,
and audio features by the pretrained sound model. It uses the gender recognition as an auxiliary task. Te experimental results
verify the efectiveness of the proposed loss function and framework.

1. Introduction

Speech not only explicitly expresses linguistic content but also
implicitly contains the speaker’s emotional states such as
sadness, happiness, and fear. Te speech emotion recognition
(SER) aims to automatically identify the speaker’s emotional
states [1–3], having a large number of applications such as
human-computer interaction, information recommendation,
and health detection. Consequently, methods for SER are
deeply investigated. In addition to methods based on hand-
crafted features [4, 5], some methods are mainly based on
deep learning [6], which convert speech signals into spec-
trograms and then various deep learning methods are used to
deal with them. Among them, deep convolutional neural
networks (DCNNs) and recurrent neural networks are most
widely used [7, 8]. Te temporal convolutional networks are
also popular for solving SER problem [9, 10]. Tey focus on
the innovative design of the neural network structures
[11, 12], such as by adding the attention mechanism [13] and
the transfer learning to solve problems of SER [14].

Te frst problem is from the small training data [15],
as the model trained on the small data will easily lead to
the over ftting and in turn result in the weaker gener-
alization ability. Data augmentation is an efective method
to solve this problem [16]. For example, generative
adaptive networks (GANs) and its variants are often
applied to generate new samples [17–19]. Alternatively,
a larger data can be directly constructed from existing data
with hand-crafted features [20]. Because there is a large
amount of unlabeled data, transfer learning [15] and
semisupervised methods [21] can be also applied to ex-
pand the training data.

Another problem comes from insufcient features for
SER. In such case, multimodal learning can be applied to
learn enough features from diferent angles. Tese features
are complementary so that they can describe the internal
semantics of speech more completely and accurately. For
example, speech and text can be integrated to extract features
for SER [22–24]. In addition to speech and text, another
method also considers facial expression and motion through
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transformer encoder and then combines these features to
achieve the classifcation [25]. Tese methods have achieved
good results.

To solve the overftting problem, multitask learning can
be applied for SER. For example, it takes the language
classifcation as an auxiliary task and speech emotion rec-
ognition as the main task [26]. It selects speech emotional
features for any two classes independent of the speaker for
the classifcation as multiple tasks and then ensembles their
results [27]. Te hierarchical multitask learning is proposed
that uses the coarse classifcation and fne classifcation as
two tasks [28]. Tere methods use unsupervised re-
construction as an auxiliary task [29]. Te more complicated
method obtains the multiscale unifed metric [30], where the
phone recognition and gender recognition are the auxiliary
tasks. Tese methods are based on the single modal of
speech.

Te emotional labels of speech may be uncertain [1] for
those methods based on frames for SER.When they segment
each speech sentence into frames, the label of each frame is
assigned by that of the sentence, easily leading to the noise
labels [2]. Some new methods are proposed to solve this
problem, such as the iterative self-learning framework that
designed four specifc label change rules [31] and the self-
labeling method for each speech frame [2]. Simultaneously,
the multiclassifer mutual learning is also proposed [1],
where all classifers classify each sample and then combine
their classifcation results to construct its new label.

Some special issues are emphasized, such as the uneven
length of input speech [32], which can be solved by DCNN
and LSTM (long short-termmemory). Besides, hand-crafted
features of multivariable time series, bidirectional echo state
network, and sampling methods are used to solve the un-
balanced problem [33]. Te individual standardization
network aims to reduce the emotional confusion caused by
individual diferences [34]. To extract and select optimal
features, the cryptographic structure [35], sparse coding
[36], and the hybrid network of capsule network and transfer
learning-based mixed task net are proposed [3]. In addition,
ensemble deep learning [37] and supervised contrast
learning [38] are also proposed.

DCNN needs loss function to guide its learning for SER.
Te most of loss functions are not specifcally designed for
speech emotion recognition [39, 40]. Although there are
multimodal learning and multitask learning independently
used for speech emotion recognition, they have not been
combined.Tis paper proposes a newmethod that combines
multimodal and multitask learning with new additive an-
gular penalty focus loss (MTAP) to recognize the speech
emotion. Te main contributions are as follows:

(1) To solve the problem of the fuzzy decision boundary
and the imbalance between difcult and easy speech
samples, a new additive penalty focal loss function
(APFL) is proposed for SER

(2) A new method is proposed for SER that combines
multimodal and multitask learning with APFL,
where the gender recognition is taken as an auxiliary
task, and spectrogram, text, and audio are the dif-
ferent modalities of speech samples

Section 2 provides the related work, while the proposed
method is introduced in Section 3. Experiment results and
analysis are presented in Section 4. Section 5 presents
conclusions.

