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In diagnosing kidney stone disease, clinical specialists often apply medical imaging techniques such as CT and US. Among these
imaging techniques, is frequently chosen as the primary examination method in emergency services due to its low cost, ac-
cessibility, and low radiation levels. However, interpreting the images by inexperienced specialists can be challenging due to the
low image quality and the presence of noise. In this study, we propose a computer-aided diagnosis system based on deep neural
networks to assist clinical specialists in detecting kidney stones using Direct Urinary System (DUSX) images. Firstly, in con-
sultation with clinical specialists, we created a new dataset composed of 630 DUSX images and presented it publicly. We also
defned preprocessing steps that incorporate image enhancement techniques such as GF, LoG, BF, HE, CLAHE, and CBC to
enable deep neural networks to perceive the images more clearly. With these techniques, we considered the noise reduction in the
DUSX images and enhanced the poor quality, especially in terms of contrast. For each preprocessing step, we created models to
detect kidney stones using YOLOv4 and Mask R-CNN architectures, which are common CNN-based object detectors. We
examined the efects of the preprocessing steps on these models. To the best of our knowledge, the combination of BF and CLAHE
which is called CBC in this study, has not been applied before in the literature to enhance DUSX images. In addition, this study is
the frst in its feld in which the YOLOv4 and Mask R-CNN architectures have been used for the detection of kidney stones. Te
experimental results demonstrated the most accurate method is the YOLOv4 model, which includes the CBC preprocessing step,
as the result model.Tis model shows that the accuracy rate, precision, recall, and F1-score were found as 96.1%, 99.3% 96.5%, and
97.9% respectively in the test set. According to these performance metrics, we expect that the proposed model will help to reduce
the unnecessary radiation exposure and associated medical costs that come with CT scans.

1. Introduction

Te human excretory system consists of kidneys, ureters,
and bladder. Te system has a crucial role for human health.
Te kidneys in the excretory system flter toxic materials
from the blood, particularly urea and the system ensures that
they are eliminated from the body via the bladder [1].
Crystallized structures called “kidney stones” may occur in
the kidneys when they perform their fltering function

within the body. Kidney stones are one of the most common
ailments afecting the kidney and urinary system due to
complications with the kidney’s internal mechanism. Fig-
ure 1 shows an example of a kidney stone that occurred in
the urinary tract and kidneys.

Small-sized kidney stones are thrown out by the urine
without having any impact on the body. In contrast, as the
diameter of the formed stones grows, they cause symptoms
such as bloody urine, nausea, painful urination, and severe
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lower abdomen or back pain. Patients sufer unbearable pain
from kidney stones when they come out of the kidney and fall
into the urinary canal. As the detection process of these
kidney stones takes longer, the quality of life worsens, which
leads to kidney function deteriorating and human life is
endangered. Terefore, the diagnosis of kidney stones at an
early stage is signifcant in the treatment process [3, 4]. Many
patients who have kidney stone disease apply to hospitals with
various clinical manifestations such as fever, severe pain in the
lower back and sides, and blood in the urine [5]. In some
cases, the disease is confused with clinics such as appendicitis,
cholecystitis, ovarian torsion, and mesenteric ischemia [6].
Due to this multiplicity of diferential diagnosis and the ac-
companying physician density in the emergency evaluation,
physicians may misdiagnose kidney stones and overlook the
diagnosis of kidney stones in patients presenting with milder
symptoms. Terefore, physicians demand additional imaging
such as computerized tomography (CT) containing intense
radiation from patients to diagnose [7]. Te analysis and
interpretation of these medical images are manually and
subjectively performed by physicians. Physicians may mis-
interpret medical images in a short time due to fatigue and
poor quality of contrast form inmedical images. According to
statistics, human-induced misdiagnosis rate can reach
10–30% in medical image analysis [8]. To minimize the
misdiagnosis problem, computer-aided diagnostic systems
are proposed as practical approaches that can help physicians
make a diagnosis. Hence, numerous neural network models
such as artifcial intelligence, machine learning, and deep
learning models have been widely used to increase diagnostic
accuracy in medical image analysis [9, 10]. Deep learning
models particularly convolutional neural networks (CNNs)
have recently become popular in medical image processing
because high-level feature can be extracted from objects, after
the training phase is completed [11].

In this study, a computer-aided diagnosis system is
proposed to help physicians by automating kidney stone
detection using CNN architectures through DUSX images.
Because of its widespread use, the low amount of radiation
compared to other imaging techniques, and the availability of
imaging devices even in the simplest medical clinics, DUSX

images were used in the study. Despite the widespread use of
this imaging technique, as far as we investigated, a DUSX
dataset has not been encountered in the literature. Our dataset
was approved by the Ataturk University Faculty of Medicine
Clinical Research Ethics Committee, and the dataset is
publicly available for scientifc studies. Hereby, we contrib-
uted to the literature by publishing a new DUSX dataset
retrieved by Ataturk University Research Hospital in Erzu-
rum, Turkey. Moreover, we investigated the efect of six image
enhancement techniques (Gaussian Filtering (GF), Laplacian
of Gaussian Filtering (LoG), Bilateral Filtering (BF), Histo-
gram Equalization (HE), Contrast-Limited Adaptive Histo-
gram Equalization (CLAHE), and Combination of BF and
CLAHE (CBC)) to increase the accuracy rate of CNNmodels
on DUSX images for automated kidney stone detection. After
the preprocessing step, models were created using CNN-
based object detectors YOLOv4 and Mask R-CNN archi-
tectures to automatically detect kidney stones on the images.
Among the evaluated models, YOL0v4 model using CBC
technique as a preprocessing step has the best performance
with 96.1% accuracy on the test set. Te developed computer-
aided diagnosis system is ready for clinical application.

Te main contributions of this study are summarized in
the following:

(i) A new dataset was generated using unique DUSX
images obtained from the hospital.We consider that
this public dataset will pave the way for further
research.

(ii) Based on our investigation, the CNN-based object
detectors YOLOv4 and Mask R-CNN architectures
are frst applied to DUSX images for kidney stone
detection.

(iii) Te presence of noise in DUSX images and the poor
quality, especially in contrast form, make it difcult
to notice some details, and the lack of these details
leads to reducing the accuracy of CNN models. To
address this issue, the efect of various image en-
hancement techniques on kidney stone detection
was investigated.

(iv) Among many image enhancement techniques,
a hybrid fltering approach named CBC+YOLOv4
was proposed to detect kidney stones. Tis tech-
nique outperformed the other preprocessing
methods.

