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Focus measurement, one of the key tasks in multifocus image fusion (MFIF) frameworks, identifes the clearer parts of multifocus
images pairs. Most of the existing methods aim to achieve disposable pixel-level focus measurement. However, the lack of
sufcient accuracy often gives rise to misjudgments in the results. To this end, a novel two-stage focus measurement with joint
boundary refnement network is proposed for MFIF. In this work, we adopt a coarse-to-fne strategy to gradually achieve block-
level and pixel-level focus measurement for producing more fne-grained focus probability maps, instead of directly predicting at
the pixel level. In addition, the joint boundary refnement optimizes the performance on the focused/defocused boundary
component (FDB) during the focus measurement. To improve feature extraction capability, both CNN and transformer are
employed to, respectively, encode local patterns and capture long-range dependencies.Ten, the features from two input branches
are legitimately aggregated by modeling the spatial complementary relationship in each pair of multifocus images. Extensive
experiments demonstrate that the proposed model achieves state-of-the-art performance in both subjective perception and
objective assessment.

1. Introduction

Images have become the most common and important
information tool for people to observe the world, benefts
from the development of imaging technology, photographic
equipment, and the popularity of smartphones. However,
due to the limited depth of feld of optical lenses, only the
targets within the focal distance can be clearly captured in
a single shot, and others will eventually appear with varying
degrees of blur. It becomes a challenging task to capture an
all-in-focus image which can describe the whole scene in
a more clear, comprehensive and realistic way. To address
this issue, MFIF technique combines distinct focus parts of
multiple images to obtain an all-in-focus image, efectively
extending the depth of feld. Nowadays, it has been widely
applied to microscopy, digital photography, and video
surveillance.

Conventional MFIF methods can generally be divided
into two categories: spatial domain-based methods and

transform domain-based methods. Spatial domain-based
methods operate on the source images in a straightfor-
wardly manner by selecting the clearer subimages, which are
partitioned by fxed size windows or image segments. Re-
search on spatial domain can be traced back to Li et al. [1],
who proposed to fuse multifocus image based on a block
partitioning scheme. Since then, block-based methods have
dominated spatial domain-based methods. To achieve more
efective activity-level measurement, some methods [2]
based on the Laplacian energy algorithm has emerged.
Several works also attempted to take multiple focus mea-
sures instead of single ones and designed a corresponding
fusion rule to integrate the multiple results. Te above
methods divide the source image with a fxed size, which is
highly afected by select of size. Tus, some approaches [3]
adopted the bee algorithm to choose the optimal size, while
others focused more on the relationship between adjacent
blocks rather than treating them independently. To further
improve the fexibility of image decomposition, the linear
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spectral clustering-based method [4] segment the source
image into irregular regions but not fxed size blocks. Re-
cently, pixel-based methods, such as local binary pattern-
based [5], dense scale-invariant feature transform-based [6],
and Hessian matrix-based [7], have become the research
trend due to their superiority in obtaining precise pixel-level
weighted maps.

Transform domain-based methods involve three steps:
image decomposition, coefcient fusion, and inverse
transform. First, the pixels of the source image are repre-
sented as coefcients of transform domain. Second, a pre-
defned fusion rule is used to fuse the coefcients of diferent
images. In the end, the fused coefcients are reconstructed
by means of the inverse transform to produce the fused
image. Research on multiscale decomposition has become
the mainstream of transform domain-based methods with
the emergence of multiscale analysis theories such as image
pyramids and wavelets transform. Meanwhile, there are
some methods based on other multiscale image de-
composition. Among them, Li et al. [8] introduced the
discrete wavelet transform (DWT) for image fusion for the
frst time and proposed an infuential fusion framework
consisting of three procedures: focus measurement, fusion
rule, and consistency verifcation. Constrained by the ability
of the wavelet transform to extract direction information in
two-dimensional space, some methods [9, 10] utilized the
pulse-coupled neural network (PCNN) and its improved
versions to design the fusion rule. Within the framework of
basic detail decomposition, Bavirsetti and Dhuli [11] in-
troduced saliency detecting algorithms as the fusion rule.
Some methods [12, 13] have also introduced guided flter
algorithms to improve the performance of the basic detail
decomposition. Sparse representation-based methods [14]
are adopted to resolve the natural sparsity of features. Tese
methods are in accordance with the physiological charac-
teristics of the human visual system. Moreover, some
methods [15, 16] attempt to combine several transform
domain algorithms to synthesize their respective advantages
during the fusion.

Conventional methods rely heavily on the focus mea-
surement method and fusion rule.When faced with complex
real-world scenarios, the hand crafted ones could not meet
the requirements of producing high-quality all-in-focus
images. Tis issue is further exacerbated by the fact that
the connection between them is not taken into account in
conventional methods. With the rise of deep learning, re-
searchers have been investigating deep learning methods to
the problem of MFIF. Some methods [17–22] treat focus
measurement as a binary classifcation task and attempt to
train a classifcation model to recognize the focused and
defocused regions in the source images. To produce fnal
fused results, the postprocessing steps in pixel-level spatial
domain-based methods are essential, followed by these
methods. With the aim of achieving an end-to-end fusion
scheme, some methods [23, 24] use regression models to
directly learn the mapping from the source images to the
fused images. Since 2017, over 70 deep learning-based MFIF
methods have been proposed [25]. Tey have demonstrated
signifcant improvements in fusion quality compared to