2. Related Work

As our contributions are related to the combination of our
new loss function with multimodal and multitask learning
for speech emotion recognition, they are compared and
analyzed.

2.1. Loss Function. Te loss function widely used in speech
emotion recognition is the cross-entropy loss (CEL) [2]. Te
center loss function [41] is also used for SER to pull features
in the same emotional category to its center [40]. However, it
only improves the intraclass compactness without enlarging
the distance between classes. Te triplet loss function [42] is
also used for SER [39], which aims to reduce the distance of
samples in the same class and enlarge the distance of het-
erogeneous samples. Another class-specifc angular Softmax
loss is designed to train the time-frequency convolution
neural network [43]. In other felds, some new loss functions
are also proposed, such as face recognition loss ArcFace [44]
that transforms Euclidean space into the angle space and
introduces additional angle penalties to target categories for
strictly controlling the boundary of each category. Tis loss
can achieve the efect of reducing the intraclass distance and
increasing the interclass distance. Focal loss (FL) function
[45] is proposed to solve the extreme imbalance between the
foreground and background of data. It adjusts the contri-
bution of hard samples to the total loss by introducing
modulation parameters. Tese loss have not been used for
SER. Particularly, diferent from these methods, our method
combines ArcFace and FL in innovative way to solve the
problem of fuzzy decision boundary and imbalance between
difcult and easy samples. Generally, the deep neural net-
work determines the gradient through the loss function and
then uses it to modify the weights of the network. Our
method works in the same way. But GHM (gradient har-
monizing mechanism) [46] is diferent. Inspired by the
gradient norm distribution, it frst calculates the gradient
density and then adds a harmonic parameter to the gradient
of each sample according to the density. In practical ap-
plications, the modifcation of gradient can be realized
equivalently by reconstructing the loss function. GHM
changes with the density that may change in the training
process. However, our method is a static loss function. It
does not adapt to the change of data distribution. It also does
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not change in the training process. However, GHM is
currently used for the target detection, not for SER. Its
principle can also be introduced into our method to further
improve the performance.

2.2. Multimodal Learning. Multimodal learning can learn
features from diferent modalities of samples. Tese features
can be complementary so that they can describe the se-
mantics of emotional speech more completely and accu-
rately. For example, the method of integrating speech and
text modality is proposed that emphasizes the temporal
relationship between diferent modalities [22]. Another
method also uses speech and text but introduces the at-
tention network to promote the interaction and information
fusion between them [23]. Alternatively, two diferent neural
networks are applied to extract features of speech and text,
respectively, and then concatenate their features [24]. Tese
methods do not consider the relationship between diferent
modalities. In addition to speech and text, other modalities
such as facial expression and motion are considered, where
the similarity between speech and text, and speech and other
modal features are learned through transformer encoder and
then their features are combined [25]. Diferent from these
methods, our method combines the spectrogram features
extracted by deep neural network, text features extracted by
the pretrained language model BERT, and audio features
extracted by the pretrained VGGish sound model.

2.3. Multitask Learning. Language and gender can afect the
performance of speech emotion recognition [26], which can
be used within the framework of multitask learning. For
example, emotion classifcation is the main task and lan-
guage classifcation is taken as an auxiliary task [26]. Taking
gender recognition as an auxiliary task is conducive to
extracting distinctive features and increasing the distin-
guishability between emotional categories [47–49]. Speakers
are also used in multitask learning framework for speech
emotion recognition, where each task selects features for any
two classes independent of the speaker for the classifcation
and then ensembles the classifcation results [27]. Te hi-
erarchical multitask learning framework is also proposed
that takes the coarse classifcation and fne classifcation as
two tasks [28]. Te augmentation of data and unsupervised
reconstruction can be taken as an auxiliary task to avoid the
difculties caused by the data annotation [29]. Another
method is more complicated that obtains the multiscale
unifed metric [30] by the multitask learning, where the
classifcation of both Emission States Category and Emission
Intensity Scale is the main task and the classifcation of
phone recognition and gender recognition is the
auxiliary task.

