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As the complexity of cyberattacks continues to increase, multistage combination attacks have become the primary method of
attack. Attackers plan and organize a series of attack steps, using various attack tools to achieve specifc goals. Extracting
knowledge about these tools is of great signifcance for both defense and tracing of attacks. We have noticed that there is a wealth
of security tool-related knowledge within the open-source community, but research in this area is limited. It is challenging to
achieve large-scale automated security tool information extraction. To address this, we propose automated knowledge graph
construction architecture, named SecTKG, for open-source security tools. Our approach involves designing a security tool
ontology model to describe tools, users, and relationships, which guides the extraction of security tool knowledge. In addition, we
develop advanced entity recognition and classifcationmethods, ensuring efcient and accurate knowledge extraction. As far as we
know, this work is the frst to construct the large-scale security tool knowledge graph, containing 4 million entities and 10 million
relationships. Furthermore, we investigate the tendencies and particularities of security tools based on the SecTKG and developed
a security tool infuence-measuring application. Te research flls a gap in the feld of automated security tools’ knowledge
extraction and provides a foundation for future research and practical applications.

1. Introduction

As modern cyberattack techniques continue to develop,
multistage combination attacks have become increasingly
prevalent, which presents signifcant challenges in attack
detection and tracing. Te State of Security 2022 report
reveals that 64% of respondents reported difculty in en-
suring security, representing a 49% increase from the
previous year [1]. Te expansion of the attack surface, the
complexity of the cybersecurity stack, and the shortage of
security technicians are the most common reasons cited.
Te execution of multistage combination attacks involves
careful planning and coordination by the attackers to carry
out a series of attack steps. Tese steps are aimed at
achieving specifc goals at diferent stages via using a variety
of attack tools and techniques. Terefore, automating the
identifcation and analysis of these tools, as well as grasping
their usage characteristics, is crucial for security
researchers.

Research studies show that a signifcant proportion of
hackers or security developers utilize open-source tools or
release the tools they developed to the open-source plat-
forms [2]. And the number of these tools and developers is
growing rapidly [3]. Terefore, identifying and analyzing the
information of these open-source security tools as well as the
developers associated with these security tools can provide
valuable insights for detecting and tracking cyberattacks.
Studies [4, 5] surveyed security developers and security tools
in GitHub, followed by manual analysis to identify potential
conclusions that could help security professionals, while
these two works are manual, which cannot be extended to
large-scale data analysis. Studies [6–8] identifed vulnera-
bilities and malware source codes in GitHub using auto-
mated or semiautomated methods. However, these studies
are restricted to recognize specifc categories, without taking
into account the technical details and relationships of tools.
Moreover, some open-source projects collect and categorize
open-source security tools to help security professionals.
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AlphaSeclab cataloged over ten thousand security-related
tools based on GitHub repository star ranking [9]. Kali
boasted a more comprehensive list of over 600 tools divided
into 12 categories [10]. Yet, the timeliness of these security
tool lists is largely insufcient. Only a few tools will be
updated after 3-4months even for the well-maintained Kali
tools, and the tools’ list maintained by individuals may
remain unchanged for a year or even longer. It is passive and
untimely for security professionals to obtain security tools’
information from the abovementioned sources.

Due to the freely developed nature of most GitHub
projects, extracting information from the vast amount of
unstructured texts becomes challenging, and the security
domain’s complex semantics and specialized vocabularies
make general domain methods unsuitable for direct appli-
cation. While most of the research in security domain
[11–14] mainly relies on CTI reports for security intelligence
extraction, their application to open-source tools’ data yields
unsatisfactory results. It is important to design appropriate
methods which consider the characteristics of open-source
tools to ensure the quality of knowledge extraction for se-
curity tools. Meanwhile, research needs to be done on
constructing a security tools’ ontology that facilitates un-
derstanding and reuse of the knowledge. Although various
cybersecurity ontology models [14–18] have been proposed,
which are not applicable to security tools, existing security
ontologies mostly focus on the description of the attack
events, yet largely overlook the attack tools used.

In this work, we study how to automatically evaluate the
security tools in the open-source community, including
tools’ application scenarios, technical characteristics, pop-
ularity, and related security users. Furthermore, build a large
open-source security tools’ knowledge base for security
professionals. On the one hand, this work can serve as
a guide and reference for penetration testers, enabling them
to quickly grasp the applicable scenarios and technical
characteristics of various tools. On the other hand, the
portrayal of tools and associated users can assist in attack
detection and traceability. By associating security tools’
features, vulnerabilities, consequences, and relevant de-
velopers, defenders can trace the source of the fragmented
attack information to the associated security tools and
people. Our study combines knowledge graph technology
with security tools and proposes a knowledge graph of se-
curity tools called SecTKG. Specifcally, we design a security
tools’ ontology model that characterizes the attributes of
security tools, security developers, and their relationships,
which serves as the foundation of the knowledge graph. We
develop page-level and paragraph-level entity classifcation
models as well as a named entity recognition model based on
the BiLSTM-Attention algorithm in order to achieve ef-
cient and automated knowledge extraction. In the end, we
explore the tendency of the security tools and implement
a security tools’ infuence-measuring application based on
the constructed SecTKG.

In general, we have made the following contributions:

(i) We design a security tools’ ontology model which
characterizes the properties of these tools, their

users, and their associations in the open-source
community. Te ontology can provide a compre-
hensive and general reference for portraying open-
source security tools.

(ii) To address the difculty of knowledge extraction
caused by the nonstandard, semantic complexity
and highly specialized characteristics of open-
source security tools’ data, we implement difer-
ent entity recognition methods according to the
features of diferent entity types to realize efcient
and automatic knowledge extraction. Each of pro-
posed models achieves up to 85% precision and 82%
recall.

(iii) We build the frst large-scale knowledge graph for
open-source security tools called SecTKG. 15,778
security tools are identifed; a total of 4 million
entities and 10 million relationships are in-
corporated in SecTKG. Te code for the key
components is available at https://github.com/das-
lab/SecTKG.

(iv) We investigate the tendency and particularity of
security tools and implement a security tools’
infuence-measuring application based on the
SecTKG. Te result shows that the application can
identify some uncommon security tools for diferent
attack phases.

Te remainder of this paper is organized as follows:
Section 2 presents related work in the area of open-source
community and cybersecurity knowledge graphs. In Section
3, we introduce the ontology. Section 4 details the extraction
approach implementation and Section 5 conducts experi-
ments. Te results and discussion are provided in Section 6.
We explain the limitations of our work in Section 7 and
conclude with Section 8.

2. Related Work

We review related works in two key areas: studies on the
open-source community and studies on cybersecurity
knowledge graphs.

2.1. Open-Source Community. As mentioned before, the
vigorous development of the open-source community has
greatly changed the development and use of software tools.
Researchers want to fnd the trend and impact of community
development and have also published many related
studies [19].

Many studies focused on repositories’ code or commit
information and attempted to fnd code vulnerabilities.
Perl et al. [6] conducted the frst large-scale mapping of
CVEs to GitHub vulnerable commits and proposed a new
method to fnd potential vulnerabilities. Unruh et al. [20]
found that the vulnerable code snippets contained in top-
ranked tutorials can be used repeatedly. Te analysis
framework they proposed has found a total of 117 vul-
nerabilities by analyzing 64,415 PHP repositories on
GitHub. Meli et al. [7] conducted the frst large-scale
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analysis of secret leakage on GitHub. By examining billions
of GitHub fles, they found that secret leakage afected over
100,000 repositories, which may place developers at
a persistent risk. Rokon et al. [8] focused on the limitation
of the lack of malware source code. A total of 7504 malware
repositories were systematically identifed from a large
number of public archives for the frst time. Tey also
identifed and profled some professional hackers. Later,
based on this work, Islam et al. [3] analyzed the hacker
ecosystem by modeling the relationship between users and
malware repositories. Qian et al. [21] developed an
adversarial heterogeneous graph model, capturing re-
lationships between repositories, developers, code, and
unlabeled data, and utilized contrastive learning techniques
to detect malicious repositories.

A number of studies focused on relevant repositories or
developers’ recommendation tasks. Acar et al. [4] studied the
security programming ability of users in the open-source
community by recruiting them to complete tasks, demon-
strating potential for more efcient recruitment. Tey also
investigated how to better support open-source projects in
terms of trust and security considerations in their sub-
sequent work [22]. Many eforts modeled the interaction
nature of the open-source community to identify infuential
repositories or users. Zhang et al. [23] combined the ac-
tivities of users in the open-source community to recom-
mend suitable developers for the project in a wider range.
Wan et al. [24] introduced a probability model to evaluate
the professional knowledge of developers in the open-source
community and help search for experts. Zhou et al. [25]
modeled the complex relationships in the open-source
community into a heterogeneous information network to
support further analysis.