conventional methods. However, the promotion of their
performance is limited, which occurs because most of them
heavily rely on the results of one-shot pixel-level focus
measurement results. Due to the inadequate performance,
the results of one-shot are unreliable and lead to the sig-
nifcant degradation of the fused images. In addition, pixel-
level focus measurement is prone to noise, especially from
similar pixels in the focused and defocused regions. To
address the above challenges, we propose a two-stage focus
measurement network based on the encoder-decoder ar-
chitecture for MFIF. Te encoder with a Siamese network
structure employs CNNs to encode local patterns in the early
stages and transformers to capture global context re-
lationships in the last stages. Tere is also a FAM designed
for more legitimate mixing of features from diferent en-
coder branches. However, due to the multilevel down-
sampling as the network deepens, deep features have lost
fundamental spatial details, making it hard to recognize the
FDB. To this end, we decompose the focus measurement
procedure into two stages with a coarse-to-fne strategy.
First, deep features are fed into the coarse focus measure-
ment where the HiLo block is utilized to capture global
context information across diferent frequency domains.Te
analysis of the high- and low-frequency information can
help us to achieve the focus measurement at block level. As
for the fne focus measurement, an auxiliary boundary
detection branch is added to extract more boundary related
details from shallow features for refnement of the boundary.
On this basis, we further integrate the deep features refned
in the previous stage to achieve pixel-level prediction in
order to produce more fne-grained focus probability maps
for MFIF.

Te main contributions of this work include as follows:

(1) We propose a two-stage focus measurement network
for MFIF, consisting of a CFM and a FFM. In this
way, the MFIF is formulated as two-stage process
that achieves block-level and pixel-level predictions
step-by-step with the coarse-to-fne strategy. Joint
boundary refnement implemented by boundary
detection branch has also improved the quality of
boundary in the fusion images.

(2) LITv2 network is introduced as the backbone of the
encoder. Compared to the models that only use CNN
or transformer, LITv2 has the ability to both encode
local patterns and model long-range dependency
with lower computational cost and parameters.
Furthermore, we have made some appropriate
modifcations to it, making it more suitable for the
MFIF task.

(3) To make efective use of the mutual correlation and
diference in each pair of multifocus images, FAM is
designed to model the spatial complementary re-
lationship through spatial attention mechanisms.

(4) For better supervise the proposed model, we collect
two public datasets for salient object detection and
construct a high-resolution large-scale multifocus
image dataset.
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Rest part of this paper is organized as follows. In Section
2, an overview of relevant research and vision transformer
are briefy present. Section 3 introduces the structure of the
proposed model in detail. Section 4 gives some subjective
visual efect and objective evaluation results on public test
sets, as well as conducting the ablation experiment to prove
the efectiveness of specifc modules. Lastly, we have con-
cluded this paper in Section 5.

2. Related Works

2.1. Deep Learning-Based Methods. In 2017, Liu et al. [17]
frst introduced convolutional neural networks (CNNs) into
the feld of multifocus image fusion. Trained CNN dem-
onstrates superior activity level measurement and fusion
rule by learning the mapping from source images to focus
maps. Guo et al. [18] proposed a fully convolutional network
for MFIF. Notably, they eliminate the fully connected layer
in the network and generate a focus map of the same size as
input for MFIF in the way of segmentation. Attention
mechanisms as a powerful tool in deep learning can efec-
tively capture focus information for subsequent fusion, thus
Zang et al. [19] proposed a novel unifed fusion attention
module to obtain informative fusion images not via simple
element fusion operations in pervious works. Guan et al. [20]
proposed to adopt nested connection structures and dilated
convolutions to extract multiscale features. Expect CNN,
generative adversarial network (GAN) has been applied to
MFIF. In MFF-GAN [21], generator was utilized to produce
fusion results of the same distribution as all-in-focus images
and constructed an adversarial game to enhance texture
details. To achieving precise edges while preserving the
original texture, Li et al. [22] formulated fusion as adver-
sarial learning between each pair of multifocus image fea-
tures. Moreover, Xiao et al. [23] believed that defocused
images are degraded from latent all-in-focus images and
concocted a mathematical degradation model with the deep
learning technique. Transformer, as a competitor to CNN,
has also been introduced into MFIF with its global receptive
feld to model long-range correlations. Ma et al. [24]
designed a long-distance cross-domain attention module
based on Swin transformer, which generalized the image
fusion of multiple scenes into a unifed framework with
structure maintenance, detail preservation, and appropriate
intensity control.

Above methods have not paid enough attention to the
defocus spread efects in multifocus image and obtained
fused images with rough boundary. In this paper, two-
stage focus measurement adopts the strategy from coarse-
to-fne to extract informative spatial details in shallow
feature extraction. In addition, auxiliary task branches for
boundary detection are designed to augment boundary
quality.