Te rest of the study has been detailed in the following.
Section 2 discusses the related kidney stone detection
methods in the literature. Section 3 describes the dataset and
image labeling process, preprocessing steps, and CNN
models used in this study. Section 4 shows the experimental
results regarding diferent parameters and preprocessing
techniques, and fnally, Section 5 concludes the study.

2. Related Work

In recent years, many studies have been conducted to detect
kidney stones on medical images in the literature. Medical
imaging techniques such as ultrasound, DUSX, MRI, CT,

Kidney Stones

Figure 1: Kidney stones occurred in urinary tract [2].
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and color Doppler are used to diagnose kidney stone disease
[12]. Te main focus of the studies is based on the in-
formation on whether the stone is found in the image or not,
and it has not been represented the boundary of the stones in
visual results as we performed in our study. Based on our
investigation, CNN-based object detectors have not been
used to detect kidney stones in DUSX images. Moreover, an
open-source dataset of DUSX images has not been found in
the literature as far as we investigated. In this section, lit-
erature studies related to kidney stone detection were dis-
cussed according to the imaging type. Te previous studies
and their general features are summarized in Table 1.

Viswanath and Gunasundari [30] conducted kidney
stone detection in ultrasound images. Tey used Gabor
fltering and histogram equalization as preprocessing steps
to eliminate the speckled noise in the ultrasound images and
provide clarity in the image. Ten, the preprocessed ultra-
sound image was segmented using level-set segmentation.
After the segmentation process, wave sub-bands were used
to detect energy levels in the areas removed from the kidney.
Since the energy level in the region of the stone is diferent
from the threshold value, the energy levels assisted to predict
the location of the stone. Using energy level, they trained the
network model created from Multilayer Perceptron and
Back Propagation ANN.Te authors stated that their system
has 98.8% accuracy rate. In another study, Verma et al. [13]
applied a median flter, Gaussian flter, and unsharpmasking
processes to clarify the stones in the ultrasonic images.
Entropy-based segmentation was performed to fnd the
stone area using morphological operations such as erosion
and dilatation. Tey used some classifcation techniques,
such as KNN and SVM. According to the experimental
results, KNN has better accuracy rates than SVM. Te au-
thors stated that the KNN classifcation technique has better
performance than SVM with 89% accuracy rate. Selvarani
and Rajendran [15] proposed a metaheuristic SVM-based
method to detect kidney stones on ultrasound images. Tey
proposed the adaptive mean median flter approach to
remove speckle noise from ultrasound images. Segmentation
was performed using the K-means clustering algorithm.
Tey extracted GLCM features for classifcation. According
to the experimental results, metaheuristic SVM classifed
images with 98.8% accuracy. Eskandari et al. [16] proposed
an expectation–maximization segmentation algorithm to
detect kidney stones in ultrasonic images. Noise removal was
performed on these images using the wavelet thresholding
technique. Ten, the authors used the expect-
ation–maximization algorithm to segment kidney stones
(renal calculi) in renal ultrasound images. Tey achieved
99.96% accuracy and 82.38% precision rate. However, the
authors experienced that the computation time (58.02 s) was
slower than the traditional algorithms. Khan et al. [14]
proposed a speckle reduction approach to detect kidney
stones on practical ultrasound (US) images using median
flters and image segmentation techniques. A median flter
was used to smooth images and reduce noise. Besides,
a thresholding technique was used to make the segmentation
process more robust. Te approach has a 96.82% accuracy
rate and 92.16% sensitivity on ffty test cases.

Längkvist et al. [9] developed a method using CNNs for
the detection of kidney stones from CT. As a preprocessing
step, smoothing was performed with a Gaussian flter. As
a preprocessing step, a Gaussian flter was applied for
smoothing. Tis method uses raw pixels on 3D volumes
instead of feature extraction. Te authors obtained 100%
sensitivity and 2.68 false positives per patient in stone de-
tection. Chak et al. [17] classifed CT images as with stone and
without stone using the support vector machine- (SVM-)
based linear classifer. Before the classifcation phase, they
used a neural network-based feature extraction method and
applied a preprocessing step to flter the speckle noise on the
CT images. Tey stated that their system obtained 95%–99%
accuracy. Parakh et al. [18] used cascading CNN architecture
for kidney stone detection in CT images. Tey created two
CNNs structures identifying the urinary tract and detected
the presence of stones. Te authors obtained 95% accuracy,
94% sensitivity, and 96% specifcity. Soni and Rai [12] also
used CT images to detect kidney stones. Histogram equal-
ization was used as a preprocessing step, and emboss was
applied to calculate the diferences in colors according to the
directions. Te support vector machine (SVM) classifcation
method was applied to divide the vector space into two
separate regions as stone-afected and healthy kidneys. Te
experimental results show that the test model has 98.71%
accuracy rate. Cui et al. [19] developed a deep learning and
thresholding-based model for kidney stone detection. In
addition, they focused on scoring the detection on non-
contrast CT images. Tey used 3D U-Net architecture as
a deep learning method. Te proposed model achieved
a sensitivity of 95.9% in detecting stones larger than 2mm in
diameter. Yildirim et al. [20] performed kidney stone de-
tection on CT images taken from 433 subjects. Te created
dataset consists of 1799 images by taking diferent cross-
sectional CT images for each subject. A model was created by
using xResNet-50 (cross-residual network) architecture, and
the experimental results show that the accuracy rate was
found by 96.82% on the test dataset. In another study that
used CT images, Baygın et al. [22] aimed to classify patients
who have kidney stones or not. Tey proposed a new clas-
sifcation network called ExDark19. Tey used the KNN
algorithm as a classifer, and this classifer achieved 99.22%
accuracy rate in the test data. Islam et al. [21] conducted the
detection of three main kidney diseases (kidney stones, cysts,
and tumors) on 12,446 CT images. Tey used vision trans-
formers (EANet, CCT, and Swin transformers) and deep
learning models (ResNet, VGG16, and Inception v3) to detect
kidney diseases. Te authors stated that the most accurate
method was the Swin transformer, and the model in the test
images had 99.30% accuracy rate in detecting the three types
of kidney disease. Sabuncu et al. [24] used the Inception v3
model as a reference to detect kidney stones in CT images. In
their study, a test accuracy of 98.52% was achieved in
detecting kidney stones from CT images. Patro et al. [23]
aimed to reduce redundancy in feature maps without con-
volution overlap by using a Kronecker-product-based con-
volution method instead of the traditional CNN-based deep
learning network on the CT imaging model. Te authors
highlighted that the proposed method made the network
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efcient by extracting abstract and in-depth features from the
input images. Te method was validated using 10-fold cross-
validation, and experimental studies show that the detection
of kidney stones from CT images has an accuracy rate of
98.56%.