Tere is one method that combines multimodel learning
and multitask learning [50]. However, it aims to perform the
speech recognition and identity recognition, instead of the
speech emotion recognition, resulting in learned features

that may deviate from the emotion recognition. Further-
more, it uses video, text, and audio. However, it is difcult to
prepare the video data, as the speech sentences in video are
not easy to be determined.

3. Additive Angle Penalty Focal Loss

Tis section proposes a new additive penalty focal loss
function. Although ArcFace loss [44] and Focal loss [45] have
been proposed in computer vision felds, they have not been
considered in SER. Furthermore, both ArcFace and focal loss
only consider one aspect of optimization such as fuzzy de-
cision boundary or class imbalance, resulting in the limited
improvements.Tus, we combine them in the innovative way
to extract better discriminative features. It not only enhances
intraclass compactness and interclass distance but also assigns
more appropriate weights to the hard examples, so that it is
obviously stronger in learning discriminative features than
both ArcFace and focal loss. As it does not use the domain
knowledge of SER, generally it can be also applied to other
domains. In our case, we apply it to improve SER.

3.1. Additive Angle Penalty Focal Loss. Fuzzy decision
boundary and class imbalance are the two challenges faced
by speech emotion recognition. To tackle these issues and
improve the recognition accuracy, APFL is devised as
follows:

Lapfl � −
1
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and cos θj � Wj
Txi. Wj denotes the j-th column of the

weight matrix W after L2 normalization, xi is the L2 nor-
malized feature vector of the i-th sample corresponding to
the ground-truth class yi, θj is the angle distance between
Wj and xi. pxi,yi

denotes the posterior probability of xi being
classifed to the class yi. N is the number of training samples
and n is the number of classes. s is a hyperparameter that
should be adjusted carefully to obtain the optimal perfor-
mance of the model. m is the additive penalty to the angle
between xi and the weight Wyi

of its corresponding label yi

so as to provide additional guidance to synchronously en-
hance the intraclass similarity and interclass diference. In
this way, the issue of fuzzy decision boundary can be alle-
viated. c is used to guide the model to pay more attention to
the hard examples by multiplying the modulating factor
(1 − pxi,yi

)c.
Te idea of APFL is quite useful and easy to implement in

any deep-learning framework. Whenever Softmax loss or
similar loss function is used, we can replace it with APFL to
achieve the better performance.
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3.2. Comparison with Diferent Loss Functions. In this sec-
tion, we compare APFL with some relevant loss functions,
i.e., Softmax loss (cross-entropy loss), focal loss, and Arc-
Face. For simplicity of analysis, we consider the binary
classifcation case with classes C1 and C2.

3.2.1. Geometric Diference. As illustrated in Figure 1, we
compare the decision boundaries. Evidently, APFL has
stricter decision conditions (for C1 it requires θ1 ≤ θ2 − m

rather than θ1 ≤ θ2, and it is similar for C2), resulting in
a clearer boundary with a margin of

�
2

√
m between diferent

classes in the angular space.

3.2.2. Impact from Examples. Either Softmax loss or ArcFace
does not take the infuence of data distribution into account.
Multiplying the modulation factor (1 − pxi,yi

)c alleviates this
issue to an extent. Specifcally, for examples that are easily
misclassifed, the factor is close to 1 as pxi,yi

is small; hence,
the loss is nearly unafected. But for those that are well
classifed, the factor goes to 0 since pxi,yi

tends to 1; thus, the
loss is down-weighted. It can prevent the model from
overwhelmed cases by easy examples. It can be easily found
that these loss functions are in fact special cases of the
proposed APFL.When c � 0, APFL is equivalent to ArcFace.
When m � 0, it becomes the focal loss with L2 normalized
features and weights.

4. Multimodal and Multitask Learning
Framework with APFL

Tis section introduces our proposed multimodal and
multitask learning framework with our new loss (MTAP) for
speech emotion recognition, shown in Figure 2, which uses
spectrogram, text, and audio for the input speech sample
while the gender recognition is taken as the auxiliary task.