2.2.VisionTransformer. Vision transformer (ViT) is the frst
model that introduced self-attention mechanisms to com-
puter vision tasks. Dosovitskiy et al. [26] proposed a ViT
model that achieved signifcant improvement for image

recognition. Since then, there are extensive research studies
that attempted to improve ViT on diverse aspects. For in-
stance, some work [27] sought to innovate locality into ViT
to enhance its ability for encoding details. Inspired by the
pyramid hierarchical structure in CNNs for dense prediction
tasks, there is also a prevailing trend to introduce it into ViT
[28]. However, the quadratic computational complexity
brought by self-attention mechanisms brings high compu-
tational costs and memory consumption so that DeiT [29]
introduced knowledge distillationmethods to improve ViT’s
train efciency. Swin transformer [30] proposed a locally
windowed self-attention mechanism to reduce computa-
tional complexity. ViT has shown outstanding dominance in
image processing, but it is quite difcult to train a well-
performed ViT model, especially for MFIF, which lacks
large-scale datasets with ground-truth. Furthermore, MFIF
is still a high-resolution and intensive prediction task. It is
unimaginable that normal ViT brings computing costs and
operational burden. Terefore, we employ LiTv2 [31], which
takes into account the operation efciency and transformer’s
long-distance modeling capability for MFIF. LiTv2 replaces
the early-stage multihead self-attention (MSA) with con-
volution, which not only improves the representation ca-
pacity of local features, but also avoids the computational
costs and memory consumption of MSA in processing large-
size feature maps in the early stages.

3. Proposed Method

3.1. Overview. In this paper, we formulate the MFIF as
a two-stage focus measurement process. We build our model
base on the encoder-decoder architecture, consisting of
encoder, feature aggregation module (FAM), coarse focus
measurement module (CFM), and fne focus measurement
module (FFM), as shown in Figure 1. First, source images A
and B are input into the diferent branch of encoder to
extract multilevel features as the operation in the solid light
blue box. Te encoder adopts Siamese network structure,
which the upper and lower branches share weights. Ten,
FAM models the spatial complementary relationships from
diferent input branches to fuse features in each stage. In the
decoder, CFM and FFM reach the precise prediction that
guides the fusion of each pair images from block level to
pixel level step-by-step as the operation in the solid blue box
and the solid pink box.Te following is a detailed discussion
for each module.

3.2. Encoder. Encoder consists of two networks with the same
structure and shares weight parameters during training. To
conform to the characteristics of MFIF, we made some
modifcations to the LITv2 network, as shown in Figure 2. First,
convolution with stride 4 is employed to split inputs into
nonoverlapping patches and project the initial feature di-
mension from 3 to C1, serving as the initial input for sub-
sequent pipeline. Previous studies [32] prove that the both
CNNs and transformers still focus on local patterns in the
shallow layers, showing that the use of self-attention at early
stages may be unnecessary. Terefore, MSAs in the early two
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stages are replaced by the conv module, which consists of
a 3 × 3 DWConv layer, two FC layers, followed by the LN
normalization layer andGELUnonlinearity.Te last two stages
employ standard transformer blocks, including an MSA and
a ConvFFN. MSA is responsible for capturing long-distance
dependencies. Followed by ConvFFN adopts a zero-padding
DWConv layer to incorporate the implicitly learned position
information. We compare the computational consumption of
the LITv2 network with other SOTA methods and mark the
minimal values in bold. As shown in Table 1, with this
structure, the LITv2 network can efectively increase the re-
ceptive feld while reducing computational burden.

Te entire model adopts the hierarchical pyramid structure
which is divided into 4 stages, and the number of blocks in each
stage is 3 : 3 : 9 : 3. A separate deformable tokenmerging (DTM)
module is used at each stage to scale feature size and expand
dimension. Compared with ordinary convolution, the learning
of ofset grid in deformable convolution can adaptively select
the sampling position of convolution, and search more

informative local window when merging patches. Each stage
feature representation of the two input branches is FA

i , FB
i􏼈 􏼉,

where i ∈ 1, 2, 3, 4{ }.

3.3. FAM. In previous methods, there are two common
approaches to fuse features from diferent input branches
together: (1) features are fused straightforward in
element-wise style such as element-wise maximum,
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Table 1: Comparison results of computational consumption.

Methods Param(M) FLOPs(G) TrainMem(GB)

ResNet-50 [33] 26 4.1 7.9
ConvNext-Ti [34] 28 4.5 8.3
PVT-S [35] 25 3.8 6.8
Swin-Ti [30] 28 4.5 6.1
CVT-13 [36] 20 4.5 6.1
LITv2-S [31] 28 3. 5.1
Te bold values in Table 1 denote the minimal parameter, computational
consumption, and memory consumption of all the comparison methods.
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element-wise sum, and element-wise average operation
and (2) concatenation along the channel dimension. As
the channel concatenation increases memory consump-
tion, while element-wise fusion rules need to be selected
based on the characteristics of the image dataset. Above
all, they both ignore mutual correlation and diference in
the process of fusion. Hence, the FAM mines the com-
plementary information in each pair of multifocus images
with the help of spatial attention mechanisms and fuse
twofold features together, as shown in Figure 3.

Specifcally, in the FAM, feature maps from branch A
(FA

i ) and branch B (FB
i ) are normalized to [0, 1] by the max-

min normalization. Te complementary version (􏽢F
B

i ) is
obtained by 1 minus the normalized FB

i . Te FAM combines
the FA

i and 􏽢F
B

i by multiplying the corresponding position
elements as

x � Norm F
A
i􏼐 􏼑 × 1 − Norm F

B
i􏼐 􏼑􏼐 􏼑. (1)

Te multiplication operation can enhance the focused
information in the feature while reducing attention to
defocused information.Ten, the spatial attention module is
applied to generate spatial attention map (WA

i ) for input
branch A, which can enhance spatial focus information and
suppress irrelevant regions. Specifcally, max pooling (MAP)
and avg pooling (AAP) are applied to the inputs among the
channel dimension, and convolution on the concatenated
feature maps compress the number of channels to 1. Fol-
lowed by the sigmoid layer projects it to WA

i , which is
formulated as

W
A
i � δ Conv7×7[MaxPool(x),AvgPool(x)]( 􏼁, (2)

where δ,Conv7×7, and [•] denote the sigmoid function,
a 7 × 7 convolution layer, and concatenation operation,
respectively. And i denotes theindex of stage. Ten, the
obtained attention maps mix with preceding features to
enhance the focus component. And the attention maps in
the other branch can be generated by switching the order of
inputs while calculating.