A method proposed by Akshaya et al. [25] used DWT
(discrete wavelet transform) as a preprocessing step to detect
kidney stones in the MRI images. Key features were
extracted using GLCM (gray level co-occurrence matrix).
Te GLCM matrix determines the texture properties of an
image by calculating how often pixel pairs occur with certain
values in a specifed spatial relationship. A dataset generated
by 20 test data containing normal and abnormal kidneyMRI
images was classifed using the backpropagation method.
Kobayashi et al. [28] proposed a deep learning-based CAD
(computer-aided diagnosis) system to detect kidney stones
on plain images. Tey used 17-layer ResNet architecture for
patchwise training. According to experimental results, their
CAD system showed 87.2% sensitivity and 66.2% positive
predictive value (PPV). Preedanan et al. [29] have proposed
a two-stage pipeline for detecting kidney stones using the
segmentation technique. Firstly, the location of urinary
organs in images was identifed using U-Net. Ten, seg-
mented images were increased using data augmentation
methods and are passed through the second phase U-Net
network to reduce class imbalance in the resulting map.
Experimental results have shown that the U-Net network
using the two-stage pipeline produces an accuracy of 80% in
urinary stone classifcation.

3. Material and Method

3.1. Dataset and Image Labeling Process. Te generated
dataset consists of 630 DUSX images obtained from patients
who applied to Ataturk University’s Urology Department,
due to urinary system kidney stone disease. In the dataset,

558 images have one or more kidney stones in diferent
regions with various sizes. Te rest 72 images do not include
a stone, and they are labeled as healthy kidneys. Te dataset
is split by ∼ 80% as the training set and ∼ 20% as the testing
set. Te training dataset is also divided into two parts as
∼ 80% training and ∼ 20% validation in order to increase
the training success in itself. Te hierarchy of DUSX images
including 844 stones in total used for training, validation,
and testing, is represented in Figure 2. Te entire dataset can
be accessible in this study’s “Data Availability” section.

Labeling is a critical process for applying images su-
pervised learning methods in artifcial neural networks. In
this study, the boundaries of the kidney stones for each
image were acknowledged by a specialist doctor who works
in the Urology Department. Ten LabelImg for YOLOv4
and VGG Image Annotator [31] for Mask R-CNNwere used
to draw boundaries of the kidney stone in each image. In the
YOLO tagging format, a 〈image name.txt〉 fle with the
same name was created for each image fle. Each .txt fle
contains object class, object coordinates, object height, and
width information as annotations for the corresponding
image fle. At the end of the labeling process, all images in
labeled format were saved, and txt tag fles in YOLOv4
format containing the coordinate information of kidney
stones (center of the stone, x, y coordinate, width, and height
of the stone) in each labeled image were obtained. In Mask
R-CNN tagging format, all image fles were stored in a single
.json fle format. In the JSON fle, the fle names of the tagged
images and the x, y coordinates of the points forming the
polygons of the tagged objects are found in each image.

3.2. Preprocessing. Te use of CNN models has become
popular in medical image processing since their high per-
formance in the detection and classifcation of many dis-
eases.Tesemodels are also widely used in image processing,
and they can learn high-level properties about objects in

Table 1: Te literature studies based on the kidney stone detection on medical images.

Author Year Image type Methodology Accuracy (%)
Verma et al. [13] 2017 US KNN/SVM 89.0
Khan et al. [14] 2022 US Speckle reduction approach 96.8
Selvarani and Rajendran [15] 2019 US Metaheuristic SVM 98.8
Eskandari et al. [16] 2022 US Expectation-maximization 99.9
Längkvist et al. [9] 2018 CT CNN Sensitivity: 100
Chak et al. [17] 2019 CT ANN+SVM 95.0
Parakh et al. [18] 2019 CT Cascading CNN 95.0
Soni and Rai [12] 2020 CT SVM 98.7
Cui et al. [19] 2021 CT 3D U-Net and thresholding-based 90.3
Yildirim et al. [20] 2021 CT xResNet-50 96.8
Islam et al. [21] 2022 CT Transformers, ResNet, VGG16, Inception v3 99.3
Baygin et al. [22] 2022 CT ExDark19 99.2
Patro et al. [23] 2023 CT Deep kronecker neural network (DKN) 98.6
Sabuncu et al. [24] 2023 CT Inception v3 98.5
Akshaya et al. [25] 2020 MRI GLCM+BPN —
EL-Sheikh et al. [26] 2022 MRI Signal intensity 69.4
Parvathi et al. [27] 2023 MRI 3D-CU net model 91.2
Kobayashi et al. [28] 2021 Patchwise + ResNet Sensitivity: 87.2
Preedanan et al. [29] 2023 U-Net pipeline 80
Tis study 2023 CBC+YOLOv4 96. 
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images by processing pixels in diferent layers. Tanks to
these high-level features, the classifcation and detection
operations can be performed successfully in the images.
Before the classifcation and detection processes with CNN
models, the accuracy of the models can be increased with
diferent image enhancement techniques to be performed on
the images.

In this study, object detection models were generated for
automated kidney stone detection on DUSX images using
CNN models. However, the presence of noise in DUSX
images and the poor quality, especially in the form of
contrast, make it difcult to notice some details and reduce
the accuracy of the models. Te images should be perceived
more clearly by the models to increase the accuracy rates in
the detection process. Terefore, various image enhance-
ment techniques (GF, LoG, BF, HE, CLAHE, and CBC) were
applied before generating CNN models and the efect of
these techniques was investigated according to the experi-
mental results. Te coefcient values of the flters used in the
preprocessing step are given in Table 2. Figure 3 demon-
strates the original images and corresponding enhanced
images applied in the preprocessing step. In Figure 3(a),
kidney stones identifed by the urologist were shown in red
circles.Te preprocessing phases performed in this study are
described in the following subsections.

