
Research Article
LogBASA: Log Anomaly Detection Based on System Behavior
Analysis and Global Semantic Awareness

Liping Liao ,1,2 Ke Zhu ,1 Jianzhen Luo ,1,2 and Jun Cai 1,2

1School of Cyber Security, Guangdong Polytechnic Normal University, Guangzhou, China
2Guangdong Provincial Key Laboratory of Intellectual Property and Big Data, Guangdong Polytechnic Normal University,
Guangzhou, China

Correspondence should be addressed to Jianzhen Luo; luojz@gpnu.edu.cn

Received 13 March 2023; Revised 22 August 2023; Accepted 30 August 2023; Published 20 September 2023

Academic Editor: Gianni Costa

Copyright © 2023 Liping Liao et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

System log anomaly detection is important for ensuring stable system operation and achieving rapid fault diagnosis. System log
sequences include data on the execution paths and time stamps of system tasks in addition to a large amount of semantic
information, which enhances the reliability and efectiveness of anomaly detection. At the same time, considering the correlation
between system log sequences can efectively improve fault diagnosis efciency. However, the existing system log anomaly
detection methods mostly consider only the sequence patterns or semantic information on the logs, so their anomaly detection
results show a high rate of missed and false alarms. To solve these problems, this paper proposed an unsupervised log anomaly
detection model (LogBASA) based on the system behavior analysis and global semantic awareness, aiming to decrease the leakage
rate and increase the log sequence anomaly detection accuracy. First, a system log knowledge graph was constructed based on
massive, unstructured, and multilevel system log data to represent log sequence patterns, which facilitates subsequent anomaly
detection and localization. Ten, a self-attention encoder-decoder transformer model was developed for log spatiotemporal
association analysis. Tis model combines semantic mapping and spatiotemporal features of log sequences to analyze system
behavior and log semantics in multiple dimensions. Furthermore, a system log anomaly detection method that combines adaptive
spatial boundary delineation and sequence reconstruction objective functions was proposed. Tis method uses special words to
characterize the log sequence states, delineates anomaly boundaries automatically, and reconstructs log sequences through
unsupervised training for anomaly detection. Finally, the proposed method was verifed by numerous experiments on three real
datasets. Te results indicate that the proposed method can achieve an accuracy rate of 99.3%, 95.1%, and 97.2% on HDFS, BGL,
and Tunderbird datasets, which proves the efectiveness and superiority of the LogBASA model.

1. Introduction

In recent years, computer systems have become larger and
more functionally complex due to the rapid development of
communication technology and artifcial intelligence, as well
as the explosive expansion in the number of linked smart
devices. Anomaly detection has become an important task in
the design of reliable computer systems. Once an anomaly
occurs in a large-scale system, it can afect system availability
and reliability or even directly lead to system disruption and
paralysis [1]. Moreover, malicious system attacks may cause
incalculable harm to society [2–5]. Terefore, to ensure the
safe and reliable operation of large-scale systems, system

administrators continuously collect real-time monitoring
data, monitor the operational status of a system, and use
diferent anomaly detection techniques to detect abnormal
system behavior in a timely manner.

Currently, log analysis is one of the main techniques for
system anomaly detection. System logs contain semantically
rich event content and system runtime state data, which
represent external manifestations of system behavior and
denote one of the most important data types for anomaly
detection and system monitoring tasks [6]. Tat is, if
a system failure occurs, engineers can efciently trouble-
shoot and locate it by viewing the system log data. However,
the amount of log data increases with the size and

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 3777826, 18 pages
https://doi.org/10.1155/2023/3777826

https://orcid.org/0009-0004-0282-3817
https://orcid.org/0000-0003-2551-9557
https://orcid.org/0000-0002-5123-1306
https://orcid.org/0000-0003-1695-483X
mailto:luojz@gpnu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3777826

complexity of a system, and a massive amount of log data is
generated during the system runtime; typically, approxi-
mately 1GB of log data is generated per hour for a com-
mercial system [7]. Te massive amount of log data makes
manual detection of abnormal events infeasible. In addition,
log data are inherently unstructured and contextually in-
terdependent, and a set of log data can be concatenated by
the same ID and generated into log sequences to track their
status and critical events. Recently, correlating log data by
IDs has been a typical approach for separating interleaved
logs, and mining out the dependencies between log data can
signifcantly improve the accuracy of anomaly localization.
However, log forms change throughout the software system
lifecycle [8–10], which can make anomalous behavior data
mining challenging. In conclusion, the detection of anom-
alous logs represents a highly difcult task since log data are
massive, unstructured, context-dependent, and diverse in
form. Hence, it is essential to use precise and efective log
anomaly detection methods.

Te existing log-based anomaly detection methods can
be roughly divided into three categories: pattern recogni-
tion methods based on log template counting vectors,
pattern learning methods based on log event indexes, and
log semantic-based representation learning methods. Pat-
tern recognition methods based on log template counting
vectors [11–15] use log event count vectors as input, and
each event is individually treated as a dimension and
mapped to the vector space using traditional machine
learning methods; deviations from the direction of normal
log sequences are classifed as anomalies. However, these
methods do not consider the sequential pattern and content
of a log sequence and determine exceptions only based on
the co-occurrence pattern between log templates. In the
pattern learning methods based on log event indexes
[16, 17], a log event sequence is analyzed using a sliding
window, and the next event index is predicted based on the
observation window data. However, these methods do not
consider log content information and cannot learn se-
mantic relationships between events, and a fxed sliding
window size cannot capture sequential patterns outside the
sliding window range. Also, these methods do not consider
the correlation of the system behavior from a global per-
spective. In the log semantic-based representation learning
methods [18, 19], event templates are extracted from log
data, and natural language processing (NLP) techniques are
used to generate log semantic representations for each
template. However, these methods do not consider the
correlation between the events in a log sequence and in-
stead only use the semantic representation of each log text.
Te occurrence of anomalous events not only afects the
system behavior but may also afect the subsequent exe-
cution path of the system. Terefore, analyzing only the log
semantics cannot provide information on the contextual
relationships between system behaviors. In addition, when
anomalies occur in real log data, not only the sequence of
events within a log sequence changes but also the time
diference between adjacent events, so the information on
time diference is also crucial for log analysis. Recent related
research [6] has combined temporal embedding with log

semantics to detect log sequence anomalies, aiming to
uncover potential performance problems and detect
anomalies from the perspective of system performance
fuctuations that do not refect sequential patterns of system
behaviors.

To address the aforementioned challenges, this paper
introduces an innovative approach named LogBASA for
detecting log data anomalies. Te LogBASA addressed the
current challenges by combining system behavior analysis
and global semantic awareness. First, a system log
knowledge graph (SLKG) rooted in logs is designed. Tis
graph integrates a substantial volume of log data and crafts
a log relationship model, facilitating the identifcation of
anomalous logs and the encapsulation of semantic nuances
and sequential patterns within log event sequences. Te
transformation of log sequence patterns into a system
functional path graph is initiated in the context of system
behavior analysis. In this process, log event semantics are
regarded as node features, which are amalgamated with the
spatial confguration of the graph, and a graph convolution
network (GCN) is used to amplify spatial attributes within
a log sequence. Subsequently, a multilayer perceptron
(MLP) is used to capture temporal features by representing
the time diferences between adjacent log events. Re-
garding the global semantic perception, the pretrained
BERT model [20] is used to encode the log template se-
mantics. Te global semantics of the log sequences are
subsequently mapped using the self-attention encoder-
decoder transformer model. Tis mapping integrates
spatiotemporal correlation features, providing a multidi-
mensional system anomaly detection capability. By
combining semantic insights and integrating temporal
information with log sequence patterns, the proposed
approach synergistically enhances the efciency of
anomaly detection within log event sequences.

Te main contributions of this paper are as follows:

(1) An innovative anomaly detection model named
LogBASA, which leverages global semantic aware-
ness in combination with the system behavior
analysis, is proposed. Te LogBASA model dem-
onstrates remarkable profciency in merging se-
mantic information from log sequences, spatial
characteristics of log graphs, and temporal features
of adjacent logs.

(2) An advanced model training methodology that
harmonizes adaptive spatial boundary delineation
with the objective function for sequence re-
construction is introduced. Tis approach employs
distinct terminology to delineate log sequences and
adopts unsupervised learning techniques to de-
marcate boundaries for normal logs dynamically.
Furthermore, sequence representation re-
construction is performed to elucidate potential
relationships between log events through semantic
mapping and sequence patterns.

(3) A SLKG is designed to depict the interconnections
within system logs.Tis innovative approach adeptly
assimilates unstructured log data, providing

2 International Journal of Intelligent Systems

a signifcant improvement in both exception de-
tection efciency and fault localization accuracy.

(4) Te proposed method is compared with eight typical
methods on HDFS, BGL, and Tunderbird datasets,
and the comparison results validate the efectiveness
of the proposed method.

