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Feature selection is a crucial method for discovering relevant features in high-dimensional data. However, most studies primarily
focus on completely labeled data, ignoring the frequent occurrence of missing labels in real-world problems. To address high-
dimensional and label-missing problems in data classifcation simultaneously, we proposed a semisupervised bacterial heuristic
feature selection algorithm. To track the label-missing problem, a k-nearest neighbor semisupervised learning strategy is designed
to reconstruct missing labels. In addition, the bacterial heuristic algorithm is improved using hierarchical population initiali-
zation, dynamic learning, and elite population evolution strategies to enhance the search capacity for various feature combi-
nations. To verify the efectiveness of the proposed algorithm, three groups of comparison experiments based on eight datasets are
employed, including two traditional feature selection methods, four bacterial heuristic feature selection algorithms, and two
swarm-based heuristic feature selection algorithms. Experimental results demonstrate that the proposed algorithm has obvious
advantages in terms of classifcation accuracy and selected feature numbers.

1. Introduction

Te dimensionality of data, which consists of many features,
is one of the most infuential aspects of the classifcation
model’s efectiveness [1]. Based on feature properties, in-
stances can be categorized into their respective classes.
However, redundant, irrelevant, and noisy features in high-
dimensional data will hamper classifcation accuracy [2, 3],
e.g., medical or clinic data classifcation [4, 5]. Particularly, it
is challenging to distinguish between representative and
meaningless features without prior knowledge [6]. On the
other hand, due to statistical norms and personal errors, data
classifcation in real life often faces missing labels and loses
more valid sample problems, which ultimately reduces the
accuracy and robustness of the classifcation model [5, 7, 8].
To reduce feature dimensionality and improve the classif-
cation performance in classifcation, feature selection (FS)
[9] is recommended to collect more relevant feature subsets

from the original data space. As a tool for optimizing data
space, FS can make classifcation less complicated and im-
prove the precision of classifcation models [10].

FS methods can be categorized as flter, wrapper, or
embedded based on various feature evaluation criteria [11].
Filter methods use specifc statistical metrics, such as in-
formation gain [12] and Fisher score [13], to evaluate the
performance of created feature subsets, while wrapper
methods use learning algorithms, such as K-nearest
neighbor [14], naive Bayes [15], and linear discriminant
analysis [16]. Embedded approaches, such as the least ab-
solute shrinkage and selection operator [17] and ridge re-
gression [18], embed FS into the training process for the
learner. Filter methods typically execute faster than wrapper
methods, but they cannot frequently achieve a higher degree
of classifcation precision [19]. In addition, the process of
designing embedded methods is intricate and necessitates
plenty of prior experience [20]. Since the high-dimensional
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classifcation problem with only partial labels is already a
hard task, this research investigates wrapper-based FS
methods to ensure a higher accuracy while avoiding in-
creasing classifcation difculties.

Wrappers seek to fnd the best subset from feature space
according to one predetermined performance assessment.
However, it is realistic to select all possible subsets of features
measured by wrappers in high-dimensional classifcation
problems because of the computational cost. Recently,
wrappers based on population-based algorithms have been
wildly developed without the necessity of evaluating all
possible subsets. Tran et al. [21] proposed the frst variable-
length particle swarm optimization representation for FS,
enabling particles to have diferent and shorter lengths,
which improves the performance of the algorithm. Con-
sidering the convergency of the population, Song et al. [22]
proposed a variable-size cooperative coevolutionary strategy
to optimize the searching population, which employs the
idea of “divide and conquer” in the cooperative coevolu-
tionary approach. However, since wrapper-based FS
methods do not perform feature fltering in advance, the
searching space for them is the whole data space [23]. Tis
means that in high-dimensional classifcation tasks, their
search space is very large, so they have to use a heuristic
strategy like random search to reduce the cost of compu-
tation [24]. Nevertheless, classic heuristic strategy wrapper-
based FS methods, such as particle swarm optimization-
based FS [25], diferential evolution-based FS [26], and
genetic algorithm-based FS [27], do not account for all
potential feature combinations [28].

In recent years, bacterial-based algorithms such as
bacterial foraging optimization (BFO) [29] have been used to
design FS methods to resolve combinatorial difculties due
to their global searching capability for control and opti-
mization [30]. However, the intricate structure of BFO limits
its computation efciency. To achieve efcient classifcation
results, bacterial colony optimization (BCO) [31] with a new
bacterial life cycle was proposed and laid the foundation for
the following research on bacterial-based FS algorithms and
applications [6, 28, 30, 32, 33].Temajority of those research
studies ofer algorithmic enhancements in terms of weight
setting, parameter optimization, and learning strategy op-
timization. Nonetheless, in actual applications, the integrity
of data itself is a signifcant element, infuencing the ef-
ciency of FS, particularly the problem of incomplete sample
labels, which is themost common and complicated task.Tis
study focuses on developing an enhanced bacterial-based FS
approach with a semisupervised learning strategy to address
the high-dimensional medical data classifcation with partial
labels.

According to the integrity of data labels, learning tasks
can be categorized into supervised learning, semisupervised
learning, and unsupervised learning [33]. In the supervised
task, training data have complete label information, whereas
in semisupervised learning, label information is only
available in part. Unsupervised learning means that analyzed
data do not contain labels [34]. In the absence of prior
knowledge, the accuracy of supervised learning is generally
higher than that of semisupervised learning. Nevertheless,

the cost of getting complete labeled data is extremely high in
practical medical data collection. Moreover, unsupervised
learning is usually used to disclose the initial pattern of
unlabeled data [35]. Terefore, to address high-dimensional
classifcation difculty and label missing limitations in
medical data, this paper investigated semisupervisedmedical
data classifcation problems and optimized the classifcation
model by learning from partially labeled data to classify
unlabeled data into the correct class.

Semisupervised learning has been widely studied in
diferent felds, and in the human activity recognition (HAR)
problem, Chen et al. [36] designed a semisupervised deep
learning model that is useful in solving the problem of
imbalanced distribution of labeled data over classes from
multimodal wearable sensory data. In video semantic rec-
ognition problems, Luo et al. [37] proposed a novel semi-
supervised feature selection method to learn the optimal
graph, which aims to upgrade the performance of video
semantic recognition. Since the research studies mentioned
above are based on multimodal data, it makes more sense to
employ deep learning or graph machine learning to over-
come the problem of missing data labels. Despite the fact
that these methods are efective for multimodal data, they
incur substantial computational costs. Frequently, for a
single mode of data, it is not necessary to use overly complex
techniques. In contrast, feature selection methods based on
wrappers need less computation, and hence, they are more
suitable for single-type data. In terms of wrapper-based FS
methods, certain representative semisupervised classifca-
tion algorithms, such as ensemble SVM-based semi-
supervised FS [38] and rough set-based semisupervised FS
[39], have demonstrated the ability of ensemble learning to
solve label-missing problems. Nevertheless, these methods
rely on ensemble classifers to choose the best subset by
voting for the results, which increases the computational
cost marginally. As a straightforward and easy-to-use
technique,K-nearest neighbor (KNN)-based semisupervised
learning [40] ofers great promise for improving the clas-
sifcation efect with missing labels. A number of studies
utilize semisupervised KNN. Zhang et al. [38] demonstrated
that the introduction of semisupervised learning with K-
nearest neighbor (KNN) can enhance the available training
sample size, provided that K is held constant. However,
Mehta et al. [41] discovered that the magnitude of K would
impact the efciency of the algorithm. Te precision of the
results was enhanced by the use of an exhaustive procedure
to determine a suitable value of K for solving the problem.
Nevertheless, in partially labeled data, diferent learning
densities of KNNmay lead to biased results. When the value
of K is small, model learning may not be comprehensive.
When the value of K is large, operation cost may increase. In
other words, the selection of the K value is a key issue to be
explored. Terefore, this study attempts to develop a new
semisupervised KNN learning approach that allows for the
selection of K and can be combined with bacterial-based FS
to form an efective classifcation method.

In this study, we propose a semisupervised bacterial
heuristic feature selection (SHBFS) algorithm for the
medical data classifcation mentioned earlier, i.e., label
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incomplete and high-dimensional redundant features. Te
main contributions of this research are as follows:

(i) A new self-adjusted semisupervised feature selec-
tion approach is proposed to solve the classifcation
problems with missing labels and high-dimensional
redundant features using a two-step self-training
mechanism and an improved bacterial heuristic
method

(ii) Te strategies of hierarchical population initializa-
tion, dynamic learning, and elite population evo-
lution are proposed to enhance the capacity of the
bacterial heuristic algorithm in searching for vari-
ous feature combinations

(iii) Te proposed semisupervised bacterial heuristic
feature selection algorithm is studied to be superior
in addressing label incomplete and high-dimen-
sional classifcation tasks in comparison to several
state-of-the-art semisupervised FS algorithms

Te rest of this paper is organized as follows: Section 2
gives the background of bacterial-based feature selection
methods and some related works on these topics. Te
proposedmethod is introduced in Section 3. In Section 4, the
experimental confguration is given. Te experiments and
analyses of the results are provided in Section 5. Te fnal
section presents the conclusions and a description of future
work.