3.2.1. Gaussian Filtering (GF). Te kernel of the flter is
a discrete estimate of the normal distribution in the Gaussian
flter. With this flter, an infnite transfer function can be
fltered with a fnite scanning window in the spatial domain.
When a convolution operation is performed between an
image with a Gaussian flter, the average of the pixels in the

image is considered and the diference in value between
neighboring pixels is reduced. Hereby, noise is also reduced
by smoothing the image.TeGaussian flter is generally used
for operations such as noise removal, smoothing, and edge
protection. Te use of the Gaussian flter for two-
dimensional images was represented in the equation (1)
[32]. Equation (1) indicates the x, y values as the horizontal
and vertical distances from the center, σ represents the
standard deviation of the Gaussian distribution, and e

represents the natural logarithm.
In this study, the window size of the Gaussian flter was

chosen as 5× 5 and σ value was 1, and DUSX images were
smoothed at this rate. Te large standard deviation value
leads to larger peaks and this problem cause the image to be
more blurred. Terefore, the value of σ was chosen as small
as possible. Figure 3(b) shows the GF-applied images.

G(x, y) �
1

2πσ2
e

− x2+y2/2σ2( ). (1)

3.2.2. Laplacian of Gaussian Filtering (LoG). Laplacian is an
operator representing linear quadratic derivative. Te op-
erator is used to defne the edge transitions and contours in
the images. Laplacian-based methods are sensitive to noises
and when these methods are used on the images, the images
have many unwanted edge points and noises. To handle this
issue, the image is smoothed using Gaussian low-pass fl-
tering in the LoG method [33, 34].

In this study, the LoG flter was applied to smooth the
images, sharpen the edge contours of the kidney stones, and
reduce the noise on DUSX images. LoG pixel values were
calculated as shown in the following equation:

630 Subjects
Kidney Stone Healty

558 Subjects 72 Subjects
Train TestTrain Test

449 Subjects 109 Subjects

449 X-Ray
Subjects

109 X-Ray
Images

61 X-Ray
Subjects

11 X-Ray
Images

61 Subjects 11 Subjects

510 Training Images
80 % Training 20 % Validation

120 Test
Images

Figure 2: Data distributions used for training and testing phases in the study.
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LoG (x, y, z) �
− 1
πσ4

1 −
x
2

+ y
2

+ z
2

2σ2
􏼢 􏼣e

− x2+y2+z2/2σ2( ).

(2)

In Equation (2), (x, y) represents the pixels of the input
image, σ is the standard deviation value, and LoG (x, y)
represents the pixel values of the fltered image. Te window
size of the Gaussian flter was chosen as 5× 5, σ value was
selected as 1, and the input image was smoothed at this rate.
A mask with edge pixel information of the image was ob-
tained by applying the Laplacian operator on the image
passed through the Gaussian flter. Te output image was
obtained by adding the original image and the mask con-
taining the edge information. Te original images, the mask,
and the added version of the original image are shown in
Figure 3(c).

3.2.3. Bilateral Filtering (BF). Te bilateral flter is a basic
antialiasing flter that aims to preserve edge information
while smoothing images. Bilateral flters are frequently used
when noise reduction is required by preserving the edge. BF

includes a combination of two diferent Gaussian kernels,
spectral and spatial kernels. Filtering is performed according
to the spatial proximity of the central pixel to the neigh-
boring pixels. In case of a high brightness diference between
two pixels, it was aimed to preserve the sharp transition by
adjusting the flter coefcient of the neighboring pixel
according to the diference. In this way, the edge information
of the image was preserved better than standard antialiasing
flters during fltering. Te BF process is expressed by the
following equation:

BF[I]p �
1

Wp

􏽘
q∈S

Gσs
(‖p − q‖)Gσr

Ip − Iq

�����

�����􏼒 􏼓Iq. (3)

In equation (3), I indicates the input image, p represents
the currently fltered pixel position of the image, and q
represents the neighboring pixels of the pixel that are in the S
neighborhood. Wp normalization parameter is expressed by
the following equation:

Wp � 􏽘
q∈S

Gσs
(‖p − q‖)Gσr

Ip − Iq

�����

�����􏼒 􏼓. (4)

Table 2: Coefcients applied in flters.

Method Kernel size σ σs σr Clipping limit Sub-block size

Gaussian fltering 5× 5 1 — — — —
Laplacian of Gaussian 5× 5 1 — — — —
Bilateral fltering 5× 5 — 2 0.1 — —
CLAHE — — — — 3 16
CBC 5× 5 — 2 0.1 3 16

(a) (b)

(c) (d)

(f)

(g)

(e)

Figure 3: (a) Labeled original images. (b–g) Filtered images. (b) Gaussian fltering. (c) Laplacian of Gaussian fltering. (d) Bilateral fltering.
(e) Histogram equalization. (f ) CLAHE. (g) CBC.
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Te Gaussian kernel is expressed by the following
equation:

Gσ(x) �
1

2πσ2
exp −

x
2

2σ2
􏼠 􏼡, (5)

where σs and σr indicate the standard deviation of the spatial
smoothing function and the spectral efect function, re-
spectively.Te spatial kernel σs enhances the efect of nearby
pixels, and the spectral kernel σr increases the efect of those
with closer pixel values in the neighborhood. S is the area
containing the neighborhoods centered on the p pixel in the
image. Te values of Gaussian kernels are the most efective
factor for the flter performance. A high spectral kernel value
causes the flter to execute like a typical Gaussian flter. As
this value increases, the diference between the values of the
pixels is not considered. Moreover, the increment of spatial
parameter σs causes the smoothing larger features [35–37]

In the experiments conducted within the scope of this
study, the best results were obtained using the following
parameters on the bilateral flter: a window size of 5× 5, σs 2
and σr 0.1. Since the σ values preserve the edge information,
the kidney stones in the DUSX images can be distinguished
better. Figure 3(d) shows bilateral fltering applied images.

3.2.4. Histogram Equalization (HE). Many contrast en-
hancement methods for medical images can be seen in the
literature. Today, histogram equalization is one of the most
preferred methods to improve the contrast of radiographic
images. Tere are two types of classifcation for contrast
enhancement methods in the literature. In the frst type,
contrast enhancement methods are divided into two classes
according to frequency space and spatial space [38]. In the
second type, contrast enhancement methods are classifed as
global and local methods. Global methods use the histogram
of the entire image for contrast enhancement. As an al-
ternative to the global method, local methods were de-
veloped to solve this problem. In native methods, the
histogram of each subsection of the image is used instead of
the entire image histogram in contrast enhancement [39]. In
histogram equalization, the brightness distribution of the
image is normalized to improve the global contrast of the
image. Ten, an output image with a uniform density dis-
tribution can be obtained. Tis operation is represented in
the following equation [40]:

S(k) � 􏽘
k

j�0

nj

n
∗ (L − 1), k � 0, 1, 2, 3 . . . , L − 1. (6)

In equation (6), nj is the number of pixels in the jth level,
L is the desired gray level number (256 for 8 bits), and n is the
total number of pixels. Figure 3(e) shows histogram
equalization applied images.

