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Multimodal optimization aims at efciently fnding multiple optimal solutions of a problem. Owing to the population-based
search mechanism, evolutionary algorithms (EAs) are becoming increasingly popular in solving multimodal optimization
problems (MOPs). Most existing work focuses on designing and incorporating niching techniques into EAs so that multiple
subpopulations can be formed and assigned to locate diferent optima. To further enhance the exploration and exploitation
abilities of existing EAs, this paper developed a multimodal level-based learning strategy. Te basic idea is that individuals should
be treated diferently according to their positions in the subpopulation. In the evolutionary process, a subpopulation is formed for
each candidate solution by grouping its neighboring solutions. Ten, individuals in the subpopulation are sorted according to
their ftness. Subsequently, the multimodal level-based learning strategy applies diferent mutation operators to diferent in-
dividuals according to their rankings. Experiments are conducted on a set of benchmark problems to verify the efcacy of the
multimodal level-based learning strategy. Te results show that the proposed learning strategy can signifcantly enhance the
performance of the existing algorithm. In addition, the algorithm integrated with the proposed strategy is applied to the task of
fnding multiple roots of nonlinear equation systems (NESs). Te results indicate that with the support of the proposed learning
strategy, the integrated algorithm compares favorably with state-of-the-art root fnding algorithms.

1. Introduction

Multimodal optimization problems (MOPs) are commonly
encountered in scientifc research and engineering design.
Some examples of MOPs include RNA secondary structure
prediction [1], motion planning of robot arms [2], trajectory
planning of railway vehicles [3], image segmentation [4], and
root fnding of nonlinear equation systems [5]. Terefore,
efcient algorithms for solving MOPs are of great impor-
tance for progressing the development of new technologies.

Evolutionary algorithms (EAs) are a sort of nature-
inspired meta-heuristic search algorithms that mimic the
evolution of life or the collective behavior of social animals.
EAs maintain a group of candidate solutions (individuals) in
the optimization process and iteratively update the solutions
through genetic operators (e.g., crossover and mutation).
When the termination criterion is met, the algorithms return

the best solution found in the search process. Diferent from
traditional optimization techniques that use the frst-order
or second-order derivatives, EAs do not require any
problem-specifc information and have strong global search
abilities. Tey have been shown to be powerful optimization
techniques for solving various types of black box optimi-
zation problems [6–10].

It is worth noting that EAs are mostly designed for global
optimization, in which the goal is to locate a single global
optimum. However, since a population of candidate solu-
tions is maintained in the search process, it is straightfor-
ward to extend EAs to simultaneously locate multiple
optimal solutions. Te techniques used for extending EAs
are commonly referred to as “niching.” Te basic idea of
“niching” is to divide the population into small groups, and
each group is responsible for locating one optimum. In this
way, multiple optimal solutions can be located in a single
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run. Over the past decades, various niching techniques have
been developed in the literature [11, 12]. Integrated with
these niching techniques, EAs have raised as a mainstream
approach for solving MOPs.

However, most of the existing niching techniques focus
on the improvement of genetic operators to induce niching
behavior of the population. Tis paper explores another
avenue to enhance the performance of multimodal evolu-
tionary algorithms. Te contributions of this work are
twofold.

(1) We develop a multimodal level-based learning
strategy that takes into account the working principle
of niching algorithms. For each individual, a sub-
population is formed by grouping its neighboring
solutions. Ten, the subpopulation is divided into
multiple levels according to the ftness of individuals.

(2) For each level of individuals, a tailored mutation
operator is devised to enhance the search efciency
of EAs. Individuals with higher ftness values are
assigned for exploitation while individuals with
lower ftness values are assigned for exploration.Tis
way, a better balance between exploitation and ex-
ploration can be achieved when solving multimodal
optimization problems.

Comprehensive experiments are conducted on a set of
benchmark problems and several real-world problems to
examine the efcacy of the strategy.Te experimental results
show that the multimodal level-based learning strategy can
signifcantly increase the performance of a popular difer-
ential evolution- (DE-) based multimodal algorithm.

Te remainder of this paper is organized as follows.
Section 2 gives a brief review on evolutionary multimodal
optimization and introduces the principle of the level-based
learning strategy. In Section 3, we propose a multimodal
level-based learning strategy. Te integration of the strategy
with DE is described in detail. Comprehensive experiments
are conducted in Section 4 to investigate the efcacy of the
proposed strategy. Te experimental results are presented
and analyzed in this section as well. Finally, Section 5
concludes this paper and gives some future research
directions.

2. Background

In this section, we frst review some classical multimodal
evolutionary algorithms. Ten, some recently proposed
niching techniques are introduced to uncover the research
trend of evolutionary multimodal optimization. Sub-
sequently, we elaborate on the level-based learning strategy,
which is the basis of our proposed strategy.Te principle and
procedures of the level-based learning strategy are described
in detail.

2.1. Evolutionary Multimodal Optimization. Recent years
have witnessed the rapid development of EAs in various
optimization domains. Jiang et al. [14] developed a self-
adaptive niching DE (SaNDE) with ring topology. A new

mutation operator called “current-to-pnbest” is proposed to
increase the search efciency. Moreover, an adaptive restart
mechanism is used to handle the problem of stagnation. Sun
et al. [15] proposed an adaptive regeneration framework
based on search space adjustment to address the problem of
premature convergence encountered by DE algorithms.
Parouha and Verma [16] provided a comprehensive over-
view of the recent developments of DE and particle swarm
optimization (PSO). Ten, a hybrid algorithm of advanced
DE and PSO is developed to solve unconstrained optimi-
zation problems. To improve the performance of DE, Deng
et al. [17] proposed a dynamic combination-based mutation
operator in which the base vector is constructed using the
current optimal individual and an elite individual. A two-
level parameter regularization strategy is used to adjust the
scale factor and crossover rate by combing the efect of the
population-level parameter and the individual-level pa-
rameter. Zhao et al. [18] implemented a Gaussian pertur-
bation operation to expand the search neighborhood of
candidate individuals produced by the opposition-based
learning strategy. Diferent sized neighborhood is adopted
in diferent evolutionary stages to balance exploration and
exploitation.

In real-world scenario, it is not uncommon to see that
a problem has the multimodality property, which means that
the problem has multiple satisfactory solutions. Simulta-
neously fnding multiple solutions has several benefts to
decision makers. First, if an optimal solution cannot be
deployed due to physical restrictions, decision makers can
switch to other optimal solutions. Second, the obtained
solutions can be combined to form a more robust solution.
To fnd multiple optimal solutions, traditional optimization
techniques need to run multiple times with diferent starting
points, which is very inefcient and time-consuming. In
comparison, EAs maintain a population of candidate so-
lutions in the search process.We can disperse the population
to search for multiple optima in a single run. Since EAs have
this natural advantage over traditional techniques, they have
become one of the mainstream methods for multimodal
optimization and have been applied to a variety of real-world
MOPs.

Te primitive versions of EAs are designed for global
optimization. Niching techniques have to be incorporated
into the algorithms to induce multiple convergence behavior
of the population. During the past decades, many classical
niching methods have been developed. Te most prominent
ones include crowding [19], ftness sharing [20], speciation
[21], and clearing [22]. Te idea of crowding is that similar
individuals need to compete for limited resources, where the
similarity between individuals is measured by their distance
in the search space. Fitness sharing frst divides the pop-
ulation into several niches. Its underlying principle is that
individuals in a niche should share information with others
in the same niche. Fitness sharing is implemented by di-
viding the ftness of an individual by the number of in-
dividuals in its niche. Diferent from crowding and ftness
sharing, speciation explicitly divides the population into
a number of species. A species seed with the best ftness value
is frst extracted from the population. Ten, individuals
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falling within a circle of the species seed are classifed into
one species. Te above process is repeated until all the in-
dividuals have been assigned to a species. Clearing is another
popular niching technique whose procedure is similar to that
of speciation. However, except for the best individual, it
eliminates all other individuals in the same niche. Te
classical niching techniques often serve as building blocks
for advanced methods and have been widely used in the
design of new algorithms.

For DE, Qu et al. [23] proposed a neighborhood mu-
tation operator that poses restrictions on the generation of
mutation vectors. When generating a mutation vector Vi

for the individual Xi, vectors Xr1, Xr2, and Xr3 are selected
from the neighborhood of Xi, instead of from the entire
population. Qu et al. [23] integrated the neighborhood
mutation operator with ftness sharing, speciation, and
crowding and proposed three algorithms called
neighborhood-based sharing DE (NShDE), neighborhood-
based speciation DE (NSDE), and neighborhood-based
crowding DE (NCDE). Epitropakis et al. [24] introduced
two mutation operators called DE/nrand/1 and DE/nrand/
2. Tese two operators are similar to DE/rand/1 and DE/
rand/2 except that the nearest neighbor of the individual Xi
is used as Xr1. In a later work [25], they further enhanced
the algorithm by adding an external archive and a reiniti-
alization mechanism. In this way, the infuence of the
population size is reduced. Biswas et al. [26] developed an
algorithm called parent-centric normalized mutation with
proximity-based crowding DE (PNPCDE). In PNPCDE,
a new parent-centric mutation operator is combined with
a synchronous crowding replacement strategy to maintain
population diversity. In [13], they also developed a new
information sharing mechanism to increase the search
efciency of crowding DE. Te idea is depicted in Figure 1.
Instead of randomly selecting parents for mutation, dis-
tance and ftness information is used to control the se-
lection probability of parents. Gao et al. [27] proposed
a cluster-based DE and a self-adaptive strategy to tackle
multimodal problems.Te clustering partition and the self-
adaptive strategy are combined with crowding DE (CDE)
and species-based DE (SDE). Te resulting algorithms are
termed self-adaptive strategy-based clustering crowding
DE (Self-CCDE) and self-adaptive strategy-based cluster-
ing speciation DE (Self-CSDE), respectively. Similarly,
a double-layer clustering speciation method and a self-
adaptive strategy are developed in [28]. Lin et al. [29]
proposed two key-point-based mutation operators and
used nearest-better clustering to balance the exploration
ability in the global space and the exploitation ability in
multiple optimal areas. Sheng et al. [30] designed a niching
competition strategy that encourages high potential niches
for exploitation and low potential niches for exploration.
Moreover, an archive supporting strategy is implemented
at the niche level to maintain potential optima. Wang et al.
[31] proposed a parameter-free automatic niching tech-
nique based on the afnity propagation clustering. Tey
developed an automatic niching DE (ANDE) and enhanced
it with a contour prediction approach and a two-level local
search strategy.