Some studies categorized the tools to support researchers
in continuing a comprehensive and structured survey.
Hoque et al. [26] systematically categorized tools into two
classes, defender tools and attacker tools, and detailed the
subclasses of each. Te popular security tools of the public
domain are introduced and analyzed in detail by category for
a better understanding of their capabilities. Kaksonen et al.
[5] related Google search, tweets, and SecTools.org with
GitHub stars to estimate the popularity of open-source
InfoSec tools. Furthermore, they analyzed the top 100
tools used for cybersecurity, where information would be
useful in relevant security research. Sas and Capiluppi [27]
evaluated diferent software classifcation schemes in
existing studies, summarized the common seven types of
problems, discussed how to improve software classifcation,
and facilitated the research.

Overall, these studies suggest that it is necessary and
meaningful to mine security-related information in the
open-source community. Nevertheless, the abovementioned
research did not propose a comprehensive automatic
knowledge extraction method for open-source security
tools. Moreover, most of the research focused on classifying
the tools and omitting tools’ technical details. In this paper,
we take the frst step in this direction by building
a knowledge graph for security tools in the open-source
community.

2.2. Cybersecurity Knowledge Graph. Google formally pro-
posed knowledge graph in 2012, and it has received a lot of
attention since then [28]. Knowledge graph technology can
help computers understand the logical relationship between
words, concepts, and elements. Peng et al. [29] conducted
a survey on knowledge graphs, indicating that knowledge
graphs can signifcantly enhance the performance of AI
systems and hold promising prospects for driving in-
novation and advancement across multiple areas. Com-
bining knowledge graph technology with the feld of
cybersecurity, building security domain knowledge graphs
can organize the heterogeneous and fragmented security
information in the network into a structured and in-
terrelated knowledge base and provide support for threat
discovery, attack traceability, and expert decision-making.

Te knowledge graph construction process usually in-
cludes ontology construction, entity recognition, and re-
lationship extraction. Ontology is a way of showing the
properties of a subject area and how they are related by
defning a set of concepts and categories that represent the
subject [30]. Te ontology is the foundation of the entire
knowledge graph system and provides guidance on entity
recognition and relationship extraction. Te frst step in
building a cybersecurity knowledge graph is to abstract
massive security domain data into higher-level concepts and
build a corresponding ontological model. Owning cyber-
security data has the characteristics of polysemy and spe-
cialization; the data characteristics, domain knowledge, and
expert experience should be taken into consideration to
build the security ontological model. A number of research
studies have been established to create ontological models
focused on security-related concepts and have produced
signifcant previous work.

Undercofer et al. [15] proposed the frst published re-
search that formally defned IDS ontology for use in in-
trusion detection. In the IDS ontology, the host is defned as
the top-level class, and the attack, system component,
consequence, input, and means classes are defned as second
level. Corresponding attributes and subclasses are defned
for each class. At last, the Mitnick attack is successfully
inferred based on the constructed ontology in the example.
Iannacone et al. [16] also proposed a cybersecurity ontology
called STUCCO. Tey were concerned about the challenges
in managing and utilizing the increasing amount of
cybersecurity information. By constructing STUCCO, the
multisource data were integrated into unifed and organized
concepts.Te researchmade contributions to the convenient
and reusable presentation of security information. Syed et al.
[17] defned a unifed cybersecurity ontology (UCO) based
on the IDS ontology. Te UCO is in accord with STIX
standard and also extended with CVE, CVSS, Cyber Kill
Chain, and STUCCO. UCO helps support information in-
tegration and cyber situational awareness in cybersecurity
systems. Pingle et al. [18] created UCO 2.0 based on UCO
and STIX 2.0 standard. Te RelExt system was implemented
to predict relationships defned in UCO 2.0.

Cyber Kill Chain (CKC) oriented and derived attack
models have proved to be popular and efective. Te CKC
model describes how attackers conduct attacks and achieve
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their objectives and divides the attack process into 7 steps
[31]. By understanding the diferent stages of the attack
process, organizations can use various techniques and tools
to prevent or detect attacks and improve their security
defense capabilities. Te ATT&CK model was built on the
basis of the CKC and focused on describing the attack tactics
and techniques used by attackers during the attack process
[32]. ATT&CK describes the adversary’s actions and specifc
defense measures from tactics, techniques, software, miti-
gation, and adversary group fve aspects, providing orga-
nizations and security professionals with a detailed attack
knowledge base. However, the ATT&CK model cannot help
engineers address those threats from an engineering per-
spective very well. Terefore, the D3FEND model was
created to map cybersecurity countermeasures to ofensive
TTPs later [33]. D3FEND defnes both the key concepts in
the cybersecurity countermeasure domain and the relations
necessary to link those concepts to each other.

On the basis of previous work, researchers studied the
entity recognition and relation extraction method in the
cybersecurity corpus to improve the quality of knowledge in
the cybersecurity knowledge graph. Jia et al. [34] proposed
a quintuple cybersecurity knowledge graph construct and
deduct approach, which considered the aspects of the
concept, instance, relation, properties, and rule. Guo et al.
[11] improved the efect of entity recognition and relation
extraction in UCO 2.0 and proposed a joint entity and
relation extraction model called CyberRel. Sarhan and
Spruit [12] frst applied the open information extraction
method in the cybersecurity knowledge graph construct.
Tey proposed a CTI knowledge graph called Open-CyKG,
which aims to overcome the limitations of a prespecifed set
of information. Li et al. [13] proposed an improved graph
alignment algorithm for matching attack graphs created
from MITRE ATT&CK techniques and extracted from CTI
reports and formed a technique knowledge graph called
AttacKG. Ren et al. [14] constructed a security knowledge
graph for APT organization attribution by recognizing
threat knowledge from bilingual CTI reports combined with
STIX and CYBOX standards. Kaiser et al. [35] proposed
a multisource-fused threat knowledge base and utilized
graph analysis to generate attack hypotheses to aid security
analysts. Some studies extracted entities and relationships
from security-related papers to aid researchers in more
efcient literature searches. Desśı et al. [36] constructed
a large-scale knowledge graph called CS-KG by extracting
knowledge from computer science-related papers using
publicly available tools.

In summary, existing security ontological models and
knowledge graphs overlooked the characterization of se-
curity tools to a certain extent. Tese ontological models
primarily focus on the characterization of attack events, with
little emphasis on the features and functionalities of attack
tools. Although the ATT&CK and D3FEND knowledge
bases describe the technical and functional aspects of some
tools, the quantity of tools is limited and primarily reliant on
security reports. Considering that knowledge graphs are

constructed by extracting entities defned in ontological
models, the research on existing knowledge graphs has also
overlooked the extraction of tool-related knowledge.

3. Security Tools’ Ontology

Te ontological model serves as the foundation for the
SecTKG, aiding in the better organization and expression of
knowledge and facilitating knowledge sharing. Te objective
of the ontological construction is to encapsulate knowledge
of security tools in the open-source community with more
professional and unifed terminologies, depicting their ap-
plication scenarios, technical characteristics, popularity, and
relevant security users. A total of 9 entity types and 7 re-
lationships are defned in the ontology by following the
seven-step method. Figure 1 presents an overview of the
security tools’ ontology.

3.1. Ontological Design. After the research motivation is
clarifed, the ontological model is designed based on the
seven-step method [37] with the consideration of data
characteristics, domain knowledge, and expert experience,
and the efectiveness of the ontology is evaluated. For the
open-source community, some entities and relationships are
existing and obvious, such as users, repositories, and their
relations. However, these features are superfcial and lack
outer join, which is not enough to meet the research mo-
tivation. Accordingly, deep features need to be abstracted
from the available information to better assist penetration
testers and security researchers. Defning the entity types
and relationships is challenging but critical for achieving our
research objectives.

Here, we explain the key parts of the security tools
ontological construction.

3.1.1. Preliminary Work. First of all, we investigated the
existing ontology research in the feld of cybersecurity, but
not limited to the research listed in the related work. We
reviewed the classes and relationships defned in existing
cybersecurity ontologies, preserving those that could be
applied to the security tool ontology. However, these on-
tologies lack the characterization of tool features. Inspired by
the attack models, we reshaped the global process to describe
the security tool’s applicable scenarios from the perspective
of attacks. CKC and ATT&CK are currently the most widely
used attack models. CKC outlines how attackers execute
attacks in seven steps: reconnaissance, weaponization, de-
livery, exploitation, installation, command and control, and
action. ATT&CK categorizes attackers’ methods of exe-
cuting attacks into 14 tactics and hundreds of techniques. In
summary, CKC focuses on describing a complete attack
process, while ATT&CK focuses on the attack techniques
used by attackers during the attack process. We design
a security tool attack phase classifer based on the defnitions
of attack steps in the CKC and attack tactics and techniques
in the ATT&CK.
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3.1.2. Defnition of Important Classes and Relationships.
In ontological construction, we investigated the current
popular open-source community and thousands of actual
open-source tools’ data. Te open-source tools’ data col-
lection work is detailed in Section 5.1. All the elements are
listed to summarize the commonalities and then refned to
more general classes and relationships that are not restricted
to a particular open-source community.