Te rest of this paper is organized as follows. In Section
2, an overview of related work is presented. Te proposed
system model, including the SLKG, log graph feature rep-
resentation, and log timing feature representation, is in-
troduced in Section 3. Te LogBASA model is described in
detail in Section 4. In Section 5, the performance of the
proposed model is verifed on three real log datasets. Finally,
the main conclusions are drawn in Section 6.

2. Related Work

Recently proposed methods for log anomaly detection can
be broadly classifed into two categories: data mining-based
methods and deep learning-based methods.

2.1.DataMining-Based LogAnomalyDetection. Te existing
data mining-based methods can be mainly classifed into
supervised learning-based methods and unsupervised
learning-based methods. Supervised learning-based
methods learn the fxed patterns of diferent labeled logs
through training on labeled log data and then use support
vector machine (SVM) [21], fnite state automata (FSA)
[22, 23], decision tree (DT) [24], logistic regression (LR)
[25, 26], and other methods for anomaly detection. Teir
detection performance is usually higher than that of un-
supervised learning-based methods [27]. However, the cost
of labeling a large amount of log data is high. Unsupervised
learning-based methods mainly include principal compo-
nent analysis (PCA) [28, 29], frequent pattern mining [30],
clustering [12, 31], and isolation forest (IF) [11]. Un-
supervised learning-based methods have the advantages of
low cost and interpretability, but despite these advantages,
data mining-based methods tend to perform inconsistently
in certain situations because they cannot capture sequential
patterns and semantic information between log events.

2.2. Deep Learning-Based Log Anomaly Detection. Deep
learning has received great attention in the past decade due to
its superiority in model representation and modeling per-
formance. Many studies have applied deep learning to log
sequence anomaly detection under unsupervised learning-
based schemes.Tere are threemain types of neural networks:
CNNs, RNNs, and transformers. Regarding the CNN-based
approaches, Lu et al. [15] proposed amethod to extract system
log features using CNNmodels to detect anomalies in big data
systems. Furthermore, to meet the demand for real-time
detection, Wang et al. [32] proposed a lightweight log
anomaly detection model named LightLog, which can in-
crease the processing speed in anomaly detection tasks by
creating a low-dimensional semantic vector space and using
a lightweight temporal convolutional network (TCN).

Regarding the RNN-based approaches, Brown et al. [33]
proposed an RNN model that incorporates an attention
mechanism to mine system logs for anomaly patterns. To
model the sequence data, Zhang et al. [34] proposed an
anomaly detection model for the automatic analysis of
console logs. Tis model focuses on capturing the sequential
features of log sequences using a long short-term memory
(LSTM) network; this was the frst time that the LSTMmodel
was applied to log anomaly detection. Accordingly, a number
of studies on log anomaly detection have been performed
using the LSTM model and its variants. Based on [33], Du
et al. [16] proposed the DeepLog model consisting of two
main parts: log template anomaly detection and log variable
anomaly detection. Te frst part extracts the sequential
features of log sequences using the LSTM model, and the
second part detects anomalies by modeling the log re-
lationships. Compared to the model presented in [34], the
DeepLog model can achieve more comprehensive log
anomaly detection. Furthermore, Meng et al. [19] proposed
the LogAnomaly model, which uses the template2vec log
vectorization method.Tis model can efectively vectorize log
templates and detect anomalies in log sequences by com-
bining the LSTM with attention mechanisms. Te LogAno-
maly model’s detection performance is better than that of the
DeepLog model due to its improved log vectorization
method. Tat is, it reuses the LSTM network for feature
extraction and fne-tunes the classifer network parameters for
anomaly detection. Wang et al. [35] proposed an anomaly
detection model named OC4Seq, which used a multiscale
RNN framework that considered the log data imbalance. In
this way, diferent levels of sequence patterns can be captured
by embedding discrete event sequences into the latent space,
thus providing relatively easy anomaly detection. Regarding
the anomaly detection methods based on the transformer
model, Wibisono and Kistijantoro [36] used an adaptive
general transformer-based model, following the work in [33],
to learn long input sequences and improve the anomaly
detection accuracy. Huang et al. [37] proposed the HitA-
nomaly model, which adopts hierarchical transformer
structures to model log template sequences and parameter
values and encode them using encoders. Te anomaly de-
tectionmechanism used in theHitAnomalymodel is based on
attention. Guo et al. [17] developed the LogBERT model to
learn the pattern of normal log sequences through mask log
message prediction and hypersphere volume minimization.

Compared to the data mining-based log anomaly de-
tection methods, the abovementioned models use neural
networks to extract sequence features from log data and then
capture the anomaly patterns of a system, showing relatively
superior performance. However, most of the sequence
pattern-based methods analyze only the sequence re-
lationships between log events for anomaly detection,
lacking consideration of spatial correlations between log
events from the perspective of system behavior, which
hinders further improvement of anomaly detection per-
formance and can lead to unstable performance in specifc
cases. Recently, Wan et al. [38] proposed a method based on
the graph neural networks (GNNs) named GLAD-PAW,
which uses the graph attention networks (GAT) for log

International Journal of Intelligent Systems 3

anomaly detection, and verifed the feasibility of the graph-
based log anomaly detection methods. However, although
this approach is graph-based, it still adopts the sequence
model for spatial structure perception, namely, it uses only
positional encoding while ignoring the interaction between
node features and graph structure, which can lead to sub-
optimal results. In contrast, the LogBASA model proposed
in this study combines semantic mapping of log text, a node-
centric spatial structure, and interevent temporal features for
behavioral analysis and semantic perception of a given se-
quence of events. Tat is, in the model training phase, the
semantic mapping is combined with the spatiotemporal
association features by the self-attention encoder-decoder
transformer model to improve the log anomaly detection
performance and stability.

3. System Modeling

Te LogBASAmodel proposed in this paper is a log anomaly
detection method based on the self-attention encoder-
decoder transformer model. Te fowchart of the pro-
posed method is shown in Figure 1, where it can be seen that
it includes four main parts: log preprocessing, system be-
havior analysis, global semantic awareness, and anomaly
detection. First, the LogBASA cleans the collected system log
data, generates a multidimensional and fne-grained system
description, and constructs a system log knowledge graph
(SLKG) using the log data and system confguration fles.
Next, the log sequence is converted into a system functional
path diagram to represent the system behaviors generated
under the current log sequence. Te node features provide
semantic information on the log sequence, and the edges
contain information on connectivity and weights between
node pairs. Furthermore, the MLP network is used to extract
the temporal features of log events, which are then fused
with the spatial features of log sequences to generate the
spatiotemporal association features of the log event se-
quences, and system behavior analysis is performed on
them. Te LogBASA method uses a pretrained BERTmodel
to obtain semantic information on log event sequences and
adds a special marker [SIGN] in front of sequences to
characterize the semantic state of the sequence, which is then
used as the encoder’s input and encoded as a log semantic
mapping. Furthermore, the system’s behavioral features and
global semantic sensing data are fused in the decoder for
anomaly detection. Afterward, a training method that
combines adaptive boundary partitioning based on un-
supervised learning with the objective function of sequence
reconstruction is employed to improve the performance of
anomaly detection. Finally, the LogBASA provides the fault
diagnosis result and feedback to operators for timely
troubleshooting, which improves system maintenance
efciency.

3.1. System Log Knowledge Graph Construction. Previous
studies have concluded that it is difcult to mine the cor-
relation between system anomalies by analyzing only the log
sequence data. To address this shortcoming, this study designs

a system log knowledge graph (SLKG) to characterize the
relationships between anomalies, which helps to enhance the
anomaly detection efect. As shown in Figure 2, the SLKG
consists of three layers: the system layer, the component layer,
and the event layer, and their main functions are as follows:

(1) Te system layer integrates the logs from various
systems.

(2) Te component layer describes the components of
each system.

(3) Te event layer represents log events.

Te SLKG mainly contains three types of entities, the
system, component, and event entities in the system,
component, and event layers, respectively. Also, the SLKG
mainly considers three types of relationships: system-
component relationships, component-event relationships,
and interevent relationships.

Te SLKG construction process includes three main
steps:

(1) Step 1: defne the basic framework of entity, re-
lationship, attributes, and SLKG based on the specifc
design principles.

(2) Step 2: automatically extract the corresponding
entities and attributes from the original log data
using log parsing techniques.

(3) Step 3: update the logs generated by the system to the
SLKG in real time.

It is worth mentioning that the SLKG has a simple
structure and is easy to design and apply. Te hierarchical
structure of the SLKG allows a clear analysis of relationships
and a good understanding of the relationships between
anomalies. Tis study uses the NLP techniques to extract the
semantic features of logs, which can help to train the
LogBASAmodel and efectively improve the performance of
anomaly detection and fault diagnosis.