3.4. Coarse-to-Fine Focus Measurement. Due to the rich
frequency-domain information present in natural images,
where high-frequency components capture local details of
objects (e.g., line and shape) and low-frequency components
encode global structures (e.g., texture and color), frequency
domain analysis has been a mainstream method for MFIF.
Most existing deep learning methods for MFIF have not
considered the characteristics of diferent frequencies in
feature maps. To comprehend high/low frequency in feature
maps, we introduce the HiLo [31] block.

HiLo block allocates a MSA calculation process to two
paths: high-frequency attention (Hi-Fi) and low-frequency
attention (Lo-Fi). Hi-Fi captures high-frequency in-
teractions by local self-attention with initial-resolution
feature maps; Lo-Fi captures low-frequency interactions
by global attention with downsampled feature maps. Te
specifc structure is shown in Figure 4, where the upper
branch denotes the high-frequency attention and lower
branch denotes the low-frequency attention.

Te same number of heads in an MSA separates into two
groups based on a split ratio α in the HiLo block, where
(1 − α)Nh heads are allocated to Hi-Fi and the remaining
heads for Lo-Fi. In Hi-Fi, a simple nonoverlapping window
partitioning method is frst applied to the feature maps.
Ten, to capture high-frequency information in Input X,
local self-attention is applied to each local window (e.g., 2× 2
windows). For Lo-Fi, since mean fltering is a low-pass flter,
average pooling is employed to obtain the low-frequency
signal of the input feature map for each local window. Next,
the feature maps after average pooling are projected to keys
K2 ∈ RH/2×W/2×C and values V2 ∈ RH/2×W/2×C, queries
Q ∈ RH×W×C still come from X. Low-frequency information
in can be efectively obtained with standard self-attention.
Finally, the outputs of HiLo are the concatenation of the
outputs from the Hi-Fi and Lo-Fi paths, which is formulated
as

HiLo(X) � Hi-Fi Q1, K1, V1( 􏼁􏼁; Lo-Fi Q, K2, V2( 􏼁􏼂 􏼃

� LMSA Q1, K1, V1( 􏼁;MSA Q, K2, V2( 􏼁􏼂 􏼃,
(3)

where LMSA andMSA denote local self-attention and
standard self-attention, respectively.

For the coarse focus measurement stage, deep features
are integrated by the CFM. Te details of CFM are illus-
trated in Figure 5. First, feature maps of last two stages in the
encoder F4 and F3 are input into CFM, and the FAM is
applied to fuse multibranch features. Also, the HiLo block
employs two disparate paths to disentangle high/low fre-
quencies in the feature maps, which can efectively simulate
the relationships between their diferent frequencies. First
of all, the sizes of F4 are too small to capture frequency-
related information owing to multiple spatial reductions so
that we select F3 to extract rich high/low-frequency at-
tention results. For a multifocus image, the frequency
domain information in the focus area and the defocus area
has diferent distribution. Te clearer part contains more
details which have greater changes, resulting in abundant
low-frequency information, while the more blurred part
displays more high-frequency information due to the
concentration of pixel values. To make full use of frequency
attention information, we apply two HiLo block to dis-
tinguish features from branch A and branch B. And the
outputs are multiplying with F4. Ten, the integrated fea-
tures after concatenating are fed to the FM head to generate
focus probability map. By analyzing the diferent frequency
domains of features, we can achieve block-level focus
measurement of the image. Te coarse focus measurement
can be formulated as follows:

F
B

� HiLo F
B
3􏼐 􏼑∗Up F

B
4􏼐 􏼑,

F
A

� HiLo F
A
3􏼐 􏼑∗Up F

A
4􏼐 􏼑,

D
coarse

� FM F
A

, F
B

􏽨 􏽩􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where FM denotes focus measurement head, comprising
a 3 × 3 convolution layer, BN, and ReLU, followed by a 1 × 1
convolution layer to reduce the number of channels to 1 for
predicting.
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Compared with pixel-level focus measurement, block-
level focus measurement is more robust [37]. However, as
the coarse focus probability map is 1/16 the size of the input

image, amplifying by a factor of 16 is prerequisite to guide
the fusion of source image. In the procedure of expanding
the sizeof focus probability map, the rate of misjudgment is
also rapidly increasing, and it is apparent that the handling
of local details becomes more tough. To improve the quality
of coarse focus map, we proposed the fne focus measure-
ment to estimate the focus map in a fner manner.