3.1.3. Ontological Evaluation. Tree domain experts are
invited to help evaluate and iterate the security tools ontology.
It is evaluated from three aspects of class nonintersection,
generality, and integrity. Class nonintersection standard is to
ensure that any two classes of entities do not intersect, and
there is no communal instance between classes. Generality
standard evaluates the adaptability of the ontology model and
its ability to meet diferent application requirements, and
whether it can be associated and compatible with the existing
model. Integrity standard ensures that the ontological model
can completely describe the characteristics and connections of
the open-source community security tools. Finally, after four
rounds of modifcation and iteration, the ontological model
defnes a total of 9 entity types and 7 relations.

3.2. Entities in Security Tools’ Ontology. Defnition of entity
types afects the subsequent knowledge extraction to a great
extent. Incomplete entity type defnitions lead to the
omission of security tool knowledge, and unclear entity type
defnitions may impact the efect of knowledge extraction.
Our entity types are defned based on security tools, and they
also cover key features of the tools as well as the relevant
security developers and organizations. Te details of these
entity types are introduced as follows:

(i) SecTool: Tis entity refers to an open-source re-
pository that could be used to launch attacks. It can
be encapsulated software or just a script. Tis
entity has the following attributes: programming
language, readme fle, description, topics, home
page, security term, protocol, operating system,
hardware, created time, and updated time.

(ii) SecUser: Tis entity refers to an open-source
platform user who is concerned about or has de-
veloped open-source security repositories. Tis
entity has the following attributes: user name,
name, blog, e-mail, Twitter name, company, public
repositories number, created time, and updated
time. Tis entity is designed to create a security-
related programmers’ database.

(iii) Attack-phase: Tis entity refers to an attack stage
that describes the specifc role of the repositories in
the overall attack process. It is limited to 5 phases:
reconnaissance, exploit, persistence, lateral
movement, and actions. Attack-phase entity maps
an open-source repository into a particular phase
of an attack life-cycle. Table 1 shows the defnition
of these 5 attack phases.

(iv) Vulnerability:Tis entity refers to a patch of bug or
weakness of systems or software that could be
exploited by hackers. If an open-source repository
implements an attack by exploiting vulnerabilities,
it can extract relevant vulnerability names or links
from it.

(v) Type: Tis entity refers to an open-source re-
pository category to describe the repository as
a tool that works on the system level or the level
above. Te defnition of system tool and

Attack-phase

SecTool Consequence

Vulnerability

SecUser Issue

exploit

cause

use
belong_to

implement

belong_to

belong_to

causeimplement

Organization Locationlocated_atbelong_to

Type

Security term

Protocol

Operating
System 

Hardware

located_at

implement

associate

associate

Figure 1: Security tools’ ontology.

International Journal of Intelligent Systems 5



application tool is shown in Table 2. Tis entity
type summarizes the unstructured description of
tool types as a specifed and structured category.

(vi) Consequence:Tis entity refers to an impact or result
that will be caused on successfully applying the tool.
It is limited to four categories: DenialOfService,
LossOfConfguration, LossOfInformation, and
RemoteAccess. Table 3 shows the defnition of four
consequence categories. Tis entity standards the
unstructured description text into the above-
mentioned four types of consequences.

(vii) Issue: Tis entity refers to a question of the tool’s
bug or feature request committed by developers
who want to use this tool. Tis entity has the
following attributes: issue title, issue body, issue
status, and commit time.

(viii) Organization: Tis entity refers to a group or
company where the security users belong. Tis
entity type helps associate users and identify their
belongings.

(ix) Location: Tis entity refers to a geographical po-
sition where the security user or organization is
located. Tis entity portrays users and organiza-
tions in terms of geographical location.

For the abovementioned entities and entity-related at-
tributes, diferent extraction methods are designed. SecUser,
issue, organization, and location and the attributes related to
these four entity types are collected by crawlers or matched
by regular expressions. Attack-phase, consequence, and type
entity types are extracted by the classifcation method, as
they require understanding the context of the tools. Security
tools’ vulnerability, operating system, protocol, hardware,
and related security terms are extracted by the named entity
recognition method, since there is no unifed naming law or
writing rules for them. Te detailed introduction of the
relevant models is in Section 4.

3.3. Relationships in Security Tools’ Ontology.
Relationships connect entities in ontology to form
a knowledge graph. Seven relationships are defned to as-
sociate entities defned in the security tools ontology, they
are as follows:

(i) Use: A relationship indicating a SecUser entity is
concerned about a SecTool entity. Te subject and
object of the relationship are SecUser entity and
SecTool entity, respectively. Tis relationship
connects the potential users of the SecTool.

(ii) belong_to: A relationship represents the object
being subordinated to or proposed by the subject.
Tis relationship indicates the assets of the SecUser
entity or subordinate members of the organization
entity.

(iii) Exploit: A relationship that the subject aims to
make use of the object to attack victims.Te subject
is a SecTool entity and the object is a vulnerability
entity.

(iv) Cause: A relationship represents the impact caused
by the subject. Te subject is a SecTool entity or
vulnerability entity, and the object is a consequence
entity.

(v) Implement: A relationship represents a SecTool or
a SecUser performing an Attack-phase. Tis re-
lationship connects SecTool and SecUser to the
attack technique.

(vi) Associate: Te relevant relationship between
SecUser entities or between the SecTool entity and
the SecTool entity’s characteristics.

(vii) located_at: A relationship connects the location
entity to the SecUser entity or organization
entity.

Since the relationship set to be extracted has been
determined in advance, the extractions are belonging to
limit relationship extraction. Te abovementioned re-
lationships were extracted using a rule-based relationship
extraction method, which was implemented in two cases.
First, for use, belong_to, and located_at these three re-
lationships and associate relationship between SecUsers,
extract these relationships between entities by matching the
corresponding felds from the crawling data. Second, for
the rest relationships exploit, cause, implement, and as-
sociate relationship with SecTools, a set of rules are defned
based on the security tools ontology to extract them. Te
relationship extraction method is elaborated in detail in
Section 4.

Table 1: Attack-phase defnition.

Category Defnition

Reconnaissance
A phase aims to collect information supporting future attacks, which can be used to
perform initial access or determine the target range, e.g., scanning tools and

network analysis tools

Exploit A phase aims to discover and exploit vulnerabilities for further action, e.g., fuzzy
testing tools, brute cracking tools, and injection tools

Persistence A phase aims to avoid being discovered by the opponent in the whole operation, e.g.,
Trojan and backdoor tools

Lateral movement A phase aims to obtain control authority and conduct intranet penetration in the
opponent’s environment, e.g., agent tools and network trafc attack tools

Actions
A phase aims to take actions to obtain or destroy the opponent’s data information or

afect the opponent’s normal use of the system or network, e.g., sensitive
information acquisition tools and resource hijacking tools
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4. Knowledge Extraction Approach

Figure 2 shows the architecture of our SecTKG. Te ar-
chitecture can be divided into security tools ontology
construction and SecTKG building two parts. Te security
tools’ ontology is the foundation of the whole architecture.
Four modules are designed for building the SecTKG. Firstly,
the data acquisition module collects raw data from the open-
source community by crawlers. Detailed information re-
garding the data acquisition methods and the quantity of
data can be found in Section 5.1.1. Ten, the data pre-
processing module cleans the raw data andmatches the fxed
format knowledge by a regular expression method. Te
knowledge extraction module incorporates three distinct
methods, each dedicated to recognize diferent types of
entities. Finally, the application module generates the
SecTKG, which can be used for knowledge fusion or
inference.

Te specifc objective of this study was to efectively
extract knowledge from the description texts of the open-
source tools according to the ontological model. Accord-
ingly, three methods are implemented to extract information
according to the characteristics of diferent entities. For
some entities or attributes that follow certain formats and
rules, such as CVE vulnerability number, e-mail address, and
IP address, they extract them directly through regular ex-
pression matching.Te regular expression method is usually
accurate, easy to implement, and able to reduce unnecessary
resource consumption. For the entities that need to be
understood in context or even the full text, classifers based
on the page-level and paragraph-level are trained for clas-
sifcation. For some entities whose names are not fxed such
as operating system and hardware names, the named entity
recognition (NER) method is adopted.