In this paper, the log content is parsed by the log parser
Drain [39], and the component names and log templates in
the logs are extracted as entities; the timestamp, pid, and level
are used as attributes of the log template entities. Ten, the
relationships are set as hasComponent, hasTemplate, and
hasAttribute using the predefned means. Tis paper stores
the SLKG based on the Neo4j graphical database, whose data
model is based on the graphical structures, making it well
suited for representing complex relational data. In addition,
for the SLKG queries, the Neo4j database uses indexing and
query optimization techniques to support entity-based and
relational queries efectively. In addition, the Neo4j efectively
also supports horizontal and vertical expansion and thus can
easily handle large-scale SLKG.

3.2. System Function Path Map. Each log in the system is
generated by executing the log print statements in the source
code. Te order of logging events generated by a system task
indicates the execution order of the function that completes
the task. Terefore, the system execution process can be
modeled as a system function path map, which is a directed

4 International Journal of Intelligent Systems

graph, to capture the execution paths of tasks. When the
anomaly detection model detects an anomaly, the system
function path map can improve the efciency of fault di-
agnosis. First, a log sequence is extracted from the SLKG, as
explained in Section 3.1, and converted into a system
functional path graph, denoted by G � (V, E, M, N), where
V represents the set of nodes vi corresponding to the log
events of the SLKG and E is the set of edges evi,vj

(i.e., the
sequence of events vi linking events vi to form a node pair).
M ∈ R|V|×d denotes the node feature set corresponding to
the semantic vector of log events generated by the NLP
technique. |V| is the number of nodes, and d is the feature
dimension of the semantic vector. N ∈ R|E|×1 is the set of
edge weights, which defnes the frequency of occurrence of
an edge evi,vj

in the sequence. It is important to emphasize
that self-looping edges are used for the initial event since
there are no previous events before the initial event. In the
previous steps, the system function path map is constructed
from a given set of log sequences.

As shown in Figure 3, a log sequence with a set of se-
mantic features of an event li � [e1, e2, e3, e4, e3, e5, e5], i ∈ |S|,
where |S| is the total number of log sequences, is converted
into a system functional path diagram consisting of node

features and graph structure features. As can be seen from
the graph in Figure 3, the graph provides a more intuitive
spatial structure property than the log event sequence. Te
spatial structure of the graph is regarded as a node-centered
global structure represented by a degree matrix. Te ac-
curacy and stability of anomaly detection can be improved
by generating a more expressive spatial feature represen-
tation of the log sequence based on the graph convolution
model. However, it should be noted that the system
functional path graph does not contain duplicate nodes,
which is diferent from log sequences. For instance, in the
log sequence in Figure 3, events e3 and e5 appear twice, but
nodes e3 and e5 denote single nodes in the transformed
graph. Te information on the frequency of occurrence of
edges in each node pair is characterized by in and out degree
to ensure that the log sequence information is represented
completely in the graph.

3.3. Log Temporal Feature Representation. Most of the
existing approaches construct anomaly detection models
using the log template count vectors, template semantics, or
their combination. However, the timestamp represents an
important piece of information on a system log, which
describes themoment when the system performs a particular
task. As shown in Figure 4, the time interval of log events can
refect the current operating status of the system. Terefore,
the timestamp can be used to calculate the running time
between two log messages. In a stable system, the path
traveled and the time consumed to execute a system task are
relatively stable, so this study introduces the time diference
between log events into anomaly detection and combines it
with the system execution path to analyze the system logs
from multiple dimensions.

Defne the time diference sequence of a log sequence as
ΔT � Δt1,Δt2, . . . ,Δt|l|􏽮 􏽯, where Δt is the time diference
between two adjacent log events E and |l| is the log sequence
length. As shown in Figure 4,Δt in the log sequence is closely
related to the previous event e. For instance, Δt is smaller for
IO tasks but larger for scheduling tasks [6]. Even in normal

Log Preprocessing

Log Parsing

Log Collection

Knowledge
Extraction

System
Configuration

Log knowledge

Knowledge
Storage

SLKG

Log Templates

Semantic Features

Temporal Features

Behavior Analysis and
Semantic Awareness

Spatial Features Transformer

Encoder Decoder

Spatio-temporal
correlation feature

Sequence
ReconstructionAdaptive Boundary

Semantic Features

Anomaly Detection

y

x

Figure 1: Te overall architecture of the proposed method.

ThunderbirdBGLHDFSSystem
Layer

Component
Layer

Event Layer

C1

e1

e5 e6 e7

e2 e3 e4

C2 C3

Figure 2: Te SLKG structure.

International Journal of Intelligent Systems 5

system operation, the time interval oscillates within the time
range associated with a task.

Since the original time diference series data denote one-
dimensional temporal data, this study extends the one-
dimensional temporal data using high-dimensional em-
bedding to improve its interpretability. Li et al. [40] pro-
posed a time-dependent event representation method,
considering that one-hot coding could generate a large
sparse matrix when processing multicategorical data, which
could further cause large resource consumption. However, if
there is a large Δt in the log sequence, it may lead to a di-
mensionality explosion and even afect the model training
efect. In addition, the features of time diference sequences
have nonlinear relationships, where the time diference
between events in a normal log event sequence is uniform
and shows certain continuity, whereas the occurrence of
anomalies breaks the original continuity. Previous research
[41] has shown that the MLP algorithm is efective in the

feature extraction task for high-dimensional continuous
data. Te MLP algorithm can perform nonlinear modeling
and feature extraction for continuous data, learn nonlinear
features of data through hidden layers, and, due to its
adaptive nature, can adaptively adjust the model parameters
according to the data features to achieve feature extraction
for time-diference sequences. Terefore, this study uses the
MLP to perform feature extraction of time-diference
sequences.

3.4. Defnition of Specifc Terms. In this section, formal and
important terms used in this work are defned. Table 1
summarizes the mathematical notations used in this paper.

Defnition 1. Log event: A log event consists of a set of words
and numbers that are output from the system source code to
refect the textual content of the currently executed functions of

e1

e1 e2

e2

e3
e3

e4
e4

e5

e5

e1

l=(e1,e2,e3,e4,e3,e5,e5)

e2

e3

e4

e5

e1 e2 e3 e4 e5

Degree Matrix

Node Features

System Function Path Garph

Graph
Construction

Log Event Semantic Representation

Figure 3: Te system function path map.

Normal Log Event Sequence

Timestamp

Content

Content

Log Time Interval Change Log Event Sequence

Level

Timestamp Level

Figure 4: Illustration of normal and time-diference-fuctuating log event sequences.

6 International Journal of Intelligent Systems

the system. In this study, the log parser Drain [39] is used to
generate the event template after parsing, and all the log events
in this paper denote event templates. Formally, a log event is
expressed as e � token1, token2, . . . , token|e|􏽮 􏽯, where tokeni

denotes the ith word, number, or symbol and |e| is the number
of words in event e. For example, e � Receiving,􏼈

block, <∗>, src, : , /, <∗>, dest, : , /, <∗>}.

Defnition 2. Log event sequence: A log event sequence can
be described as a sequence of consecutive events output by
the system in chronological order during the execution of
a completed task. Formally, a log event sequence is defned as
l � e1, e2, . . . , e|l|􏽮 􏽯, where ei denotes the ith event and |l| is
the number of events in a fxed time period. For example,

l �

Receiving block 〈∗〉src: /> dest: /> ,

BLOCK∗NameSystem.allocateBlock: 〈∗〉,

PacketResponder 〈∗〉 for block 〈∗〉 terminating,

. . . ,

BLOCK∗NameSystem.addStoredBlock: blockMap updated: 〈∗〉

is added to 〈∗〉 size 〈∗〉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

Table 1: Summary of symbols.

Symbol Descriptions
token Tokenized words, symbols, or numbers
e Log event consisting of a sequence of tokens
e[CLS] Add [CLS] and [SEP] tagged log events
l A chronological sequence of log events
S A training set consisting of sequences of log events
G A directed graph that represents the system functional path
V A set of all nodes in the system functional path map
E A set of all edges in the system functional path map
M A collection of node semantic features
N Node degree matrix
vi Te ith node in the node set
evi,vj

Edge between nodes vi and vj

Δt Time diference between adjacent events in the event sequence
ΔT Time-diference series representation
semi Te semantic representation of the ith token in the sequence
sem[CLS] Semantic representation of the additional word [CLS]
sem[SIGN] Semantic representation of the special addition word [SIGN]
Q, K, V Matrix of queries, keys, and values in the attention mechanism
fs Spatial feature representation of the system functional path map
ft Log temporal features representation
Xe Semantic representation of event sequences
Xd Complete decoder input
Ye Semantic feature mapping of event sequences
Yd Event sequence decoder output representation
Y[SIGN] Te decoder output representation of the special word [SIGN]
Y Full encoder output containing the special word [SIGN]

F
Feature representation, incorporating encoder output, spatial features, and

temporal features
Hi

g Te hidden representation of the ith layer graph convolution
Hi

e Te hidden representation of the layer i encoder
Hi

d Te hidden representation of the layer i decoder
L Loss functions, including Lboundary and Lre

C Center of all decoder outputs for the special word [SIGN] in the training set S

y Log event sequence label
R Abnormal decision boundary

International Journal of Intelligent Systems 7

Defnition 3. Log event sequence anomaly detection: All
collected log event sequences are combined into a training
set denoted by S � l1, l2, . . . , l|S|􏽮 􏽯, where |S| is the total
number of log event sequences in the training set. In the
unsupervised training mode, the training set contains only
normal log event sequences, and an anomaly detection
model learns the feature patterns of the normal log time
sequences; when the system generates a new event sequence,
the model can determine whether it is a normal or anomaly
sequence.