4.1. Loss. Due to its efectiveness in speech emotion rec-
ognition [14], DCNN is used to extract features for the
classifer to recognize the speech emotion. Te input speech
signal is frst converted into the spectrogram and then feed it
into DCNN to extract features. As illustrated in Figure 3, the
dot product between extracted features and the last fully
connected layer is equivalent to the cosine distance when
both of them are normalized, where W is the weight matrix
of the full connection layer and updated by the back-
propagation of errors method. We use the arccos function
to acquire the angle between them. Afterwards, we add an
additive penalty to the angle and obtain the target logit back
by using the cosine function. Subsequently, we rescale all
logits by the fxed feature norm, and then following steps are
exactly the same as in the Softmax loss. Finally, we multiply
the cross-entropy by the modulating factor to adjust the less
loss to the well classifed examples.

Tus, the total loss for our framework is defned by
Ltotal � Lapfl + λ × Lgender, where Lgender for auxiliary task is
defned by Softmax loss, Lapfl is for speech emotion rec-
ognition, and λ controls the infuence of auxiliary task on
the model.

4.2. BERT. BERT (Bidirectional Encoder Representations
from Transformers) [51] is used to extract features of texts,
which is a pretrained model. By combining tasks of both
Masked Language Model (MLM) and Next Sentence Pre-
diction (NSP), the embedded feature representation of
language is learned by the self-supervised learning on a large
corpus and then obtained features can be directly used as the
input of downstream tasks. BERT has three parts as the
input: Token embedding, Segment embedding, and Position
embedding. Token embedding is the feature representation
of the input text where Token can be understood as a word in
Chinese. Segment embedding proceeds the paired sentences
as the input, which has only two values: 0 and 1. For the
input sentence pair, all Tokens of the previous sentence are
given 0, and all Tokens of the next sentence are given 1. As
text is sequential, the order of words will afect the meaning
of sentences. However, Transformer structure cannot cap-
ture this information. Position embedding is designed to
make up for this defect, which is learnable. Due to the
complexity, the simpler version of BERT denoted as
BERTBASE is used to extract features of the text corre-
sponding to the speech.

4.3. VGGish. VGGish is a small VGG network [52], which
was trained on a larger dataset AudioSet [53], which con-
tains about 2.1 million videos with 527 sound categories.
VGGish is the pretrained model that can be used as an audio
feature extractor. It presents 128-dimensional feature vector
for the input audio with one second, which can be used as
the initial input of another model. Although there are dif-
ferences between general audio and emotional speech,
speech also contains some features of the general audio.
Tese features can be also applied for SER [2]. As DCNN
cannot learn enough features from the small emotional
speech data sets, VGGish can be used to extract audio
features as the complementary features. For each speech

2 m

APFL
m

m

θ2 θ2

θ1 θ1

Softmax/Focal Loss

x ∈ C1 : θ1 ≤ θ2 – m
x ∈ C2 : θ2 ≤ θ1 – m

x ∈ C1 : θ1 ≤ θ2
x ∈ C2 : θ2 ≤ θ1

Clas
s 1

Clas
s 2

Clas
s 1

Clas
s 2

Figure 1: Te comparison of decision margins of diferent loss
functions under binary classifcation case. Te dashed line repre-
sents the decision boundary, and the gray areas are decision
margins.
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sample, we use BERTBASE to extract its text features (Ftext),
use VGGish to extract its audio features (Faudio), use DCNN
to extract its spectrogram features (Fimage), and then fuse
these features to obtain the comprehensive features
F � Concat(Fimage, Ftext, Faudio) for the classifer to perform
speech emotion recognition.

5. Experiments and Results

5.1. Datasets and Evaluation Indicators. Tree benchmark
databases are selected to evaluate our method, including
Interactive Emotional Dyadic Motion Capture (IEMOCAP)
[54], Surrey Audio-Visual Expressed Emotion (SAVEE)
[55], and Berlin Emotional Speech Database (EMODB) [56].

IEMOCAP [54] consists of 5 sessions and each session is
displayed by a pair of speakers (male and female) in scripted
and improvised scenarios. We choose 4 emotion types (i.e.,
angry, happy, neutral, and sad) for our experiments only
from improvised data, and thus, 2280 utterances are used.