4.1. Data Preprocess. In the data preprocessing module, ir-
relevant characters will be deleted, the text format will be
unifed, and the knowledge that can be directly extracted by
regular expression in the raw data will be extracted. First, we
will delete all non-ASCII characters, delete the blank char-
acters at the beginning and end of each line, process invalid
andmissing values, remove duplicate crawled data, and delete
any duplicated information related to tools or users. Second,

we will unify the text language and markdown format seg-
mentation. Trough the observation of the data, it is found
that the project description of the open-source community
mostly uses English. Considering the impact of the amount of
data on the training efect, in the actual implementation
process, the Chinese texts are translated into English texts
with the help of the API provided by Google translation for
unifed processing. Also, most Readme fles edit in markdown
format and there are various symbols to display the title or
subtitle (e.g., ## and multiple − or �). We conclude 6
markdown title expressions and replace them with the
“@part” symbol. Finally, based on the regular expression, the
entities or attributes with a fxed format will be extracted (e.g.,
e-mail, URL, code block, and fle path).

4.2. Classifcation for Entity Classes’ Extraction. For the
entities that are not explicitly stated in the texts and need to
be understood in context, extract them by the text classi-
fcation method. Considering that the descriptions of open-
source repositories are unstructured and diverse, it is one-
sided to conclude the full text into statistical features.
Terefore, the deep learning classifcationmethod is adopted
to automatically learn features through neural networks.

Although the Readme fle of the tool is unstructured and
diverse, there are still some regular patterns in it. One
general pattern is that most tools put a short introduction of
the tool in the frst paragraph to make it easier for others to
read and use. Accordingly, the judgment of the tool’s type or
consequence can just rely on the frst paragraph of the tool’s
Readme fle. However, this paragraph of description is not
enough to express all the information. Te presence of the
specifc principles or vulnerabilities used by the tool may be
distributed anywhere in the Readme text. In this paper, we
implement page-level classifcation model and paragraph-
level classifcation model. We manually annotate thousands
of open-source tools for training, testing, and validation of
each classifer. Te specifc categories and the corresponding
number of labels are presented in Table 4.

4.2.1. Page-Level Classifcation for Attack-Phase Extraction of
Security Tools. Te attack phases of security tools are
extracted through the page level classifcation method. In the

Table 2: Type categories’ defnition.

Category Defnition

System tool A tool that controls and coordinates computer and external equipment and
supports application software development and operation

Application tool A tool that works on the system tool and helps complete user requirements

Table 3: Consequence categories’ defnition.

Category Defnition
DenialOfService Denial of service afects the service provided by the system
LossOfConfguration Leakage or destruction of the basic system and network information or permissions
LossOfInformation Data leakage or destruction
RemoteAccess Remote access and control, such as botnet, CC, and RAT
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open-source community, the textual features of a tool
consisting of the following fve parts: name, description,
topics, Readme, and fle and directory names. Among these,
the Readme provides the most comprehensive and detailed
explanation of the tool. After applying the data pre-
processing module, the frst 2000 words are extracted from
the Readme text and transformed into word vector using
a Word2Vec model. Tese word vectors then serve as input
for the page-level classifcation model.

According to the statistics of the length of the Readme
text, the character length of more than 44% of the data is
more than 1000. Directly applying the convolutional neural
network (CNN) or recursive neural network (RNN) to this
long data sequence, the characteristics of the previous long
time slice are easy to be covered after multistage calculation.
Tis dependence issue can be settled by adopting long short-
term memory (LSTM) [38]. Based on the original RNN
hidden layer, the cell state and the gate units are added in
LSTM hidden layer. For a long Readme text input sequence,
it is necessary to discard irrelevant information in a timely
manner. Whether to memorize or forget features will be

controlled by the gate units. Each gate unit contains a sig-
moid function σ to determine the probability of allowing
information to pass. Te output of σ is between 0 and 1. For
time t, the input Xt is determined by the input gate it. Te
retention of cell state Ct−1 is controlled by the forget gate ft.
Te current output of the layer is mainly related to the
previous training hidden state ht−1 and current input Xt.Te
activation function tan h maps the output to the range of
−1–1. At last, the output gate ot gives the value ht as one of
the unit outputs. Te current output of the layer is mainly
related to the hidden state ht−1 of the previous training and
current input Xt. Te derivation method is shown in
equations (1)–(5). Te weight matrix and bias vector are
represented as W and b, respectively.

ft � σ Wf · ht−1, Xt􏼂 􏼃 + bf􏼐 􏼑, (1)

it � σ Wi · ht−1, Xt􏼂 􏼃 + bi( 􏼁, (2)

ot � σ Wo · ht−1, Xt􏼂 􏼃 + bo( 􏼁, (3)

Ct � ft · Ct−1 + it · tan h WC · ht−1, Xt􏼂 􏼃 + bo( 􏼁, (4)

ht � ot · tan h Ct( 􏼁. (5)

However, the LSTM can only calculate forward and
cannot consider the impact of the current information on
the previous information. Hence, page level classifcation
model adopts the bidirectional LSTM (BiLSTM) [39], which
consists of forward and backward LSTM networks. It can
learn the characteristics of sequentiality and long-term
dependencies and capture the dependencies implied in
the Readme.

We consider that some keywords can strongly indicate
the attack-phase of a security tool. For example, if the phrase
“port scanner” is in the Readme text, it is likely a security tool
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Figure 2: SecTKG architecture.

Table 4: Labeled dataset detail.

Entity name Category Number

Attack-phase

Reconnaissance 418
Exploit 690

Persistence 332
Lateral movement 511

Actions 187
Others 692

Type System tool 623
Application tool 977

Consequence

DenialOfService 133
LossOfConfguration 360
LossOfInformation 634
RemoteAccess 164

Others 400
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for reconnaissance phase. Te attention mechanism is in-
troduced to enable the model to focus on key information,
much like humans do, and assign greater weight to im-
portant information in the input data. Te attention
mechanism function Attention(Q, K, V) maps query Q to
key-value pairs K: V{ }. By breaking the traditional encoder-
decoder structure, the output of the encoder in each time
step is combined with the output of the decoder in time step
T, and a context vector is created for time step T in order to
encapsulate the most relevant information in the encoder.

Te page level classifcation model is based on BiLSTM
and attention mechanism algorithm. First, the Readme text
is transformed into word vectors using a Word2Vec model
trained on security corpus. Tese word vectors are then fed
as input sequences into the BiLSTM layer for feature ex-
traction, capturing contextual information within the se-
quence. Te extracted feature sequences � h1, h2, h3, . . . ,􏼈

hn} are then passed to the attention layer, where the attention
layer makes the model pay more attention to the important
information in the text and reduce the interference from less
relevant information on the output. In the attention layer, an
attention matrix captures the similarity between each word
and all adjacent words in the sentence and assigns weights to
each word based on its importance. Finally, the output from
the attention layer is transformed into a probability distri-
bution for each class by the fully connected layer. Te class
with the highest probability is selected as the classifcation
result.

4.2.2. Paragraph-Level Classifcation for Type and Conse-
quence Extraction of Security Tools. Te type and conse-
quence of security tools are extracted based on the
paragraph-level classifcation method. According to our
observations, most open-source tools put a brief in-
troduction to the tool in the frst paragraph for the con-
venience of others to read and use. We only intercept the
frst paragraph of the Readme text as a paragraph-level
classifcation feature and unite it with the tool’s topics,
attack-phase, and programming language features. Since
most Readme fles will use the standard markdown format,
we segment the Readme text according to the paragraph
symbol that is marked in the data preprocessing module. If
a Readme fle does not follow the markdown format, the text
will be cut at the frst 200 words.

Te input text of the paragraph-level classifcationmodel
intercepts the frst paragraph in the Readme fle and com-
bines it with the topics, attack-phase, and programming
language feature felds of the tool. Te Word2Vec model
trained on the security corpus is adopted to convert input
text into sequence Xi and take Xi as the input of the
paragraph-level classifcation model. Diferent from the
input data of the page-level classifcation model, the input
data Xi is short and the syntax logic is not obvious. Due to
the characteristics of the input data of the paragraph level
classifcation model, it is inappropriate to directly apply the
page-level classifcation model to this task. Tis may cause
unnecessary performance consumption and overftting
problems.

Considering the text features of paragraph-level classi-
fcation described above, adopt the TextCNN proposed by
Chen [40] to construct the model. Te TextCNN’s ability to
process short text data and its simple network structure
make it a suitable candidate to boost the performance of the
paragraph-level classifcation model. For the input sequence
Xi, the paragraph-level classifcation model frst extracts
features from Xi through convolutional layers. Te flters in
the convolutional layers learn diferent features in the input
sequence and generate corresponding feature maps. Ten,
the pooling layer adopts the global max-pooling method to
retain features and reduce the scale of parameters. Finally,
the feature vectors are multiplied by the weight matrix of the
model through fully connected layers, and the score for each
class is obtained using an activation function. Te class with
the highest probability score serves as the prediction result of
the paragraph-level classifcation model for the input
sequence.