For PSO, Li [32] showed that PSO with the ring topology
is able to simultaneously locate multiple solutions. Qu et al.
[33] proposed a distance-based locally informed particle
swarm optimizer (LIPS). To enhance the fne search ability of
PSO, instead of using gBest, several local best particles are
combined to form learning exemplars. Liu et al. [34] proposed
a niching PSO based on the hierarchical clustering. A small
world topology is used in the fnal stage of the algorithm to
improve the exploitation ability. Zheng et al. [35] integrated
multiobjective technique and mean-shift clustering method
with PSO. Te developed algorithm is called multiobjective
clustering PSO (MO-C-PSO). A switching evolutionary
process is incorporated to refne solutions in each sub-
population. Zou et al. [36] developed a close neighbor mo-
bility strategy that uses Euclidean-based ring topology. Te
elite mechanism and DE mutation operators are also adopted
in the algorithm to improve solution accuracy.

More recently, the crowding technique is embedded into
an improved artifcial bee colony algorithm (IABC) to make
the algorithm capable of tracking and maintaining multiple
optima [37]. Two new search mechanisms are designed to
enhance the population diversity so that the algorithm can
efciently explore diferent regions of the search space. Dai
et al. [38] developed an optima-identifed framework (OIF)
for multimodal optimization. Te framework is combined
with brainstorm optimization (BSO) to handle the task of
locating andmaintainingmultiple optimal solutions. Amax-
ftness clustering method (MCM) is frst proposed to divide
the population into a number of clusters. Subsequently,
a modifed disruption strategy (MDS) is used to identify
potential optima within the cluster centers. Two kinds of
redistribution strategies (RS) are developed to make the
most of the individuals according to which type of clusters
they belong to. Te experimental results carried out in [38]
showed that OIF-BSO reached state-of-the-art performance.

Besides the abovementioned algorithms, considerable
research efort has been devoted to the development of new
techniques [39–47]. For a comprehensive survey of evolu-
tionary multimodal optimization techniques, interested
readers can refer to [11, 12]. From the above review, it can be

Base vector

More distant but better
individuals have higher

probability of being selected.

Worse but closer individuals
having lower probability of

being selected

Figure 1: Basic idea of the local information sharing mechanism
[13]. When selecting parents for mutation, better individuals have
higher probabilities of being selected, even though their distances
to the base vector are larger than those of inferior individuals.
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noticed that most of the existing work focuses on the de-
velopment of new genetic operators that are able induce
stable niching behavior. One critical problem is how to
balance the exploration and exploitation abilities of the
multimodal algorithm. Tis paper explores another path to
address the problem by introducing a novel level-based
learning strategy.

2.2. Level-Based Learning Strategy. Te level-based learning
(LL) strategy was developed by Yang et al. [48] to tackle
large-scale optimization problems. When handling large-
scale optimization problems, the search space grows dra-
matically as the number of dimensions increases. More-
over, the landscape becomes very complicated. Tis poses
great challenges to the efciency and efcacy of the existing
EAs. On the one hand, to avoid premature convergence, it
is required that the algorithms have strong diversity
preservation capabilities. On the other hand, to obtain
solutions with high accuracy, it is required that the algo-
rithms have fast convergence speed. Terefore, a critical
problem encountered by population-based search algo-
rithms is how to balance the exploration and exploitation
abilities. Te level-based learning strategy is developed in
this context.

Taking inspiration from the education activities in
schools, Yang et al. [48] developed a level-based learning
swarm optimizer. In pedagogy, it is a common practice to
separate mixed-level students into diferent levels [49, 50].
Noting that diferent students have diferent cognitive and
learning abilities, teachers teach these students in accor-
dance with their aptitude. Te mixed-level learning meth-
odology has been widely deployed in various education
scenarios. Following this teaching and learning paradigm,
Yang et al. [48] divided the swarm into diferent levels and
treated the particles in diferent levels diferently.Te update
of each particle is guided by two predominant particles in
higher levels of the swarm. A new exemplar selection
method is developed accordingly.

In the search process, particles are distributed in dif-
ferent regions of the search space. Tey have diferent po-
tential for exploring and exploiting the search space. To tell
the particles apart, the LL strategy separates the particles into
diferent levels according to their ftness values. Suppose we
are solving a minimization problem and there are NP
particles in the swarm; the LL strategy frst sorts the NP
particles in ascending order based on their ftness values.
Ten, the population is divided into NL levels. Te i-th level
is denoted by Li. Better particles belong to higher levels. It is
worth noting that the level index starts by 1 and L1 is the
highest level.Te number of particles in a level is called “level
size.” For simplicity, all the levels have the same size, namely,
NP/NL.

Tere are two ideas behind the design of the LL strategy.
On the one hand, more promising candidate solutions can
be found around better individuals [51]. Terefore, in-
dividuals in higher levels possess useful information to guide
the evolution of individuals in lower levels. Fast convergence
can be achieved by incorporating the information into the

position update operator of PSO. On the other hand, in-
dividuals in diferent levels have diferent potential for ex-
ploration and exploitation. It is worth noting that
exploitation and exploration are two opposite activities. For
individuals in higher levels, they aremore likely to be close to
the global optimum and have higher potential for exploi-
tation. Conversely, individuals in lower levels have more
potential for exploration. Terefore, individuals in lower
levels should learn from individuals in multiple higher levels
to reach a compromise between exploration and
exploitation.

Te level-based learning strategy combines the two ideas.
Figure 2 illustrates the strategy. From the fgure, it can be
observed that individuals in lower levels learn from those in
higher levels. Moreover, the number of candidate exemplars
for learning difers from level to level. As the level goes
higher, the number of candidate exemplars becomes smaller.
Tis matches the expectation that better individuals should
devote more eforts to exploitation than to exploration. On
the other hand, the LL strategy encourages individuals in low
levels to pay more attention to exploration.

An exemplar selection method is designed accordingly
by applying the LL strategy to the PSO algorithm. For each
particle in level Ls, two particles randomly selected from two
diferent higher levels are used in the velocity and position
update. Specifcally, suppose that there is a particle Xi be-
longing to level Ls; its velocity and position are updated as
follows:

vi,j � r1vi,j + r2 xp,j − xi,j  + ϕr3 xq,j − xi,j , (1)

xi,j � xi,j + vi,j, (2)

where Xi � [xi,1, xi,2, . . ., xi,D] and Vi � [vi,1, vi ,2, . . ., vi,D] are
the position and velocity of the particle, respectively. p and q
are two mutually exclusive integers randomly selected from
the range [1, s− 1]. We can always make the inequality
p< q< s hold through the exchange of p and q.
Xp � [xp,1, xp,2, . . . , xp,D] and Xq � [xq,1, xq,2, . . ., xq,D] are
two particles randomly selected from level Lp and level Lq,
respectively. In this way, we can guarantee that the learning
exemplars of Xi come from higher levels. r1, r2, and r3 are
three real numbers randomly drawn from the interval [0, 1].
ϕ is the control parameter of the algorithm. From (1), it can
be noted that the velocity update contains three terms. Te
frst term is the inertia of the particle. Te second and third
terms in the right hand of (1) can be viewed as cognitive
terms. Using the update formula, superior particles have
higher potential in exploring the search space, while inferior
particles have higher potential in exploiting local search
regions. Tis is because the second term of (1) encourages
exploitation by learning from a superior exemplar and the
third term encourages exploration by learning from a rela-
tively inferior exemplar.

According to the theoretical analysis conducted in [48],
the strategy is able to increase the exploration and exploi-
tation capabilities of PSO. It is worth noting that the level-
based learning strategy is designed for PSO to solve large-
scale optimization problems. Te integration of the strategy
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with other paradigms of EAs is left as a future work. Fol-
lowing this research avenue, in this paper, we developed
a multimodal level-based learning strategy and incorporated
it into a popular niching DE algorithm.

3. Level-Based Learning Differential
Evolution for Multimodal Optimization

In this section, we frst present the multimodal level-based
learning strategy. Ten, we integrate it with a popular
multimodal diferential evolution algorithm named
NCDE [23].

3.1. Multimodal Level-Based Learning Strategy.
Multimodal optimization problems have multiple optimal
solutions that satisfy the requirements of decision makers.
Tese solutions are generally distributed over the entire
search space [52]. On the one hand, to locate all the optimal
solutions, optimizers need to have adequate exploration
capability to explore the search space. On the other hand, to
guarantee the accuracy of the obtained solutions, algorithms
need to have adequate exploitation capability to exploit
a detected optimal area. Terefore, it is a critical challenge
for multimodal evolutionary algorithms to achieve a balance
between exploration and exploitation. Tis is the same
challenge encountered by large-scale optimization. Tere-
fore, the level-based learning strategy can be transplanted
here to improve the performance of multimodal evolu-
tionary algorithms. Motivated by the observation, we de-
velop a multimodal level-based learning strategy.

In multimodal optimization, multiple optimal solutions
need to be located simultaneously.Temultiple convergence
capability of population-based algorithms is induced by
niching methods which divide the whole population into
multiple subpopulations. Each subpopulation is directed to
its nearby optimum by employing local crossover and
mutation operators. In the search landscape of multimodal
optimization problems, the optimal regions may have dif-
ferent sizes and shapes. In addition, the evolutionary states

of subpopulations may vary from each other due to the
stochastic nature of genetic operators. Terefore, a single
update operator cannot handle subpopulation diversity.
Furthermore, within each subpopulation, the individuals
have various distances to the optimum. Tey should be
treated diferently to maximize the use of limited compu-
tational resources.