For the fne focus measurement stage, we can com-
prehend diferent stage feature information via fusing
multiscale feature representation [38, 39]. To this end,
shallow features from the early two stages of encoder are frst
integrated in the same process of CFM. Te recent research
shows that spatial positional information hidden in features
can be learned by zero-padding [40]. Tus, in the early stage
of encoder, depth-wise separable convolutional layer which
initialize with zero-padding is employed to extract spatial
details. Low-level features contain afuent spatial detailed
information, which is crucial to understand the boundaries
between focused and defocused regions. At this juncture, if
we output the focus measurement results directly with the
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swallow features which includes extensive spatial details,
a substantial amount of shape and structural of objects in the
source image will persist. To suppress the impact of irrel-
evant texture, HiLo block is applied to F2 which is less
afected by redundant textures. By analyzing the frequency
of F2, we can exploit more important spatial details. Next, F4
after frequency analysis guides the network to extract more
boundary related features from F1 as Fs patial.Ten, Fc oarse
and Fs patial are amplifed to the same size as inputs. We
combine the features by the way of concatenating to predict
it in pixel-level. Deep features can distinguish focused and
defocused blocks, and on the other hand, shallow features
guide the learning of boundary. Te pixel-level focus pre-
diction process can be formulated as

D
f ine

� FM UP F
spatial

􏼐 􏼑,UP F
coarse

( 􏼁􏽨 􏽩􏼐 􏼑, (5)

where UP denotes the upsample operation which is
implemented via bilinear interpolation.

3.5. Joint Boundary Refnement Branch. As is well known,
multifocus images can be traced back to: due to the limited
depth range of the optical lens, some parts are clear and
others are blur in the images which obtained in a single shot
of the camera. In real images, infuenced by the defocus
difusion efect, there is no clear boundary between the clear
and blurred regions because the clear pixels overlap with the
blurred pixels in this area even some are expanding outward.
Te focused/defocused boundary (FDB) is the most severely
afected part of the defocused difusion efect. Tese parts
seriously confuse the judgment of the model, leading to the
lack of clear boundaries in the decision maps generated by
most methods. Te previous approach ignored this phe-
nomenon and treated the FDB on an equal footing with
other regions. Misjudgment is more likely to occur when
processing FDBs, generating fnal results with fuzzy
boundaries.

Inspired by the above discussion, we construct an ad-
ditional boundary detection branch for the boundary re-
fnement. At the same time of focus measurement, the

auxiliary branch aims to estimate the FDB maps for com-
parison with the boundary ground-truth. By jointly training
a boundary detection branch, we can improve the boundary
quality and optimized the handling of FDB. Boundary
prediction maps can be obtained by

D
bound

� BD F
spatial

􏼐 􏼑, (6)

where BD denotes boundary detection head, which has the
same structure of FM head. Furthermore, Figure 6 shows
some predictions results from diferent stages of our model
on the three test datasets: from left to right, (A) near-focused
image, (B) far-focused image, (C) coarse focus map, (D) fne
focus map, and (E) bound map.

3.6. Loss Function. In the procedure of focus measurement
from coarse-to-fne, the generation of decision map is
regarded as a dense binary prediction task. L1 loss function is
capable of calculating the error between decision map and
ground-truth at each position, which can efectively su-
pervise the training for proposed model. Tus, we devise L1
to optimize the generation of the decision map. For coarse
focus measurement tasks, the loss function can be calculated
as

Lcoarse D
coarse

,GT( 􏼁 � 􏽘
H×W

i�1
UP Di

coarse
( 􏼁,GTi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (7)

where |, | denotes the mean absolute error. Also, fne focus
measurement loss function can be calculated as

Lf ine D
f ine

,GT􏼐 􏼑 � 􏽘
H×W

i�1
D

f ine
i ,GTi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (8)

Boundary detection task is a class-imbalance problem, as
the number of boundaries in the ground-truth is much less
than the nonboundary. Dice loss function [41] can evaluate
the similarity between the prediction and label. Te def-
nition of Dice loss is

Ldice D
boundary

,GTboundary
􏼐 􏼑 � 1 −

2􏽐
H×W
i D

boundary
i GTboundary

i + ε

􏽐
H×W
i D

boundary
i􏼐 􏼑

2
+ 􏽐

H×W
i GTboundary

i􏼐 􏼑
2

+ ε
, (9)

where ε are smooth factor and set to 1. Particularly, it is
not sensitive to the number of foreground and back-
ground samples which mean it can alleviate the class-
imbalance problem. It focuses more on mining the

foreground area during training, but gradient during
training is unstable so that we compose BCE loss and Dice
loss as the boundary loss Lboundary, which is formulated as
follows:
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Lboundary D
boundary

,GT􏼐 􏼑 � Ldice D
boundary

,GT􏼐 􏼑

+ Lbce D
boundary

,GT􏼐 􏼑.
(10)

Finally, the total objective function for the proposed model
is a weighted sum of all subloss terms in equations (8) and (9):

Ltotal � α1Lcoarse + α2Lf ine + α3Lboundary, (11)

where α1, α2, and α3 are set to 1, 1, and 0.5.

3.7. Fusion Scheme. Te outputs of our proposed model are
input into the postprocessing steps to refne the focus map
for guiding the fusion of source images. As shown in Fig-
ure 7, the dashed yellow box is fused image. Notably, the
outputs of fne focus measurement stage represent the focus
probability of each pixel in IA which ranges from 0 to 1. In
order to guide the fusion of multiple input images, we need
to convert the focus probability map into a decision map via
binary segmentation. For segmenting the focused and
defocused regions in source images, the probability values
above 0.5 are set to 1 and the values below 0.5 are set to 0.