4.3. Named Entity Recognition for Irregular Attributes’
Extraction. Te task of named entity recognition in the feld
of cybersecurity usually involves identifying vulnerabilities,
malwares, IP addresses, attack organizations, and other
terms. For entities with a fxed format such as IP address,
recognition can be carried out based on rule matching. For
terms such as malware names that do not follow specifc
formats or syntax, the machine learning method is usually
used to recognize them by automatically learning features
through neural networks. Te named entity recognition
model in this work is used to recognize vulnerability entity
type and four entity attributes associated with the SecTool
entity, namely security term, network protocol, operating
system, and hardware. For these fve entity types, we an-
notate over 10,000 entities in the Readme texts of tools
classifed as security tools, and the specifc number of labels
for each entity type is provided in Table 5. Te BIO an-
notation strategy is employed for the labeling process.

Although the named entity recognition technology for
general felds has been relatively mature, recognizing se-
curity entities is still a challenging task. First, the writing
method of cybersecurity entities is “nonstandard.” On the
one hand, entities often use a variety of types of combi-
nations, such as word and number combinations (e.g.,
Windows 10) and noun and verb combinations (e.g., code
injection). On the other hand, the abbreviations of entities
are common and changeable. For example, “windows op-
erating system” can be written as Win or win. Second, the
semantics of cybersecurity entities are complex. Te general
phenomenon of polysemy can easily cause entity confusion.
For example, the word “MAC” can refer to a MAC address,
a Mac computer, or even a cosmetics brand. Tird, the
cybersecurity situation is complex and changeable, and new
security entities are constantly emerging. Our method takes
the characteristics and challenges of security texts into
consideration to implement the named entity recognition
method for security tools. Tis method is illustrated from
two aspects: BERT-based word embedding and attention-
based BiLSTM-CRF NER model.
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4.3.1. BERT-Based Word Embedding. We used bidirectional
encoder representation from transformers (BERT) [41] to
construct a word vector. BERT uses a bidirectional trans-
former encoder to capture language features and de-
pendencies between words from large-scale unlabeled data
through huge internal training parameters, so as to achieve
strong representation ability. In addition, a two-way
transformer encoder solves the defect that traditional
transformer models such as ELMo can only focus on the
features in one direction. Tere is a lack of large-scale
specialized corpora in the feld of cybersecurity. Using the
pretrained BERTmodel, the prior knowledge learned in the
pretraining stage can make up for this defect to a certain
extent. At the same time, the multilayer transformer coding
of BERT helps to address the issue of polysemy in cyber-
security entities. When diferent sentences containing the
same word are input into BERT, the word vectors outputted
by BERT will be diferent, allowing for a more accurate
representation of the intended meaning of the word.

BERTembedding frst converts the input text into token
sequence through WordPiece tokenization and adds a CLS
tag at the beginning and a SEP tag at the end of the sentence.
In addition to the strong representation ability brought by
BERT structural design, the applicability of the BERT
WordPiece tokenization method to security texts is also
taken into consideration. Te efect of the WordPiece model
[42] based on language modeling is to split words into
fragments. By separating the meaning of words from the
changes of afxes and tenses, the WordPiece model helps
efectively reduce the number of words in the dictionary. For
example, the word “upload” in the input text will be split into
“up” and “##load,” and the word “WindowsXP” will be split
into “Windows,” “##X,” and “##P.” As mentioned above,
security texts have the characteristics of nonstandardized
naming and frequent neologisms. Te traditional method
segments sentence and forms the vocabulary by counting
and selecting the top N words with the highest frequency,
which cannot perform well on security texts for it usually
cannot contain all the words in the security data set and lead
to many out-of-vocabulary (OOV) words. Also, the low-
frequency words cause word features high-dimensional and
sparse, and words in diferent tenses will be treated as
diferent words which increases training redundancy. Te
subword tokenization model breaks down words into
meaningful subwords, which can solve the problems men-
tioned above and fnd a balance between the vocabulary size
and the unknown word coverage.

4.3.2. Attention-Based BiLSTM-CRF NER Model. Section
4.2.1 has described the advantages and applicability to our
dataset of attention-based BiLSTM model. Te diference is
that the NER model adds an additional conditional random
feld (CRF) layer to increase the consideration of label in-
formation. Although the attention-based BiLSTM can be
directly used for sequence annotation, it ignores the con-
sideration of the label information, take “CVE-2019-9810
has been exploited at Pwn2Own 2019” as an example. Te
label of “CVE-2019-9810” output by LSTM is “noun,” and
the label of “Pwn2Own” may also be “noun.” But in fact,
“CVE-2019-9810” label is “vulnerability” and the
“Pwn2Own 2019” label is “security term,” that is, the rule of
“vulnerability” + “security term” is not captured by the
model. Terefore, the conditional random feld model is
introduced to the NER model.

For the conditional random feld, its state depends on its
adjacent state. In the linear model, it depends on the pre-
vious state and the latter state. It can be expressed as (6),
where X(tn−1) � xn−1, X(tn−2) � xn−2, . . . , X(t1) � x1 rep-
resents the state of the frst n − 1 step in the sequence. Te
X(tn) � xn represents the status of step n. Te probability of
status X(tn) � xn is interrelated to step n−1 and step n+ 1.

X tn( 􏼁 � xn

􏼌􏼌􏼌􏼌X tn−1( 􏼁 � xn−1, X tn−2( 􏼁 � xn−2, . . . , X t1( 􏼁 � x1􏼐 􏼑

� P X tn( 􏼁 � xn

􏼌􏼌􏼌􏼌X tn−1( 􏼁 � xn−1, X tn+1( 􏼁 � xn+1􏼐 􏼑.

(6)

Te performance efect of conditional random feld
alone is not satisfactory. Combining it with a deep learning
model can enhance overall performance. First, the input
Readme text is transformed into word embedding using
a pretrained BERTmodel. Tese embedding are then used as
input to the attention-based BiLSTM neural network for
feature extraction. Te BiLSTM layer captures contextual
features and generates hidden state representations, denoted
as ht. Te attention mechanism assigns diferent weights to
the contextual words. Ten, the CRF layer calculates the
probability distribution of labels for each word based on the
output of the attention layer. According to the label transfer
matrix of CRF, the score of label Yi−1 of the previous word
and label Yi of the current word can be obtained. Finally, the
label with the highest probability score is assigned as the
sequential labeling prediction for the current word.

4.4. Relationship Extraction. After the entity classifcation
and entity recognition module completes the recognition of
entities, it extracts the relationships between entities. Te
relationship extraction method is rule-based and can be
divided into two aspects: regular expression-based rules and
ontology-based rules. Te regular expression-based re-
lationship extraction is performed during the data acqui-
sition process. Te relationships of use, belong_to, and
located_at relationships and the associate relationship be-
tween SecUser entities are known relationships in the open-
source community and can be matched based on regular
expressions. Taking the use relationship as an example, we
match the users who perform star, fork, and follow actions

Table 5: Labeled dataset distribution.

Model Entity name Number
Page-level classifer Attack-phase 2,830

Paragraph-level classifer Type 1,660
Consequence 1,691

NER

Vulnerability 322
Security term 3,278

Protocol 3,387
Operating system 3,239

Hardware 1,077
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on security tools by crawlers. Tese users have a use re-
lationship with the tools. For other relationships, a set of
rules based on the security tools ontology are defned to
establish relationships between entities.

Te ontology-based relationship extraction rules rely on
the premise that security tools only refer to relevant entities.
According to our observation of the characteristics of se-
curity tools’ data, the tools provide concise descriptions of
the usage and features in the Readme, while rarely men-
tioning unrelated information or unsupported function.
Terefore, if two entities of the same security tool are
extracted and the types of these two entities have a defned
relationship in the ontology, then a unique relationship
between the two entities exists. Specifcally, when an open-
source tool is classifed as a security tool and is defned as
sectooli, the attack phase entity phasei for sectooli can be
obtained through the page-level entity classifcation model,
and the consequence entity consequencei and type entity
typei can be obtained through the paragraph-level entity
classifcation model. On the basis of the security tools on-
tology, the relationship among (sectooli, implement,
phasei), (sectooli, cause, consequencei), and (sectooli,
associate, typei) can be obtained. Assuming that the de-
veloper of this security tool is secuseri, the secuseri has
implemented relationship with phasei. Trough the NER
model, the vulnerability entity vuli and four types of attri-
butes of sectooli can be recognized. According to the on-
tology, the sectooli has exploit relationship with vuli, and
vuli has cause relationship with consequencei. Te security
term, protocol, operating system, and hardware attributes
have associate relationship with sectooli.

5. Experiment

5.1. Dataset. Since the dataset used in the experiment is the
newly labeled data set in this study, we will introduce the
data source, data labeling, and label distribution of the
experimental data set in this section.