Te proposed multimodal level-based learning strategy
tackles the challenges by dividing the individuals in each
subpopulation into multiple levels. For each level, a tailored
mutation operator is devised to generate ofspring solutions.
Te utilization of multiple mutation operators handles the
diversity of subpopulations. On the other hand, individuals
are assigned distinct roles based on which level they belong
to. Individuals in higher levels are closer to optimal solutions
and are assigned for exploitation. Individuals in lower levels
are relatively far from optimal solutions and are assigned for
exploration. In this way, the algorithm can strike a balance
between exploration and exploitation, which is of great
importance when tracking and locating multiple optimal
solutions.

Figure 3 illustrates the proposed multimodal level-based
learning strategy. Te detailed procedures are as follows. For
each individual Xi, a subpopulation containing the indi-
vidual is frst constructed. Ten, we sort the individuals in
the subpopulation in descending order with respect to their
ftness values (suppose that we are solving maximization
problems). Subsequently, the subpopulation is evenly di-
vided into three levels. We fnd out which level the indi-
vidual Xi belongs to. According to the level index, we
conduct diferent genetic operators to create ofspring for
the individual Xi. Specifcally, if the individual belongs to
level L1, then a self-learning strategy is adopted. If the in-
dividual belongs to level L2, then a directional learning
strategy is adopted. Otherwise (i.e., the individualXi belongs
to level L3), an exploratory learning strategy is adopted.

Te multimodal level-based learning strategy has several
characteristics. First, instead of directly taking the entire
population into consideration, the learning strategy is
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Figure 2: Illustration of the level-based learning strategy. Te population is sorted and divided into four levels. Individuals in L4 learn from
those in L1, L2, and L3. Analogously, individuals in L3 learn from those in L1 and L2, and so on and so forth.
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deployed in the subpopulation level to facilitate the location of
multiple optimal solutions. Second, the proposed strategy
alleviates the need of setting any control parameters. In the
original level-based learning strategy, we need to determine
the number layers NL. In the proposed strategy, the control
parameter NL is fxed at three since only a small portion of the
population is involved in the ranking procedure at each time.

3.2. Level-Based Learning Diferential Evolution. We in-
tegrate the proposed multimodal level-based learning
strategy with a popular niching DE called NCDE [23] to
show how the strategy can help improve the performance of
existing niching algorithms. NCDE is selected as the basic
algorithm mainly for two reasons.

(1) NCDE is a popular niching algorithm that has been
widely examined in the literature. It has received
recognition from researchers as an efective baseline
algorithm for solving multimodal optimization
problems.

(2) NCDE has a simple structure and is easy to im-
plement. It only makes small modifcations to the
canonical DE and is a good testbed for examining
new ideas. We can minimize the infuence of other
operators and investigate the pure efect of the
proposed multimodal level-based learning strategy.

Te pseudocode of NCDE is presented in Algorithm 1.
In each iteration of NCDE, the neighborhood mutation
operator is used for reproduction and the crowding tech-
nique is used for replacement. Specifcally, for an individual
Xi, a subpopulation subpopi is constructed by grouping the
m nearest neighbors of Xi, wherem is a control parameter of
the neighborhood mutation operator. Ten, three distinct
vectors Xr1, Xr2, and Xr3 are randomly selected from sub-
popi. A mutation vector Vi � [vi,1, vi,2, . . ., vi,D] is generated
using the following formula:

Vi � Xr1 + F · Xr2 − Xr3( , (3)

where F is a scale factor of the mutation operator. Crossover
is applied on the mutation vector Vi to obtain a trial vector
Ui � [ui,1, ui,2, . . ., ui,D].

ui,j �
vi,j, if randj ≤CR or j � k,

xi,j, otherwise,
⎧⎨

⎩ (4)

where randj is a random real value within the interval [0, 1]
and k is a random integer within the interval [1,D]. CR is the
crossover rate.We fnd the individualXj that has the smallest
distance to Ui. If the ftness of Ui is better than Xj, then
replace Xj with Ui. From the pseudocode, it can be observed
that NCDE uses one single mutation operator for all the
individuals to produce ofspring solutions regardless of the
diferent roles of the individuals. To achieve better balance
between exploration and exploitation in the subpopulation
level, we integrate the proposed multimodal level-based
learning strategy into NCDE. Te integrated algorithm is
named LLNCDE and its pseudocode is presented in Algo-
rithm 2. Figure 4 depicts the fowchart of LLNCDE.

LLNCDE starts with a set of NP randomly initialized
candidate solutions. After evaluating the ftness of the
candidate solutions, the algorithm iteratively updates the
solutions until the predefned termination criterion is sat-
isfed. In each iteration, for each candidate solution Xi, the
multimodal level-based learning strategy is used to produce
an ofspring solutionUi. Specifcally, the new strategy creates
a subpopulation subpopi by groupingm nearest neighbors of
Xi. Ten, the subpopulation is sorted and divided into three
levels. According to which level the individual Xi is classifed
to, a diferent update strategy is adopted for reproduction.
After the ofspring solution Ui has been generated, the
crowding selection mechanism is used to update the pop-
ulation. We fnd the nearest neighbor Xj of Ui in the
population and replace Xj with Ui if U has better ftness.

Before generating the ofspring population, the guide
selection method is used to select parental solutions. Te
guide selection method is also referred to as mating selection
in EAs. EAs are popular meta-heuristic search (MHS) al-
gorithms that mimic the biological evolution of living things.
Te iterative search process of EAs is illustrated in Figure 5.
EAs maintain a population of candidate solutions. A group
of parental solutions is selected from the whole population
throughmating selection.Ten, genetic operators (crossover
andmutation) are performed to produce ofspring solutions.
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Figure 3: Illustration of the proposedmultimodal level-based learning strategy. For each individualXi, we frst construct a subpopulation by
grouping the neighboring individuals of Xi. Ten, the subpopulation is sorted and divided into three diferent levels.
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(1) Generate an initial population of individuals POP� {X1,X2, . . ., XN} by uniformly and randomly sample NP individuals from the
search space;

(2) Evaluate the ftness values of the NP individuals;
(3) FEs�NP;
(4) while FEs<MaxFEs do:
(5) for i� 1 to N:
(6) Construct a subpopulation subpopi by grouping m nearest neighbors of individual Xi;
(7) Generate an ofspring solutionUi using canonical genetic operators of DE (shown in (3) and (4)) where the vectors Xr1, Xr2,

and Xr3 are randomly selected from subpopi;
(8) Evaluate the ftness of Ui;
(9) FEs� FEs + 1;
(10) Find the individual Xj in the population that has the smallest distance to Ui;
(11) if the ftness of Ui is better than Xj then:
(12) Replace Xj with Ui;
(13) end if
(14) end for
(15) end while

ALGORITHM 1: NCDE.
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Initialize a set of NP candidate solutions
{X1, X2, … , XNP}

Evaluate the fitness of the candidate solutions and
set FEs = NP

FEs < MaxFEs?
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Create a subpopulation subpopi by grouping m
nearest neighbors of the i-th candidate solution Xi

Sort subpopi in decending order according to the
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Multimodal level-based learning strategy

Figure 4: Flowchart of LLNCDE.
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Subsequently, the ofspring solutions and the current
population are combined, and environmental selection is
performed on the combined population to choose a new set
of candidate solutions that enters the next iteration.

Te roulette wheel selection and the tournament se-
lection are two commonly used selection methods in the EA
literature [53]. Note that candidate solutions selected for
reproduction directly afect the direction and success of the
search; a novel selection method based on ftness-distance
balance (FDB) is developed in [54]. Te new method assigns
diferent scores to diferent individuals according to their
ftness values, as well as their distances to the best solution.
Extensive experiments have been conducted in [54], and the
results showed that the FDB-based selection method is able
to identify candidate solutions with the highest potential and
improve the search efciency. In the FDB selection method,
for a candidate solution, the weighted combination of the
normalized ftness and distance values is computed as the
score of the solution. Te weighting coefcient w infuences
the degree of exploitation and exploration. However, dif-
ferent search periods require diferent intensities of ex-
ploitation and exploration. To address this problem, an
improved version called dynamic FDB selection method is
proposed in [55]. Te improved selection method is applied
to the coordination of directional overcurrent relay (DOCR)
problem. Te numerical results demonstrated that the im-
proved method is very efective in minimizing the relay
operating time. More recently, an adaptive FDB selection
method is invented in [56] and is successfully applied to the

economical operation of modern power grids with
uncertainties.

In [55], the existing selection methods are divided into
four categories, namely, random, ordinal-based, greedy, and
probabilistic methods. Te method used in the proposed
algorithm belongs to the second category, which selects
solutions from the population in an ordinal manner. Note
that the goal of this paper is to improve the performance of
existing multimodal optimization algorithms through the
introduction of better learning strategy. Following this re-
search line, the proposed approach does not change the basic
structure of the baseline algorithm and LLNCDE inherits the
ordinal-based selection method from DE.

Te core of the multimodal level-based learning strategy
lies in the population creation method used in the design of
MHS algorithms. In the literature, a number of MHS al-
gorithms have been developed to solve various complex
optimization problems [57, 58]. Te population creation
methods used in diferent MHS algorithms vary signif-
cantly. Evolution-based GA and DE use crossover and
mutation operators to produce ofspring solutions. Many
variants of the crossover and mutation operators have been
developed to enhance the search efciency of GA and DE
[59–61]. Diferent from GA and DE, swarm-based PSO,
ACO, and ABC use foraging operators to explore the area of
the solution space. PSO [62] conducts velocity and position
update operators to refresh particles in the swarm. ACO [63]
uses the pheromone-guided route construction operator and
the pheromone update operator to construct new solutions

(1) Generate an initial population of individuals POP� {X1, X2, . . ., XNP} by uniformly and randomly sample NP individuals in the
search space;

(2) Evaluate the ftness values of the NP individuals;
(3) FEs � NP;
(4) while FEs<MaxFEs do:
(5) for i� 1 to NP:
(6) Create a subpopulation subpopi by grouping m nearest neighbors of individual Xi;
(7) Sort individuals in subpopi in descending order with respect to their ftness;
(8) Evenly divide subpopi into three levels L1, L2, and L3, check which level Xi belongs to;
(9) if Xi is in level L1 then:
(10) Generate an ofspring solution Ui with the self-learning strategy (5) (6);
(11) end if
(12) if Xi is in level L2 then:
(13) Generate an ofspring solution Ui with the directional learning strategy (7);
(14) end if
(15) if Xi is in level L3 then:
(16) Generate an ofspring solution Ui with the exploratory strategy (3) (4);
(17) end if
(18) Evaluate the ftness of Ui;
(19) FEs� FEs + 1;
(20) Find the individual Xj in the population that has the smallest distance to Ui;
(21) if the ftness of Ui is better than Xj then:
(22) Replace Xj with Ui;
(23) end if
(24) end for
(25) end while

ALGORITHM 2: LLNCDE.
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to combinatorial optimization problems. ABC [64] divides
the search phase into three parts, i.e., employed bee phase,
onlooker bee phase, and scout bee phase. In each phase,
a diferent update operator is used to fnd food sources with
higher nectar amount.