As mentioned before, semantic information cannot
express event dependencies, and sequential patterns cannot
refect semantic features. Accordingly, this study aims to
address these limitations from the perspective of system
behavior analysis and global semantic perception.Terefore,
this study jointly optimizes the log event semantic per-
ception and event sequence pattern learning and combines
them to achieve high-precision system log anomaly
detection.

For ease of reading, all symbols used in this paper are
listed in Table 1.

4. Anomaly Detection

Te proposed LogBASA model has the self-attention
encoder-decoder transformer architecture. To obtain the
global semantic information on log sequences, this study
employs the log parser Drain [39] to parse log events to
obtain log templates and uses a pretrained BERT model to
extract semantic information on events. In the encoder,
a sequence of log event templates is encoded and used as
input for semantic feature mapping. In the decoder, a special
sequence token [SIGN] is added to the beginning of the
input event template sequence to characterize the sequence
state. Furthermore, through a combination of adaptive
spatial boundary partitioning and reconstruction errors, the
feature representations of [SIGN] and log event sequences
are learned separately, and sequence prediction is realized by
model training using unsupervised learning. In addition, by
combining the global semantics of event template sequences
with the system behavior analysis, the spatial distribution of
normal log event sequences is obtained in multiple di-
mensions, which can improve the efciency of anomaly
detection. Te LogBASA is described in detail in the
following.

4.1. Semantic Awareness. Previous studies [41, 42] have
shown that semantic information on log event sequences has
a signifcant impact on the log anomaly detection efect. To
prevent semantic confusion introduced by polysemous
words and event changes from afecting the anomaly de-
tection efect, this study extracts semantic information from
log events using the superior-performance BERT model.
Tis model is adopted to capture and learn similarities and
diferences between log events in a more efcient way. As
described in [20], the original BERT model has two main
functions in a specifc downstream task: model fne-tuning
and feature extraction. To enable an anomaly detection

model to capture the textual semantic information on dif-
ferent log events accurately, this study performs feature
extraction to generate event-corresponding contextual se-
mantic representations using the BERTmodel as a substrate
for the anomaly detection model.

Te block diagram of the BERT model is presented in
Figure 5. As shown in Figure 5, frst, the log event template is
divided into multiple tokens. Te [CLS] and [SEP] tokens
are added to the beginning and end of each sentence to mark
the start and end positions of a sentence, respectively, which
can be expressed as e[CLS] � [CLS]token1, token2, . . . ,

token|e|[SEP]. In terms of semantic information extraction,
semantic information on the special word [CLS] in the log
event is directly extracted as an event representation and
denoted by sem[CLS].

For a log event sequence l � e1, e2, . . . , e|l|􏽮 􏽯, the cor-
responding event semantic sequence Xe � sem[CLS]

1 ,􏽮

sem[CLS]
2 , . . . , sem[CLS]

|l| } is generated by the BERT model,
where sem[CLS]

i represents semantic information on event ei.

4.2. SystemBehaviorAnalysis. To obtain amultidimensional,
fne-grained system description of log data, this study
characterizes each system function in a sequence at a fxed
time as a system behavior. In the spatial dimension, a log
event sequence is converted into a system functional path
graph, and the GCN is used to extract the spatial structure
features of the graph, which facilitates the graph repre-
sentation learning of the subsequent anomaly detection
model. In the temporal dimension, the timestamps of the log
events are used to generate the time-diference sequences
corresponding to the log event sequences to characterize the
temporal correlation between events. Finally, the MLP
model is employed for temporal feature extraction to fa-
cilitate the subsequent anomaly detection model to learn the
temporal dependencies between logs.

4.2.1. Spatial Structural Features. For log sequences, a se-
quence pattern between log events represents an important
discriminator of normal or abnormal behavior. Tat is, the
sequential pattern between log events refects the in-
formation of the positions of log events in a sequence. Te
sequence-based approaches exploit the positional structure
of log events implicitly by sequentially processing a sequence
(e.g., LogRobust [9]) or performing explicit positional
encoding to augment the sequence representation (e.g.,
NeuralLog [43]). Unlike sequential data, there is no node
order pattern in the directed graph because the nodes’
positions are fxed. In this study, the degree matrix of the
system function path map is used to realize structure-aware
encoding of the graph using the GCN to enhance the in-
terpretability of the graph representation and perform
spatial feature extraction of the graph. In addition, the
node’s entry and exit degrees can intuitively refect the local
topology of graph nodes, which not only represent the
importance of nodes in the graph but also refect the sim-
ilarity between the nodes and thus can be used to com-
plement the semantic similarity between the nodes. Te
spatial feature extraction is defned as follows [44]:

8 International Journal of Intelligent Systems

H
i+1
g � ReLU(GCNConv(m, n)),

fs � Pool H
i
g H

i−1
g􏼐 􏼑􏼐 􏼑, i � 1, 2,

(2)

where m and n denote the node semantic features and the
node degree matrix of the graph, respectively, GCNConv(·)

represents the graph convolution network, Pool(·) is the
mean pooling operation, and the spatial structure features of
the graph are expressed as fs � fs1

d, fs2
d, . . . , fs|l|

d􏽮 􏽯,
where fsd

i denotes the feature representation of node vi and
d is the feature dimension.

4.2.2. Temporal Relationship Features. Te timestamps in
log events denote a potential indicator for abnormal judg-
ment. As shown in Figure 4, the analysis of timestamps in
event sequences shows that the time diference of abnormal
event sequences fuctuates signifcantly. Tese fuctuations
can be caused by system performance problems, such as
network congestion or system abnormalities. If there is
a performance problem, the log events usually maintain the
same sequence order as a normal sequence, so system
anomalies commonly show a change in sequence order or
a large fuctuation in time diference. For such performance
problems, static feature extraction methods [45] have been
typically used to discover performance defects, or intrusion
detection has been performed to detect them [46]. However,
complete extraction of sequence features is challenging and
can increase the system load and afect the system’s oper-
ation efciency. Terefore, this study identifes possible
anomalous problems in both spatial and temporal di-
mensions by extracting the temporal relationship features of
log events and combining them with the graph space
structural features, as explained in Section 4.2.1. Te MLP
model is used to extract the temporal relationship features of
event sequences as follows:

MLP � 􏽘

|ΔT|

i�1
Δtiwij + bj,

ft � Sigmod(MLP(ΔT)),

(3)

where ΔT is the time-diference sequence of a log event
sequence, Δti is the ith diference in the time-diference
sequence, wij and bj are the weight and bias of the j th

hidden layer, respectively, and they are used to obtain the
temporal relationship feature ft � ft1

d, ft2
d, . . . , ft|l|

d􏽮 􏽯 of
the log event sequence, fti

d denotes the feature represen-
tation of the ith time diferenceΔti, and d denotes the feature
dimension.

4.3. Self-Attention Encoder-Decoder Transformer Structure.
In recent years, the self-attention encoder-decoder trans-
former structure has been proven to be very efective in
various NLP tasks [20, 47]. Compared to recurrent neural
network models, such as LSTM, transformer structures can
efciently handle long sequences of input and output data,
which represents an advantage when encoding complex log
sequence patterns and dealing with high-dimensional and
multilevel log event semantics. In addition, to improve
a model’s semantic-aware performance, a multiheaded at-
tention mechanism has often been used. In this paper, the
LogBASA model adopts the encoder with the self-attention
encoder-decoder transformer structure to encode event
semantic sequences into semantic mappings and fuse the
spatiotemporal correlation features of log event sequences,
as presented in Section 4.2, which are further used as key and
value inputs. In addition, anomaly detection is performed by
outputting the semantic representation vector and sequence
pattern mapping of the special word [SIGN] from the
decoder.

4.3.1. Semantic Awareness Encoder. An encoder with
a multilayer encoder structure based on self-attention is
adopted to sense the semantic relevance of log sequences
from a global perspective, as shown in Figure 6. For a log
event sequence l � e1, e2, . . . , e|l|􏽮 􏽯, the event semantic
representation sequence Xe � sem1

[CLS], sem2
[CLS],􏼈

. . . , sem|l|
[CLS]}, where semi

[CLS] is the semantic represen-
tation of the start word [CLS] corresponding to event ei, is
obtained by the pretrained BERT model. Te self-attention
mechanism [47] is employed to capture the semantic fea-
tures in the sequence of semantic representations of events
as follows:

Attention(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (4)

[CLS] Receiving block <*> src : / <*> dest : / <*> [SEP]

BERT

LinearLinear

Sofmax

 sem[CLS]

Log Event e = [Receiving, block, <*>, src, :,/, <*>, dest, :, /, <*>]

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Tsep

Figure 5: Te block diagram of the BERT model.