It is inevitable that there may still be some misclassifed
pixels in the binary segmentation maps. Terefore, we need
some postprocessing methods to improve the quality of the
decision map. In this paper, we used a small region fltering
algorithm to refne the decision map to remove small noise.
Finally, the weights after postprocessing and the pixel values
in the source image are combined by the weighted averaging
strategy to produce the fnal all-in-focus image. Fused im-
ages (Ifuse) can be obtained as follows:

I
fuse

� I
A
i ∗D

f inal
i + I

B
i ∗ 1 − D

f inal
i􏼐 􏼑. (12)

4. Experiments

In this section, we frst describe the experimental setups in
detail. Next, we compare the proposed model with several
state-of-the-art methods on both subjective visual efect and

objective evaluation. And last, the ablation experiments on
the proposed model have shown the efectiveness of each
module.

4.1. Experimental Setups

4.1.1. Training Dataset. In the feld of multifocus image
fusion, there is a lack of large-scale real image datasets with
labeled data. To better supervise the training process, we
collect six commonly applied public datasets from salient
object detection tasks: DUT-RGB [42], HKU-IS [43] to
construct the training dataset. First, we fltrate some low-
grade samples to balance the overall distribution of datasets.
Next, the initial images, as shown in Figure 8(a), and cor-
responding mask images, as shown in Figure 8(d), are
cropped to 256× 256. Ten, a Gaussian fltering kernel with
a window size of 7 and a standard deviation of 2 is adopted to
simulate the process from focus to defocus, generating two
diferent levels of blurred versions in total. In addition, the
α-Matte model [44] was used to simulate the defocus dif-
fusion efect to obtain pairs of multifocus images including
the clear foreground and blurred background of IA, as
shown in Figure 8(b), and its complementary image IB, as
shown in Figure 8(c).

After above operations, 14704 pairs of multifocus images
are produced as the whole training dataset. To avoid
overftting, we also do some data augmentation in the
training process, i.e., randomly fip the inputs vertically or
horizontally. As for supervising the auxiliary boundary
detection task, we apply the Canny algorithm to masks for
generating boundary labels, as shown in Figure 8(e).

4.1.2. Testing Datasets. To validate the efectiveness of the
proposed model for MFIF, we choose three public image
datasets as the test sets, i.e., Lytro datasets which contains 20
pairs of 520 × 520 natural multifocus images, MFI-WHU
which contains 30 pairs of high-resolution multifocus im-
ages, and MFFW which contains 13 pairs of irregular

(A) (B) (C) (D) (E)

(a)

(A) (B) (C) (D) (E)

(b)

Figure 6: Te prediction maps from diferent stages of our model.
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multifocus images. Te three testing datasets, as shown in
Figure 9 are all widely used in MFIF task.

4.1.3. Implement Details. Te proposed model is imple-
mented in the PyTorch framework and trained and tested on
a platform with Intel(R) Core (TM) i9-10900X CPU @

3.70GHz and NVIDA GeForce RTX 3090. At training time,
the AdamW optimizer with a poly decay learning rate
scheduler and an initial learning rate of 0.0001 was employed
to optimize the proposed model. Te total batch size is set as
24. In the training process, the proposed model is trained on
the training multifocus image datasets for 50 epochs. We

(a) (b) (c) (d) (e)

Figure 8: Examples from our generated training dataset.

Source Image 1

Source Image 2

Proposed Model

Focus Measurement Post Process

Focus Map

Small Region Removal

Final Decision Map

Image Fusion

Fused Image

Binarization

Figure 7: Schematic of the multifocus image fusion.
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mainly optimize Lcoarse and Lf ine to get better focus maps.
Here, Lboundary optimizing boundary between focused and
defocused region. With this coarse-to-fne training strategy,
we can not only predict from the image block, but also
accurately classify each pixel.

4.1.4. Comparison Settings

(1) Evaluation Metrics. Since there are no available ground-
truth images for MFIF algorithms to reference, the evalu-
ation of MFIF methods becomes a tough task. In general, we
will evaluate the performance of MFIF methods by objective
evaluation metrics. To have comprehensive and objective
performance comparison, we have selected six metrics in
total to evaluate the quality of the fused images: information
theory-based metric: feature mutual information (FMI p

[45]) and phase congruency (QP [46]); correlation-based
metric: image feature-based metrics: average gradient (QAG

[47]) and gradient-based similarity (QAB/F [48]); image
structural similarity-based metric: structural similarity index
measure (QSSIM [49]); and human perception inspired fusion
metric: visual information fdelity (VIFF [50]). For each of
the above metrics, larger scores indicate better fusion
performance.

4.1.5. Comparative Methods. Te proposed method is
compared with 9 SOTA methods, which include two con-
ventional methods (i.e., MGFF [51] and GFDF [52]), seven
DL-based methods (i.e., GCF [53], CNN [17], IFCNN [54],
PMGI [55], MSFIN [56], GACN [57], and SwinFusion [24]).
Some of the fusion results are available in [25], and others
are publicly available online.

4.2. Experimental Results and Discussion

4.2.1. Visual Quality Comparison. Frist, we have chosen
three testing examples (i.e., “Girl” in the Lytro dataset, “Old
man” in the MFFW dataset, and “Bear” in the MFI-WHU
dataset) to compare the subjective visual quality of diferent
methods. To distinguish the diferences between source
images and fused images, we mark a specifc region with the
red circle and enlarge it in the lower-left corner of the fused

image. Furthermore, we create a pseudocolor image based
on the absolute diference value of the specifc region, which
is displayed in the lower-right corner. Te color value in the
pseudocolor image indicates the degree of diference. In
general, the absolute diference value of focused region in
pseudocolor image should be pure blue.