Since the baseline algorithm is built upon DE, the
proposed learning strategy adopts the basic genetic op-
erators of DE. To increase the efciency of the algorithm
in fnding multiple optimal solutions, the proposed
learning strategy adopts diferent update operators for
diferent types of individuals. Te basic principle is shown
in Figure 6. For a candidate solution Xi, we frst create
a subpopulation subpopi by groupingm nearest neighbors
of Xi. Ten, the subpopulation is divided into three levels
L1, L2, and L3. If Xi is in level L1, then it is in the part of
subpopi that is most close to an optimum. Terefore, we
try to improve Xi by adding a small perturbation gen-
erated from a Gaussian distribution. If Xi is in L2, then we
try to improve Xi by adding a directional vector pointing
toward a better individual in L1. If Xi is in L3, then we
allow the individual to explore the search space freely by
employing the traditional mutation operator of DE. Te
intention is to check whether there are other optima in the
search space. In this way, the subpopulation can efciently
exploit the nearby peak region while at the same time
spare eforts to explore other optima. Te detailed of-
spring generation steps for the three levels of individuals
are described as follows.

(a) Xi belongs to level L1: Tis means that Xi is
a dominant individual in the subpopulation and is
possibly near an optimal solution. Terefore, a self-
learning strategy (i.e., local search) is adopted by the
individual to produce new solutions. Tis can en-
hance the exploitation capability of LLNCDE and
increase the solution accuracy. Te self-learning
strategy is formulated as follows:

ui,j � xi,j + Grj, (5)

where Grj is a random number drawn from the
Gaussian distribution N (μ, σ). In the Gaussian
distribution, the mean μ is set to 0 and the variance σ
is set to 10p, where p is a real value that dynamically
decreases from −1 to −6 as the number of ftness
evaluations increases. More specifcally, p is set as
follows:

p � −1 +(−5) ×
FEs

MaxFEs
. (6)

Te principle of the self-learning strategy is to im-
prove the solutions by making small random per-
turbations. Te Gaussian distribution is very suitable
for the task of generating random perturbations
owing to its well-studied properties. With the
Gaussian distribution, the probabilities of generating
random values above and below the mean value are
equal and the variance of the random values is
controllable. Since the optimum may appear in any
direction of the candidate solution, the mean μ of the
Gaussian distribution is fxed at 0 to avoid search
biases. As for the standard deviation σ, the parameter
p is dynamically adjusted in a way that σ will
gradually decrease as the number of ftness evalua-
tions increases. Te principle behind the setting is
that as the search progresses, the individuals will
gradually approach the optimum. As the distance
between the optimum and the individual becomes
small, we need to shrink the size of perturbations to
avoid overshooting the optimum. In addition,
gradually reducing the size of perturbations is also
helpful for the algorithm to fnd solutions that reach
the predefned accuracy requirement.

(b) Xi belongs to level L2: Tis means that Xi is in
a medium position of its subpopulation and is likely
to be improved by learning from a dominant indi-
vidual in level L1. Terefore, a directional learning
strategy is adopted by Xi to produce an ofspring
solution. Tis strategy turns uninformed search into
informed search and is helpful for increasing the
convergence speed of LLNCDE. Te directional
learning strategy is formulated as follows:

Ui � Xi + F · Xr1 − Xi(  + F · Xr2 − Xr3( , (7)

where Xr1, Xr2, and Xr3 are individuals randomly
selected from level L1 of subpopi. It is worth noting
that Xr1 −Xi is a vector pointing from Xi to Xr1. Tis
vector guides the individual Xi to evolve toward
a dominant individual in level L1.

(c) Xi belongs to level L3: Tis means that Xi is an in-
ferior individual in its subpopulation. We can assign
exploration tasks to the individual without

Population

Offspring
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solutions Population

Offspring

New population

Mating
selection

Reproduction
operators

Concatenate
Environmental
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Figure 5: Iterative search process of EAs.

International Journal of Intelligent Systems 9



signifcantly hindering the evolution of the sub-
population. Terefore, an exploratory learning
strategy is adopted by Xi to produce an ofspring
solution. Tis strategy can promote the exploration
capability of LLNCDE so that more optimal solu-
tions can be detected. Te exploratory strategy is the
same as the canonical DE operator formulated in (3),
except that the individuals Xr1, Xr2, and Xr3 are
randomly selected from the combination of L1 and
L2. After obtaining the mutation vector Vi,Vi and Xi
undergo crossover to generate an ofspring
solution Ui.

It is worth noting that the ofspring solution may cross the
search boundary. Many diferent bound handling techniques
have been proposed in the literature [65, 66]. Note that the
performance, disruptiveness, and population diversity of DE
are greatly afected by the choice of constraint handling
techniques [67, 68]. To guarantee reproducibility of results, we
specify the way of dealing with solutions generated outside the
search space. Two bound handling techniques (i.e., the nearest
method and the random method) are combined in a proba-
bilistic manner. Figure 7 illustrates the two methods. In the
nearest method (illustrated in Figure 7(a)), for the j-th di-
mension, the newborn individual is set back to the boundary. It
is formulated as follows:

ui,j �
x
min
j , if ui,j < x

min
j ,

x
max
j , if ui,j > x

max
j ,

⎧⎪⎨

⎪⎩
(8)

where xmin
j and xmax

j are the lower bound and upper bound of
the j-th dimension, respectively. In the random method (il-
lustrated in Figure 7(b)), the j-th dimension of the newborn
individual is set to a random value within the feasible range
[xmin

j , xmax
j ]. Te two ways of fxing infeasible values are

assigned equal probabilities bymeans of coin tosses.Te reason
of using these boundary handling techniques is that in mul-
timodal landscape, some peaks may locate in the boundary or
places near the boundary. By employing two diferent
boundary handling techniques, the algorithm can tackle a wide
variety of problems with diferent optima distributions.

Te existing boundary constraint handling techniques
can be put into two categories, namely, deterministic
techniques and stochastic techniques [68]. Te deterministic
techniques always return the same feasible value when the
same infeasible value is presented. In comparison, the sto-
chastic techniques may return diferent values when the
same infeasible value is inputted. From this point of view, the
boundary handling technique used in the paper belongs to
the second category.

By identifying the role of Xi in its subpopulation, we can
choose the most appropriate genetic operator for Xi to
improve the search efciency. Te diferences between the
method developed in [48] and the proposed multimodal
level-based learning strategy lie in two aspects.

(1) Te method developed in [48] is used for large-scale
optimization, in which the goal is to fnd a single
global optimum. Terefore, the entire population is

divided into multiple levels. In multimodal opti-
mization, individuals are assigned to search for
diferent optima. Considering this, in our strategy,
for each individual Xi, a subpopulation is formed by
grouping the neighbors of Xi. Ten, the sub-
population is divided into multiple levels. Te pro-
posed strategy is more suitable for the goal of fnding
multiple optimal solutions.

(2) In [48], all the individuals use the same update
operator to produce new candidate solutions. For an
individual in a specifc level, the update operator
selects learning exemplars from the collection of
higher level individuals. In our multimodal level-
based learning strategy, a tailored mutation operator
is designed for each level of individuals. Individuals
with higher ftness values are assigned for exploi-
tation while those with lower ftness values are
assigned for exploration. In this way, the algorithm
can achieve a better balance between exploration and
exploitation.

After generating an ofspring solution Ui, the crowding
selection mechanism is used to update the population. Te
update mechanism plays a very important role in the
population management of MHS algorithms. To our
knowledge, the update mechanism is also referred to as
environmental selection in the community of evolutionary
computation, as illustrated in Figure 5. Existing update
mechanisms are mostly designed based on the assumption of
“survival of the fttest.” However, the ftness value used in the
design of update mechanisms cannot accurately refect the
environmental adaptability in nature. With the greedy se-
lection method, individuals with better ftness values are
admitted to the next iteration regardless of their similarities.
Tis may cause diversity loss and lead to premature con-
vergence. To address the issue, a multicriteria survival
mechanism is developed in [69] to efectively mimic the
functioning of nature. Specifcally, a new natural survivor
method (NSM) is devised to calculate the score of an in-
dividual by combining three factors, namely, the ftness
value of the individual, the individual’s contribution to the
population, and the individual’s contribution to the mating

L1 L2 L3

Figure 6: Another perspective on the multimodal level-based
learning strategy.
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pool. Te three factors are combined using three weighting
coefcients, and a dynamic weighting algorithm is devised to
meet the search requirements in diferent search periods.
Te experimental analysis conducted in [69] showed that the
novel NSM method provides a superior performance im-
provement to the existing MHS algorithms.