International Journal of Intelligent Systems 9

where Q, K, and V denote the query, key, and value matrices,
respectively, and dk is the dimensionality coefcient.

Each encoder self-attentive module is connected to
a fully connected feedforward neural network (FFN), which
consists of two layers with linear transformation functions
with a ReLU-activation-function layer between them, which
can be expressed as follows:

FFN(x) � ReLU xW1 + b1(􏼁W2 + b2, (5)

where x denotes the semantic representation of the attention
module output and W1, W2, b1,and b2 are the weight pa-
rameters and biases of the frst and second FFN layers,
respectively.

Te fnal encoder output provides the semantic feature
mapping Ye of an event sequence, which is then fused with

the spatiotemporal correlation features of the log event
sequence in the system behavior analysis and used as the key
and value inputs of the encoder-decoder attention module in
the decoder.

4.3.2. Anomaly Detection Decoder. In this study, a log event
sequence anomaly prediction decoder is designed based on
global semantic awareness and system behavior analysis.
Adaptive anomaly boundaries with sequence reconstruction
are used as training objectives. Unlike the encoder, the
decoder uses the multihead attention module to improve
semantic perception performance, which can be expressed as

MultiHead(Q, K, V) � Concat head1, head2, . . . , headh(􏼁W
O

,

where headi � Attention QW
Q
i , KW

K
i , VW

V
i􏼐 􏼑,

(6)

where Wi
Q, Wi

K, and Wi
V are the linear projection weights

of an attention headi. WO is the projection matrix.
As shown in Figure 6, each decoder layer includes the

encoder-decoder attention module and FFN module. Te
decoder input is similar to that of the encoder, and a special
word [SIGN] is added to the beginning of a sequence to
capture the semantic features of the whole time sequence
based on the semantic representation sequence of events Xe

to obtain the complete decoder input Xd, which is defned by

Xd � sem[SIGN]
􏽨 􏽩 Xe􏼂 􏼃dim�1

���� , (7)

where [•]‖[•]dim�1 denotes the splicing of two matrices in
the column dimension.

Next, the spatiotemporal correlation features of the event
sequences are fused, as explained in Section 4.2, with the
semantic feature mappings generated by the semantic-aware
encoder and used as key and value inputs to the encoder-
decoder attention module. Te LogBASA model can capture
the patterns and global semantic correlations of event se-
quences represented by the node topology through the at-
tention mechanism as follows:

Fi � 􏽘

|l|

i�1
y

i
e + f

i
s + f

i
t, (8)

where ye
i ∈ Ye, fs

i ∈ fs, ft
i ∈ ft, and F � F1, F2, . . . , F|l|􏽮 􏽯

denote the new event sequence feature representation.

H
i+1
d � FFN Attention MultiHead H

i
d􏼐 􏼑, F, F􏼐 􏼑􏼐 􏼑. (9)

Te encoder-decoder attention module of the last de-
coder layer is followed by a fully connected FFN, the same as
the encoder, and the fnal output of the decoder is fnally
obtained as follows:

Y � Y
[SIGN]

􏽨 􏽩 Yd􏼂 􏼃dim�1
���� . (10)

To ensure that the model can learn inherent diferences
between normal and abnormal log samples, this paper
defnes an adaptive boundary with a sequence re-
construction loss function. As a result, the model can map
normal log events to adjacent positions in the implicit
space, where normal samples are close to each other, thus
diferentiating normal from abnormal samples. Te se-
mantic mappings of log event sequences are obtained from
the decoder output of the added [SIGN] tokens. It is as-
sumed that the spatial mappings of all normal log event
sequences are closely distributed, forming a hypersphere.
Te goal of introducing the adaptive boundary is to form
a spatially compact hypersphere that can contain semantic
mappings of all normal event sequences. In the testing
phase, any sequence that is mapped by the model outside
the hypersphere boundary is denoted as anomalous. Te
proposed adaptive boundary loss function Lboundary is de-
fned as follows:

C � Mean 􏽘

|S|

i�1
Y

[SIGN]
i

⎛⎝ ⎞⎠,

Lboundary � argmin
Φ

􏽘

N

i

Y
[SIGN]
i − C

�����

�����
2
,

(11)

where Y
[SIGN]
i is the decoder output representation of the

feature character [SIGN] for the ith log event sequence, C is
the center of all decoder outputs for the special word [SEQ]
in the training set S, and Mean(·) represents the mean value.

Te goal of sequence reconstruction is to learn the se-
quence pattern of normal log events, where the encoder frst
encodes the input data in a low-dimensional space and then
tries to reconstruct them to their original form by means of
a decoder. Terefore, if the input samples are difcult to
reconstruct, namely, if they generate large reconstruction

10 International Journal of Intelligent Systems

errors, they are considered anomalous. Te sequence re-
construction loss function Lre is defned as follows:

Lre � argmin
Φ

1
Yd

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

Yd| |

i�1
y

i
d − y

i
e

����
����
2
, (12)

where yd
i and ye

i are the ith events of the encoder output Ye

and the decoder output Yd, respectively.
Te proposed adaptive boundary and sequence re-

construction loss function L is expressed by

L � λLboundary +(1 − λ)Lre, (13)

where λ is the weight parameter that expresses the balance of
the adaptive boundary error Lboundary and the reconstruction
error Lre.

In the training process of the anomaly detection decoder,
the anomaly decision boundary R is continuously updated
by calculating the diference between Y[SIGN] and C. Te
trained R is used to determine whether the new log event
sequence is anomalous. If the decoder of the special char-
acter [SIGN] of the log event sequence indicates that the
diference between Y[SIGN] and C is less than R, the new log
event sequence is determined to be normal, and the label y is
represented by the value zero. Otherwise, the new log event
sequence is considered abnormal, and the label y is rep-
resented by the value of one. Te determination method is
defned by

y �
0, if Y

[SIGN]
− C<R,

1, if Y
[SIGN]

− C≥R.

⎧⎨

⎩ (14)

5. Evaluation Results

5.1. Experimental Datasets. In this paper, three popular and
publicly available datasets, the HDFS, BGL, and Tunderbird
datasets, were used to evaluate the proposed approach and
related baseline methods.Tese datasets have been widely used
in log analyses [9, 14, 16, 17, 48], and they were constructed
from real-world data and tagged manually by system ad-
ministrators or using system-generated alert tags. Te three
datasets were obtained from publicly available websites. Te
statistical information on the three datasets is given in Table 2.

(1) HDFS [29]: Te HDFS dataset was generated in the
Hadoop-based MapReduce cloud environment us-
ing a benchmark workload and manually fagged
based on the hand-developed rules to identify ex-
ceptions. In this dataset, logs are sliced into tracks
based on the block ID, and logs with the same block
ID identifer are arranged in order of execution time
to form a log sequence. Tis dataset includes 575,061
log sequences synthesized from 11,175,629 logs.
Hadoop domain experts fagged the log sequences as
normal or abnormal, and 558,223 log sequences
(97.1%) were regarded as normal, while the
remaining 16,838 log sequences (2.9%) were denoted
as abnormal.

(2) BlueGene/L [49]: Te BGL is an open-log dataset
collected from the BlueGene/L supercomputer sys-
tem at Lawrence Livermore National Laboratory
(LLNL) in Livermore, California, with 131,072
processes and 32,768GB of memory. Te logs in this
dataset contain both alarm and nonalarm messages
identifed by alarm category tags. Tis dataset in-
cludes 4,747,963 logs, of which 348,460 logs denote
exception logs. Unlike the HDFS dataset, the BGL
logs do not contain specifc identifers, so in this
paper, a fxed window was used to divide the BGL
dataset into log sequences of diferent lengths for
subsequent experiments. In the divided log se-
quences, if there was an abnormal log entry, the log
sequence was considered abnormal.

(3) Tunderbird [49]: Te Tunderbird is an open-log
dataset collected from the Tunderbird supercom-
puter system at Sandia National Laboratories (SBNL)
in Albuquerque, with 9,024 processors and
27,072GB of memory. Tagging information was
obtained from alert and nonalert messages identifed
by alert category tags. Tis study sampled 20,000,000
log messages from the original Tunderbird dataset
to compose the dataset for experimental verifcation,
of which 758,562 log messages denote anomalies.
Similar to the BGL dataset, a fxed window was used
to divide the log data into sequences with diferent
lengths for training.