3.2.5. Contrast-Limited Adaptive Histogram Equalization
(CLAHE). Te traditional histogram equalization method
uses a global density distribution; for this reason, some
important features can be suppressed by unimportant

features such as background or noise [41, 42]. To solve this
problem, the adaptive histogram equalization (AHE)
method [43] was proposed in the literature.

In adaptive histogram equalization, the histogram of
each sub-block of the image is used instead of the global
histogram. Each pixel in each sub-block of the image is
arranged in intensity proportional to the pixels in the
surrounding region. In other words, the image is divided
into sub-blocks in the form of a grid, and standard histogram
equalization is applied to each sub-block. Ten the sub-
blocks are combined to obtain an enhanced image. Since the
AHE method works in the local area, distortions called the
blocking efect may occur in the border parts of the sub-
blocks during the merging process. Te blocking efect is
a discontinuity problem. To solve this problem, the bilinear
interpolation method is used for combining sub-blocks.
Noise problems arise in local areas when contrast en-
hancement is performed with the AHE method. Especially
noise increases in homogeneous regions. For this reason, the
contrast-limited adaptive histogram equalization (CLAHE)
method was developed to avoid noise by limiting the con-
trast enhancement [39, 43]. Te CLAHE method helps to
improve contrast in medical images without increasing the
efect of noise [41].

In this study, we implemented CLAHE method to im-
prove the contrast of DUSX images. In the CLAHE method,
each image is divided into sub-blocks and the histogram of
each sub-block is calculated. Each histogram is then cropped
so that it does not exceed the clipping limit value (clipping
limit� 3). Tus, the efectiveness of noises is prevented by
limiting the contrast enhancement size. Te number of
clipped pixels is evenly distributed on the histogram. Te
histogram equalization method is applied for each histo-
gram. In addition, the bilinear interpolation method is used
to eliminate the blocking efect that may occur during the
joining of sub-blocks. In the CLAHE method, local contrast
enhancement is performed without increasing the amount
of noise on the image. Figure 3(f ) represents the CLAHE-
applied images.

3.2.6. CBC. In this technique, noises are removed frstly by
preserving the edge transitions by applying BF to the images.
Ten, CLAHE is applied to improve the contrast of the
image, hereby, the local details can be identifed easily. Te
results show that the use of the two combined methods is
more benefcial than a uniform image enhancement. Te
general block diagram of the CBC method used in this study
is given in Figure 4. In this method, the parameters were
determined as the following: the window size of the bilateral
flter is 5× 5, σs 2 and σr 0.1. Te sub-block size of the
CLAHE method is 16×16, and the clipping limit is 3.
Figure 3(g) shows CBC-applied images.

3.3. CNN Models. Determining the presence or absence of
a disease in medical images is a wide-ranging application
feld, and it can be defned as a classifcation problem. In this
feld, deep learning methods, especially CNN algorithms
present remarkable accuracy. In this study, YOLOv4 and
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Mask R-CNN models were used for kidney stone detection
in DUSX images. Te training of the created CNN-based
models was carried out on DUSX images. Te general ar-
chitectural structure used to compare diferent models and
preprocessing methods applied in this study is shown in
Figure 5. In the following subsections, we explained the
architectural structures of YOLOv4 and Mask R-CNN
models and the network confguration details for our
dataset.

3.3.1. YOLOv4. In this study, the YOLOv4 model was used
for the automatic detection of kidney stones in DUSX
images. Tis section describes the YOLOv4 which is one of
the most popular CNN-based object detectors. Te network
confgurations for this model are explained in the following
sections.

YOLO (You Only Look Once) [44, 45] is a CNN-based
algorithm that can detect multiple objects in a single step
with high accuracy and speed in real time with multibox
structures. Te YOLOv4 algorithm was proposed by
Bochkovskiy et al. [46] in 2020 as the fourth version. Te
YOLOv4 version is an algorithm that can be trained quickly
on a single graphics processing unit (GPU) and generates
more accurate results than other versions. In the YOLOv4
model, the CSPDarknet53 [47] neural network is used as the
feature descriptor. CSPDarknet53 performs splitting and
merging operations on the feature map to provide more
gradient fow from the Darknet-53 CNN. Darknet-53 is
a convolutional network trained on ImageNet and it consists
of 53 consecutive 1× 1 and 3× 3 convolutional layers fol-
lowed by residual layers. Darknet-53 uses GPU efciently
due to the high number of foating-point operations it
performs per second andmakes the evaluationmore efcient
and faster than other feature extractors such as ResNet101 or
ResNet152 [48, 49].

To extract features in the YOLOv4 architecture, SAM
(spatial attentionmodule), PAN (path aggregation network),
and SPP (spatial pyramid pooling) structures [46] were
implemented and their properties were extracted at three

diferent scales to recognize objects of various sizes. When
the input image is given to the network, the third scale
divides the image into 52× 52 cells, enabling the detection of
small-sized objects. Te second scale divides the image into
26× 26 cells, allowing common-sized objects to be detected.
Te frst scale allows the detection of large objects by di-
viding them into 13×13 cells. Using these sizes, the output
size of each scale was calculated as N×N× [3× (4 + 1 +C)].
In this equation, the expression 3 represents the number of
bounding boxes calculated for each cell, 4 denotes the ofset
values (tx, ty, tw, th) of each bounding box, 1 denotes the
objectivity score, and C the number of its class. Finally, the
output of the network shows the boundary box’s coordinates
belong to the estimated object, the objectivity score, and the
class information of the object [45, 48]