2. Related Work

Te life cycle of the searching algorithm of the proposed
bacterial-based FS approach in this study is inspired by BCO.
Tus, this section briefy introduces its main principle and
reviews of bacterial-based feature selection methods. More
details are as follows.

2.1. Bacterial ColonyOptimization. Te life cycle of BFO is a
triple-nested loop structure, which brings enormous com-
putational complexity to solve high-dimensional problems.
BCO simplifes the life cycle according to specifc rules to
address this computational drawback. Similar to BFO, BCO
contains reproduction and elimination-dispersal processes.
However, the chemotaxis steps in BCO are simplifed as
running and tumbling processes. Conditional controlling
rules are used to cope with the traditional triple-nested loop
structure to improve algorithm efciency. Te pseudocode
of BCO is shown in Pseudocode 1.

2.1.1. Running Process. Te running process is designed to
speed convergence to the optimal position as

θt
i � θt− 1

i + ri · g best − θt− 1
i  + 1 − ri(  · p besti − θt− 1

i ,

(1)

where ri shows the learning coefcient randomly generated
between [0, 1], g best is the best position in the current
bacterial colony, and p besti represents the individual op-
timal position during the chemotaxis process. In addition,
communication schemes such as dynamic neighbor and
group-oriented learning can be embedded into the running
process.

2.1.2. Tumbling Process. Te tumbling process avoids being
trapped in the local optimum and explores more potential
solution spaces. As shown in Equation (2), a random di-
rection vector Δi is generated between [− 1, 1] for the ith
bacterium. Although the randomly generated direction is
correct, i.e., the current ftness is improved, the bacterium
continues to exploit in the same direction.

θt
i � θt− 1

i + ri · g best − θt− 1
i  + 1 − ri(  · p besti − θt− 1

i  + C(i) ·
Δi������

ΔT
i · Δi

 . (2)

Te reproduction and elimination mechanisms in BCO
are consistent with those in BFO [29]. For the repro-
duction operation, half of the population with better
performance is used to replace the remaining half with
poor performance, while the elimination of BCO is real-
ized by assigning the bacterium a new and random po-
sition within the search space. It can be formulated as
follows.

If P< Ped, then

θt
� lp + rand ×(up − lp). (3)

Otherwise,

θt
� θt

, (4)

where Ped is a constant to determine the probability of the
ith bacterium being assigned in a new position and up and lp

are the upper and the lower boundaries of the search space,
respectively. In this study, all BFO or BCO-based FS are
referred to as bacterial-based FS, and the pertinent research
reviews are detailed in the following section.

2.2. Bacterial Heuristic Feature Selection Methods. In recent
years, research on bacterial-based FS algorithm improve-
ments and applications has gradually increased. Te process
of bacterial-based FS consists primarily of the following
steps [42]: (i) input the original data, (ii) randomly search for
diferent features to form a small subset, (iii) use the subset
to train the classifer, with the classifcation results to guide
the bacteria search, (iv) output the optimal ftness of the
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current iteration, and (v) loop steps ii∼iv until the maximum
number of iterations is reached and output the fnal optimal
ftness.

In recent years, bacterial heuristic FS has many appli-
cations, including health care, recommendation, recogni-
tion, and model training [6, 30, 43, 44]. To improve the
classifcation efect, bacterial-based FS has been improved in
many ways. One improvement way is weight setting. Wang
et al. [6] developed a weighted strategy to control the
probability of diferent features being selected to enhance the
accuracy.Te other is population optimization, which can be
further subdivided into position updates and population
updates. For position updates, Wang and Chen [43] in-
corporated chaotic mechanisms into the chemotaxis and
position-updating stages of bacterial populations to increase
their adaptability. For population updates, some studies
divided bacteria into multiple groups to perform diferent
jobs under the control of diferent modifed population
updating strategies to improve the searching efciency [32].
Furthermore, learning strategy optimization is also a
common and useful method. For example, Kaur and Kadam
[45] investigated multiobjective BFO to improve bacterial
learning ability and improve the convergence speed of the
algorithm. Wang et al. designed an adaptive attribute
learning strategy to enhance the information communica-
tion ability among bacteria [30].

In summary, bacterial-based FS research focuses mostly
on algorithm enhancement and the application of various
situations. However, the combined efect of missing labels
and high-dimensional redundant features poses signifcant
challenges to optimizers (including bacterial heuristic al-
gorithms) in FS, as the search space of FS problems expands
exponentially and the proportion of incomplete data in-
creases synchronously. Terefore, improving the efective-
ness and efciency of bacterial heuristic algorithms while
considering semisupervised learning methods and data di-
mension reduction simultaneously is worth studying.

Terefore, in this study, we focus on the development of a
semisupervised feature selection approach based on bacterial
optimization to solve classifcation problems with missing
labels and high-dimensional redundant features.

3. Proposed Approach

Tis section presents the proposed SHBFS approach to solve
classifcation problems with missing labels and high-di-
mensional redundancy features. Figure 1 shows the structure
of SHBFS. From the fgure, we can see that the SHBFS
approach consists of twomain parts. On the one hand, a self-
adjusted, semisupervised KNN strategy is presented for
solving the problem of missing labels. On the other hand, an
improved bacterial heuristic method for FS is presented for
addressing the feature redundant problem, including three
improvements: hierarchical population initialization, dy-
namic learning, and elite population evolution strategy.
Hierarchical population initialization is used to obtain in-
formative searching positions for bacteria to accelerate
population convergence. Dynamic learning increases the
searching variety of the algorithm by adaptively changing
the search step length of bacteria. Finally, an elite population
evolution strategy is employed to enhance the ability of
bacteria to escape from the local optimum.

3.1. Self-Adjusted, Semisupervised KNN. Te proposed self-
adjusted, semisupervised KNN is a two-step self-training
method, consisting of K value determination and label
construction. Furthermore, to make the semisupervised
learning method more adaptive to datasets of diferent sizes,
the K value is adjusted as follows:

K �
1: 1: NS,NS< 10,

1: [lg (NS)]: [10∗ lg (NS)], 10≤NS,
 (5)

(1) Input: original data
(2) Initialization: P (population), MaxIt (max iterations), and C (chemotaxis step size)
(3) While maximum iterations are not satisfed do
(4) For each bacterium do
(5) Chemotaxis process (refer to Equation (1))
(6) Fitness evaluation
(7) If previous ftness< current ftness
(8) Tumbling process (refer to (2))
(9) End//alternative mechanisms
(10) If the reproduction condition is satisfed do
(11) Reproduction process (refer to article [29])
(12) End
(13) If elimination-dispersal conditions are satisfed do
(14) Elimination-dispersal according to Equations (3) and (4)
(15) End
(16) End
(17) End//life cycle
(18) Output: optimal position with the best ftness

PSEUDOCODE 1: Bacterial colony optimization (BCO).
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where NS is the number of data samples, which means that
the K value linearly increases when datasets have smaller
samples, while the logarithmic function is employed for
datasets with larger sample sizes. Te primary process of the
self-adjusted, semisupervised KNN is illustrated as follows:

Step 1. K Value Determination
Te samples with the labeled class and unlabeled class
are separately saved in the dataset L and dataset U. As
mentioned previously, a self-adjusted, semisupervised
KNN is presented for labeling the data with no as-
signment in categories and fnding the best K value for
classifcation. Tis step is to determine a K value for the
label reconstruction using the labeled samples in L,
provided in Pseudocode 2.
Step 2. Label Reconstruction

Label reconstruction is provided in Pseudocode 3. First,
self-adjusted, semisupervised KNN is used to predict
the labels for the samples from the dataset U. Ten,
newly labeled samples are moved from the dataset U to
the dataset L. With increasing L in the space size, the
self-training step can increase the learning efciency of
the training model.

3.2. Hierarchical Population Initialization. In BCO, the
population is initialized randomly in a feasible space.
However, addressing feature selection with high-dimen-
sional features might make the bacterial colony fall into a
poor searching position due to the high uncertainty of
population initialization. As a result, more efort will be
taken to jump out from their original position, which brings
redundant computational complexity. To solve this problem,
we develop a hierarchical population initialization strategy
to enable bacteria to start at relatively good positions and
further accelerate the convergence speed of the population.
In contrast to the aforementioned variable-size cooperative
coevolutionary technique, hierarchical population initiali-
zation does not use multipopulation for searching. Instead, it
uses the idea of the proposed feature hierarchical division
strategy to reconstruct a smaller search space before each
search. Te hierarchical population initialization consists of
three steps. Te details are as follows:

Step 1. Feature Ranking and Filtering
Initially, a symmetrical uncertainty (SU) [21] ranking is
performed on the original features according to
Equations (6)–(9). In this step, the correlations between
features and classes are ranked, and the features’ rel-
evant signifcance is ordered from highest to lowest.
After ranking, the worst 10 percent of features with
signifcance below the mean are eliminated.