System Log Knowledge Graph
(SLKG)

System Execution Paths

Semantic
Awareness

Encoder

Self-
Attention Add&Norm Feed

Forward Add&Norm

Decoder

Multi-head
Self-Attention Add&Norm Encoder-Decoder

Attention Add&Norm

Position Embedding

Add&NormFeed
Forward

Log Semantic Feature Maps

Time Diference Sequences

Anomaly Detection

Log
Messages

Log Events
Ectraction

Log Event
Sequences

Graph
Construction

Spatial Features

Semantic Features

Temporal Features

GCN

MLP

Feature
Fusion

Troubleshooting

Spatio-Temporal Correlation Feature

sem[SIGN]

Position Embedding

BERT

ft

fs

Xe Ye

Xd

Lboundary Lre
F

Y

Figure 6: Te LogBASA architecture.

International Journal of Intelligent Systems 11

5.2. Experimental Setup. Te LogBASA model training was
performed on a PC with 12GB RAM and an i5-9500 pro-
cessor with six cores and six threads, using Python 3.8.12 and
the PyTorch 1.13.0 development environment for script
development and programming.Te number of encoder and
decoder layers in the LogBASA model was set to six, the
number of attention heads was eight, the size of the feed-
forward neural network was 2,048, and the hidden-layer
dimensions of the GCN and MLP models were 32 and 64,
respectively. Te LogBASA was trained using the Adam
optimizer, after repeated tests, the learning rates of the graph
structure coding training and anomaly detection training
were set to 0.01 and 0.0001, and the cross entropy and mean
square error were selected as loss functions, respectively.

5.2.1. Baseline Methods. To evaluate the performance of the
proposed LogBASA model, it was compared with several
advanced baseline algorithms. It should be noted that only
normal log sequences were used in all experiments during
the training phase.

Te comparison models were as follows:

(1) Methods based on pattern recognition and similarity
comparison:

(a) PCA [29]: this method is based on the principal
component analysis (PCA) that extracts the
major components of the input sequence and
discriminates test sequences that are above
a predefned threshold as anomalous sequences.

(b) Isolation forest [11]: this is a simple and efective
unsupervised machine learning-based approach
based on a tree-based model.

(c) LogCluster [12]: this is a cluster-based approach
that divides log sequences into normal and ab-
normal clusters based on the template count
vector.

(2) Content-independent methods using only the log
template index as input data:

(a) DeepLog [16]: this is a stacked LSTM-based
model that predicts the next log template in-
dex based on the sequence features within the
observation window.

(b) LogBERT [17]: this is an anomaly detection
method based on the BERTmodel that trains the
log template index sequences using the masked
language model loss and single-class objectives.

(c) OC4Seq [35]: this is a multiscale anomaly de-
tection model based on the RNN model, which

integrates anomaly detection targets with the
RNN output to detect anomalies in the
potential space.

(3) Semantic awareness methods:

(a) LogAnomaly [19]: this is a model based on the
Bi-LSTM and attention mechanisms that adopts
an improved template embedding method to
predict log templates.

(b) AutoEncoder [50]: this is a self-encoder-based
approach that embeds log sequences in the latent
space and uses isolated forests (iForest) for
anomaly detection.

5.2.2. Evaluation Metrics. Anomaly detection is a binary
classifcation task, and its performance is typically evaluated
using precision, recall, and F1-Score evaluation metrics.
Tese metrics are calculated using the following variables:
true positive (TP), false positive (FP), false negative (FN),
and true negative (TN), which denote the number of ab-
normal sequences detected by a model, the number of
normal sequences misclassifed as abnormal by the model,
the number of abnormal sequences misclassifed as normal
by the model, and the number of normal sequences detected
by the model, respectively.

Te specifc calculation expressions of the three evalu-
ations metrics are as follows:

(1) Precision: this metric denotes the percentage of
correctly detected anomaly log sequences by a model
among all detected anomaly log sequences, and it is
calculated by

Precision �
TP

TP + FP
. (15)

(2) Recall: this metric represents the percentage of log
sequences that are correctly identifed as exceptions
among all true exceptions, and it is calculated as
follows:

Recall �
TP

TP + FN
. (16)

(3) F1 − Score(F1): this metric denotes the summed
average of precision and recall, and its value is ob-
tained by

F1 �
2∗Precision∗Recall
Precision + Recall

. (17)

Table 2: Statistical information on the three datasets used in this study.

HDFS BGL Tunderbird
Duration 38.7 hours 214.7 days 244 days
Total log number 11175629 4747963 20000000
Template number/node number 48 127 4992
Total sequence number/map number 575061 18002 99593
Abnormal sequence number/map number 16838 1205 843
Window type Session window Fixed window Fixed window

12 International Journal of Intelligent Systems

5.3. Experimental Results

5.3.1. Training Efciency Evaluation. To verify the superior
performance of the proposed LogBASA, this section pres-
ents the comparison results of training states of the Deep-
Log, LogAnomaly (both based on the LSTM model),
LogBERT (similar to the BERT model), AutoEncoder, and
the proposed LogBASA model. Te number of epochs re-
quired by diferent models to reach the convergence state
during the training process is presented in Figure 7. In this
experiment, all models were trained on the HDFS dataset.
Te results indicated that the proposed LogBASAmodel was
the fastest method among all models in reaching the con-
vergence state, but it had a higher loss than the other models
due to the higher model complexity since it integrated the
GCN, MLP, and transformer models and a large number of
parameters. Te results showed that the proposed LogBASA
model reached convergence after 13 epochs, while the
second-fastest model regarding reaching convergence was
the LogAnomaly model, which reached convergence after 30
epochs. Te results demonstrated that the proposed model
had the highest training efciency among all models, despite
its more complex structure.

5.3.2. Efects of Weight and Sequence Length on Model
Performance. Te experiments were conducted for diferent
weights λ and sequence lengths to test the robustness of the
proposed model and evaluate its performance in diferent
situations.

(1) Objective Function. Te performance comparison results
for diferent λ values are shown in Figure 8. In the exper-
iments on the HDFS dataset, due to the short length of log
event sequences in this dataset, the importance of the
adaptive boundary objective function was higher, and the
model performance was optimal at λ � 0.8. In the experi-
ments on the BGL dataset, the performance of the proposed
model was more stable, which was mainly because the
anomalous event sequences were mostly long and uniformly
distributed, and the sequence reconstruction objective
function dominated the training process. In this experiment,
the proposed model’s performance was optimal for λ � 0.3.
In the experiments on the Tunderbird dataset, since the
anomaly rate of log data in this dataset was low (0.85%) and
most of the log sequences were long, like those in the BGL
dataset, the adaptive boundary and the sequence re-
construction objective function reached the equilibrium
state at λ � 0.5, and the model performance was optimal at
λ � 0.5. Te results indicated that the proposed objective
function could efectively improve the model’s performance.

(2) Sequence Length. Additional experiments were con-
ducted to investigate whether the proposed LogBASAmodel
can work stably under diferent window settings. Consid-
ering the specifcity of the HDFS datasets, the experiments
were conducted only on the BGL and Tunderbird datasets.
Te experiments were performed for nine window sizes,
ranging from 20 to 100. Te maximum sequence length was

set to 100 because it was considered that setting a larger
window could afect the system response efciency and lead
to delayed detection of anomalies, and a larger window is
unlikely to be adopted in practical application scenarios.Te
experimental results are shown in Figure 9.

As shown in Figure 9, the performance of the proposed
LogBASA model was stable for all sequence lengths on the
BGL dataset. However, on the Tunderbird dataset, the
model performance tended to increase signifcantly as the
window size decreased. Tis could be due to the increase in
the number of anomalies caused by the decrease in the
window size, which allowed the model to distinguish be-
tween normal and abnormal log sequences more efciently,
thus improving the anomaly detection performance.

5.3.3. Overall Performance. To evaluate the overall perfor-
mance of the proposed LogBASA method based on the
system behavior analysis and global semantic awareness,
frst, the LogBASA method was compared with the common
methods for log sequence anomaly detection, including the
template count vector-based methods (the PCA, isolation
forest, and LogCluster methods), template-based prediction
methods (the DeepLog, LogBERT, and OC4Seq methods),
and semantic awareness-based methods (the LogAnomaly
and AutoEncoder methods). Te experimental results are
shown in Figures 10–12.

Te experimental results indicated that the overall
performance of the proposed LogBASA method out-
performed that of the comparison methods. Te template
count vector-based methods had neither high accuracy nor
high recall. Tese methods completely ignored the se-
quential relationships between events despite a certain re-
fection on the pattern characteristics of log event sequences,
which resulted in a relatively high false-negative rate and
a low recall. Only the isolation forest method had a recall of
0.727. Te template-based prediction methods performed
obviously better than the template count vector-based
methods. Te DeepLog, LogAnomaly, and OC4Seq
methods all used the LSTM or RNNmodels to construct the
anomaly detection network, but this sequential network
could not efectively mine the dependency relationship
between longer event sequences because each forward
transmission was performed based only on the processing
result of the previous time step. Although the LogBERT
method based on the transformer model did not perform the
best regarding all indexes, it had stable performance.

Furthermore, the LogAnomaly and AutoEncoder
methods consistently outperformed the DeepLog method,
which demonstrated the benefts of considering semantic
content information in event sequence anomaly detection, as
well as the excellent performance of the transformer model
in sequence pattern learning, to a certain extent. However,
these methods still had certain limitations in the log event
sequence anomaly detection task.