(1) Bounding Box Prediction. Anchor boxes are used to
estimate the boundary boxes as shown in Figure 6. Te best
anchor boxes are calculated by applying the K-means
clustering algorithm. When the K-means clustering algo-
rithm is applied, the Intersection over Union (IoU) score is
used instead of the Euclidean distance. If several anchors
overlap, any anchor can be selected with the IoU value. Te
sizes of anchor boxes obtained by the K-means clustering
algorithm are appropriately assigned to the scales. Te
network predicts four values for each bounding box (tx, ty,
tw, th). Using the sigmoid function, the center coordinate
values (tx, ty) are reduced to the range 0-1. Using the
equations in Figure 6, the center point of the anchor box
obtained using K-means is calculated by its distance from
the upper left corner of the grid cell σ(tx) and σ(ty). By
adding the distances (cx, cy) to the upper left corner of the
image to these values, the center point coordinates of the
boundary box are found (bx, by). Finally, the width and
height of the boundary box (bw, bh) are calculated using the
anchor box dimensions (pw, ph) using K-means. With the
operation, pwetw , pheth the signs of the values are converted
to positive in case of encountering negative tx and ty values.
Te YOLO network estimates an objectivity score for each
anchor using logistic regression. Te objectivity score

Input image

Bilateral
filtering is

applied

Divide image
into

sub-blocks

CBC

CLAHE

Calculate the
histogram for

each sub-block

Each histogram is
cropped according

to the specified
value

Output image

Each sub-block is
combined using

bilinear
interpolation

The histogram
equalization

method is applied
for each histogram

The number of
clipped pixels is

evenly distributed
in the histogram

Figure 4: Te general block diagram of the CBC method used in this study.
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estimate indicates the probability that the anchor contains
an object. It also estimates the class probability using an
independent logistic classifer. Class probability estimation
performs object classifcation.

3.3.2. Mask R-CNN. In this study, the Mask R-CNNmethod
evolved by region-based convolutional object detection al-
gorithms was used to detect kidney stones in DUSX images.
Tis section briefy introduces Mask R-CNN architecture.
Te network confguration details according to our dataset
were explained in the following sections. Mask R-CNN is
a neural network model which is based on object seg-
mentation and developed by the Facebook Artifcial In-
telligence Research (FAIR) team as an extension of the Faster
R-CNN algorithm. Instead of semantic segmentation
identifying each pixel in the image, Mask R-CNN uses in-
stance segmentation by segmenting only the pixels where the
target objects are located and placing a mask on them. Te

output of the network consists of the bounding box which is
the output of the Faster R-CNN algorithm, and a mask
defning the object outlines at the pixel level in addition to
the object class. Region-based convolutional object detection
algorithms generally consist of two parts: (1) identifying
regions that could potentially be objects in the processed
image and (2) delimiting the detected object with a bounding
box [50, 51].

(1) Region Proposal Network (RPN). Te algorithm gives the
input image to the backbone (ResNet101), which is a stan-
dard convolutional boundary network that acts as a feature
extractor. Convolutional feature mapping is generated by
passing the image through the feature pyramid network in
the backbone. Te n ∗ n size window is shifted over the
feature map; then this window is matched with a lower-
dimensional feature vector. Te RPN proposes region an-
chor boxes, which can be a set of objects, with diferent
aspect ratios at each foating window location. Each pro-
posed anchor box is associated with the box’s objectivity
score and the four coordinates of the bounding box. If the
anchors highly overlap each other, the nonmax suppression
(NMS) process is performed by choosing the one with the
highest intersection-to-union (IoU) ratio value. Ten in-
tersection regions (Region of Interest, RoI) are obtained by
NMS processing. [52].

(2) Region of Interest (RoI). Classifers are capable of pro-
cessing fxed-size input images better than variable-size
input images. However, the RoI regions have diferent
sizes due to the diferent aspect ratio bounding boxes in the
RPN. Terefore, a process of resizing region proposals
named RoI pooling is required to make regions fxed-sized.
Te RoI Alignmethod was developed for the pooling process
in the Mask R-CNN method [50].

In the RoI Align method, the region suggested by the
RPN is divided into n × n grids. Because each grid cell is
expected to contain the same number of pixels, fractional
pixel states may occur. Ten, each cell of the grid is sampled
by dividing it into four subcells. Bilinear interpolation is
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LoG BF + CLAHE
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Figure 5: General architectural structure used in comparison to diferent preprocessing methods and CNN models for automated kidney
stone detection (AKSD).
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Figure 6: Estimation of bounding box using YOLO model [45].
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performed to represent subcells with a single value. In the
last step, maximum pooling is performed on the bilinear
interpolation values to obtain the n × n sized output. Fixed-
size RoIs are sent to the fully connected layers to generate
classifcation and bounding box information, and then they
are sent to the mask branch to generate mask information.

(3) RoI Classifer and Bounding Box Regressor. In the RPN
network, binary classifcation is performed as foreground/
background for RoI’s. Unlike RPN, the RoI classifer has
a deeper network and it performs multiple classifcations for
each RoI. A bounding box is created for RoI in RPN. In the
bounding box regressor, the bounding box is optimized to
fully cover the object.

(4) Mask Branch. Te mask branch is a CNN that uses the
RoI information obtained after the RoI align procedure and
it creates masks for them. Te created masks have a lower
resolution than 28× 28 pixels. Te small-sized mask ensures
that the processing density is low and the mask branch
remains lightweight. During the training phase, the basic
truth masks are scaled to 28× 28 size to calculate the value of
the loss function. During the estimation, the masks are
scaled to the dimensions of the RoI bounding box and fnal
masks of the detected objects are created including one for
each object [53].

(5) Loss Function. Te loss/error function of the Mask
R-CNN method is formalized in equation (7). Te equation
shows that the loss function consists of three sub-
components. Tese subcomponents are the loss function for
each classifcation result (Lcls), the loss function for the
regression process used to determine the bounding box
(Lreg), and the loss function for the segmentation mask
(Lmask), respectively. Te minimization of this function is
performed iteratively using the gradient descent algorithm
[50]:

Lloss � Lcls + Lreg + Lmask. (7)

3.3.3. Network Confgurations and Model Training Phases.
In YOLOv4 and Mask R-CNN constructs, network con-
fguration fles need to be adjusted for model training. Tese
fles contain many parameters such as the architectural
structure, number of layers, activation functions, learning
rate, and input image for network training and testing
phases. In this study, all training processes were carried out
on the Intel(R) Core(TM) i5-7400 CPU 3.00GHz processor
and Nvidia Geforce RTX 2080 8GB GPU computer. To
perform the training operations on the graphics card, the
10th version of the CUDA library was used to ofer parallel
computing on the graphics card created by Nvidia. Besides,
OpenCV Library, which can be used as open source for
operations on images, Keras, and TensorFlow libraries were
implemented to train the Mask R-CNN model. Predictions
were performed with the images reserved for verifcation,
and the models were saved in the backup folder specifed in
the confguration fle. k-Folds (5-fold) cross-validation was

performed in the training phase to ensure the randomness of
the generated models and avoid the overftting problem. As
a result of cross-validation techniques, the average of fve
models was considered as a result model and the evaluation
process was performed on this model. Diferent training
processes were carried out for each preprocessing step ap-
plied to the images.