5.1.1. Data Source. Tis experiment uses GitHub as the data
source, considering that GitHub is the largest open-source
community platform at present with good community
ecology and comprehensive and diverse data types.

We employed two methods for data acquisition: a col-
lection repositories-based method for one-time updates and
a seed user-based method for incremental updates. Some
repositories, such as [9], collect security-related tools on
GitHub. Te collection repositories-based data acquisition
method is to collect tools and users’ information from those
collection repositories. We crawled 12 repositories that
collected security tools, extracted the GitHub repository
links, and then proceeded to crawl tools and related users
data from these repositories. In addition, we manually se-
lected a set of high-quality seed security users, totaling 903
users, who demonstrated active engagement and a strong
interest in security-related projects on GitHub. To ensure
ongoing data updates, we periodically crawled their follow or

star lists to capture any changes. By employing these
combined strategies, we obtained a comprehensive and up-
to-date dataset for our research on security tools and pro-
jects. With the help of the ofcial API provided by GitHub
and the requests library of Python, complete information on
these tools and users is obtained. At last, more than 40
thousand tool repositories’ information and more than 3
million users’ information are crawled, including their
relevant attributes. Te entity type, corresponding quantity,
and various entity attributes that crawled are shown in
Table 6.

5.1.2. Data Labeling. Wemanually marked some of the data
for the training of the deep learning model. Two lab-mates
are invited to perform the annotation. Both of them have
a bachelor’s or higher degree in cyber security and equip in-
depth knowledge of software engineering and security. For
labeling the data used in the classifer, we manually assigned
a label to each security tool based on its topics, descriptions,
and Readme text according to the category defnition. Te
specifc dataset volume involved in model training and
evaluation is shown in Table 5, and the detail of classifer
label distribution is shown in Table 4. For NER labeling, label
each word in the security tools Readme text by assigning one
of the six labels: vulnerability (VUL), security term (ST),
protocol (P), operating system (OS), hardware (HW), or
others (O).Tose words that are not related will be labeled as
O.Te BIO annotation strategy is adopted for the labeling. If
the entity is a word combination, the frst word is marked as
“B-” entity type (e.g., B-OS), and the subsequent words are
marked as “I-” entity type (e.g., I-OS).

5.2. Experimental Design. In this section, the superiority of
our knowledge extraction method will be proved by sepa-
rately evaluating the efectiveness of classifers and the
named entity recognition model. Te open-source tools’
dataset is divided into training, test, and validation sets with
an 8:2:2 ratio. Te validation set is used to evaluate the
models. Based on the evaluation matrix, the efect is eval-
uated from three aspects of precision, recall, and F1-score.
Te hyperparameter settings of our knowledge extraction
model are shown in Table 7.

5.2.1. Evaluation Matrix. Te evaluation criteria adopted in
this paper are consistent with the prevailing standards at
home and abroad. Researchers usually use the precision,
recall, and F1 score as the evaluation means. Tis study also
adopts these three standards to evaluate the performance of
the model. Te calculation methods are shown in equations
(7)–(9). Generally, TP is used to represent the number of
samples that predict the positive class as the positive class,
FN is used to represent the number of samples that predict
the positive class as the negative class, and FP is used to
represent the number of samples that predict the negative
class as the positive class.
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Precision �
TP

TP + FP
, (7)

Recall �
TP

TP + FN
, (8)

F1 �
2 × Precision × Recall
Precision + Recall

. (9)

5.2.2. Page-Level Classifcation Model for Security Tool’s
Attack-Phase Extraction. Tis model is the most important
model in our system, which is used to distinguish security-
related tools from massive open-source tools and classify
security tools from the perspective of attack. Page-level-
basedattack-phase multiclassifer model takes the full
Readme text of the tool as the input text and outputs the
result of one of the fve attack stages or the result of non-
related tools. By classifying the attack-phase of tools, po-
tential attack-related tools can be provided for security
professionals from the perspective of attackers, avoiding the
disadvantage of a single perspective directly classifed as
security defense tools.

When evaluating this classifer, we design to prove the
efectiveness of this method through the following com-
parative experiments: feature selection and neural network
selection. Te feature selection aims to prove that just
choosing a tool’s topics, description, or frst paragraph may
not represent the security tools attack-phase properly.
Hence, this experiment compares the efect of diferent input
text as follows: topics and description, topics and frst
paragraph, and full Readme text. In Figure 3, the horizontal
axis represents diferent text features used as inputs, while
the vertical axis represents the precision of the attention-
based BiLSTM model and TextCNN model when using that
feature as input. When the embedding method and

classifcation model remain unchanged, although on the
training set the performance is similar, page-level feld se-
lection has obvious advantages in the validation set. As
shown in Figure 3, the precision of taking full Readme text as
input is improved by 3–5% than other selections when the
attention-based BiLSTMmodel uses default parameters. We
compared three commonly used models, namely RNN,
LSTM, and TextCNN, with BiLSTM and attention mecha-
nism to demonstrate the efectiveness of BiLSTM and at-
tention mechanism on our long input data. As shown in
Table 8, the precision of attention-based BiLSTM model is
improved by 9% than the RNN model and LSTM model.
Tis also formalizes our analysis in the previous section;
attention-based BiLSTM model can build long-distance
dependence between texts and capture the import in-
formation features at the same time. For the TextCNNmodel
on page-level classifcation, eforts have been made to raise
the fnal performance of the model, specifcally, adjusting the
structure of the convolutional layer, pooling layer, the size of
kernel size, loss function, and activation function. Despite
these attempts to adjust, the TextCNN model continues to
underperform in accurately identifying the attack-phase of
open-source tools. In comparison to the attention-based
BiLSTM model, the precision of the TextCNN model is
more than 20% lower.

Furthermore, we compared our proposed paragraph-
level model (BiLSTM and attention mechanism) with rel-
evant tools used in previous studies, including SourceFinder
[8], TIMiner [43], and SecureBERT [44]. All of them are
based on supervised learning to classify unstructured text
into security-related categories. SourceFinder classifes
Github repositories as malware or other based on felds such
as name, Readme, and description. TIMiner collects security

Table 6: Crawled raw dataset.

Name Number Attributes

Repositories 47,440 repo_id, description, topics, Readme, branches, homepage, license, owner_type,
programming language, and created_at, updated_at

Users 3,910,704 Username, user_id, avatar, user_type, actual_name, company, blog, e-mail,
hireable, twitter, created_at, and updated_at

Organizations 8,058 organization_name, organization_id, avatar, description, blog, e-mail, twitter,
created_at, and updated_at

Issues 1554,586 issue_id, title, body, and open_state

Table 7: Hyperparameter settings of our knowledge
extraction model.

Hyperparameter Value
Epochs 30
Batch_size 64
Dropout rate 0.4
Optimizer Adam
Kernel size 3
Units 128
Kernel_regularizer L2

Readme Topics + Description
Input Field

Topics + 1st para

0.86

0.62

0.83

0.50

0.81 0.77

BiLSTM+Attention
TextCNN
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Figure 3: Impact of choosing diferent text felds and neural
networks on page-level classifcation for security tool’s attack-phase
extraction.
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text from security blogs and reports to classify them into fve
impact domains. SecureBERT is a language model designed
for cybersecurity that can capture the complex semantics of
security text. Orbinato et al. [45] proposed an automated
method to map CTI reports to ATT&CK techniques, and the
SecureBERT-based classifcation model achieved the best
performance among 11 models in the comparison experi-
ment. We fne-tuned three models on our security tools
dataset, and the experimental results are shown in Table 9. It
appears that the traditional machine learning algorithms
used in SourceFinder cannot capture the security categories
expressed in the text semantics, resulting in a low evaluation
precision on the validation set. Te SecTKG page-level
classifcation model achieved an F1 score that is 23% and
13% higher than TIMiner and SecureBERT, respectively. It
should be noted that SecureBERT sufered from severe
overftting in the experiments, which may be due to the
limited size of our labeled dataset. We attempted various
methods to alleviate overftting, including only adjusting the
last hidden layer of the model during training, increasing the
dropout rate, and applying L2 regularization, but the highest
precision we could achieve was only 74%.

Trough the comparative experiments on feature se-
lection and model selection, we have demonstrated the
rationale for classifying the attack-phase of tools at the page
level, as well as the ability of the attention-based BiLSTM
model to extract features from long texts. Furthermore,
compared to more complex deep learning models such as
BERT, the attention-based BiLSTM model is better suited
for mitigating overftting issues in limited dataset scenarios.

5.2.3. Paragraph-Level Classifcation Model for Security
Tool’s Type and Consequence Extraction. If an open-source
tool is classifed as one of the attack-phase after the page-
level classifcation model illustrated in Section 4.2, take the
tool as a security tool and mine more characters of it. Tis
model is used to recognize whether the security tool is
system type or application type and what consequence the
security tool may cause.