(i) Symmetrical uncertainty (SU): the SU index has
been widely used in traditional FS methods based on
information theory. SU measures the uncertainty
between feature variables f ∈ F, with label signals
l ∈ L given in Equations (6)–(9) based on the
Shannon information entropy. In those formulas,
p(f) is the prior probability for all values of f and
p(f|l) is the posterior probability of f given l:

SU(f, l) � 2
H(f) − H(f|l)

H(f) + H(l)
, (6)

H(l) � − 
N

i�1
p li( log2 p li( , (7)

H(l) � − 
N

l�1
p li( log2 p li( , (8)

Yes

Self-adjusted semi-supervised 
KNN

Input missing labels and 
high-dimensional Data

I<maxiter?

Hierarchical population
initialization; I=0, s=0

No

Output fitness and feature subset

Dynamic learning, I=I+1

Elite population evolution, s=s+1

s<Ns

Fitness calculation

Yes
No

Improved bacterial heuristic FS

Figure 1: Te overall structure of the proposed SHBFS approach.
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H(f|l) � − 
N

j�1
p lj  

N

i�1
p fi|lj log2 p fi|lj , (9)

where H(f) and H(l) are the entropy of the feature
variable f and the label signal l, respectively. N is the
number of observation samples x ∈ X. SU(f, l)

evaluates the correlation between features f and
label signals l. A larger SU(f, l) indicates a higher
signifcance of the feature f to the label l. Tis means
that the feature f has more robust ability to dis-
criminate labels, and the feature f needs to be se-
lected into the feature subset.

Step 2. Feature Hierarchical Division
As shown in Figure 2, it is assumed that the numbers of
SU are signifcant in the box. According to their sig-
nifcance, sorted features will be divided evenly into
three layers, L1, L2, and L3. After that, 80% of the feature
dimension will be randomly selected from the L1 set,
15% from the L2 set, and 5% from the L3 set to form a
searching position for bacteria. Tis strategy can ex-
clude subpar features and shrink the search space when
dealing with high-dimensional features.
Step 3. Feature Weight Updating
We assume that the feature size isH, and each feature of
the ith bacterium is denoted as fi. We defne the current
ftness as ft(fi) and the historical ftness as Fit(fi). In this
paper, we adopt a weight mechanism [6] to evaluate the
performance of features. Te rules are as follows: if
ft(fi)< Fit(fi), then the performance weight pfi will be

increased by (12). Otherwise, pfi will be decreased by
Equation (13).

Given that, after completing the aforementioned pro-
cedure, there are still unselected features in each feature
layer. To increase these features’ probability of being selected
in the future, we defned the unselected weight (Uweight) of
fi as ufi and Uweight � uf1, uf2, ..., ufH . Ten, the
weight of each unselected feature will be updated by
Equation (10) after Step 2. In each feature selection process,
if one feature has been selected repeatedly in each search,
then its ufi will be decreased by Equation (11):

ufi �

ufi + 0.01ufi, ufi ∈ L1,

ufi + 0.001ufi, ufi ∈ L2,

ufi + 0.0001ufi, ufi ∈ L3,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

ufi � ufi − max ufi(  − min ufi( ( , (11)

pfi � pfi +
Fit fi(  − f it fi( 




Fit fi( 
, (12)

pfi � pfi − Fit fi( ∗ Fit fi(  − f it fi( 


, (13)

where fi is each feature of the ith bacterium, ufi is the
unselected weight, pfi is the performance weight,

(1) Input: L (L is used to save the labeled samples in the original dataset)
(2) For each K obtained by Equation (5)
(3) For each running time
(4) Randomly divide L into two subsets/∗ half with saved labels and half with removed labels ∗ /
(5) Use the labeled subset to predict the labels of the unlabeled subset by KNN
(6) Record the accuracy of label prediction on each running time
(7) End
(8) Record the K value and the average accuracy of label prediction of each K
(9) End
(10) Output: Best (K value with the maximum average accuracy)

PSEUDOCODE 2: Determination of the K value.

(1) Input: labeled dataset L and unlabeled dataset U, best
(2) For each unlabeled sample in the dataset U
(3) Use the samples from the dataset L to predict the label by KNN (using Kbest)
(4) Assign the predicted label to the unlabeled sample and move it from U to L
(5) End
(6) Output: the updated dataset L

PSEUDOCODE 3: Label reconstruction.
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L1, L2, L3  are layers obtained in Step 2, ft(fi) is the current
ftness of fi, and Fit(fi) is the historical ftness.

3.3.DynamicLearning. In BCO, the chemotaxis step length
of bacteria is governed by a set of fxed values denoted by
C(i). However, the lack of variation in step lengths may
trap bacteria within the same search space. On a long-term
basis, the diversity of feature subsets will decline. Tere-
fore, in SHBFS, the running process is the same as that in
BCO, while the tumbling process is improved by
employing a dynamic learning strategy to increase the
search variety.

Specifcally, a dynamic learning strategy is proposed by
adopting an adaptive chemotaxis step length changing
strategy, which is denoted as aC [46], and a step length
communication strategy dC. Equations (14) and (15) show
that aC is afected by the bacterial size S, where
S� 1, 2, . . . , i, i ∈ N+{ }. We defne the current ftness as ft,
the upper bound of the step length as Cub, and the lower
bound of the step length asClb. z is the disturbance factor. As
the iteration proceeds, the disturbance efect of z on aC will
become small. In addition, the larger the ft, the larger the
value of aC. Te step length can be changed dynamically by
aC:

z � 1 −
i

s
  × C

ub
− C

lb
  + C

lb




, (14)

aC �
f it

f it + z
. (15)

Tere is no information communication among the
bacteria in BCO. To enhance the convergence speed and
improve the search capability, this paper presents a step
length communication strategy. Let dC be the step length
after communication, and its size is S×D, where
D� 1, 2, . . . , d, d ∈ N+{ } is the dimension of bacteria.
Equation (16) shows the communication process of ith
bacteria in the tth iteration:

dC
t

� 0.01 × aC + cpi · Rpi · p besti − θt
i  + cgi · Rgi · g besti − θt

i ,

(16)

where θt
i is the current position of the bacterium, cp and cg

are constant learning factors, and Rp and Rg are random
disturbance terms. Rp and Rg are confned to [0, 1]. Te step
length size in SBHFS learns from the best population record
of individual bacteria (pbest) and the best population record
of the bacteria (gbest). For this, bacteria will prefer to learn
from the record with a larger position excursion. After
updating the step length dC, bacterial population tumbling is
conducted as follows:

θt
i � θt− 1

i + dC
t− 1

·
Δi������

ΔT
i · Δi

 · Oq, (17)

where ∆i is a random direction vector generated between
[− 1, 1] for the ith bacterium. Due to varying data sizes, the
range of bacterial location change is greater in large samples
than in small samples. Terefore, Oq � O1, O2, q � 1, 2.  has
been proposed in this paper to adjust the ofset of the
bacterial position. In the tumbling process, q� 1; in the
swimming process, q� 2. Te setting of O1 and O2 is
explained in Section 4.3. We defne the number of features of
the whole dataset as H, and the selected feature subset size is
D. If H<D, O1 �O2 �1.

After tumbling, the feature subset is formed by Equation
(18), where [·] represents the rounding operator. Te per-
formance of the feature subset is measured by a classifer.
Tus, we adopt the confusion matrix [47] as an evaluation
metric, and the ftness is the error rate, which is updated by
Equation (19).

θt
i1 , . . . , θt

id  , (18)

f it �
FP + FN

TP + TN + FP + FN
, (19)

where FP is the false-positive result, FN is the false-negative
result, TP is the true-positive result, and TN is the true-
negative result. ft is the current ftness. Fit is defned as the
historical ftness. Te current best ftness is fpbest, and the
historical best ftness isfgbest.Temain process of dynamic
learning is shown in Pseudocode 4.

3.4. Elite Population Evolution. In most bacterial-based
methods, the population will randomly undergo dispersal
elimination. Tis means that the new searching position of
bacteria could be good or bad. Te bad searching position
may waste the search time. To make population evolution
more meaningful, this paper designed an elite population
evolution mechanism using Pweight and Uweight values
aforementioned in Section 3.2, which are to guide bacteria to
conduct reproduction and dispersal elimination.

In SBHFS, either reproduction or dispersal elimination
will be conducted per iteration. Te elite population evo-
lution mechanism is proposed to determine which operation
is executed, as depicted in Figure 3. After dynamic learning,
bacteria will perform a swimming loop as BFO until they

0.98 0.88 0.26 0.11

0.94 0.83 0.28 0.17

0.95 0.85 0.29 0.16

······

0.51 0.58

0.45 0.66

0.43 0.59

···

Dn

D1

D2

F1 F2 FH

L1 L2 L3

Divide the features into three parts evenly
D is sample; F is feature; L is the layer. 