We adopt 5-fold cross-validation using Leave-One-Ses-
sion-Out (LOSO) strategy, that is, 4 sessions are used for
training, while the rest one is divided into two equal parts for
validation and testing.

SAVEE [55] is composed of records performed by four
native English male actors in seven emotions. It includes 480
utterances in total, i.e., 60 anger, 60 disgust, 60 fear, 60
happiness, 120 neutral, 60 sadness, and 60 surprise. On these
data, we conduct fourfold cross-validation Speaker In-
dependent (SI) and fvefold cross-validation speaker de-
pendent (SD) experiments.

EMODB [56] contains 535 emotional utterances per-
formed by 10 actors with seven diferent emotions: anger,
boredom, disgust, fear, happiness, neutral, and sadness. On
these data, we adopt 10-fold cross-validation strategy for
both SI and SD experiments.

Generally, the performance of SER can be evaluated by
two widely used metrics [57–59]. One is the Weighted Ac-
curacy (WA) that is the classifcation accuracy of all test
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Figure 2: Framework of our MTAP for speech emotion recognition, where it fuses multimodal features and uses our new additive angle
penalty focus loss function. It also considers the gender recognition as the auxiliary task in three diferent ways. MTL-A only uses
spectrogram features for the auxiliary task, MTL-B uses both spectrogram and audio features, and MTL-C uses all features. (a) MTL-A.
(b) MTL-B. (c) MTL-C.
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Figure 3: Framework of DCNN with new APFL loss for speech emotion recognition, where feature xi and weight Wj are L2 normalized,
and logit cos θj is computed for each class. For the ground θyj

, an extra angular penalty m is added to calculate cos(θyj
+ m) as the new logit.

All logits are then multiplied by the scaling parameter s and go through the Softmax to obtain the prediction probability pxi,yi
for computing

the total loss.
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samples, also known as Overall Accuracy. Te other is
Unweighted Accuracy (UA) that is the average accuracy of
each individual class, also known as Class Accuracy.

5.2. Experimental Results of Our Proposed New Loss Function

5.2.1. Data Preprocessing. We trim the long duration audio
utterances to shorter duration ones which covers 75 per-
centiles of all audio samples in IEMOCAP [57]. Tus, the
maximum duration is restricted to six seconds. For those
longer than six seconds, their head and tail are cut. Each
trimmed sample is assigned the same emotion label as that of
its utterance. Subsequently, we use the feature extraction
method [58] to obtain spectrograms, where the sequence of
overlapping hamming windows is applied with the frame
length of 40 msec and frame interval of 10 msec. For each
frame, we calculate its discrete Fourier transform and then
perform the aggregation of the short-time spectra to obtain
a matrix of size T × F, where T≤ 600 and F � 400. Te last
step uses the zero padding to obtain the fxed 600 time
points. Tus, the spectrogram size is 600 × 400 for IEMO-
CAP, 500 × 400 for SAVEE, and 400 × 400 for EMODB.

5.2.2. Experimental Settings. DenseNet169 [60] pretrained
on ImageNet [61] is used to extract features of speech
spectrograms. Te parameter c ∈ 0.10, 0.20, 0.50,{

1.0, 2.0, 5.0, }, the penalty m ∈ [0.2, 0.5], and the feature scale
s is an empirical parameter that should be appropriately
large where it equals to 10. All experiments use the cross-
validation strategy. Besides, we run fve times per fold and
then take the average as the fnal result of the fold to ensure
the reliability.

5.2.3. Speaker Independent Experiments. Under this strat-
egy, we conduct experiments on both EMODB and SAVEE
using 10-fold and 4-fold cross-validation, respectively. Te
results are reported using the average value and standard
deviation of WA and UA. It can be found from Table 1 that
our new APFL outperforms all compared methods in WA
and UA. In addition, its standard deviation is also minimum
in most cases, indicating that it can make the model more
stable.

5.2.4. Speaker Dependent Experiments. Te relevant ex-
perimental results are reported in Table 2. It can be seen that
our new APFL still obviously outperforms all compared
methods inWA andUA. It also achieves themore signifcant
improvements than that in Speaker Independent cases.
Especially, compared with ArcFace loss on EMODB, APFL
has the larger improvements of nearly 2% in terms of both
WA and UA. Similarly, it can be observed that the model
using APFL is more stable on the whole in terms of standard
deviation.