As we already get the attack-phase of the security tool
after the page-level classifcation, take the advantage of this
feature and add the crawled programming language and
topics’ features to the input text to improve the efectiveness

of the classifer. Tree groups of diferent inputs are set up to
compare the classifcation efect. Tey are (a) top-
ics + description, (b) full Readme text, and (c) attack-
phase + programming language + topics + frst paragraph of
the Readme. Te x-axis of Figure 4 represents three feature
groups mentioned above, while the y-axis represents the
precision of classifying type and consequence categories
when selecting a particular feature group as input. As shown,
when using the same neural network, the (c) feature com-
bination has the best performance, with a maximum im-
provement of 16% in precision.

Adjusting the TextCNN model parameters to better
capture the text features, results come out that the con-
volutional layer below three layers is difcult to extract
efective features from the text, and the feature extraction
efect is the best when the convolution kernel size is 3. Te
overftting problem can be alleviated by increasing L2
regularization loss. Te efect of our paragraph-level model
is also shown in Table 8. Te experiment compares the
performance of the RNN model, LSTM model, and
attention-based BiLSTM model on the tool’s type and
consequence classifcation. After parameter adjustment and
optimization, the TextCNN model can do better with 3%
than the attention-based BiLSTM model, and the training
time of each round of the model can be reduced by 90%.
Besides, under the condition of approximate training time,
the TextCNN model can do better with 2–9% than the RNN
model. Te more complex neural network and longer
training time of the attention-based BiLSTM model did not
get a better classifcation efect on the security tool’s type and
consequence extraction. We considered that the length of
the input text is short, and there is no obvious word order
relationship in the spliced feature felds which leads to this
result. Table 9 shows the comparison results of SecTKG
paragraph-level classifcation model and SourceFinder,
TIMiner, and SecureBERT. Our improved TextCNN model
outperforms TIMiner with an increased accuracy of 7.95%
for the type classifcation and 5.82% for the consequence
classifcation. SourceFinder’s accuracy has slightly improved
in the type binary classifcation but still performs poorly in
the consequence multiclass classifcation. Te SecureBERT
model also sufers from overftting issues in paragraph-level
classifcation as mentioned in the previous section, which

Table 8: Results for page-level and paragraph-level classifcation.

Model Class Word embedding Neural network Precision (%) Recall (%) F1-score (%)

Page-level Attack-phase Word2Vec

RNN 77.29 67.08 70.86
LSTM 77.41 70.42 73.21

TextCNN 61.97 56.34 59.05
BiLSTM+ attention 86.33 85.56 85.89

Paragraph-level

Type Word2Vec

RNN 83.56 79.91 81.70
LSTM 83.92 82.09 82.99

TextCNN 85.26 82.65 83.93
BiLSTM+ attention 82.14 81.78 81.95

Consequence Word2Vec

RNN 79.32 75.58 77.36
LSTM 85.54 83.04 84.22

TextCNN 89.29 85.27 86.99
BiLSTM+ attention 86.90 82.73 84.68
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results in a decreased accuracy on the validation set. By
means of experimental comparisons of feature selection and
model selection, we have demonstrated that SectKG
paragraph-level classifcation based on TextCNN model
outperforms the baseline model and state-of-the-art re-
search in the feld.

5.2.4. Named Entity Recognition Model for Irregular Attri-
butes’ Extraction. Tis experiment compared the impact of
two word embedding models, BERT and Word2Vec, on the
performance of NER model. Te BERT model is using the
model trained by Jackaduma [46] on the cybersecurity
corpus and the Word2Vec model is using the model trained
by Youngja [47] on the cybersecurity corpus. Te hidden
units, batch size, optimizer, and learning rate are set to 128,
32, Adam, and 0.001.

Te efect of the NER model is shown in Table 10.
Compared with Word2Vec word embedding, the BERT
embedding F1-score does better with about 5%.As already
mentioned in Section 4.3, BERT embedding has advantages
in its network structure and tokenization model, which we
think is the reason why BERT embedding has better per-
formance than Word2Vec embedding on the security tools’
dataset. Te recall and F1-score of the BiLSTM efect has
improved by 2.6% and 1.1% compared with BiGRU, in-
dicating that the combination of attention mechanism and

LSTM+CRF model can better identify network security
named entities.

Table 11 shows the experimental results of entity rec-
ognition models used by four tools, namely Open-cykg [12],
CSKG4APT [14], CTI View [48], and Vulcan [49], on the
security tool dataset. Tese tools are all used to identify
security entities from security texts. Open-cykg incorporates
a time-distributed dense layer into the entity recognition
model to build a BiGRU-ATT-TDD-CRF model for iden-
tifying open CTI knowledge. CSKG4APT and CTI View
both use a BiLSTM-GRU-CRF model to identify APT-
related knowledge from CTI corpus. Vulcan adopts
a BiLSTM-CRF model to identify CTI knowledge from
multiple sources of data. As shown in Table 11, the word
embedding method and neural network utilized by SecTKG
were superior to other models. We attribute this to two main
reasons. Firstly, SecTKG employed a BERTmodel trained on
security corpora, which was more efective in embedding
security terms than BERT models trained on general do-
mains. Secondly, the attention layer was added to allow the
model to focus more on key features. Although the open-
cykg tool also added an attention layer, considering that our
entities did not have any signifcant time span diferences,
the added TDD layer in open-cykg may have afected the
fnal output.

6. Results and Discussion

6.1. Data Analysis. After the knowledge extraction experi-
ment, we analyzed the experiment results and explored the
distribution and development trend of security tools. In
addition, we found some security tools’ characteristics dif-
ferent from general open-source tools by comparing the
statistical results with some public reports [50, 51].

6.1.1. Distribution of Tools. At last, 15,778 security tools are
identifed from the 35,214 repositories we collected. Some
statistics are made according to the security tools ontology.
First, the attack-phase of security tools is analyzed. As shown
in Figure 5, security tools belong to the exploit phase ac-
counting for the largest proportion, and security tools be-
long to the actions phase accounting for the minimum
proportion. Specifcally, 5,010 security tools belong to the

Table 9: Classifcation method comparison between SecTKG and SourceFinder, SecureBERT, and TIMiner.

Class Model Neural network Precision (%) Recall (%) F1-score (%)

Attack-phase

SourceFinder (2020) [8] Multinomial Naive Bayes 18.03 5.72 8.7
TIMiner (2020) [43] CNN 70.86 55.97 62.40

SecureBERT (2022) [44] SecureBERT 74.33 71.34 72.35
SecTKG_Page-level BiLSTM+ attention 86.33 85.56 85.89

Type

SourceFinder Multinomial Naive Bayes 69.53 73.51 71.46
TIMiner CNN 77.31 60.53 67.89

SecureBERT SecureBERT 84.25 91.91 87.92
SecTKG_Paragraph-level TextCNN 85.26 82.65 83.93

Consequence

SourceFinder Multinomial Naive Bayes 16.3 23.57 19.27
TIMiner CNN 83.47 63.68 72.20

SecureBERT SecureBERT 86.73 85.92 85.79
SecTKG_Paragraph-level TextCNN 89.29 85.27 86.99

(a) (b) (c)

0.75 0.73 0.76 0.81 0.85 0.89
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Consequence
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Figure 4: Impact of text feld chosen for paragraph-level classi-
fcation: (a) topics + description, (b) full Readme text, and (c)
attack-phase + programming language + topics + frst paragraph of
the Readme.
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reconnaissance phase, accounting for 31.75%. 5,329 security
tools belong to the exploit phase, accounting for 33.77%.
1,824 security tools belong to the persistence phase, ac-
counting for 11.56%. 3,154 security tools belong to the lateral
movement phase, accounting for 19.99%. 461 security tools
belong to the actions phase, accounting for 2.92%. Second,
according to the identifcation results of the paragraph-level
classifcation model, the types and consequences of security
tools are counted. For security tools type, only 1,492 security
tools work on the system level, and the rest all belong to
application tools. For the consequence that will be caused by
these security tools, 1,096 tools will cause DenialOfService
consequence, 3,438 tools will cause LossOfConfguration
consequence, 7,416 tools will cause LossOfInformation
consequence, and 3,828 tools will cause RemoteAccess
consequence.