In the proposed algorithm, the ftness is used as an
indicator to assess the quality of candidate solutions. In
[69], the survival selection methods are divided into three
categories, i.e., the ftness value-based method, the direct
method, and the NSM score-based method. From this point
of view, the method used in the proposed algorithm be-
longs to the frst category. In the proposed algorithm, the
crowding selection mechanism is adopted to avoid genetic
drift phenomenon and maintain population diversity. Te
working principle of the crowding selection mechanism is
depicted in Figure 8. Suppose that there are two peaks in
the search landscape (denoted by stars) and each peak is
surrounded by several candidate solutions (denoted by
circles). After an ofspring solution (denoted by squares)
has been generated, it is compared with the nearest
neighbor in the population to compete for admission to the
next iteration. Figure 8 shows two cases of the crowding
competition. In case A, the ofspring is located in the same
niche as its parent. Te parental solution is replaced by its
ofspring which is closer to the peak. In case B, the ofspring
appears in another niche and competes with population
members in that niche. Te genetic drift is avoided by
restricting the competition between individuals that are far
apart. From the examples shown in Figure 8, the crowding
selection mechanism takes into account both the ftness
values and the relationship between individuals. It is
benefcial to the maintenance of multiple optimal solutions.
From this perspective, the crowding selection mechanism
can be viewed as a primitive version of the NSM method
developed in [69].

It is worth noting that LLNCDE is not a simple com-
bination of the learning strategy of PSO and the clearing
method.Te diferences between the proposed approach and
the ensemble of PSO and the clearing method mainly lie in
two aspects.

(1) In the clearing procedure, each subpopulation
contains a dominant individual that has the best
ftness value. An individual belongs to a given
subpopulation when its distance with the dominant
is less than a threshold value σ. In the proposed
approach, each individual Xi will serve as a sub-
population center and Xi is not necessarily the
dominant of the subpopulation.Te position of Xi in
the subpopulation varies according to its ftness.

(2) As for the update strategy, the major diference lies in
the way of selecting learning exemplars. In the ca-
nonical PSO, for a candidate solution Xi, the global
and local best individuals are used to update Xi. In
comparison, the multimodal level-based learning
strategy selects the learning exemplars from the
group of individuals in higher levels of the same
subpopulation.Te purpose of this modifcation is to
ensure that the individuals can be guided toward
their nearby optimum in a more efcient manner.

Te proposed learning strategy is integrated with DE to
enhance its performance in solving multimodal optimiza-
tion problems. One beneft of the proposed strategy is that it
does not change the structure of the integrated algorithm. Its
function is to identify the role of individuals in their

Xi

UiU'i

xjmin xjmax

(a)

Xi

Ui

U'i

xjmin xjmax

(b)

Figure 7: Bound handling techniques used in the level-based learning strategy. Xi represents the parental individual. Ui represents the
newborn individual that crosses the search boundary. Ui

′ represents the rectifed individual. (a) Te nearest method. (b) Te random
method.

Individuals in the population

Offspring

Case A:

Case B:

Reproduction

Crowding competition

Figure 8: Illustration of the crowding selection mechanism.
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corresponding subpopulations. Based on the identifed role,
we apply a tailored genetic operator for individuals in each
level to produce new candidate solutions. From this point of
view, the level-based learning strategy can be applied to
various types of population-based algorithms. If the base
algorithm uses the same mutation operator for all in-
dividuals, then it can be improved by the proposed learning
strategy. However, since the update operator of diferent
population-based algorithmsmay vary signifcantly, we need
to come up with new update operators for the algorithms.
Terefore, extra work needs to be done before applying the
proposed learning strategy to algorithms other than DE.

In LLNCDE, two algorithm confgurations may afect
the exploration and exploitation capabilities of the search
procedure.

(1) Neighborhood size m: Te neighborhood size m is
a parameter inherited from NCDE. When producing
an ofspring solution for candidate solution Xi,
a subpopulation subpopi is formed by grouping m
nearest neighbors of Xi. Individuals in the sub-
population serve as a gene pool to provide basic
material for reproduction. From this point of view,
a large neighborhood size is benefcial to the explo-
ration of the search space since a set of diverse in-
dividuals can produce diverse donor vectors. On the
other hand, a small neighborhood size is benefcial to
the exploitation of local regions since the donor vector
generated by a small number of neighboring in-
dividuals might still be in the same local region.

(2) Reproduction operators for each level of individuals:
Te subpopulation subpopi is divided into three
levels according to the ftness of individuals. Tree
mutation operators are specifed for the three levels
of individuals to achieve a balance between explo-
ration and exploitation. Te operator used for each
level of individuals can be adjusted to bias the search
toward exploration or exploitation.

Tere are several major components of LLNCDE,
namely, the initialization procedure, the construction,
sorting, and division of subpopulations, the reproduction
procedure, and the environmental selection operator. Te
initialization procedure is only executed once, and the time
spent on the procedure is O(D·NP). Other components are
in the main loop of LLNCDE and are executed repeatedly
until the termination criterion is satisfed. For each indi-
vidual, we construct a subpopulation by grouping its m
nearest neighbors. To achieve this, we need to frst calculate
the individual’s distances to all other members in the
population. Tis takes O(D·NP) time. Ten, we fnd the m
smallest numbers among the distances. O(m·NP) time is
required in this process. Overall, the complexity of sub-
population construction is O(max(D·NP, m·NP)). Te
sorting of a subpopulation takes O(mlogm) time and the
division takes constant time. Subsequently, the reproduction
and environmental selection procedures take O(D) and
O(D·NP) time, respectively. Since we need to process all NP
individuals in each iteration, the overall time complexity of

LLNCDE is O(max(m·NP2, D·NP2)). It is worth noting that
the time complexity of NCDE is O(D·NP2). Terefore, the
proposed multimodal level-based learning strategy does not
impose serious burden on the time complexity.

4. Experimental Study

In this section, we carry out experiments to study the
performance of the multimodal algorithm developed using
the proposed multimodal level-based learning strategy. We
test LLNCDE on a set of benchmark multimodal optimi-
zation problems and compare it with several popular niching
algorithms. Te convergence speeds of the algorithms are
examined in this section as well. Furthermore, we test
LLNCDE on multiple root fnding problems extracted from
real-world tasks and compare it with several state-of-the-art
algorithms.

4.1. Experimental Setup

4.1.1. Algorithms in Comparison. We compare LLNCDE
with several popular multimodal evolutionary algorithms,
namely, r3pso-lhc [32], LIPS [33], NCDE [23], dADE/
nrand/1 [25], PNPCDE [26], LoICDE [13], IABC [37], and
OIF-BSO [38]. Te frst two algorithms are PSO-based al-
gorithms. LIPS uses a locally informed strategy to construct
learning exemplar for each particle, while r3pso-lhc is the
ring topology PSO in which the neighbors of each particle
are defned by the two neighboring nodes in the ring. Te
next four algorithms are DE-based algorithms. NCDE is the
crowding DE with a neighborhood mutation strategy.
Similarly, both LoICDE and PNPCDE adopt crowding DE as
the basic framework. LoICDE incorporates a novel in-
formation sharing mechanism. When selecting parents for
mutation, distance and ftness information is taken into
consideration. Individuals that have better ftness and
smaller distances to the base vector Xr1 have higher prob-
abilities of being selected. To facilitate tracking and main-
taining optima, PNPCDE incorporates a parent-centric
mutation operator that makes use of normalized neigh-
borhood. Te last two algorithms are based on other evo-
lutionary computation paradigms. IABC is an improved
ABC algorithm embedded with the crowding technique.
OIF-BSO is a novel BSO algorithm with new clustering,
disruption, and redistribution strategies. Te algorithms are
implemented in C++ and are compiled using the Microsoft
compiler. Tey are executed on a computer running Win-
dows 10, with Intel Xeon Gold 5218R 2.10-GHz CPU and
64GB RAM.

4.1.2. Test Functions. A set of benchmark functions are
adopted in the experiment to examine the niching perfor-
mance of the algorithms. Te benchmark function set
contains 20 functions with diferent characteristics [52]. All
the functions are to be maximized, and therefore the optimal
solutions are also referred to as “peaks.” Te frst ten
functions (F1–F10) are simple, well-known functions
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collected from the literature. Te remaining functions
(F11–F20) are complex functions constructed using com-
position methods. Tese functions are scalable with respect
to dimensions. Moreover, the number of global optima can
be adjusted by users, providing additional fexibility. An-
other important feature of the benchmark function set is that
the shapes and distributions of peaks vary signifcantly from
function to function. Some test functions have evenly dis-
tributed peaks (e.g., F6, F8, and F10), while others have an
uneven peak distribution (e.g., F7, F9, and F10–F20). A large
number of optimamay reside in a small portion of the search
space. Furthermore, a test function may have diferent types
of peaks in its search space. For example, both symmetrical
Gaussian peaks and asymmetrical sharp peaks can be ob-
served in the search space of test functions F11–F20. Table 1
lists the information of the test functions. More detailed
descriptions of the test functions (including mathematical
formula and properties) can be found in [52].

4.1.3. Performance Measure. For each benchmark function,
the number of global optima and their ftness (i.e., peak
height) are available for evaluating the performance of al-
gorithms. To determine whether an optimum has been
successfully located, we need to specify an accuracy level ε. If
the diference between the ftness of an obtained solution
and the peak height is smaller than ε, the solution is
identifed as an optimum. A niche radius sufcient to
separate two close peaks is also provided by the benchmark
set to avoid duplicate counting of found peaks. We use two
performance metrics to assess the niching performance of
evolutionary multimodal algorithms, namely, peak ratio
(PR) and success rate (SR).

(a) Peak ratio (PR): PR measures the average percentage
of peaks located by the algorithm over all the runs.
Specifcally, PR is formulated as follows:

PR �


NR
i�1NFPi

NKP · NR
, (9)

where NR is the total number of runs, NKP is the
number of known peaks of the test function, and
NFPi denotes the number of found peaks in the
i-th run.

(b) Success rate (SR): SR measures the ratio of the
number of successful runs to the total number of
runs. A successful run is a run in which all the optima
are detected. Specifcally, SR is formulated as follows:

SR �
NSR
NR

, (10)

where NSR represents the number of successful runs.

4.1.4. Parameter Settings. Te proposed multimodal level-
based learning strategy does not introduce new parameters.
Te algorithms involved in the comparison are specially
designed for solving multimodal optimization problems.