Finally, the proposed LogBASA method outperformed
the baseline methods in terms of precision, recall, and F1-
Score metrics on both HDFS and BGL datasets. Te
LogBASA performed poorly on the Tunderbird dataset

International Journal of Intelligent Systems 13

Loss Changes During Training

10 20 400 5030
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Lo
ss

 V
al

ue

5 10 15 20 25 30

0.5
1.0
1.5
2.0
2.5

DeepLog
LogBERT
LogAnomaly

AutoEncoder
LogBASA

Figure 7: Te changes in the loss function value during the model training process.

BGL

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

0.2 0.60.0 0.4 1.00.8
Tradeof Parameter Value λ in Objective Function

Precision
Recall
F1-Score

(a)

0.2 0.60.0 0.4 1.00.8
Tradeof Parameter Value λ in Objective Function

Precision
Recall
F1-Score

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

Pe
rc

en
ta

ge

HDFS

(b)

0.2 0.60.0 0.4 1.00.8
Tradeof Parameter Value λ in Objective Function

Precision
Recall
F1-Score

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

Tunderbird

(c)

Figure 8: Performance comparison results for diferent λ values. (a) HDFS. (b) BGL. (c) Tunderbird.

1.000
0.975
0.950
0.925
0.900
0.875
0.850
0.825
0.800

Pe
rc

en
ta

ge

20 30 40 50 60 70 80 90 100
Different Length of Log Event Sequences

BGL

Precision
Recall
F1-Score

(a)

1.000
0.975
0.950
0.925
0.900
0.875
0.850
0.825
0.800

Pe
rc

en
ta

ge

20 30 40 50 60 70 80 90 100
Different Length of Log Event Sequences

Thunderbird

Precision
Recall
F1-Score

(b)

Figure 9: Performance comparison results for diferent sequence length values. (a) BGL. (b) Tunderbird.

14 International Journal of Intelligent Systems

only because the model complexity was too high for the
Tunderbird dataset to easily learn noisy and irrelevant
features, which resulted in the model’s inaccurate judg-
ment of normal data, which further led to the high rate of
missed reports. In the LogBASA, the GCN and MLP
models were used to capture local spatial feature in-
formation and global temporal feature information on the

log event sequences, respectively, and the self-attention
encoder-decoder transformer model was used to learn the
sequence patterns and semantic correlations in the whole
log sequence. By combining the abovementioned im-
provements and optimizations, the LogBASA achieved
excellent performance in log event sequence anomaly
detection tasks.

95. 0 95. 3
97. 3 99. 3

88. 5 89. 6

98.1

79. 3

36. 3

77. 3

72. 7 74. 0

60. 6

52. 8

Precision

98. 7
95. 2 93. 2 94. 5

90. 1

95. 994. 2
91. 4

96. 6

84. 4

79. 8
83. 0

Recall F1–Score

87. 9

0

20

40

60

80

100

Pe
rc

en
ta

ge

PCA
iForest
LogCluster

OC4Seq
DeepLog
Loganomaly

LogBERT
AutoEncoder
LogBASA

HDFS

Figure 10: Performance comparison results on the HDFS dataset.

Precision Recall F1–Score
0

20

40

60

80

100

Pe
rc

en
ta

ge

PCA
iForest
LogCluster

OC4Seq
DeepLog
Loganomaly

LogBERT
AutoEncoder
LogBASA

BGL

95. 1

89. 2
86. 7

91. 0 92. 5 92. 8
88. 0 89. 5 90. 8

82. 1 81. 8 82. 4
86. 5

90. 2 90. 0 91. 3
88. 7

81. 5

76. 3

62. 0

55. 4

50. 0 48. 3
45. 7

33. 3
31. 0

93. 9

Figure 11: Performance comparison results on the BGL dataset.

International Journal of Intelligent Systems 15

6. Conclusion

To address the problems of poor feature recognition and
unstable performance in the existing sequence pattern
recognition methods and content-aware methods, this study
proposes a log anomaly detection method named LogBASA,
which is based on system behavior analysis and global se-
mantic awareness. First, log event sequences are modeled as
system functional path diagrams to characterize system
behavior, and the GCN and MLP models are combined to
perform the spatiotemporal correlation analysis of the
system behavior, obtaining comprehensive event sequence
patterns and generating spatiotemporal feature represen-
tations of event sequences. Ten, a self-attention encoder-
decoder transformer-based architecture is designed. In the
encoder module, event semantic sequences are used as input
and encoded into semantic feature mappings. In the decoder
module, the special word [SIGN] is added to the beginning
of a sequence to characterize the log event sequence state,
and adaptive boundaries and sequence reconstruction ob-
jective functions are used in the anomaly detection task. Te
proposed LogBASA model provides a high-performance
solution for handling large-scale, unstructured, and multi-
level log event data. Finally, the proposed method is verifed
by extensive experiments on HDFS, BGL, and Tunderbird
datasets, and the experimental results demonstrate that the
LogBASA model outperforms common methods in system
log anomaly detection, achieving accuracy rates of 99.3%,
95.1%, and 97.2% on the three datasets.

Data Availability

Te log data used to support the fndings of this study have
been deposited in the GitHub repository (https://github.
com/logpai/loghub).

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis study was supported in part by the National Natural
Science Foundation of China (nos. 61902080, 61972104,
62002072, and 61702120), National Key Research and Devel-
opment Program of China (nos. 2019YFB1804403 and
2018YFB1802200), Special Projects in KeyAreas of Guangdong
Province (no. 2019B010118001), Science and Technology
Project in Guangzhou (no. 201803010081), Foshan Science and
Technology Innovation Project, China (no. 2018IT100283),
Guangdong Provincial Key Laboratory Project of Intellectual
Property and Big Data (no. 2018B030322016), Guangzhou Key
Laboratory (no. 202102100006), Science and Technology
Program of Guangzhou, China (nos. 202002020035 and
202102021078), Research Projects in Guangdong Province (no.
2021ZDJS026), and Guangdong Provincial University Key
Field Special Project (no. 2021ZDZX1031).

References

[1] Y. Xie and K. Yang, “Domain adaptive log anomaly prediction
for Hadoop system,” IEEE Internet of Tings Journal, vol. 9,
no. 20, pp. 20778–20787, 2022.

[2] S. M. Hosseini Bamakan, H. Wang, and Y. Shi, “Ramp loss K-
Support Vector Classifcation-Regression; a robust and sparse
multi-class approach to the intrusion detection problem,”
Knowledge-Based Systems, vol. 126, pp. 113–126, 2017.

[3] R. Gandhi, A. Sharma, W. Mahoney, W. Sousan, Q. Zhu, and
P. Laplante, “Dimensions of cyber-attacks: cultural, social,
economic, and political,” IEEE Technology and Society Mag-
azine, vol. 30, no. 1, pp. 28–38, 2011.

Precision RecaII F1–Score

100

80

60

40

20

0

Pe
rc

en
ta

ge

Thunderbird

PCA
iForest
LogCluster

OC4Seq
DeepLog
Loganomaly

LogBERT
AutoEncoder
LogBASA

67. 0

45.1

77.5

86.3 86.2
89.5 91.2

97.2
94.2

81.5

96.8

85.4

94.6
97.4

88.4
83.5

90.3

51.1

73.5

66.3
61.5

85.8 85.2

91.5
88.9

87.2

93.6

Figure 12: Performance comparison results on the Tunderbird dataset.

16 International Journal of Intelligent Systems

https://github.com/logpai/loghub
https://github.com/logpai/loghub

[4] S. Lu, X. Wang, and L. Mao, “Network security situation
awareness based on network simulation,” in Proceedings of the
2014 IEEE Workshop on Electronics, Computer and Applica-
tions, pp. 512–517, Ottawa, Canada, May 2014.

[5] B. Watkins, “Te impact of cyber attacks on the private
sector,” Briefng Paper, Association for International Afair,
vol. 12, pp. 1–11, 2014.

[6] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “SwissLog: robust
anomaly detection and localization for interleaved un-
structured logs,” IEEE Transactions on Dependable and Secure
Computing, vol. 20, no. 4, pp. 2762–2780, 2023.

[7] H. Mi, H. Wang, Y. Zhou, M. R. T. Lyu, and H. Cai, “Toward
fne-grained, unsupervised, scalable performance diagnosis
for production cloud computing systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 6,
pp. 1245–1255, 2013.

[8] S. He, P. He, Z. Chen, T. Yang, Y. Su, andM. R. Lyu, “A survey
on automated log analysis for reliability engineering,” ACM
Computing Surveys, vol. 54, no. 6, pp. 1–37, 2021.

[9] X. Zhang, Y. Xu, Q. Lin et al., “Robust log-based anomaly
detection on unstable log data,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software En-
gineering, pp. 807–817, Tallinn, Estonia, August 2019.