Figure 2: Feature hierarchical division.
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(1) Input: ft, Pweight, Uweight, fpbest, and fgbest
(2) For each bacterium
(3) Running process by equation (1)//running
(4) Update the guiding factor aC by Equations (14) and (15)
(5) Update the step length dC by Equation (16)
(6) Update the position by Equation (17)//tumbling
(7) Get the feature subset by Equation (18)
(8) Update ft by Equation (19) and update Uweight by Equation (11)
(9) If ft<fpbest
(10) fpbest� ft
(11) Update Pweight by Equation (12)
(12) Else
(13) Update Pweight by Equation (13)
(14) End
(15) Iffpbest<fgbest
(16) fgbest� fpbest
(17) End
(18) Swimming by Pseudocode 5.
(19) End
(20) Output: ft and the feature subset

PSEUDOCODE 4: Dynamic learning.

(1) Input: ft, Fit, Pweight, Uweight, fpbest, and fgbest
(2) For each bacterium
(3) While doing the swimming loop
(4) If ft< Fit
(5) Fit� f
(6) If bT> control threshold//it means bad efect searching
(7) Do dispersal elimination
(8) Rank F by Uweight and save as SF//SF is the sorted feature
(9) Ɵ� randomly selecting D features from the top half of SF
(10) Else//D is the bacterial dimension
(11) Do reproduction
(12) For r� 1: Sr//Sr is the reproduction size of bacteria
(13) Sort the position Ɵ of bacteria
(14) Sort features F by Pweight and save as SF
(15) Ɵr+Sr � SF(Sr)
(16) End
(17) End
(18) End
(19) Get the feature subset by Equation (18)
(20) Update ft by Equation (19) and update Uweight by Equation (11)
(21) If ft<fpbest
(22) fpbest� ft
(23) Update Pweight by Equation (12)
(24) Iffpbest<fgbest
(25) fgbest� fpbest
(26) End
(27) Else
(28) Update Pweight by Equation (13)
(29) End
(30) End
(31) End
(32) Output: ft and the feature subset

PSEUDOCODE 5: Elite population evolution mechanism.
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meet the threshold Ns (see Table 1). In the swimming loop,
each bacterium will frst undergo a ftness evaluation to
determine its performance. errTre is defned as the perfor-
mance threshold. If the ftness exceeds errTre, it will be
counted in bT. When bT is larger than half of Ns, we can
simply regard this bacterium by performing a bad search,
and dispersal elimination is conducted based on theUweight
matrix. Otherwise, bacteria will reproduce based on the
Pweight matrix. Next, we calculate the ftness of the new
bacteria and updated two weights (Pweight and Uweight).
Finally, we repeat preceding steps until the end of the loop.
Te main process of the elite population evolution mech-
anism is given in Pseudocode 5.

Te following is a description of reproduction and
dispersal elimination processes: we assume that the bacterial
dimension is D. In dispersal elimination, seldomly selected
features are identifed frst by ranking features according to
their Uweight. Te new searching position for bacteria is
then determined by randomly selecting D features from the
top half of the seldomly selected features. In reproduction,
features are initially ranked by their Pweight to identify the
highest-performing features of the search history. Ten, the
half population of bacteria with poor performance will be
gradually replaced by the dimensions of the highest-per-
forming features. Te overall pseudocode of SBHFS is given
in Pseudocode 6, and here, we analyze the computation time
of feature selection (lines 3 to 13) of SBHFS.We suppose that
there are S bacteria in the population, the max iteration time
is I, the original number of features is D, and the swimming
time is M and M≪ I.

First, we analyze the initialization part. Te feature
ranking by SU and feature weighting are the main time
consumption step. Te time complexity of calculating SU
scores and weight for features are both O(D), which are
related to the number of features. Tus, the time complexity
of the initialization part is O(D) + O(D) � O(D). We
further analyze the time computation of the main loop of
Pseudocode 6 from lines 4 to 13. At iteration I, if the dy-
namic learning step in line 6 is conducted, the time com-
plexity of this step is O(SNI) according to Pseudocode 4,
where NI is the selected features at iteration I and NI ≤D. In
the elite population evolution part in line 11 of Pseudocode
6, if the evolution choice is dispersal elimination, the time
complexity is O(SM). If the evolution choice is reproduc-
tion, the time complexity is O(SM) + O(s) � O(SM), where
s is the population to be updated and s≤ S (usually, s is half of
the population).Terefore, in the worst case for one iteration
I, the complexity of SBHFS is O(D) + O(SNI) + O(SM) �

O(SNI). Since NI denotes the number of selected features at
iteration I and NI is smaller than or equal to D, the time
complexity of SBHFS at iteration I is smaller than or equal to
O(SD). Tus, we can reach the conclusion that the time
complexity of the main loop of SBHFS during I iterations is
not larger than O(ISD).

4. Experimental Configuration

In this section, detailed information on the datasets,
benchmark methods, and experimental design is given.

4.1.Datasets. In this paper, we verifed the proposedmethod
on diferent datasets, consisting of fve high-dimensional
microarray datasets and three benchmark datasets [6]. Te
description of the selected datasets is given in Table 2.
#Features defne the number of original features, #instance
denotes the number of samples, and the number of classes is
given in #Class. #Smallest class is the size of the class with the
fewest instances, whereas #Largest class is the size of the class
with the most instances. Among these datasets, Colon,
SRBCT, DLBCL, Leukemia-AllAML (LA), and Central
Nervous System (CNS) are datasets with the highest number
of features up to 7129. All feature values in those fve datasets
are normalized within [0, 1]. Besides, the number of in-
stances relative to the number of features in the last fve
datasets is considerably lower. Furthermore, all datasets are
signifcantly imbalanced. Tese traits present FS and clas-
sifcation with formidable challenges. Since the proposed
method is intended to handle missing label data, the original
data will be transformed into partially labeled data, as de-
scribed in Section 4.3.

4.2. Comparison Methods. Te proposed SBHFS method is
measured and compared with six recently widely recognized
bioinspired wrapper FS algorithms, denoted as benchmark
methods. Te parameters of the comparison algorithms are
shown in Table 1.

Te adaptive chemotaxis bacterial foraging optimization
algorithm (ACBFO) [42], improved swarming and

In swimming loop?

Input the fitness after dynamic learning 

Bad searching?

Reproduction according to Pweight

Dispersal-elimination according to 
Uweight

Fitness evaluation

Yes

No

Output fitness and feature subset

Fitness calculation and updating 
Uweight, Pweight

Yes

No

Figure 3: Te elite population evolution mechanism.
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elimination-dispersal bacterial foraging optimization algo-
rithm (ISEDBFO) [42], and multiobjective bacterial-in-
spired algorithm (MOBIFS) [48] are three recently proposed
BFO variants for FS, which have good performances.
ACBFO proposed an adaptive chemotaxis strategy, and
ISEDBFO adopts a hyperbolic tangent function and a
roulette technique to improve the search efects of BFO in
FS. MOBIFS is an efective multiobjective BFO algorithm
that handles FS issues using four information exchange
mechanisms. Te slime mold algorithm (SMA) [49], binary
manta ray foraging optimization (BMRFO) [50], and im-
proved binary butterfy algorithm (IBFA) [51] are three
other bioinspired algorithms that have good performance in
FS. SMA imitates slime mold’s foraging behavior and in-
troduces the composite mutation strategy and restart

strategy. BMRFO is a manta ray heuristic algorithm for FS
problem solving that uses a rational transfer function. IBFA
uses a new dynamic mutation operator to increase the di-
versity of the searching population.

Except for the abovementioned six bioinspired bench-
mark algorithms, to better verify the efectiveness of SBHFS,
we designed two more groups of comparison experiments:
comparisons with standard BFO and BCO and comparisons
with semisupervised methods:

(i) Comparison with Standard BFO and BCO. Based on
the basic bacterial evolutionary framework, the
SBHFS method has been developed with some ef-
fcient strategies. Tis comparison intends to eval-
uate the enhanced performance of the proposed

Table 1: Te settings of parameters for benchmark methods.

Algorithms Parameter settings

SBHFS errTre� 0.6, cp � 0.0015, cg � 0.0015, Ns� 4
Cub � 0.15, Clb � 0.05, O1 � 1000, O2 �100

ACBFO Nre� 5, Ned� 2, Nc� 10, Ns� 4, alpha� 0.2,
Ped� 0.25, dattract � hrepellant � 0.1, wattract � wrepellant � 0.2

ISEDBFO Nre� 5, Ned� 2, Nc� 10, Ns� 4, alpha� 0.2,
Ped� 0.25, dattract � hrepellant � 0.1, wattract � 5, wrepellant � 10

SMA z� 0.3, r ∈ [0, 1], b� [0, 1]
MOBIFS Nre� 4, Ned� 2, Nc� 200, Ns� 4, alpha� 0.2, Ped� 0.25
BMRFO T(x) � |x/

�����
1 + x2

√
|, S� 2, r, r1, r2, r3 ∈ [0, 1]

IBFA c � 1, β0 � 1, α � 0.5 − 0.5(t/Max It)

(1) Input: missing labels and high-dimensional data and number of selected features: D
(2) Semisupervised learning: labeling by Pseudocodes 2 and 3
(3) Initialization: parameter setting follows Section 4.3; population initialization follows Section 3.2; iteration: I� 0; swimming: s� 0;
(4) While I<max iterations
(5) I� I+ 1;
(6) Dynamic learning by Pseudocode 4
(7) Obtain ftness and feature subset
(8) If s<Ns//Ns is the number of swimming times
(9) s� s+ 1;
(10) Elite population evolution by Pseudocode 5
(11) Obtain ftness and the feature subset
(12) End
(13) End
(14) Output: ftness and the feature subset

PSEUDOCODE 6: SBHFS.