Figure 10 shows the fused images of diferent methods
on the “Girl” example from the Lytro dataset. Te lower-left
corner of the images is an enlarged view of the red framed
area, and the lower-right corner is a pseudocolor image to
distinguish the diference between source image and fused
image. Tere are some unexpected blurry artifacts around
the fence regions in the fusion results of MGFF, PMGI,
GACN, and SwinFusion. Te redder regions in the pseu-
docolor images indicate that those methods are very likely to
make misjudgments around the area. In contrast, the fo-
cused region in the pseudocolor image of our model is
basically pure blue which means there are no so many
misjudgments. Moreover, our model can detect accurately
boundaries so that the pixels of around boundary are ob-
viously divided into two parts.

Te fused images of diferent methods on the “Old man”
example from the MFFW dataset are shown in Figure 11,
due to the presence of a large background in this image, most
of them are very close in the visual efect. However, we can
see the diference clearly in the pseudocolor images. Tere
are a lot of noise and no clear boundary in the results of
MGFF, GFDF, IFCNN, PMGI, GACN, and SwinFusion.
Teir performance will descend because those methods are
unable to deal with very similar clear and blurry pixels.
Unlike the previous methods, our model via boundary refne
process improves this issue greatly.

Figure 12 shows the fused images of diferent methods
on the “Bear” example from the MFI-WHU dataset. We can
know that the “Bear” in the source image is in the wild,
which leads it to be more relevant to reality. One thing that is
similar to the previous “Old man” is that they have a large
area of same color in the foreground and background,
making it more difcult to separate the focused and defo-
cused regions. Within all the methods, MGFF, IFCNN,
PMGI, and SwinFusion are not good at handling with the
“Bear.” Our model and other methods achieve signifcantly
performance.

Figure 9: Examples of the Lytro, MFFW, and MFI-WHU datasets.
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4.2.2. Quantitative Evaluation Comparison. To further
validate the efectiveness of our proposed model, we have
also conducted a quantitative comparison experiment on
objective evaluation metrics. All the quantitative evaluation
results of 10 methods on the three testing datasets are listed
in Tables 2–4, respectively. For eachmetric, the average score
over all test images in each dataset is exhibited, and the top
three of each metric among the 10 methods are shown in the
following brackets. Te highest score among all the methods
is marked in bold which means the best fusion efect
amongthe comparison methods in the three testing datasets.

From Table 2, we can see the superior performance of our
model on FMI p,QAG,QAB/F, andQSSIM on the Lytro dataset.
As for the QP and VIFF, the performance of our model is not
in the top three. But the average score over the 20 pairs of
testing images is very close to the top three. Considering that
the comparison methods represent the state of the art in
MFIF, the proposed model also achieves appreciable per-
formance on the two metrics. For the MFFW dataset, the
results on Table 3 show that we have won the frst place on
FMI p, QP,QAB/F,QSSIM, and QAG. Only on VIFF, our model
wins the second places. Among three testing datasets, our
model makes the best performance on theMFFWdataset. For
the MFI-WHU dataset, the results on Table 4 show that we

have won the frst place on QAB/F and QSSIM. For the QAG and
VIFF, the ranks of our model are in the top three. But for the
FMI p and QP, the average scores are not in top three.
Overall, even though our model is not the one who performs
best in each metric, we are still able to achieve a very com-
petitive performance with the SOTA methods.

4.2.3. Extended Experiments. To validate the generalization
of our model, we conduct the extend experiments on the
dataset with three source images. Specifcally, we frst fuse
two of the source images as before and then fuse this in-
termediate result with the last source image to produce the
fnal fused image. Figure 13 shows the results of three
multifocus dataset. It can be seen that the fused images of
our model contain all the focused regions in the source
images, which is an all-in-focus image with high visual
quality. Even the number of multifocus images more than
two, the proposedmodel still owns the capability of handling
this situation via this extended experiment.

4.3. Ablation Experiments. In this section, to verify the
efectiveness of the proposed modules in our method, we
conduct a series of ablation experiments on the Lytro

(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 10: Comparison of the fused images between our model and the SOTA methods on “Girl” of Lytro dataset. (a) Source image 1,
(b) source image 2, (c) MGFF, (d) GFDF, (e) GCF, (f ) CNN, (g) IFCNN, (h) PMGI, (i) MSFIN, (j) GACN, (k) SwinFusion, and (l) ours.
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(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 11: Comparison of the fused images between ourmodel and the SOTAmethods on “Oldman” of MFFWdataset. (a) Source image 1,
(b) source image 2, (c) MGFF, (d) GFDF, (e) GCF, (f ) CNN, (g) IFCNN, (h) PMGI, (i) MSFIN, (j) GACN, (k) SwinFusion, and (l) ours.

(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 12: Comparison of the fused images between our models and the SOTAmethods on “Bear” of MFI-WHU dataset. (a) Source image
1, (b) source image 2, (c) MGFF, (d) GFDF, (e) GCF, (f ) CNN, (g) IFCNN, (h) PMGI, (i) MSFIN, (j) GACN, (k) SwinFusion, and (l) ours.
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dataset. Table 5 shows all the results of ablation experi-
ments in detail, where the highest scores are highlighted in
bold to display the infuence of the proposed module on the
fnal fusion. At the beginning of ablation experiments, the
baseline model consists only of encoder, the CFM and
FAM. Ten, the FFM is added into the decoder part as the
second row. It can be seen from it that there has been an

improvement in performance with the FFM. In the next
step, the joint boundary refne (JBR) is installed in the
baseline model as the third row.Te results of the third row
prove that JBR is benefcial to our proposed model. For the
verifcation of the FAM, we remove it as the fourth row of
the table. In the results, we can see that the performance
without the FAM has decreased.