[10] S. Kabinna, C. P. Bezemer, W. Shang, M. D. Syer, and
A. E. Hassan, “Examining the stability of logging statements,”
Empirical Software Engineering, vol. 23, no. 1, pp. 290–333,
2018.

[11] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” in
Proceedings of the 2008 eighth ieee international conference on
data mining, pp. 413–422, Pisa, Italy, December 2008.

[12] Q. Lin, H. Zhang, J. G. Lou, Y. Zhang, and X. Chen, “Log
clustering based problem identifcation for online service
systems,” in Proceedings of the 38th International Conference
on Software Engineering Companion, pp. 102–111, Austin, TX,
USA, May 2016.

[13] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-
dimensional distribution,” Neural Computation, vol. 13,
no. 7, pp. 1443–1471, 2001.

[14] J. G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program
workfow from interleaved traces,” in Proceedings of the 16th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 613–622, Washington, DC, USA,
July 2010.

[15] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big
data system logs using convolutional neural network,” in
Proceedings of the 2018 IEEE 16th Intl Conf on Dependable,
Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data In-
telligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), pp. 151–
158, Athens, Greece, August 2018.

[16] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: anomaly
detection and diagnosis from system logs through deep
learning,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1285–1298,
Dallas, Texas, USA, October 2017.

[17] H. Guo, S. Yuan, and X. Wu, “Logbert: log anomaly detection
via bert,” in Proceedings of the 2021 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, Shenzhen,
China, July 2021.

[18] W. Meng, Y. Liu, Y. Huang et al., “A semantic-aware rep-
resentation framework for online log analysis,” in Proceedings

of the 2020 29th International Conference on Computer
Communications and Networks (ICCCN), pp. 1–7, Honolulu,
HI, USA, August 2020.

[19] W. Meng, Y. Liu, Y. Zhu et al., “LogAnomaly: unsupervised
detection of sequential and quantitative anomalies in un-
structured logs,” IJCAI, vol. 19, pp. 4739–4745, 2019.

[20] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert: pre-
training of deep bidirectional transformers for language
understanding,” 2018, https://arxiv.org/abs/1810.04805.

[21] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure pre-
diction in ibm bluegene/l event logs,” in Proceedings of the
IEEE International Conference on Data Mining (ICDM 2007),
pp. 583–588, Omaha, NE, USA, October 2007.

[22] B. Debnath, M. Solaimani, M. A. G. Gulzar et al., “LogLens:
a real-time log analysis system,” in Proceedings of the 2018
IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pp. 1052–1062, Vienna, Austria, July 2018.

[23] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy,
“Inferring models of concurrent systems from logs of their
behavior with CSight,” in Proceedings of the 36th International
Conference on Software Engineering, pp. 468–479, Hyderabad,
India, May 2014.

[24] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in Proceedings of the
International Conference on Autonomic Computing, 2004.
Proceedings, pp. 36–43, New York, NY, USA, May 2004.

[25] T. Qin, Y. Gao, L. Wei, Z. Liu, and C.Wang, “Potential threats
mining methods based on correlation analysis of multi-type
logs,” IET Networks, vol. 7, no. 5, pp. 299–305, 2018.

[26] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and
H. Andersen, “Fingerprinting the datacenter: automated
classifcation of performance crises,” in Proceedings of the 5th
European conference on Computer systems, pp. 111–124, Paris,
France, April 2010.

[27] S. He, J. Zhu, P. He, andM. R. Lyu, “Experience report: system
log analysis for anomaly detection,” in Proceedings of the 2016
IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), pp. 207–218, Ottawa, Canada, October
2016.

[28] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan,
“Online system problem detection by mining patterns of
console logs,” in Proceedings of the 2009 Ninth IEEE In-
ternational Conference on Data Mining, pp. 588–597, Miami
Beach, FL, USA, December 2009.

[29] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console
logs,” in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pp. 117–132, Big Sky, MT, USA,
October 2009.

[30] L. Feremans, V. Vercruyssen, B. Cule, W. Meert, and
B. Goethals, “Pattern-based anomaly detection in mixed-type
time series,” in Proceedings of the Machine Learning and
Knowledge Discovery in Databases: European Conference,
ECML PKDD 2019, pp. 240–256, Springer, Würzburg, Ger-
many, September 2020.

[31] R. Vaarandi, “A data clustering algorithm for mining patterns
from event logs,” in Proceedings of the 3rd IEEE Workshop on
IP Operations & Management (IPOM 2003) (IEEE Cat.
No.03EX764), pp. 119–126, Kansas City, MO, USA, October
2003.

[32] Z. Wang, J. Tian, H. Fang, L. Chen, and J. Qin, “LightLog:
a lightweight temporal convolutional network for log anomaly
detection on the edge,” Computer Networks, vol. 203, Article
ID 108616, 2022.

International Journal of Intelligent Systems 17

https://arxiv.org/abs/1810.04805

[33] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent
neural network attention mechanisms for interpretable sys-
tem log anomaly detection,” in Proceedings of the First
Workshop on Machine Learning for Computing Systems,
pp. 1–8, Tempe, AZ, USA, June 2018.

[34] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and
H. Zhang, “Automated IT system failure prediction: a deep
learning approach,” in Proceedings of the 2016 IEEE In-
ternational Conference on Big Data (Big Data), pp. 1291–1300,
Washington, DC, USA, December 2016.

[35] Z. Wang, Z. Chen, J. Ni, H. Liu, H. Chen, and J. Tang, “Multi-
scale one-class recurrent neural networks for discrete event
sequence anomaly detection,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 3726–3734, Singapore, August 2021.

[36] S. R. Wibisono and A. I. Kistijantoro, “Log anomaly detection
using adaptive universal transformer,” in Proceedings of the
2019 International Conference of Advanced Informatics:
Concepts, Teory and Applications (ICAICTA), pp. 1–6,
Yogyakarta, Indonesia, September 2019.

[37] S. Huang, Y. Liu, C. Fung et al., “Hitanomaly: hierarchical
transformers for anomaly detection in system log,” IEEE
Transactions on Network and Service Management, vol. 17,
no. 4, pp. 2064–2076, 2020.

[38] Y. Wan, Y. Liu, D. Wang, and Y. Wen, “Glad-paw: graph-
based log anomaly detection by position aware weighted
graph attention network,” in Proceedings of the Pacifc-asia
conference on knowledge discovery and datamining, pp. 66–77,
Springer, Berlin, Germany, May 2021.

[39] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: an online log
parsing approach with fxed depth tree,” in Proceedings of the
2017 IEEE International Conference on Web Services (ICWS),
pp. 33–40, Honolulu, HI, USA, June 2017.

[40] Y. Li, N. Du, and S. Bengio, “Time-dependent representation
for neural event sequence prediction,” 2017, https://arxiv.org/
abs/1708.00065.

[41] P. Ryciak, K. Wasielewska, and A. Janicki, “Anomaly de-
tection in log fles using selected natural language processing
methods,” Applied Sciences, vol. 12, no. 10, p. 5089, 2022.

[42] V. H. Le and H. Zhang, “Log-based anomaly detection with
deep learning: how far are we?” in Proceedings of the 44th
International Conference on Software Engineering, pp. 1356–
1367, Pittsburgh, PA, USA, May 2022.

[43] V. H. Le and H. Zhang, “Log-based anomaly detection
without log parsing,” in Proceedings of the 2021 36th IEEE/
ACM International Conference on Automated Software En-
gineering (ASE), pp. 492–504, Melbourne, Australia, No-
vember 2021.

[44] T. N. Kipf and M. Welling, “Semi-supervised classifcation
with graph convolutional networks,” 2016, https://arxiv.org/
abs/1609.02907.

[45] C. Lou, P. Huang, and S. Smith, “Understanding, detecting
and localizing partial failures in large system software,” in
Proceedings of the 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pp. 559–574,
Santa Clara, CA, USA, February 2020.

[46] D. Aksu and M. A. Aydin, “MGA-IDS: optimal feature subset
selection for anomaly detection framework on in-vehicle
networks-CAN bus based on genetic algorithm and in-
trusion detection approach,” Computers & Security, vol. 118,
Article ID 102717, 2022.

[47] A. Vaswani, N. Shazeer, and N. Parmar, “Attention is all you
need,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[48] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience
report: deep learning-based system log analysis for anomaly
detection,” 2021, https://arxiv.org/abs/2107.05908.

[49] A. Oliner and J. Stearley, “What supercomputers say: a study
of fve system logs,” in Proceedings of the 37th Annual IEEE/
IFIP International Conference on Dependable Systems and
Networks (DSN’07), pp. 575–584, Edinburgh, UK, June 2007.

[50] A. Farzad and T. A. Gulliver, “Unsupervised log message
anomaly detection,” ICT Express, vol. 6, no. 3, pp. 229–237,
2020.

18 International Journal of Intelligent Systems

https://arxiv.org/abs/1708.00065
https://arxiv.org/abs/1708.00065
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2107.05908