Table 2: Datasets for feature selection.

Datasets #Features #Instances #Class #Smallest class #Largest class
Australian 15 690 2 222 468
German 24 1000 2 300 700
Ionosphere 33 351 2 38 313
Colon 1999 62 2 22 40
SRBCT 2308 83 4 13 35
DLBCL 5469 77 2 25 75
Leukemia-ALLAML (LA) 7129 72 4 23 49
Central Nervous System (CNS) 7129 60 2 21 39
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approach compared with the standard bacterial
heuristic algorithm.

(ii) Comparisons with Semisupervised Methods. Te
proposed self-adjustment, semisupervised learning
method is being evaluated in this experimental
group. First, original datasets are randomly divided
into training and test sets. Moreover, the training set
is further divided into a labeled subset and an un-
labeled subset. Finally, two KNN-based semi-
supervised labeling techniques, semisupervised
KNN (SSKNN) [38] and the best K semisupervised
KNN (BKSKNN) [41], are selected to be executed on
eight incompletely labeled datasets with SBHFS.

4.3. Design. In this study, all experiments were performed
on a PC with Windows 10, Intel Core i7-7700, at 3.6GHz,
8GB RAM, and the Windows 10 operating system. More-
over, for all algorithms, the population size was set to 30, and
the number of maximum iterations (maxiter) was set to 100.
All experiments were run independently 30 times. Due to the
facility to implement KNN, this paper used KNN as the
learning algorithm to assess the classifcation performance
after FS as in literature [38, 41]. In each dataset, 70% of the
samples from each class were randomly selected as the
training set and the remaining 30% as the testing set. To
simulate partially labeled data, this paper divided the
training set into half-labeled samples and half-unlabeled
samples (see Section 3.1). According to the previous ex-
periments [6], only a small subset of tenths of the features
provides the ideal solution. When the number of features for
the last fve datasets in Table 1 is less than 50, it is possible to
attain high classifcation accuracy. Te desired number of
features (Fno.) therefore varies between 1 and 10 for the frst
three datasets (with reduced feature subset size) and between
5 and 50 for the remaining datasets. Te parameters of all
benchmark methods are given in Table 2.

For evaluation metrics (Equations.(20)–(25)), the clas-
sifcation error rate (denoted as Err.), true-positive rate
(TPR), true-negative rate (TNR), precision (Pre), G-means
(GM), and F1 score (F1) are used to assess feature selection
results [52].Te efectiveness of feature selection approaches
can be fully refected by these evaluation metrics. Te
performance of the classifcation result for imbalanced data
is assessed using the error rate and G-means. Te TNR
measures a method’s capacity to isolate true-positive sam-
ples (minority samples) from all other samples, whereas the
TPR measures a method’s ability to isolate negative samples
(majority samples) from all other samples. Precision gauges
a method’s capacity to distinguish genuine positive samples
from all other positive samples (including true positives and
false positives). A thorough evaluation of TPR and precision
performance is provided by the F1 score.

Err �
FP + FN

TP + TN + FP + FN
, (20)

TPR �
TP

TP + FN
, (21)

TNR �
TN

TN + FP
, (22)

Pre �
TP

TP + FP
, (23)

GM �
����������
TPR + TNR

√
, (24)

F1 � 2∗
Pre∗TPR
Pre + TPR

. (25)

Additionally, the Wilcoxon rank-sum test [53] was
performed on each approach. It is marked as “�” when the p

value is greater than 0.05, meaning there is no signifcant
diference under the signifcance level of 5%. If the p value is
less than 0.05, the recommended method is considered more
signifcant than the comparison algorithms and marked as
“+.” Otherwise, it is marked as “− .”

5. Experimental Results and Analyses

Tis section gives the comparison results and analyses of the
three experimental groups. First, the improvement of the
proposed bacterial heuristic optimization algorithm is
proved by making comparisons with standard BFO and
BCO for feature selection. Next, the enhanced semi-
supervised method is verifed and discussed with two KNN-
based semisupervised methods. Finally, the efectiveness of
the overall proposed SBHFSmethod for tracking incomplete
data classifcation is demonstrated. In Tables 3–6, the value
in bold represents the best value for the current indicator.
When the p value is “�,” there is no signifcant diference
between algorithms. Terefore, the evaluation index score
corresponding to the p value will not be bold.

5.1. Comparisons with Standard BFO and BCO. Tis com-
parison aims to verify the efectiveness of the proposed three
strategies in BHFS, including hierarchical population initiali-
zation, dynamic learning, and elite population evolution. Table 3
shows the comparison results among the proposed bacterial
heuristic optimization algorithm for FS (BHFS) and BFO for FS
(BFOFS) and BCO for FS (BCOFS). Te rows of Ave. and Std.
show the average and standard deviation classifcationmetrics of
30 independent runs, respectively. Te rows of p show the
signifcance values obtained by the Wilcoxon rank-sum test.

From the specifc data, the feature numbers of these
algorithms are consistently unchanged. Tis is because the
controlling strategies for BHFS, BFOFS, and BCOFS are the
same (see Section 4.3). Consequently, there is no diference
in the signifcance of Fno.

On the whole, excluding Fno, BHFS obtains signifcantly
better results in 92 out of 96 cases versus BFOFS while
achieving statistically similar performance in 4 cases. Since
the proposed three strategies of BHFS are the improvements
of BFOFS and BCOFS, they are also the key modules that
compose BHFS, where each strategy is interlinked. Tis
result proves that BHFS is better than BFOFS and BCOFS,
which refects that our improvements are efective.
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From the comparison between BFOFS and BCOFS, we can
see that the classifcation results of BCOFS perform better than
those of BFOFS.Tis demonstrates that the improved life cycle

model in BCOFS performs better than the triple-nested loop
structure, in which optimization capability is further en-
hanced. Moreover, compared with BFOFS and BCOFS, BHFS
achieves signifcantly better performance in 86 out of 96 cases
while obtaining statistically similar results in 10 cases. In
particular, it almost achieves the best classifcation error rate
for eight datasets. Except for the German dataset with the
26.9% classifcation error rate on average, BHFS for other
datasets has achieved an accuracy rate of more than 90%, even
the 100% accuracy rate achieved for LA and DLBCL, two
microarray datasets.Tus, it is evident that BHFS outperforms
both BFOFS and BCOFS.Te primary reason is that BHFS has
further developed the life cycle with the three proposed
strategies, which improve the algorithm’s search ability to
locate the optimal space in the population initialization step,
increase the probability of individual learning in the che-
motaxis stage, and enhance the quality of population evolution
in the reproduction and dispersal-elimination stages.

Table 3: Te results of the comparisons with standard BFO and BCO.

Methods Dataset
Colon SRBCT

Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

BHFS Ave. 0.038 27.380 0.917 0.988 0.956 0.951 0.971 0.069 27.440 0.977 0.932 0.936 0.951 0.926
Std. 0.011 15.095 0.028 0.011 0.015 0.015 0.009 0.044 15.040 0.015 0.046 0.038 0.034 0.048

BFOFS
Ave. 0.321 27.500 0.477 0.800 0.731 0.606 0.761 0.472 28.889 0.842 0.543 0.548 0.657 0.520
Std. 0.076 15.138 0.190 0.070 0.082 0.116 0.054 0.128 15.366 0.042 0.124 0.147 0.095 0.125
P + � + + + + + + � + + + + +

BCOFS
Ave. 0.116 27.500 0.757 0.958 0.877 0.848 0.913 0.150 27.500 0.950 0.854 0.855 0.896 0.841
Std. 0.022 15.138 0.118 0.059 0.055 0.044 0.016 0.056 15.138 0.017 0.072 0.078 0.049 0.074
P + � + � + + + + � + + + + +

Methods Dataset Ionosphere German
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

BHFS Ave. 0.055 12.909 0.976 0.684 0.816 0.811 0.722 0.269 10.383 0.317 0.919 0.753 0.526 0.827
Std. 0.015 6.927 0.028 0.143 0.110 0.072 0.055 0.015 5.468 0.092 0.048 0.023 0.076 0.011

BFOFS
Ave. 0.136 15.100 0.936 0.307 0.359 0.494 0.300 0.343 11.983 0.317 0.827 0.726 0.489 0.770
Std. 0.031 10.005 0.036 0.263 0.154 0.204 0.180 0.028 7.229 0.108 0.095 0.023 0.090 0.032
P + � + + + + + + � + + � � +