(1) Confguration and Model Training for YOLOv4. Te
parameters required for YOLOv4 model training were lo-
cated in the “YOLOv4-custom.cfg” confguration fle in the
root directory of the Darknet backbone. Te parameters
shown in Table 3 were arranged and the confguration fle
was prepared for the training. After parameter and fle
confgurations, initial weight values were identifed ran-
domly during the training phase. For this reason, the
training period may be time consuming. To shorten the
training time and transfer learning, Darknet-53 convolution
weights, which were previously trained in the Imagenet,
were identifed as initial weights in the training of the
“darknet53conv.74” YOLOv4 network. Each training pro-
cess was performed in 6000 iterations and takes ∼ 15 hours.
Evaluation of the output models obtained as a result of the
training phases is detailed in Section 4.

(2) Confguration and Model Training for Mask R-CNN.
Matterport [54] Mask R-CNN which is one of the popular
frameworks was chosen to train the Mask R-CNN model.
Te parameters required for model training were confgured
in the “conFigure py” fle which is located in the root di-
rectory. Network confguration and training parameters for
the Mask R-CNN model were identifed in Table 4. We used
the “mask_rcnn_coco.h5” fle, which was previously trained
with the Microsoft COCO [55] dataset as the initial weight
values for the model training. Mask R-CNN takes a pa-
rameter named “layers” during the training phase. Tis
parameter has two options named “heads” and “all.” Te
“heads” option changes only the weights of the last layers of
the model where transfer learning is performed, and the
available weights of the Backbone and RPN (region proposal
network) networks are not changed. When model training is
performed by selecting the “all” option, all layers including
Backbone and RPN are trained according to the new dataset.
It was observed that a more successful model is identifed as
a result of the training by choosing “all” option. Each
training process was performed at 400 epochs and takes
∼ 10 hours. Evaluation of the output models obtained as
a result of the training phases is detailed in Section 4.

4. Experimental Results

In this study, the evaluation process was carried out with the
IoU (Intersection over Union) metric. Te IoU is an eval-
uation metric that measures the similarity between the
ground truth bounding box (labels denoted by the bounding
boxes in the test dataset) and the predicted bounding box to
evaluate the robustness. So, it is defned as the intersection of
the junction of the detection bounding box and the ground
truth bounding box. Te IoU score ranges from 0 to 1, the
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closer the two boxes are, the higher the IoU score. A
threshold value with a real value of 0.5 is commonly accepted
to convert each object detection into classifcations. If the
kidney stone is detected according to IoU ≥ 0.5 threshold
value, the object is classifed as true positive (TP). When
a label is present in the image and the model fails to detect
the kidney stone, the object is classifed as false negative
(FN). If the image has no labeling but the image has a de-
tection with IoU ≥ 0.5, it means that this is a false detection
and it should be classifed as false positive (FP). Using these
parameters (TP, FP, TN, and FN), accuracy rate, precision,
recall (sensitivity), F1-score, and specifcity were calculated
to compare the performances of the models. Te equations
of these evaluation metrics are represented in the following
equations, respectively:

Accuracy rate �
TP + TN

TP + TN + FP + FN
, (8)

Precision �
TP

TP + FP
, (9)

Recall (sensitivity) �
TP

TP + FN
, (10)

F1 − score � 2∗
Precision ∗ Recall
Precision + Recall

, (11)

Specificity �
TN

TN + FP
. (12)

Te performance of the obtained models after the
training phase was tested on 120 test images containing 142
stones. Initially, the models were tested on images without
any preprocessing steps, and six preprocessing steps were
applied to the images. Test images of YOLOv4 and Mask
R-CNN models are given in Figures 7 and 8, respectively.

When the test images are examined, it is seen that the
YOLOv4 model using the CBC preprocessing step was able
to detect all stones in the fgure.

Confusion matrix is a table of predictions and actual
values used to evaluate the performance of classifcation
models in machine learning. Confusion matrices with four
combinations (TP, FP, FN, and TN) are created using es-
timated and real values. Figures 9 and 10 represent the
confusion matrices for YOLOv4 and Mask R-CNN models,
respectively.

When the confusion matrices of the models are exam-
ined, it is seen that the YOLOv4 model without applying the
preprocessing step can detect 118 of 142 stones, and the
Mask R-CNN model can detect 115 of them. Te perfor-
mance of the models increases in kidney stone detection by
applying preprocessing steps. In particular, the model ob-
tained by using the CBC method and the YOLOv4 model
was able to detect 137 out of 142 stones. Te accuracy rate,
precision, recall, F1-score, and specifcity values of the
models were evaluated using confusion matrices to compare
the performances of the models, and the results are shown in
Table 5. When the performance of the models is evaluated
according to the calculated metrics, it is seen that the ap-
plication of BF, GF, LoG, CLAHE, and CBC preprocessing
steps increased the accuracy of CNN models. On the other
hand, HE did not signifcantly increase the accuracy of the
models.

Kidney stone disease classifcation was performed in
DUSX images using transfer learning method with Ef-
cientNet [56], Densenet [57], ResNet101 [58], and Mobi-
leNet [59] deep learning architectures.Te best 1000 features
for each transfer learning method were selected with the
relief algorithm, and the obtained features were classifed by
SVM using 5-fold cross-validation. Accuracy rate, precision,
recall, and F1-score values of the models are given in Table 6.
When Table 6 is examined, it can be seen that the

Table 3: YOLOv4 model training parameters.

Parameter Defnition Value
Batch Number of images to be processed at once 64
Subdivisions Number of steps to process the batch value image 64
Width Te width of the resized input image 416
Height Te height of the resized input image 416
Max_batches Maximum number of epoch 6000
Steps Update parameter of learning rate (80% of Max_batches/90% of Max_batches) 4800/5400
Class Te number of class 1
Filters Filters� (classes + coords + 1) ∗ 3 18

Table 4: Mask R-CNN model training parameters.