5.2.5. Leave-One-Session-Out Experiments. As described
earlier, we choose the improvised speech part from
IEMOCAP as it comes from real cases. Experiments are

conducted by LOSO with fvefold cross-validation. Te
optimal parameters and results are reported in Table 3 in the
format of means and the standard deviations ofWA and UA.
It can be found that the model with APFL performs best
among all models with compared loss functions.

5.2.6. Visual Analysis of Loss Functions. In order to illustrate
advantages of our new loss function, we use t-SNE (t-
distribution stochastic neighbor embedding) method [62] to
visualize the distribution of features extracted from Den-
seNet169 on test samples in IEMOCAP under the guidance
of each compared loss function. Te results are shown in
Figure 4.

It can be seen in European space that the category de-
cision boundary of CE Loss is very vague, the categories are
basically mixed together, and the overall distribution is very
loose. Although focal loss performs slightly better, it is still
messy. ArcFace has a signifcant improvement, having three
distinct clusters. However, happy category in yellow is ba-
sically confused with the other three categories. In contrast,
clusters formed by our APFL are banded clearly in four
directions, corresponding to four categories. In particular,
the boundary between the happy category in yellow and the
angry category in blue becomes clearer, which indicates that
some samples ever wrongly classifed by the other loss
functions have now been correctly identifed. Te similar
results can be observed in the angle space. It can be seen that
the category boundary of CE loss is much vague, basically
mixed. In such a case, it is hard to perform the nice clas-
sifcation. Although focal loss obtains the better results, its
boundaries among classes are still overlapped. By com-
parison, ArcFace seems form three separated clusters.
However, four clusters are still not clearly formed. In
contrast, clusters formed by our APFL are separated in four
segments, corresponding to four categories. Te interval
between categories is also obviously larger than that of the
other loss functions, while the arc length in the same cat-
egory also becomes smaller. Tis means that the intraclass
compactness and interclass diference by our APFL have
been improved.

5.3. Experimental Results of Our MTAP. As our MTAP
consists of several components, ablation experiments are
conducted to illustrate the necessity and superiority of each
component.

5.3.1. Multimodal. In order to more clearly understand the
efectiveness of each modal, ablation experiments are
conducted on the improvised part of IEMOCAP. Te re-
sults are shown in Table 4. It can be seen that all modalities
are necessary to improve the performance. MTAP achieves
an obvious improvement of 2% on UA when the text modal
is added to spectrogram modal. However, the further
improvement is limited when the audio modal is further
added, indicating that there may be redundancy between
three modalities. In order to more intuitively refect the
contribution of each modal to features learned by MTAP,
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we use t-SNE to visualize the distribution of test samples
whose features are extracted by our model in European
space. Te results are shown in Figure 5. When only the
spectrogram features is used, it can be seen that there are
roughly three clusters, but they are basically mixed together
without clear boundaries. However, by comparison, our
results in Figure 5(d) have the better gap among three
clusters denoting anger, neutral, and sad, indicating that
multimodal can improve the recognition performance of
each emotion category, proving that our method is
efective.

5.3.2. Gender Identifcation as Auxiliary Task. In the pro-
posed MTAP, the gender recognition is taken as the
auxiliary task. Experiments are conducted to illustrate its
efectiveness. Te results are shown in Table 5. It can be
seen that the auxiliary task has improved the performance
of the model in any case, illustrating that text modal is
efective for SER. In more details, MTL-B performs best in
three cases, even surpassing MTL-C, where their diference
is only whether the text modal is used. Tis means that text
modal is not efective for the gender recognition task. It is
reasonable because features of the text do not vary with the

gender diference but only related to the content of the text
itself.

5.3.3. New Loss Function. To validate that APFL is the
necessary component of MTAP, some experiments are
conducted where both CEL and APFL as loss functions are
used and all others remain unchanged forMTAP.Te results
are shown in Table 6. It can be seen that MTAP with
ResNet50 has achieved 2% improvement in both WA and
UA, while it with DenseNet-169 has achieved improvement
by 1.5% in WA and by 2.7% in UA. Te efects are much
signifcant, proving the superiority and necessity of APFL to
MTAP. By further combining it with multimodal in-
formation, MTAP has achieved the signifcant improve-
ments of 3% and 5%, respectively, on WA and UA.