BCOFS
Ave. 0.076 16.000 0.967 0.554 0.689 0.725 0.597 0.291 12.000 0.291 0.898 0.744 0.485 0.811
Std. 0.011 9.950 0.026 0.165 0.088 0.088 0.064 0.010 7.211 0.147 0.076 0.027 0.123 0.016
P + � + + + + + + � � � � � +

Methods Dataset CNS LA
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

BHFS Ave. 0.093 27.420 0.837 0.942 0.925 0.884 0.931 0.000 27.440 1.000 1.000 1.000 1.000 1.000
Std. 0.013 15.066 0.046 0.023 0.019 0.020 0.010 0.000 15.069 0.000 0.000 0.000 0.000 0.000

BFOFS
Ave. 0.428 27.500 0.350 0.723 0.690 0.482 0.703 0.136 27.500 0.886 0.853 0.945 0.867 0.895
Std. 0.120 15.138 0.166 0.110 0.068 0.125 0.079 0.064 15.138 0.131 0.069 0.062 0.076 0.050
P + � + + + + + + � + + + + +

BCOFS
Ave. 0.211 27.500 0.633 0.867 0.830 0.734 0.844 0.046 27.500 0.914 0.973 0.962 0.942 0.967
Std. 0.051 15.138 0.131 0.098 0.047 0.059 0.043 0.037 15.138 0.100 0.034 0.043 0.053 0.027
P + � + + + + + + � + + + + +

Methods Dataset Australian DLBCL
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

BHFS Ave. 0.359 5.614 0.741 0.434 0.450 0.563 0.438 0.002 27.400 0.999 0.998 1.000 0.999 0.999
Std. 0.042 2.297 0.076 0.069 0.047 0.034 0.040 0.005 15.069 0.000 0.007 0.000 0.004 0.004

BFOFS
Ave. 0.489 7.471 0.556 0.457 0.326 0.485 0.374 0.225 27.500 0.587 0.844 0.855 0.692 0.848
Std. 0.049 4.195 0.118 0.159 0.032 0.039 0.065 0.108 15.138 0.225 0.083 0.079 0.166 0.073
P + � + + + + + + � + + + + +

BCOFS
Ave. 0.407 7.500 0.689 0.393 0.380 0.518 0.384 0.057 27.500 0.883 0.965 0.961 0.921 0.962
Std. 0.037 4.183 0.065 0.052 0.038 0.029 0.033 0.041 15.138 0.112 0.041 0.037 0.062 0.028
P + � + + + + + + � + + + + +

Table 4: Te average computation time (minutes) of BHFS,
BFOFS, and BCOFS for each run.

Datasets
Algorithms

BHFS BFOFS BCOFS
Australian 4. 66 30.104 5.477
German 4.667 27.046 5.371
Ionosphere 4.019 23.034 4.182
Colon 2.420 22.398 3.360
SRBCT 2.818 25.946 3.963
DLBCL 1.803 29.433 4.388
Leukemia-ALLAML (LA) 2.833 34.795 4.282
Central Nervous System (CNS) 3. 40 30.153 6.104
Te bold values indicate that the SBHFS takes the least amount of time in
each independent run.
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Table 4 illustrates the average calculation time for feature
selection and classifcation in each run. Compared to all
bacterial-based methods, BHFS achieves a superior classif-
cation efect with less computational complexity. Troughout
the iteration period, the computing time of the BFO algorithm
increases exponentially due to its nested structure. However,
life cycle enhancement ofered by BCO streamlines this pro-
cedure, hence reducing computing cost dramatically. Inspired
by BCO, BHFS modifes the parts of the population update
based on BCO so that reproduction and dispersal-elimination
operations can be carried out just one at a time, and the al-
gorithm is additionally programmed with a rule to instantly
stop iterating when the ideal solution occurs repeatedly.

5.2. Comparisons with Semisupervised Methods. Since BHFS
demonstrates its superiority and usefulness in Section 5.1,
this section evaluates the efectiveness of the proposed self-

adjustment, semisupervised KNN strategy for BHFS. In the
following context, we refer to BHFS with the self-adjusted,
semisupervised KNN strategy as SBHFS. Te compared two
semisupervised techniques based on KNN are as follows:
One is the semisupervised KNN (SSKNN) [38], which as-
signs the unlabeled sample’s label to the label of the labeled
sample that is closest to it. Te best K semisupervised KNN
(BKSKNN) [41] is another comparative technique. By
learning about their neighbors, BKSKNN also labels unla-
beled samples. In contrast, BKSKNN has two steps as op-
posed to SSKNN, the frst of which is to compute the
accuracy of the labeling result of KNN using various K
values. K is then set from 1 to 51.Te process fnds the best K
value with the highest level of labeling accuracy and then
uses the best-labeled data to perform the subsequent pro-
cedure. Tese two semisupervised learning approaches are
embedded into BHFS for the comparison of the efectiveness

Table 5: Te results of the comparisons with semisupervised methods.

Methods Dataset
Colon SRBCT

Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.041 27.320 0.906 0.990 0.949 0.946 0.968 0.06 27.400 0.977 0.938 0.941 0.9 6 0.936
Std. 0.008 14.916 0.030 0.016 0.016 0.011 0.006 0.031 15.106 0.011 0.029 0.029 0.021 0.029

BHFS-SSKNN
Ave. 0.153 27.500 0.629 0.975 0.822 0.778 0.890 0.254 27.300 0.907 0.755 0.817 0.819 0.763
Std. 0.046 15.138 0.138 0.040 0.054 0.082 0.030 0.046 14.818 0.018 0.051 0.044 0.042 0.052
P + � + � + + + + � + + + + +

BHFS-BKSKNN
Ave. 0.121 27.500 0.700 0.983 0.852 0.827 0.912 0.263 27.500 0.912 0.769 0.789 0.825 0.745
Std. 0.025 15.138 0.105 0.035 0.043 0.051 0.016 0.040 15.138 0.012 0.040 0.068 0.030 0.052
P + � + � + + + + � + + + + +

Methods Dataset Ionosphere German
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.0 0 13.655 0.994 0.582 0.926 0.756 0.704 0.273 10.517 0.294 0.913 0.7 3 0.506 0.824
Std. 0.013 7.794 0.005 0.110 0.049 0.072 0.090 0.016 5.735 0.112 0.028 0.025 0.090 0.005

BHFS-SSKNN
Ave. 0.152 15.500 0.860 0.74 0.384 0.798 0.505 0.282 11.250 0.236 0.933 0.737 0.458 0.822
Std. 0.016 7.634 0.020 0.112 0.035 0.055 0.048 0.010 6.398 0.095 0.049 0.019 0.076 0.011
P + � + − + � + � � � − � � �

BHFS-BKSKNN
Ave. 0.063 14.182 0.982 0.554 0.783 0.734 0.644 0.289 11.583 0.219 0.921 0.734 0.441 0.817
Std. 0.012 8.280 0.008 0.103 0.082 0.069 0.082 0.008 7.128 0.089 0.036 0.016 0.076 0.007
P + � + � + � � + � � � + � +

Methods Dataset CNS LA
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.104 27.380 0.740 0.973 0.88 0.846 0.92 0.012 27.500 0.989 0.988 0.99 0.988 0.991
Std. 0.006 15.033 0.044 0.024 0.017 0.015 0.005 0.011 15.138 0.020 0.010 0.009 0.013 0.008

BHFS-SSKNN
Ave. 0.133 27.500 0.617 0.992 0.839 0.780 0.909 0.114 27.500 0.671 0.987 0.869 0.809 0.923
Std. 0.029 15.138 0.081 0.026 0.027 0.052 0.019 0.044 15.138 0.151 0.028 0.058 0.082 0.029
P + � + − + + + + � + � + + +

BHFS-BKSKNN
Ave. 0.133 27.400 0.617 0.992 0.840 0.779 0.909 0.032 27.500 1.000 0.953 1.000 0.976 0.976
Std. 0.039 14.976 0.112 0.026 0.040 0.070 0.025 0.022 15.138 0.000 0.032 0.000 0.016 0.017
P + � + − + + � � � � � � � �

Methods Dataset Australian DLBCL
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.350 5.871 0.771 0.398 0.454 0.553 0.423 0.003 27.480 0.997 0.996 0.999 0.996 0.998
Std. 0.016 2.600 0.017 0.043 0.029 0.030 0.036 0.006 15.105 0.011 0.008 0.004 0.006 0.004

BHFS-SSKNN
Ave. 0.483 7.600 0.419 0.724 0.351 0.489 0.462 0.117 27.500 0.550 1.000 0.863 0.740 0.927
Std. 0.058 2.716 0.205 0.259 0.081 0.135 0.154 0.021 15.138 0.081 0.000 0.022 0.053 0.012
P + � + − + � + + � + � + + +

BHFS-BKSKNN
Ave. 0.330 6.308 0.788 0.421 0.488 0. 7 0.4 1 0.052 27.500 0.800 1.000 0.936 0.892 0.966
Std. 0.020 2.594 0.021 0.050 0.039 0.035 0.042 0.034 15.138 0.131 0.000 0.041 0.073 0.022
P − � � � + + + + � + � + + +

Te bold values for each method mean that they achieve the best results under the evaluation index.
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Table 6: Te result of the comparisons with benchmark methods.