Te developers have conducted extensive experiments on
a large set of problems to fnd the most suitable parameters
for their algorithms. Terefore, we follow the recommen-
dation of the algorithm developers. Te population size NP
of the algorithms is fxed at 100. In LIPS, the parameter nsize
gradually increases from 2 to 5 as the number of ftness
evaluations increases. For DE-based algorithms, the scale
parameter F and the crossover rate CR are set to 0.5 and 0.9,
respectively. In NCDE, the neighborhood size parameter m
is set to 10% of the population size NP. In LoICDE, the
parameter k that controls the neighborhood size is dy-
namically decreased from 12.5% NP to 5% NP. In PNPCDE,
the parameter k is set to 10% NP. In OIF-BSO, the cluster
sizeM is set to 3. Te termination criterion is defned by the
maximum number of ftness evaluations (MaxFEs). We use
the recommended setting provided in [52]. Te setting of
MaxFEs for all the test functions is given in Table 2. Te
accuracy level used to determine whether an optimum is
detected is set to a challenging value, i.e., 1E− 04, to examine
the niching performance of the algorithms. Te algorithms
are not only required to locate the coarse-grained regions of
peaks but also required to fne-tune the solutions to ensure
that their ftness is within the error margin. Tis brings
signifcant challenges to the exploration and exploitation
capabilities of multimodal algorithms. Generally, the higher
the accuracy level, the more challenging the optimization
task. Each algorithm is executed 50 times for each test
function to obtain statistically reliable results.

4.2. Overall Performance. Te experimental results of the
compared algorithms are listed in Table 3. Both PR and SR
values are reported in the table. In addition, Wilcoxon rank-
sum tests with the Bonferroni correction [70] are conducted
to check whether there are signifcant diferences between
the results of LLNCDE and those of the compared algo-
rithms. Te notation “+” represents that the proposed

Table 1: Test functions used in the experiment.

Test function Name NPK
F1 Five-uneven-peak trap (1D) 2
F2 Equal maxima (1D) 5
F3 Uneven decreasing maxima (1D) 1
F4 Himmelblau (2D) 4
F5 Six-hump camel back (2D) 2
F6 Shubert (2D) 18
F7 Vincent (2D) 36
F8 Shubert (3D) 81
F9 Vincent (3D) 216
F10 Modifed Rastrigin (2D) 12
F11 Composition function 1 (2D) 6
F12 Composition function 2 (2D) 8
F13 Composition function 3 (2D) 6
F14 Composition function 3 (3D) 6
F15 Composition function 4 (3D) 8
F16 Composition function 3 (5D) 6
F17 Composition function 4 (5D) 8
F18 Composition function 3 (10D) 6
F19 Composition function 4 (10D) 8
F20 Composition function 4 (20D) 8
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LLNCDE is signifcantly better than the compared algo-
rithm, while the notation “−” indicates the opposite. Te last
row of the table provides the B/E/W counts of the com-
parison results, which means that the number of test
functions that LLNCDE performs is better than, equal to, or
worse than the corresponding algorithm.

From the table, it can be concluded that LLNCDE
outperforms the other algorithms on at least eight test
functions. On the other hand, LLNCDE is beaten by other
algorithms on at most four test functions. For the simple
test functions F1–F5, all the algorithms are able to achieve
approximately 100% PR and SR. F6–F9 are test functions
with an enormous number of peaks. Since the population
size NP is fxed at 100, it is very difcult for the algorithms
to locate all the optima without additional archive tech-
niques. Terefore, the PR and SR values obtained by the
algorithms drop rapidly on these functions. F10 is a test
function with evenly distributed Gaussian peaks and is
relatively easy to solve. Te PR and SR values of the al-
gorithms are close to 100%. Te remaining functions are
complex composite functions whose landscapes are
rugged and have many local optima. Te algorithms
cannot fnd all the optima for these functions, and
therefore the SR values drop to 0. Nevertheless, the PR
values achieved by LLNCDE are higher than those of the
compared algorithms. With the enhancement of the
multimodal level-based learning strategy, LLNCDE is able
to achieve a better balance between global exploration and
local exploitation and locate more peaks. It can be inferred
from the PR values that LLNCDE can fnd more than one
optimum for all the complex composite functions.

To intuitively show the multiple convergence ability of
LLNCDE, the distribution of individuals in the fnal iteration
is depicted in Figure 9. Figure 9 shows the individuals
(represented by red dots) on two-dimensional test functions
(F4–F7, and F10–F13). From the fgure, it can be observed
that the algorithm can successfully locate most of the global
peaks, as well as some local peaks.

To show the distribution of the numerical results ob-
tained through 50 independent runs, the box plots of the
algorithms on each test function are presented in Figure 10.
From the fgure, it can be observed that on a relatively large
number of test functions, the medians of the box plots
associated with LLNCDE are higher than those of the
compared algorithms. In addition, the interquartile ranges
(box lengths) of LLNCDE are generally smaller than those of
its competitors. Tese results indicate that the proposed
algorithm with the multimodal level-based learning strategy
possesses more stable performance than the compared
algorithms.

To analyze the overall performance of the algorithms, the
Friedman test is conducted to detect diferences in algo-
rithms across multiple test functions. Te statistical test
results obtained using the KEEL software [71] are tabulated
in Table 4. According to the Friedman test, LLNCDE has the
highest ranking, following by dADE/nrand/1, IABC, and
OIF-BSO.

Te proposed multimodal level-based learning strategy
intends to improve the algorithm performance by refning
the learning strategies for individuals in diferent levels of
the subpopulation. Te niching approach adopted in
LLNCDE is inherited from NCDE. To investigate the in-
dividual contributions of the niching approach and the new
learning strategy, we compare the experimental results of
CDE, NCDE, and LLNCDE. It is worth noting that the
diference between CDE and NCDE is that a niching ap-
proach called neighborhood-based mutation is incorporated
in NCDE. Te diference between NCDE and LLNCDE is
that the multimodal level-based learning strategy is in-
corporated in LLNCDE. Table 5 lists the PR and SR values of
the three algorithms. Te rankings of the algorithms ob-
tained by Friedman’s test are presented in Table 6.

From the tables, it can be noticed that NCDE performs
better than CDE and is outperformed by LLNCDE. Owing to
the neighborhood-based mutation, NCDE shows an edge
over CDE when handling complex composite multimodal
optimization problems. LLNCDE further enhances the
performance of NCDE by refning learning strategies for
each level of individuals. Te pairwise comparisons illustrate
the performance improvement brought by the use of the
niching approach and the multimodal level-based learning
strategy, respectively.

4.3. Convergence Speed. In this section, we move on to
examine the convergence speed of the algorithms. After
specifying an accuracy level ε, the convergence speed is
defned by the average number of ftness evaluations re-
quired to fnd all the optimal solutions over multiple runs. It
is calculated as follows:

AvgFEs �


NR
i�1FEsi

NR
, (11)

where FEsi is the number of ftness evaluations spent by the
algorithm in the i-th run to locate all the global optima. If the
algorithm fails to locate all the global optima after
exhausting the given ftness evaluations (i.e., MaxFEs), then
MaxFEs is counted as FEsi.

Table 7 records the convergence speeds of the algo-
rithms. Since locating all the optima of complex functions is
a very difcult task and it is very hard for the algorithms to
achieve nonzero SR values, Table 7 only shows the results on
test functions F1–F6.Te best results are highlighted in bold.
It can be observed that LLNCDE has the fastest convergence
speed on three out of the six test functions. To clearly
demonstrate the search efciency of the algorithms, con-
vergence graphs on the most challenging test functions
(F15–F20) are shown in Figure 11. Te x-axis represents the
number of consumed FEs, and the y-axis represents the

Table 2: Setting of MaxFEs for the test functions.

Test function MaxFEs
F1–F5 5.00E+ 04
F6–F7 2.00E+ 05
F8–F9 4.00E+ 05
F10–F13 2.00E+ 05
F14–F20 4.00E+ 05
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Figure 9: Population distribution in the fnal iteration of LLNCDE on two-dimensional test functions. (a) F4. (b) F5. (c) F6. (d) F7. (e) F10.
(f ) F11. (g) F12. (h) F13.
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Figure 10: Continued.
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number of found peaks. Te data used to plot the curves are
averaged over 50 independent runs of the algorithms. It can
be noticed from the fgures that LLNCDE has relatively fast
convergence speed. Te curves representing LLNCDE be-
come fat much later than the other algorithms. Tis is
because LLNCDE makes full use of computing resources
(i.e., ftness evaluations) by continuously assigning explo-
ration and exploitation tasks to diferent individuals. Hence,
with the assistance of the multimodal level-based learning
strategy, LLNCDE is capable of fnding more peaks with
relatively small number of ftness evaluations.

4.4. Efect of the Multimodal Level-Based Learning Strategy.
In this section, we investigate the efect of the multimodal
level-based learning strategy. In the literature, it is a com-
mon practice to enhance the performance of DE by
employing multiple distinct mutation operators [72, 73]. To
examine whether the improvement comes from the use of
multiple mutation operators or from the multimodal level-
based learning strategy, we compare LLNCDE with its
variant that employs the mutation operators randomly.
When generating new candidate solutions, we randomly

select one of the three mutation operators specifed in
formulas (3)–(7). Te variant is denoted as LLNCDE-R.
Moreover, three simplifed variants of LLNCDE that only
employ one of the three mutation operators are also
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Figure 10: Box plots of the number of peaks located by the algorithms over 50 independent runs: (a) F1, (b) F2, (c) F3, (d) F4, (e) F5, (f ) F6,
(g) F7, (h) F8, (i) F9, (j) F10, (k) F11, (l) F12, (m) F13, (n) F14, (o) F15, (p) F16, (q) F17, (r) F18, (s) F19, and (t) F20.

Table 4: Rankings of the algorithms by Friedman’s test.

Algorithm Ranking
LLNCDE 3.5
dADE/nrand/1 4.125
IABC 4.65
OIF-BSO 4.65
LoICDE 4.925
NCDE 4.975
PNPCDE 5.15
LIPS 5.675
r3pso-lhc 7.35

Table 5: Peak ratios and success rates achieved by CDE, NCDE,
and LLNCDE.