5.4. Comparison with Recent Methods. In order to verify the
superiority of our MTAP, several advanced methods in
recent years are applied to make comparison with MTAP, as
these methods use the backbone network similar to ours and
experimental settings are the same. Te experimental data
are the improvised part of IEMOCAP, as it is closer to real

Table 1: Experimental results by SI, where DenseNet169 is used to extract features for the spectrogram.

Database Loss c m WA UA

EMODB

Softmax — — 74.37 ± 0.55 69.74 ± 0.52
Focal [45] 0.10 — 74.81 ± 0.63 69.78 ± 0.59

ArcFace [44] — 0.50 80.66 ± 0.19 77.88 ± 0.92
APFL (ours) 0.10 0.50 81. 9 ±  .27 78.73 ±  .54

SAVEE

Softmax — — 49.24 ± 0.94 43.53 ± 0.90
Focal [45] 0.10 — 49.38 ± 0.74 43.81 ± 1.02

ArcFace [44] — 0.50 52.85 ± 0.60 48.21 ± 1.22
APFL (ours) 5.0 0.50 53.33 ±  .85 49.13 ±  .5 

Bold fonts indicate the best performance.

Table 2: Experimental results by SD, where DenseNet169 is used to extract features for the spectrogram.

Database Loss c m WA UA

EMODB

Softmax — — 78.32 ± 0.82 76.11 ± 0.88
Focal [45] 0.10 — 79.25 ± 0.46 77.02 ± 0.86

ArcFace [44] — 0.50 84.85 ± 0.69 82.93 ± 0.78
APFL (ours) 5.0 0.50 86.42 ±  .49 84.77 ±  .5 

SAVEE

Softmax — — 61.81 ± 1.77 57.34 ± 2.13
Focal [45] 0.10 — 62.08 ± 0.17 57.66 ± 0.15

ArcFace [44] — 0.50 66.39 ± 0.56 63.17 ± 0.43
APFL (ours) 0.50 0.50 67.15 ±  .2 63.65 ±  .59

Bold fonts indicate the best performance.

Table 3: Experimental results by LOSO, where DenseNet169 is used to extract features for the spectrogram.

Database Loss c m WA UA

IEMOCAP

Softmax — — 71.56 ± 0.79 60.61 ± 1.20
Focal [45] 0.50 — 71.89 ± 0.46 61.94 ± 1.16

ArcFace [44] — 0.30 72.48 ± 1.24 63.67 ± 1.02
APFL (ours) 0.50 0.30 72.83 ±  .54 64.78 ±  .93

Bold fonts indicate the best performance.
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Figure 4: Visualization of samples distribution in IEMOCAP whose features are extracted by diferent loss functions, where the frst and
second columns, respectively, represent distributions in European space and angle space.
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Table 4: Performance comparison of our MTAP in the case of diferent combinations of multiple modalities.

Models Image Text Audio WA (%) UA (%)
ResNet50 √ 70.82 ± 1.08 60.25 ± 2.34
+BERT √ √ 71.60 ± 0.97 61.25 ± 0.79
+VGGish √ √ 71.58 ± 1.03 60.48 ± 1.53
+BERT+VGGish √ √ √ 71.84 ±  .62 61.87 ± 2.26
DenseNet169 √ 71.56 ± 0.79 60.61 ± 1.20
+BERT √ √ 71.83 ± 0.82 62.59 ± 1.36
+VGGish √ √ 71.72 ± 0.89 61.41 ± 1.16
+BERT+VGGish √ √ √ 71.85 ±  .59 62.91 ±  .75
Bold fonts indicate the best performance.
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Figure 5: Visualization of test samples distribution in IEMOCAP whose features are extracted with the combination of diferent modalities,
where (a) spectrogram, (b) spectrogram with text, (c) spectrogram with audio, and (d) spectrogram with text and audio.
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situations. Tese compared methods are basically developed
fromCNN structure, but they use only one or twomodalities
of speech. It seems that there is no method at present using
three modalities of spectrogram, text, and audio. It can be
seen from Table 7 that our method is optimal in both WA
and UA, illustrating the superiority of our method.