Methods Indexes
Colon SRBCT

Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.041 27.5 0.92 0.982 0.9 7 0.949 0.968 0.064 27.5 0.979 0.937 0.94 0.9 6 0.932
Std. 0.015 15.138 0.038 0.015 0.021 0.02 0.012 0.036 15.138 0.012 0.042 0.033 0.029 0.044

ACBFO
Ave. 0.176 390.6 0.665 0.91 0.84 0.769 0.871 0.159 458.35 0.945 0.863 0.877 0.894 0.853
Std. 0.028 15.364 0.055 0.031 0.026 0.035 0.022 0.03 19.594 0.011 0.028 0.025 0.025 0.028
P + + + + + + + + + + + + + +

ISEDBFO
Ave. 0.153 232.45 0.679 0.938 0.848 0.791 0.888 0.162 246.4 0.944 0.859 0.869 0.891 0.842
Std. 0.029 56.974 0.073 0.029 0.03 0.046 0.021 0.043 73.685 0.015 0.043 0.04 0.034 0.048
P + + + + + + + + + + + + + +

SMA
Ave. 0.135 4.3 0.773 0.916 0.887 0.832 0.896 0.134 7.833 0.955 0.872 0.887 0.907 0.863
Std. 0.035 1.302 0.074 0.06 0.031 0.039 0.031 0.035 5.834 0.011 0.034 0.038 0.025 0.038
P + − + + + + + + − + + + + +

MOBIFS
Ave. 0.25 19.166 0.438 0.79 0.91 0.478 0.845 0.48 18.924 0.914 0.471 0.731 0.561 0.62
Std. 0.108 2.104 0.489 0.065 0.069 0.402 0.067 0.117 3.621 0.083 0.073 0.326 0.218 0.079
P + � � + � + + + � � + + + +

BMRFO
Ave. 0.179 34.75 0.666 0.905 0.838 0.765 0.866 0.129 216 0.9  0.888 0.897 0.914 0.874
Std. 0.032 35.84 0.092 0.033 0.038 0.055 0.023 0.048 146.98 0.017 0.044 0.035 0.035 0.049
P + � + + + + + + + - + + + +

IBFA
Ave. 0.221 988.3 0.571 0.886 0.801 0.695 0.837 0.19 1140.8 0.93 0.84 0.86 0.88 0.83
Std. 0.022 20.63 0.04 0.027 0.018 0.029 0.019 0.02 21.71 0.01 0.02 0.02 0.02 0.02
P + + + + + + + + + + + + + +

Methods Indexes Ionosphere German
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.062 14.491 0.963 0.721 0.750 0.829 0.716 0.246 10.967 0.407 0.917 0.777 0. 9 0.839
Std. 0.03 8.114 0.042 0.099 0.128 0.043 0.062 0.024 5.954 0.125 0.039 0.036 0.114 0.008

ACBFO
Ave. 0.104 4.85 0.976 0.754 0.949 0.855 0.834 0.288 4.5 0.351 0.867 0.758 0.542 0.807
Std. 0.011 0.988 0.013 0.038 0.027 0.019 0.021 0.01 1.539 0.064 0.027 0.013 0.049 0.009
P + − � � − − − + − + + + + +

ISEDBFO
Ave. 0.085 3.05 0.97 0.817 0.94 0.89 0.873 0.275 4.1 0.409 0.86 0.774 0.588 0.814
Std. 0.008 0.51 0.009 0.022 0.017 0.012 0.014 0.01 0.553 0.059 0.021 0.014 0.041 0.007
P + − � − − − − + − � + � + +

SMA
Ave. 0.091 2. 0.961 0.816 0.925 0.884 0.864 0.305 2.9 0.332 0.851 0.749 0.513 0.793
Std. 0.013 0.607 0.015 0.021 0.025 0.014 0.019 0.04 0.852 0.083 0.039 0.028 0.082 0.032
P + − + − − − − + − + + + + +

MOBIFS
Ave. 0.677 11.732 0.881 0.118 0.738 0.321 0.203 0.29 9.252 0.497 0.737 0.924 0.601 0.82
Std. 0.059 2.939 0.052 0.016 0.064 0.031 0.026 0.027 3.434 0.125 0.009 0.038 0.08 0.02
P + � + + � + + + � � + − � +

BMRFO
Ave. 0.09 3.1 0.965 0.811 0.936 0.883 0.865 0.279 4.6 0.342 0.884 0.76 0.537 0.816
Std. 0.009 0.968 0.012 0.023 0.02 0.012 0.014 0.015 1.875 0.101 0.038 0.021 0.087 0.011
P + − � − − − − + − + + + + +

IBFA
Ave. 0.116 9.7 0.978 0.716 0.9 1 0.835 0.814 0.258 9.25 0.441 0.871 0.785 0.617 0.825
Std. 0.009 1.809 0.009 0.02 0.019 0.013 0.016 0.016 1.743 0.042 0.011 0.013 0.031 0.01
P + � � � − � − + � � + � � +

Methods Indexes CNS LA
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.082 27. 0.82 0.967 0.918 0.887 0.94 0.002 27.48 1 0.997 1 0.999 0.999
Std. 0.018 15.138 0.042 0.022 0.018 0.023 0.014 0.004 15.127 0 0.006 0 0.003 0.003

ACBFO
Ave. 0.38 1411.2 0.444 0.716 0.711 0.53 0.702 0.119 1394.7 0.942 0.853 0.970 0.894 0.905
Std. 0.028 37.047 0.085 0.04 0.035 0.061 0.025 0.011 35.534 0.029 0.011 0.012 0.016 0.009
P + + + + + + + + + + + + + +

ISEDBFO
Ave. 0.38 731.8 0.487 0.695 0.724 0.495 0.689 0.121 647.3 0.936 0.858 0.969 0.892 0.905
Std. 0.031 108.87 0.071 0.059 0.021 0.059 0.038 0.019 30.78 0.046 0.006 0.021 0.027 0.013
P + + + + + + + + + + + + + +

SMA
Ave. 0.031 108.87 0.071 0.059 0.021 0.059 0.038 0.036 3.6 0.969 0.963 0.986 0.964 0.973
Std. 0.067 1.353 0.112 0.07 0.052 0.093 0.056 0.028 2.683 0.047 0.034 0.021 0.031 0.021
P − + + + + + + + − + + + + +

MOBIFS
Ave. 0.333 19.262 0.722 0.683 0.901 0.682 0.775 0.174 20.734 0.902 0.815 0.981 0.854 0.889
Std. 0.144 2.305 0.357 0.101 0.089 0.285 0.095 0.094 4.515 0.18 0.082 0.029 0.123 0.057
P + � � � � � � + � + + + + +
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of diferent semisupervised methods, and they are recorded
as BHFS-SSKNN and BHFS-BKSKNN, respectively. Table 5
shows the average, standard deviation classifcation metric,
and statistical test results of diferent semisupervised
learning approaches for benchmark datasets. Since all three
methods are based on BHFS, their feature subset size control
methodologies are identical (see Section 4.3). Consequently,
the signifcance of Fno. does not change in the three
methods.

SBHFS outperforms BHFS-SSKNN and BHFS-BKSKNN
in the majority of classifcation evaluation metrics, dem-
onstrating the efcacy of the self-adjusted, semisupervised
KNN technique. Self-adjusted, semisupervised KNN will
adaptively update the K value to fnd a better label for each
sample from varying data sizes, whereas SSKNN will simply
apply the fxed K value that limits the algorithm’s
performance.

Compared with BHFS-SSKNN, SBHFS obtains a lower
error rate in all data cases. In other classifcation metrics,
BHFS-SSKNN shows better performance with the true-
positive rate (TPR), indicating that the SSKNN method is
more capable of correctly labeling positive samples, while
SBHFS can achieve signifcantly better or similar perfor-
mance with the true-negative rate (TNR). Tis proves that

using TPR or TNRmetrics alone to judge the performance of
algorithms is one-sided. Terefore, it is necessary to deeply
analyze the algorithm efect through the remaining three
comprehensive evaluation indicators (Pre, GM, and F1).Te
results demonstrate that the Pre scores of SBHFS are 100
percent superior to those of BHFS-SSKNN, while the GM
scores of SBHFS are higher for fve out of eight datasets, and
the F1 scores are higher for half of the datasets. Tus, self-
adjusted, semisupervised KNN does improve the perfor-
mance of SBHFS.