Parameter Defnition Value
Images_Per_GPU Number of images to train with on each GPU 1
Num_Classes Number of classes (including background) 2
Steps_Per_Epoch Number of training steps per epoch 100
Backbone Backbone network architecture ResNet101
NMS_Treshold Nonmaximum suppression threshold for detection 0.5
MIN_Confdence Minimum probability value to accept a detected instance 0.5
Epoch Number of steps in training 400
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(a) (b)

(c) (d)

(f)

(g)

(e)

Figure 7:Te result images of YOLOv4models. (a) No preprocessing. (b) Gaussian fltering. (c) Laplacian of Gaussian fltering. (d) Bilateral
fltering. (e) Histogram equalization. (f ) CLAHE. (g) CBC.

(a) (b)

(c) (d)

(f)

(g)

(e)

Figure 8: Te result images of mask R-CNN models. (a) No preprocessing. (b) Gaussian fltering. (c) Laplacian of Gaussian fltering.
(d) Bilateral fltering. (e) Histogram equalization. (f ) CLAHE. (g) CBC.
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Figure 9: Confusion matrix for the YOLOv4 models.
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Figure 10: Confusion matrix for the Mask R-CNN models.

Table 5: Te performance comparison of YOLOv4 and Mask R-CNN models at 0.5 IoU threshold.

Preprocessing Model Accuracy Precision Recall F1-score Specifcity
No preprocessing YOLOv4 83.2 98.3 83.1 90.1 84.6
No preprocessing Mask R-CNN 81.8 99.1 80.9 89.1 91.7
Bilateral fltering YOLOv4 94.1 98.5 95.1 96.8 81.8
Bilateral fltering Mask R-CNN 91.6 98.5 92.2 95.3 83.3
Histogram equalization YOLOv4 83.9 97.6 84.5 90.6 76.9
Histogram equalization Mask R-CNN 81.9 98.3 81.7 89.2 84.6
Gaussian fltering YOLOv4 92.3 98.5 92.9 95.7 84.6
Gaussian fltering Mask R-CNN 90.9 99.2 90.8 94.9 91.7
Laplacian of Gaussian YOLOv4 88.5 96.9 90.1 93.4 73.3
Laplacian of Gaussian Mask R-CNN 87.8 97.7 88.7 92.9 78.6
CLAHE YOLOv4 87.3 96.9 88.7 92.6 73.3
CLAHE Mask R-CNN 85.3 97.6 85.9 91.4 78.6
CBC YOLOv4 96. 99.3 96.5 97.9 9 .7
CBC Mask R-CNN 92.8 99.2 92.9 96.0 90.9
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DenseNet201 [57] method, one of the transfer learning
methods, is the most successful method with an accuracy of
89.3%.

Te receiver operating characteristics (ROC) curve is an
evaluation curve to check the performance of any classif-
cation model. Te ROC curve is widely used to evaluate the
performance of machine learning algorithms. It is efcient,
especially in unbalanced datasets and it explains how well
the model predicts. Te ROC curve has a false positive rate
(FPR) on the x-axis and true positive rate (TPR) on the y-
axis. It facilitates the comparison of the accuracy of diferent
models trained on the same dataset. Figure 11(a) shows the
ROC curve of the YOLOv4 models, and Figure 11(b) shows
the ROC curve of the Mask R-CNN models used for this
study. Area under curve (AUC) refers to the area under the
ROC, and it can be considered as a summary of model
performance. In this curve, the larger area leads the more
accurate model predictions. Te ideal value for AUC is 1.
When Figure 11 is examined, it is seen that the YOLOv4
model with CBC preprocessing step has the highest AUC
(0.94). Tis means that the predictions of the proposed
model are correct with a 94% probability.

5. Discussion and Conclusion

In this study, a CNN-based computer-aided diagnostic
system was proposed to automatically detect kidney stones
in DUSX images. For this purpose, a new dataset was

proposed to the literature obtaining 630 DUSX images that
belong to the patients of Ataturk University’s Urology
Department. We believe that the proposed dataset paves the
way for further investigation of kidney stone detection
systems.

Te presence of noise in DUSX images and poor quality,
especially in contrast form, reduces the success of CNN-
based models in kidney stone detection. Six image en-
hancement techniques (GF, LoG, BF, HE, CLAHE, and
CBC) were evaluated to ensure the quality of DUSX images.
We investigated the efect of these techniques on automatic
kidney stone detection. Te experimental results show that
the YOLOv4 model using the CBC technique as a pre-
processing step has the best performance with 96.1% ac-
curacy rate and this technique was proposed as a promising
result model. Te success of the proposed result model was
clinically evaluated and accepted by a specialist urologist.
Te model can help urologists and radiologists to accurately
detect kidney stone cases and reduce their workload. Ad-
ditionally, we expect that the use of our proposed model will
help to reduce the unnecessary radiation exposure and as-
sociated medical costs that come with CT scans.

We encountered some challenges during the training phase
of the proposed system. Since YOLOv4 and Mask R-CNN
architectures perform operations such as feature extraction and
size reduction directly on the training images, the training
times lasted too long.Moreover, labeling the images one by one
before the training phase, especially the polygon tagging used

Table 6: Te performance comparison of pretrained models.

Pretrained model Accuracy Precision Recall F1-score
DenseNet201 [57] 89.3 89.5 99.6 94.3
EfcientNet-B0 [56] 87.3 89.3 97.3 93.1
MobileVnet2 [59] 86.0 89.0 96.1 92.4
ResNet101 [58] 87.8 89.3 97.9 93.4
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Figure 11: (a) ROC of YOLOv4. (b) ROC of Mask R-CNN.
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by the Mask R-CNN architecture, brings a serious workload to
the operational processes. When we evaluate the YOLOv4 and
Mask R-CNN architectures in terms of training time, the
workload on operational processes, and detection perfor-
mances, it is observed that YOLOv4 outperformed Mask
R-CNN in terms of workload and training time. Another
challenge is that patient or device movements can cause blurry
or distorted images, making it difcult to detect kidney stones.
Additionally, such actions lead to an increase in false positive
results. Moreover, all DUSX images obtained from a single
hospital may limit the generalizability of the model. In future
studies, we aim to expand our dataset obtaining DUSX data
from diferent hospitals to generalize the performance of our
model and make it more robust.

In future studies, the dataset will be expanded and a bal-
anced data distribution will be established to enhance the
accuracy and precision of kidney stone detection from images.
In addition, we have planned to achieve the detection of smaller
kidney stone types with higher accuracy and speed bymapping
the locations of the stones using segmentation methods.
Moreover, we will evaluate the ability of our model to detect
other pathological conditions such as tumors and cysts, and
optimize the model for such situations.
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