Function
CDE NCDE LLNCDE

PR SR PR SR PR SR
F1 1.000 1.000 1.000 1.000 1.000 1.000
F2 1.000 1.000 1.000 1.000 1.000 1.000
F3 1.000 1.000 1.000 1.000 1.000 1.000
F4 0.985 0.980 1.000 1.000 1.000 1.000
F5 1.000 1.000 1.000 1.000 1.000 1.000
F6 0.068+ 0.480 0.146+ 0.000 0.993 0.800
F7 0.523+ 0.000 0.688− 0.000 0.601 0.000
F8 0.029+ 0.000 0.504− 0.000 0.394 0.000
F9 0.220+ 0.000 0.267− 0.000 0.243 0.000
F10 1.000 1.000 1.000 1.000 0.995 0.920
F11 0.667+ 0.000 0.797− 0.000 0.717 0.000
F12 0.000+ 0.000 0.330+ 0.000 0.810 0.080
F13 0.667 0.000 0.593+ 0.000 0.660 0.000
F14 0.667 0.000 0.637+ 0.000 0.667 0.000
F15 0.503+ 0.000 0.265+ 0.000 0.650 0.000
F16 0.667 0.000 0.637+ 0.000 0.663 0.000
F17 0.000+ 0.000 0.248+ 0.000 0.413 0.000
F18 0.180+ 0.000 0.290+ 0.000 0.497 0.000
F19 0.000+ 0.000 0.095+ 0.000 0.280 0.000
F20 0.000+ 0.000 0.245 0.000 0.250 0.000
B/E/W 11/9/0 8/8/4 NA
Te notation “+” represents that the PR value achieved by LLNCDE is
signifcantly better than that of the competitor, while the notation “−”
denotes the opposite. Te diferences are detected using the Wilcoxon
rank-sum test with the Bonferroni correction at signifcance level α� 0.05.
Te last row of the table summarizes the B/E/W counts of LLNCDE against
its competitor.
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included in the comparison. Te simplifed variants are
denoted as LLNCDE-O1, LLNCDE-O2, and LLNCDE-O3,
respectively. Te experimental results are listed in Table 8.
Te rankings of the algorithms obtained by Friedman’s test
are tabulated in Table 9.

From the tables, it can be observed that both LLNCDE
and LLNCDE-R perform better than the three simplifed
variants (LLNCDE-O1, LLNCDE-O2, and LLNCDE-O3)
with only one mutation operator. Tis indicates that the use
of multiple mutation operators helps handle the diverse
search scenarios contained in multimodal landscape. On the
other hand, the overall performance of LLNCDE is better
than that of LLNCDE-R. LLNCDE surpasses LLNCDE-R on
eight out of 20 test problems. Tis observation reveals that
within each subpopulation, identifying which level the in-
dividuals belong to provides useful information on the se-
lection of suitable update operators. By associating
individuals in diferent levels with diferent mutation op-
erators, the search efciency of the algorithm can be sig-
nifcantly improved.

4.5. Efect of the Parameter Setting. In this section, we
conduct experiments to investigate the efect of the pa-
rameter settings. Specifcally, we test LLNCDE with a fxed
value of p ranging from −1 to −6. For the sake of clarity, the
variant with setting p � −k is denoted as LLNCDE-pnk. Te
PR and SR values achieved by LLNCDE and its variants are
summarized in Table 10. Table 11 presents the rankings of
the variants obtained by Friedman’s test.

According to the rankings of the algorithms, LLNCDE
with dynamically decreasing σ is able to achieve the overall
best performance in terms of PR values. In addition, it can be
observed that LLNCDE is able to outperform its variants in
most of the test problems. Tese results indicate that
gradually decreasing the size of perturbations better fts the
task of guiding individuals toward their nearby optimum.

4.6. Finding Multiple Roots of Nonlinear Equation Systems.
In this section, we apply the multimodal evolutionary al-
gorithms to solve nonlinear equation systems (NESs). An
NES can be formulated as follows:

e1(X) � 0,

e2(X) � 0,

⋮,

eM(X) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

whereX� [x1, x2, . . ., xD] is the decision vector.M represents
the number of equations. At least one of the equations is
nonlinear. A decision vector X is called a root if it satisfes
the condition that for any i ∈ {1, 2, . . .,M}, ei(X)� 0. An NES
generally has multiple roots, especially in cases that D>M.
Our goal is to fnd all the roots of the system. Four nonlinear
equation systems extracted from real-world problems, i.e.,
the multiple steady states problem [74], the molecular
conformation problem [75], the robot kinematic problem
[76], and the interval arithmetic problem [77], are used to

Table 7: Convergence speed of the algorithms on test functions F1–F6.

Algorithm Func F1 F2 F3 F4 F5 F6

dADE/nrand/1 Avg 214.52 8742.22 1760.94 28555.98 6632.52 166917.48
Std 4.14 3151.03 951.60 10310.97 2125.69 50648.81

LIPS Avg 200.00  6 8.00 1212.00 9316.00 3664.00 200000.00
Std 0.00 520.27 702.75 1250.34 749.34 0.00

LoICDE Avg 240.00 2670.00 1082.00 20608.00 5068.00 200000.00
Std 74.83 1365.03 807.39 3855.07 1268.77 0.00

NCDE Avg 350.00 3028.00 2268.00 11232.00 4088.00 200000.00
Std 222.93 1423.94 2561.21 3012.34 771.40 0.00

PNPCDE Avg 200.00 2134.00  066.00 23938.00 4916.00 200000.00
Std 0.00 603.19 773.72 5648.85 1304.20 0.00

r3pso-lhc Avg 200.00 1896.00 1020.00 6806.00 2650.00 196454.00
Std 0.00 564.26 495.18 6214.45 344.24 24822.00

IABC Avg 209.50 2677.54 1789.92 31556.04 5019.36 179195.64
Std 37.61 1262.27 1550.16 5699.34 1654.65 28085.09

OIF-BSO Avg 468.68 4009.06 3466.80 34238.40 13490.58 200000.00
Std 194.04 2203.60 3901.36 4980.45 4101.65 0.00

LLNCDE Avg 554.00 2428.00 1710.00 59 8.00 3394.00  20022.00
Std 282.99 584.14 1145.99 9 2.95 598.80 52532. 3

Table 6: Rankings of CDE, NCDE, and LLNCDE by Friedman’s test.

Algorithm Ranking
LLNCDE 1.65
NCDE 1.95
CDE 2.4
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examine the efectiveness of the proposed level-based
learning strategy. We compare LLNCDE with state-of-
the-art algorithms specifcally designed for solving NES,
namely, repulsion-based adaptive DE (RADE) [78], dynamic
repulsion-based JADE (DR-JADE) [79], multiobjective NES
(MONES) [80], and adaptive multiobjective DE with
weighted biobjective transformation technique (A-WeB)
[81]. RADE combines the strengths of the repulsion tech-
nique, diversity preservation technique, and adaptive pa-
rameter control technique to tackle the challenge posed by
NES problems. DR-JADE incorporates a dynamic repulsion
technique that adjusts the repulsion radius in the evolu-
tionary process. Moreover, the population diversity is pre-
served through population reinitialization. MONES
transforms the problem of root fnding into a biobjective
optimization problem. All roots of the original NES are
Pareto optimal solutions of the transformed problem. In this
way, we can solve NES with any multiobjective evolutionary
algorithm. A-WeB transforms an NES to a weighted

biobjective optimization problem. Not only the roots of the
original NES but also their images are mapped to the Pareto
front of the transformed problem. An adaptive multi-
objective DE is then adopted to solve the transformed
problems.

Table 12 provides the basic information of the real-world
nonlinear equation systems, including the number of linear
and nonlinear equations (denoted by LE and NE), as well as
the number of decision variables (D). NOR represents the
number of roots. Te maximum number of ftness evalua-
tions for each problem is set according to the problem
complexity. For ease of description, the four problems are
denoted as P1, P2, P3, and P4 respectively. We continue to
use PR and SR to evaluate the performance of the algorithms.
A root is deemed to be found if there exists an individual
whose Euclidean distance to the root is smaller than 1E− 04.
Table 13 lists the experimental results of the algorithms. Te
best PR and SR values are marked in bold. Te numerical
results of the compared algorithms are taken from the
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Figure 11: Convergence graphs of the algorithms on complex test functions F15–F20. Te x-axis represents the number of consumed FEs,
and the y-axis represents the number of found optima. (a) F15. (b) F16. (c) F17. (d) F18. (e) F19. (f ) F20.
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Table 8: Peak ratios and success rates achieved by LLNCDE and its variants.

Function
LLNCDE-R LLNCDE-O1 LLNCDE-O2 LLNCDE-O3 LLNCDE

PR SR PR SR PR SR PR SR PR SR
F1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F3 1.000 1.000 1.000 1.000 0.980 0.980 1.000 1.000 1.000 1.000
F4 1.000 1.000 1.000 1.000 0.855+ 0.500 1.000 1.000 1.000 1.000
F5 1.000 1.000 1.000 1.000 0.950 0.900 1.000 1.000 1.000 1.000
F6 0.789+ 0.000 0.208+ 0.000 0.000+ 0.000 0.104+ 0.000 0.993 0.800
F7 0.603 0.000 0.615 0.000 0.092+ 0.000 0.566 0.000 0.601 0.000
F8 0.380 0.000 0.006+ 0.000 0.000+ 0.000 0.293+ 0.000 0.394 0.000
F9 0.218+ 0.000 0.227+ 0.000 0.001+ 0.000 0.221+ 0.000 0.243 0.000
F10 1.000 1.000 1.000 1.000 0.527+ 0.000 0.978 0.780 0.995 0.920
F11 0.710 0.020 0.667+ 0.000 0.530+ 0.000 0.823− 0.260 0.717 0.000
F12 0.648+ 0.000 0.365+ 0.000 0.020+ 0.000 0.313+ 0.000 0.810 0.080
F13 0.677 0.000 0.647 0.000 0.443+ 0.000 0.697− 0.000 0.660 0.000
F14 0.667 0.000 0.450+ 0.000 0.000+ 0.000 0.663 0.000 0.667 0.000
F15 0.475+ 0.000 0.325+ 0.000 0.003+ 0.000 0.303+ 0.000 0.650 0.000
F16 0.637 0.000 0.303+ 0.000 0.000+ 0.000 0.630+ 0.000 0.663 0.000
F17 0.348+ 0.000 0.100+ 0.000 0.000+ 0.000 0.238+ 0.000 0.413 0.000
F18 0.380+ 0.000 0.010+ 0.000 0.000+ 0.000 0.340+ 0.000 0.497 0.000
F19 0.140+ 0.000 0.000+ 0.000 0.000+ 0.000 0.185+ 0.000 0.280 0.000
F20 0.003+ 0.000 0.000+ 0.000 0.000+ 0.000 0.223+ 0.000 0.250 0.000
B/E/W 8/12/0 12/8/0 16/4/0 10/8/2 NA
Te notation “+” represents that the PR value achieved by LLNCDE is signifcantly better than that of the variant, while the notation “−” denotes the opposite.
Te diferences are detected using the Wilcoxon rank-sum test with the Bonferroni correction at signifcance level α� 0.05. Te last row of the table
summarizes the B/E/W counts of LLNCDE against its variants.