Table 2: Average scores of objective assessment of diferent methods on the Lytro dataset.

Methods FMI p QP QAG QAB/F QSSIM VIFF

MGFF 0.8883 0.7067 6.0644 0.6563 0.8868 0.9853 (1)
GFGF 0.9012 (3) 0.8459 (1) 6.7980 0.7591 0.9873 (3) 0.9455 (3)
GCF 0.9013 (1) 0.8421 6.8114 0.7573 0.9852 0.9450
CNN 0.9010 0.8449 (2) 6.7703 0.7581 0.9861 0.9437
IFCNN 0.8967 0.8047 6.8299 (3) 0.7260 0.9531 0.9415
PMGI 0.8814 0.4612 3.5654 0.3861 0.6756 0.6034
MSFIN 0.9011 0.8443 (3) 6.8314 (2) 0.7592 0.9874 (2) 0.9466 (2)
GACN 0.9010 0.8429 6.8063 0.7597 (3) 0.9865 0.9426
SwinFusion 0.8952 0.7715 5.9323 0.7140 (2) 0.9061 0.9050
Ours 0.9014 (1) 0.8435 6.8414 (1) 0. 620 (1) 0.988 (1) 0.9444
Te bold values in the Table 2 denote that the correspondingmethod obtains the highest values in themetric whichmeans this method achieves the best fusion
results in this metric. Also, the numbers in the bracket denote the ranks of all the comparison methods in the metric.

Table 3: Average scores of objective assessment of diferent methods on the MFFW dataset.

Methods FMI p QP QAG QAB/F QSSIM VIFF

MGFF 0.8716 0.4801 6.9713 0.5705 0.7269 0.9803 (1)
GFGF 0.8812 0.5841 (3) 7.5270 0.6363 0.7984 0.8299
GCF 0.8785 0.5613 7.7072 (2) 0.6342 0.8023 0.8182
CNN 0.8813 (3) 0.5744 7.4252 0.6321 0.7989 0.8259
IFCNN 0.8763 0.5388 7.6141 0.6107 0.7781 0.8367(3)
PMGI 0.8675 0.3554 4.1518 0.3673 0.5651 0.6048
MSFIN 0.8799 0.5673 7.6195 0.6286 0.8040 (3) 0.8300
GACN 0.8808 0.5695 7.6243 (3) 0.6347 (3) 0.7775 0.8257
SwinFusion 0.8816 (2) 0.6464 (2) 6.5421 0.6788 (2) 0.8442 (2) 0.8169
Ours 0.8859 (1) 0. 180 (1)  . 211 (1) 0. 20 (1) 0.9516 (1) 0.8422 (2)
Te bold values in the Table 3 denote that the correspondingmethod obtains the highest values in themetric whichmeans this method achieves the best fusion
results in this metric. Also, the numbers in the bracket denote the ranks of all the comparison methods in the metric.

Table 4: Average scores of objective assessment of diferent methods on the MFi-WHU dataset.

Methods FMI p QP QAG QAB/F QSSIM VIFF

MGFF 0.8667 0.6964 7.1443 0.6386 0.9219 0.9507
GFGF 0.8786 (3) 0. 883 (1) 8.1339 0.7331 (2) 0.9885 (3) 0.9847
GCF 0.8781 0.7866 8.1463 (3) 0.7309 (3) 0.9875 0.9831
CNN 0.8 88 (1) 0.7874 (2) 8.0703 0.7296 0.9880 0.9833
IFCNN 0.8737 0.7699 8.2545 (1) 0.6940 0.9597 1.0028 (1)
PMGI 0.8558 0.4750 4.6884 0.4178 0.7029 0.7809
MSFIN 0.8782 0.7857 8.1227 0.7294 0.9886 (2) 0.9870 (2)
GACN 0.8 88 (1) 0.7873 (3) 8.0491 0.7271 0.9884 0.9847
SwinFusion 0.8717 0.7478 6.8843 0.6782 0.9123 0.9438
Ours 0.8781 0.7861 8.2033 (2) 0. 3 0 (1) 0.9891 (1) 0.9867 (3)
In Table 4, the horizontal axis is the metric value, and the vertical axis is the comparison method. We have listed six metrics for each method and compared
with ten methods on MFI-WHU dataset. To show the fusion efect, we have highlighted the highest metrics values in bold of ten methods. So, the values in
bold mean that the best fusion efect in Table 4.
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5. Conclusion

In this paper, we propose a deep learning method based on
the encoder-decoder architecture for MFIF and introduce
a two-stage focus measurement network to generate
satisfactory fusion results. Te straightforward one-shot
pixel-level focus measurement was implemented as
a progressively increasing process from block-level to
pixel-level in the coarse-to-fne strategy. Te inspiration
for our work is to achieve focus measurement from dif-
ferent granularities, which not only fully utilizes features
at each level but also avoids the instability of single-focus
measurement. In addition, to improve the performance
about FDB that sufers severely from defocus spread efect,
an additional auxiliary branch is designed to estimate the
boundaries in the input image. Te experimental results
show that the proposed model demonstrates superior
performance in both subjective visual efects and objective
evaluation metrics. In the future, we will continue to
optimize the model’s design to improve prediction ac-
curacy to meet the requirements of the human visual
system and computer-related processing tasks.
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