6. Conclusions

Tis paper proposes a new multimodal and multitask
learning method for speech emotion recognition, where
a new additive angle penalty focus loss function is also
proposed to guide the network learning. One of its ad-
vantages is that spectrogram features, text features, and
audio features are extracted from diferent angles and then
combined to enrich features for speech emotion recogni-
tion. Another advantage is that the auxiliary task of the

gender identifcation is applied to improve the general-
ization ability and transfer the knowledge to SER for the
complementary. Tis is because there are diferent prop-
erties of voice signals that male and female express the same
emotion. When the neural network model is used to learn
the emotional features of the input voice signal, if the
gender is not specifed, the model must learn emotional
features composed of both male and female simulta-
neously, so that the feature space is not only large but also
sparse. In such a case, a lot of training samples are required;
otherwise it is easy to overft. When the gender recognition
task is introduced, the model can learn the emotional
feature space of male and female, respectively, equal to
learning two smaller subspaces. Generally, the dimension
of the subspace is smaller than that of the whole space, so
that it needs smaller training samples. In the case of the
same training samples, the model with the gender

Table 5: Performance comparison of our MTAP where gender identifcation is the auxiliary task.

Models λ WA (%) UA (%)
ResNet50 0 71.84 ± 0.62 61.87 ± 2.26
+BERT+VGGish +MLT-A 0.25 72.32 ± 1.08 62.55 ± 0.59
+BERT+VGGish +MLT-B 0.25 72.58 ±  .37 62.93 ±  .99
+BERT+VGGish +MLT-C 0.25 71.94 ± 1.18 62.36 ± 1.09
DenseNet169 0 71.85 ± 0.59 62.91 ± 0.75
+BERT+VGGish +MLT-A 1.0 72.41 ± 1.14 63.02 ± 1.14
+BERT+VGGish +MLT-B 0.5 72.54 ± 1.05 63.98 ± 1.79
+BERT+VGGish +MLT-C 1.0 73. 7 ±  .45 63.08 ± 0.98
Bold fonts indicate the best performance.

Table 6: Performance comparison of MTAP in the case of diferent loss functions and backbone networks, where m � 0.3.

Models Loss WA (%) UA (%)
ResNet50 CEL 71.84 ± 0.62 61.87 ± 2.26
+BERT+VGGish CEL 71.84 ± 0.62 61.87 ± 2.26
ResNet50 APFL (c � 2.0) 73.56 ± 1.12 62.60 ± 1.32
+BERT+VGGish APFL (c � 2.0) 73.84 ±  .75 63.75 ±  .94
DenseNet169 CEL 71.56 ± 0.79 60.61 ± 1.20
+BERT+VGGish CEL 71.85 ± 0.59 62.91 ± 0.75
DenseNet169 APFL (c � 0.5) 72.83 ± 0.54 64.78 ± 0.93
+BERT+VGGish APFL (c � 0.1) 73.29 ±  .73 65.64 ±  .91
Bold fonts indicate the best performance.

Table 7: Performance comparison of MTAP with recent methods on the improvised part of IEMOCAP.

Models WA (%) UA (%)
CNN-BLSTM [7] 68.80 59.40
CNN-BLSTM with a two-step predictor [7] 67.30 62.00
Parallel CNN [57] 71.20 61.90
CNN-GRU-SeqCaps [63] 72.73 59.71
Variable-length CNN-GRU [64] 71.45 64.22
CNN-TF-GAP [43] 72.43 64.80
End-to-end ASR and SER [65] 69.70 63.10
CNN-MHSA [59] 72.34 58.31
MTAP with ResNet50 (ours) 73.84 63.75
MTAP with DenseNet169 (ours) 73.29 65.64
Bold fonts indicate the best performance.
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recognition task is more capable of learning ability, leading
to the higher accuracy of speech emotion recognition.
Furthermore, the proposed APFL has advantages of im-
proving the compactness within the class, enlarging the
diference between classes and focusing on difcult sam-
ples, so as to guide the network to learn more efective
emotional features. Although our method has achieved the
good performance, there is still room for the further im-
provement. For example, more modalities can be consid-
ered such as the speaker’s facial expression and body
movements, while the more complicated backbone net-
work can be also considered such as with attention
mechanism. Tey will be investigated in the future work,
including their applications such as recognition of Par-
kinsons’s disease through speech signals.
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