Table 9: Rankings of LLNCDE and its variants by Friedman’s test.

Algorithm Ranking
LLNCDE 1.8
LLNCDE-R 2.375
LLNCDE-O3 2.875
LLNCDE-O1 3.2
LLNCDE-O2 4.75

Table 10: Peak ratios and success rates achieved by LLNCDE and its variants with fxed values of p.

Function
LLNCDE-pn1 LLNCDE-pn2 LLNCDE-pn3 LLNCDE-pn4 LLNCDE-pn5 LLNCDE-pn6 LLNCDE

PR SR PR SR PR SR PR SR PR SR PR SR PR SR
F1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.980 1.000 1.000
F2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F6 0.021+ 0.000 0.450+ 0.000 0.984 0.720 0.964+ 0.540 0.338+ 0.000 0.024+ 0.000 0.993 0.800
F7 0.639− 0.000 0.612 0.000 0.602 0.000 0.612 0.000 0.578 0.000 0.583 0.000 0.601 0.000
F8 0.002+ 0.000 0.015+ 0.000 0.184+ 0.000 0.402 0.000 0.093+ 0.000 0.003+ 0.000 0.394 0.000
F9 0.246 0.000 0.244 0.000 0.249 0.000 0.247 0.000 0.236+ 0.000 0.237 0.000 0.243 0.000
F10 0.998 0.980 0.995 0.940 0.998 0.980 0.995 0.940 0.998 0.980 1.000 1.000 0.995 0.920
F11 0.713 0.000 0.707 0.020 0.723 0.000 0.707 0.040 0.713 0.020 0.730 0.060 0.717 0.000
F12 0.473+ 0.000 0.553+ 0.000 0.813 0.060 0.795 0.080 0.638+ 0.000 0.458+ 0.000 0.810 0.080
F13 0.643 0.000 0.647 0.000 0.670 0.000 0.667 0.000 0.620+ 0.000 0.623+ 0.000 0.660 0.000
F14 0.653 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.663 0.000 0.667 0.000
F15 0.295+ 0.000 0.308+ 0.000 0.505+ 0.000 0.625 0.000 0.418+ 0.000 0.318+ 0.000 0.650 0.000
F16 0.607+ 0.000 0.643 0.000 0.660 0.000 0.657 0.000 0.643 0.000 0.620+ 0.000 0.663 0.000
F17 0.245+ 0.000 0.238+ 0.000 0.280+ 0.000 0.305+ 0.000 0.250+ 0.000 0.223+ 0.000 0.413 0.000
F18 0.367+ 0.000 0.353+ 0.000 0.407+ 0.000 0.407+ 0.000 0.380+ 0.000 0.340+ 0.000 0.497 0.000
F19 0.100+ 0.000 0.090+ 0.000 0.128+ 0.000 0.240+ 0.000 0.188+ 0.000 0.128+ 0.000 0.280 0.000
F20 0.245 0.000 0.230+ 0.000 0.248 0.000 0.245 0.000 0.248 0.000 0.233+ 0.000 0.250 0.000
B/E/W 8/11/1 8/12/0 5/15/0 4/16/0 9/11/0 10/10/0 NA

Te notation “+” represents that the PR value achieved by LLNCDE is signifcantly better than that of the variant, while the notation “−” denotes the opposite.
Te diferences are detected using the Wilcoxon rank-sum test with the Bonferroni correction at signifcance level α� 0.05. Te last row of the table
summarizes the B/E/W counts of LLNCDE against its variants.
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Table 11: Rankings of LLNCDE and its variants with fxed values of p by Friedman’s test.

Algorithm Ranking
LLNCDE 2.775
LLNCDE-pn3 2.85
LLNCDE-pn4 3.225
LLNCDE-pn5 4.3
LLNCDE-pn2 4.8
LLNCDE-pn1 4.875
LLNCDE-pn6 5.175

Table 12: Nonlinear equation systems extracted from real-world scenarios.

Problem D LE NE NOR MaxFEs
Multiple steady states problem 2 0 2 7 50,000
Molecular conformation 3 0 3 16 500,000
Robot kinematic problem 8 1 7 16 100,000
Interval arithmetic problem 10 0 10 1 50,000

Table 13: Peak ratios and success rates achieved by LLNCDE and state-of-the-art root fnding algorithms when solving real-world NESs.

Problems
RADE MONES DR-JADE A-WeB LLNCDE

PR SR PR SR PR SR PR SR PR SR
P1 0.997 0.980 0.439 0.000  .000  .000 0.837 0.120 0.997 0.980
P2 0.562 0.000 0.144 0.000 NA NA NA NA 0.740 0.000
P3 0.944 0.430 0.166 0.000 0.840 0.033 0.669 0.000 0.963 0.620
P4  .000  .000  .000  .000  .000  .000  .000  .000  .000  .000
Te best PR and SR values are marked in bold.
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Figure 12: Population distribution in diferent iterations of LLNCDE when solving the multiple steady states problem. (a) 1st iteration.
(b) 50th iteration. (c) 100th iteration. (d) 200th iteration. (e) 300th iteration. (f ) 500th iteration.
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literature [78, 79]. From the table, it can be observed that
LLNCDE achieves the best results on three out of the four
problems (i.e., P2, P3, and P4). According to the PR values,
LLNCDE can fnd all the roots for P1, P3, and P4 in most of
its runs. Compared with P1, P3, and P4, P2 is relatively hard
to solve. LLNCDE is able to fnd more than 70% of the roots
on average and compares favorably with state-of-the-art
algorithms. Tis indicates that LLNCDE is suitable for the
task of fnding multiple roots of NES.

To show the search process of LLNCDE, Figure 12
depicts the population distribution in diferent iterations
when solving P1 (i.e., the multiple steady states problem).
Te red circles and red dots represent the roots and in-
dividuals, respectively. From the fgure, it can be seen that
the individuals are divided into diferent subpopulations.
Individuals in each subpopulation gradually gather around
a root in the search space. In the fnal stage, all the roots are
successfully located by LLNCDE.

5. Conclusions and Discussion

In this paper, we developed a multimodal level-based
learning strategy to enhance the performance of niching
algorithm. Taking the nature of multimodal optimization
into consideration, the learning strategy is applied in the
subpopulation level. After dividing the whole population
into a bunch of subpopulations, individuals in each sub-
population are sorted and grouped into three levels. Ten,
genetic operators with diferent exploration and exploitation
tendencies are assigned to individuals according to their
levels. In this way, a better balance between exploration and
exploitation is achieved. Te proposed strategy is embedded
into a popular multimodal diferential evolution algorithm.
Comprehensive experiments are carried out to investigate
the efect of the proposed learning strategy. Te experi-
mental results demonstrate that the strategy is able to im-
prove the performance of existing algorithms with respect to
peak ratio (PR) and success rate (SR). It can increase the
convergence speed, and therefore more peaks can be located
with a relatively small number of ftness evaluations. Fur-
thermore, we test the integrated algorithm by applying it to
several root fnding problems extracted from real-world
scenarios. According to the experimental results, com-
pared with several state-of-the-art root fnding algorithms,
more roots can be located by the proposed algorithm.

Te advantage of the multimodal level-based learning
strategy is that it is able to identify the role of individuals in
the subpopulation. Diferent mutation operators are tailored
for individuals in diferent levels of the subpopulation. By
treating individuals diferently based on their levels, the
search efciency of the subpopulations can be increased.
Although the proposed approach is able to enhance the
performance of niching algorithms, it has its limitations.Te
subpopulation is only divided into three levels, which is
a coarse division of the subpopulation. Moreover, the
learning strategy for each level of individuals is designed
manually based on empirical studies and is fxed during the
search process. It cannot fully exploit the potential of
candidate solutions according to their evolutionary states. A

future research direction toward extending the study is to
divide the subpopulations in a fne-grained manner and
design adaptive learning strategy using historical search
information to further enhance the search efciency. Be-
sides, it is necessary to apply the proposed algorithm to
diferent types of real-world problems to evaluate the
practical value of the multimodal level-based learning
strategy.

Another issue associated with the proposed algorithm
is that the guiding mechanism, convergence equations,
and update mechanism are inherited from the canonical
DE algorithm. Tey are not completely applicable to
multimodal optimization problems. LLNCDE selects
candidate solutions from the population in an ordinal
manner for reproduction. Moreover, the ftness value-
based update mechanism is adopted to refresh the pop-
ulation without considering the individuals’ contribution
to the population and the mating pool. Terefore, it is
a promising avenue to further improve the algorithm
performance by incorporating dynamic or adaptive se-
lection methods based on ftness-distance balance
[54–56], as well as update mechanisms based on novel
natural survivor methods that assign appropriate scores to
diferent individuals [69].
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[70] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as
a methodology for comparing evolutionary and swarm in-
telligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3–18, 2011.
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