Figure 4 shows the bar chart of the comparison results
with semisupervised methods. Te horizontal axis corre-
sponds to evaluation metrics. Fno. is excluded since the
comparison algorithms use the same feature subset size
control methods. Te ordinate represents each algorithm’s
score, with larger values indicating superior performance.
From Table 5 and Figure 4, we can see that SBHFS can
achieve statistically signifcant better classifcation perfor-
mance for all high-dimensional datasets with the most
diferent metrics. For benchmark datasets, statistical sig-
nifcance is not as obvious. One reason is that in a low-
dimensional space, the KNN-based semisupervised learning
method is less afected by the value of K. Terefore, we
conclude that the proposed self-adjusted, semisupervised

Table 6: Continued.

Methods Indexes
Colon SRBCT

Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

BMRFO
Ave. 0.38 358.3 0.458 0.701 0.717 0.518 0.699 0.081 16.35 0.925 0.916 0.967 0.917 0.938
Std. 0.059 470.91 0.103 0.061 0.056 0.096 0.051 0.029 17.236 0.063 0.033 0.027 0.038 0.022
P + + + + + + + + + + + + + +

IBFA
Ave. 0.404 3517.7 0.413 0.694 0.689 0.518 0.69 0.114 3492.3 0.948 0.86 0.972 0.901 0.91
Std. 0.025 36.131 0.049 0.029 0.021 0.042 0.021 0.012 23.086 0.019 0.013 0.009 0.013 0.009
P + + + + + + + + + + + + + +

Methods Indexes Australian DLBCL
Err. Fno. TNR TPR Pre. GM F1 Err. Fno. TNR TPR Pre. GM F1

SBHFS Ave. 0.357 5.857 0.7 0.524 0.456 0.605 0.487 0 27.46 1 1 1 1 1
Std. 0.024 2.474 0.03 0.034 0.032 0.025 0.03 0 15.124 0 0 0 0 0

ACBFO
Ave. 0.145 1 0.925 0.799 0.931 0.859 0.859 0.108 1084.6 0.798 0.924 0.934 0.852 0.927
Std. 0 0 0 0 0 0 0 0.018 30.659 0.063 0.022 0.017 0.033 0.012
P − − − − − − − + + + + + + +

ISEDBFO
Ave. 0.145 1 0.92 0.799 0.931 0.8 9 0.859 0.057 623.6 0.887 0.962 0.964 0.92 0.962
Std. 0 0 0 0 0 0 0 0.015 127.109 0.048 0.017 0.015 0.025 0.01
P − − − − − − − + + + + + + +

SMA
Ave. 0.145 1 0.92 0.799 0.93 0.8 9 0.859 0.097 12.  0.81 0.936 0.939 0.864 0.935
Std. 0 0 0 0 0 0 0 0.036 17.111 0.096 0.028 0.029 0.06 0.024
P − − − − − − − + − + + + + +

MOBIFS
Ave. 0.448 2.556 0.734 0.393 0.625 0.537 0.481 0.22 19.633 0.937 0.784 0.966 0.874 0.865
Std. 0.024 1.262 0.002 0.015 0.029 0.01 0.005 0.097 2.387 0.081 0.071 0.041 0.068 0.058
P − � − − − − � + � + + + + +

BMRFO
Ave. 0.144 1.5 0.912 0.811 0.922 0.8 9 0.861 0.104 76.05 0.75 0.942 0.927 0.817 0.931
Std. 0.002 1.235 0.031 0.028 0.021 0.001 0.006 0.039 81.127 0.112 0.042 0.031 0.089 0.028
P − − − − − − − + + + + + + +

IBFA
Ave. 0.154 2.2 0.87 0.826 0.893 0.845 0.855 0.09 2684.9 0.81 0.94 0.94 0.87 0.94
Std. 0.014 1.152 0.062 0.027 0.04 0.02 0.008 0.02 22.44 0.04 0.01 0.01 0.02 0.01
P − � � − � � − + + + + + + +

Te values that are in bold show that each method got the best results based on the evaluation metrics.
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KNNmechanism is more suitable for high-dimensional data
analysis.

5.3. Comparisons with Benchmark Methods. We further
compare the proposed SBHFS method with other bio-
inspired wrapper FS algorithms. Table 6 shows diferent
evaluation metrics (i.e., Err., Fno., TPR, TNR, Pre, GM, and
F1) of SBHFS and benchmark methods for test sets. In
general, SBHFS achieves competitive results compared to the

other six bioinspired feature selection methods, which
means that SBHFS is superior to other bioinspired wrapper
FS algorithms.

From the specifc results, SBHFS performs best for fve
datasets (i.e., LA, CNS, Colon, SRBCT, and DLBCL) with the
most evaluation metrics. However, for the Australian
dataset, the proposed method does not perform best.
Comparing the results of other algorithms reveals that the
efect of SBHFSmay be infuenced by the sparsity of features.
To be specifc, according to the results for the Australian
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Figure 4: Te bar chart of the comparison results with semisupervised methods.
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dataset, we can see that smaller subsets produce better results
and that the number of efective features of the Australian
dataset is about 1 or 2. Nevertheless, SBHFS sets the subset
size to integers between 1 and 10 when the total dataset
contains fewer than 50 features (see Section 4.3). Tis in-
creases the average size of the subset in each iteration, which
exceeds the efective feature size of the Australian dataset.
Except for this, based on the results of statistical signifcance
tests for all datasets, SBHFS achieves considerably enhanced
efciency in 229 of 336 cases (39 cases with the “�” p value
are excluded), which illustrates that SBHFS performs well for
most of the datasets, especially for high-dimensional ones.

From the perspective of the fundamental algorithm,
SBHFS achieves notable signifcance in 150 out of 224 cases
(25 cases with the “�” p value are excluded) in comparison to
four other bacterial-based FS methods, i.e., ACBFO,
ISEDBFO, SMA, and MOBIFS. Te results demonstrate that

the improvements in SBHFS are better than in other bac-
terial-based algorithms in this study.Te proposed strategies
optimize the searching ability of the algorithm, achieving
smaller classifcation error rates and better results on other
evaluation indexes. Moreover, the superiority of SBHFS is
more obvious for high-dimensional datasets (i.e.,
#features> 1999). For example, compared with ISEDBFO,
SBHFS achieves 11.2% lower Err. for Colon
(#features� 1999) and 9.8% lower Err. for SRBCT
(#features� 2308). Tis demonstrates that the dimension
redundancy capability of the suggested feature selection
approach is satisfactory.

Furthermore, compared with BMRFO and IBFA, SBHFS
achieves superior performance in 79 out of 112 cases (14
cases with the “�” p value are excluded). Specifcally,
compared to IBFA, SBHFS achieves 9.9% higher F1 for LA (#
Features� 7129) and 1.4% higher F1 for SRBCT (#
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Figure 5: Te box-line plot of comparison results with benchmark methods.
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Features� 2308). Compared to bacterial-based algorithms,
the efects between SHBFS and other bioinspired algorithms
are better. Tis shows that the proposed modifed bacterial-
based FS algorithm is better for solving dimension reduction
problems and that SBHFS can be used not only for high-
dimensional datasets but also for some low-dimensional
datasets.

To verify the stability of SBHFS, the boxplot in Figure 5
shows the comparison results of the SBHFS with other
bioinspired FS methods. According to the boxplot, except
for the Australian dataset with the 35.7% average classif-
cation error rate, SBHFS has achieved the best accuracy rate
compared with other algorithms for other datasets. More-
over, the median results show that SBHFS generally achieves
lower error rates, and the width of boxes indicates that
SBHFS is more stable than other comparison methods. Tis
is due to the dynamic learning method that allows the
bacterial population of each iteration to move closer to the
optimal solution instead of searching randomly.

6. Conclusions

Tis paper presents a semisupervised bacterial heuristic
feature selection algorithm (SBHFS) to address label in-
complete and high-dimensional classifcation problems. Te
self-adjusted, semisupervised KNN strategy can reconstruct
labels efectively with the help of the two-step self-training
mechanism, and the improved bacterial heuristic method
can enhance the searching precision by increasing feature
selection variety and cooperating with hierarchical pop-
ulation initialization, dynamic learning, and elite population
evolution strategies. To be specifc, hierarchical population
initialization accelerates the convergence of the algorithm
with the help of the SU feature ranking method and the
proposed layer mechanism. Ten, the dynamic learning
strategy increases the diversity of the feature subset because
it promotes the communication of searching bacteria.
Furthermore, the proposed elite population evolution
strategy changes the population update method of the
bacterial-based algorithm and improves its optimization
performance. Te comparisons with the semisupervised
methods show that the proposed semisupervised learning
method is efective for labeling incomplete data, especially
for high-dimensional datasets.

Although the proposed SBHFS approach has shown
promise in high-dimensional classifcation with missing la-
bels, the proposed semisupervised approach is based on the
enhancement of the KNN semisupervised technique, and the
semisupervised method based on other learners is not con-
sidered. Tis may limit the efciency of the bacterial heuristic
algorithm in FS for classifcation issues involving plenty of
sparse features. Considering this information in feature se-
lection may help bacterial heuristic algorithms achieve better
results, although this is challenging to accomplish. In our
future endeavors, we will consider this direction.
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