6.1.2. Popular Programming Languages. According to the
knowledge extraction framework, the corresponding pro-
gramming language attributes are extracted from 15,778
identifed security tools. Comparing the results with the
popular programming languages of general open-source
tools to explore whether security developers have diferent
preferences for programming languages, the state of the
octoverse 2022 [50] shows the most used languages, and the
top 10 languages are JavaScript, Python, Java, TypeScript,
C#, C++, PHP, Shell, C, and Ruby. According to our sta-
tistics on the programming language of security tools, the
top 10 popular programming languages are Python
(30.78%), C (11.46%), Go (9.73%), C++ (7.23%), JavaScript
(5.53%), Shell (5.2%), C# (3.75%), Rust (3.5%), Java (3.17%),
and Powershell (2.54%). It can be found that the most
commonly used language for security developers is Python
rather than JavaScript, which has an overwhelming ad-
vantage in the overall proportion. At the same time, the use
of C, shell, and PowerShell by security developers is also
signifcantly higher than that of other developers.

Furthermore, an analysis was done to fgure out whether
the abovementioned phenomenon is owing to a diferent
attack phase has a diferent preference for programming
languages. Te outcome shows that Python and Go lan-
guages are frequently used in the reconnaissance phase,
which may be due to the ease of use of the language and the
sound third-party library. C, C++, Shell, and PowerShell are
used more frequently in the exploit phase and persistence
phase, which have an advantage in operating efciency and
higher system relevance. For the lateral movement phase,

Python, Go, C/C++, and JavaScript are more popular. For
the action phase, Python and C are more popular.

6.1.3. Popular Operating Systems. Te aim of this analysis is
to explore whether security tools are biased towards diferent
operating systems, or which operating system security de-
velopers pay more attention to. Based on our named entity
recognition model, 12,492 operating systems related to se-
curity tools are recognized. Te statistical result shows that
Linux is the most popular operating system for security
developers, which account for 58.58%. Windows, macOS,
Android, and IOS account for the proportion 21.08%, 9.18%,
4.8%, and 2.19%, respectively. However, it seems that there
are no statistics on the usage proportion of diferent op-
erating systems in the open-source community to date. For
reference, comparisons are made with StatCounter’s “op-
erating system market share worldwide—March 2022” [51]
and Tomas Alsop’s statistic for the global server operating
system market [52]. According to StatCounter statistic, the
top 5 operating systems and respective proportions are
Android (41.59%), Windows (31.12%), IOS (16.87%), OS X
(6.3%), and Linux (0.97%). And Tomas found that Win-
dows and Linux are the most popular operating system for
servers, whose proportion ratios are 72.1% and 13.6%, re-
spectively. It is obvious that the Linux operating system is
widely used by security developers. Besides, Ubuntu,
Debian, and Kali are the top 3 popular Linux operating
systems in the security tools’ dataset. Compared to Ubuntu
and Debian operating systems, the correlation between Kali
operating system and security is more obvious. Kali contains
more than 600 penetration testing tools, which are suitable
for various information security tasks.

6.1.4. Vulnerability Entities’ Temporal Analysis. Based on
our named entity recognition model, 10,542 vulnerability
entities are recognized. Te purpose of this analysis is to get
a feel for these vulnerability entities’ distribution and
evaluation trends. Considering that CVE (common vul-
nerabilities and exposures) numbers have a clear date and
are used widely, select the vulnerability entities with CVE
numbers for the convenience of statistics. 2,815 diferent
CVE numbers were found in the security tools. Te process
of data collection was continued as of March 2023, 68.12% of
CVE numbers were in the past six years, and the remaining
were irregularly distributed from 1999 to 2016. Tis result
shows that the vulnerabilities involved in the security tool

Table 10: Comparison of diferent word embedding and neural networks of the named entity recognition model.

Embedding Neural network Precision (%) Recall (%) F1-score (%)

Word2Vec

LSTM+CRF 92.47 70.22 79.47
CNN+LSTM+CRF 97.41 78.51 86.86

BiGRU+ attention +CRF 96.92 78.88 86.85
BiLSTM+ attention +CRF 97.04 81.81 87.59

BERT

LSTM+CRF 97.58 71.11 82.10
CNN+LSTM+CRF 98.14 85.01 91.09

BiGRU+ attention +CRF 98.33 84.95 91.14
BiLSTM+ attention +CRF 97.85 87.33 92.28
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are relatively new. Te CVE reported years from 2017 to
2022 are carefully counted, and the relationship between
their creation time and vulnerability year is compared. As
shown in Figure 6, x-axis represents diferent years; the light
blue color represents the number of recognized vulnerability
entities with CVE numbers in this year, while dark blue color
representing the proportion of security tools involves the
latest CVE numbers in this year. More than 40 percent of the
vulnerability numbers created relevant security tools in the
same year. Te proportion increased year by year, from
about 42.53% in 2017 to 89.70% in 2022. Te data collection
of security tools will keep going in the future to count the
vulnerabilities’ distribution changes in 2023 and after.

It is meaningful and necessary to identify and analyze
vulnerable entities in security tools.Te timely detection and
identifcation of security tools in the open-source com-
munity can help security professionals master the latest
vulnerability-related security tools. Further services for at-
tack detection, traceability, and defense are provided.

6.1.5. Security Developers. According to the identifed se-
curity tools, the information of up to 2.6 million relevant
security developers or organizations in the open-source
community was collected. Te insights into security de-
velopers’ characteristics will be discussed from three aspects:
the location of developers, employment status, and the
number and update frequency of public repositories.

(i) Location of security developers: A total of 922
thousand location information related to security
developers and organizations are collected. Tese
developers’ location distribution statistics show that
the top 5 popular countries are China, Brazil, India,
Germany, and Canada. Moreover, China’s top 8
popular cities are Beijing, Hangzhou, Shanghai,
Shenzhen, Chengdu, Guangzhou, Nanjing, and
Wuhan. Tese eight cities bring together 52.12% of
security developers in China. Tis phenomenon is
likely because these cities have a large number of
colleges and companies.

(ii) Employment status: A total of 209 thousand em-
ployment statuses related to security developers are

collected. Only fve percent of them were in uni-
versity, which is not as high as one may surmise.Te
small proportion of students may result from in-
complete registration information. Nevertheless,
much information about developers has been col-
lected. For instance, work companies, personal
blogs, and Twitter accounts, which would be further
helpful in understanding the personal situation of
security developers.

(iii) Public repositories’ numbers and update frequency:
For repositories identifed as security tools, count
the number of public repositories owned by these
developers. Figure 7 shows the distribution of se-
curity developers at diferent intervals. Each bar
represents a range of 5, taking the frst bar as an
example, 1,538 security developers created re-
positories within the range of 0–5. Te result shows
that more than half of the security developers have
more than 25 public repositories. In addition, the
update frequency of security developers is observed.
According to the time when the data collection
stops, 73.1% of security tools’ developers have
updated the project in nearly three months. To some
extent, these two attributes of security developers
refect the community contribution of security
developers and the possibility of security tool
maintenance.

6.2.KnowledgeGraphEstablishment. Tismodule is realized
with the Neo4j browser. Te Neo4j browser allows de-
velopers to execute Cypher queries and visualize the results.
Our system used the confguration of Neo4j-community-
3.5.1 and JDK 1.8.

Overall, 4 million entities and 10 million relationships
are extracted. By importing these entities, entities’ attributes,
and relationships’ information into the Neo4j database in the
form of (entityi, relationship, entityj) or (entityi, attributej,

attributevaluej) triples, queries can be made on any node in
the security tools’ knowledge graph with Cypher statement
on the web page. Neo4j browser uses circles to represent
nodes and lines to represent relationships. Te defned node
attributes can be displayed in tabular form through the
query. Figure 8 shows an example of query results. Te
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Figure 5: Attack-phase distribution of security tools.
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purple, orange, red, green, brown, dark blue, light blue, and
pink nodes in Figure 8 represent SecTool, SecUser, Attack-
phase, consequence, type, vulnerability, location, and issue
entity types. Te connection between two nodes represents
the relationship between two entities, and the text on the
connection indicates the type of relationship. In the future,
the visual website of the SecTKGwill be published to provide
online search services for security professionals.

6.3. Identifying Infuential Repositories. Based on the con-
structed security tools’ knowledge graph, we realize a prac-
tical application for measuring security tools’ infuence.
Trough the analysis of the identifed security tools, it is
proved that the application can indeed fnd some high-
quality but uncommon security tools.

6.3.1. Security Tools’ Infuence-Measuring Method. After
building the knowledge graph base on the security tools’
ontology proposed in Section 3, the knowledge graph can be
used in practice by applying some graph algorithms. Ac-
cordingly, we implement a method for security tools’ in-
fuence measuring based on the multiattribute decision-
making and linear threshold (LT) propagation algorithm.
Tis method considers node attribute information, diferent
types of relationships, and social network analysis and aims

to fnd some security tools which are high-quality, well
maintained, but less famous. Avoid the lack of ranking of
open-source tools based on a single relationship, such as star
or fork. Te experimental analysis shows that this method
does fnd some rarely used but high-quality security tools.
Te detail of security tools’ infuence-measuring method is
as follows:

Our propagation algorithm will traverse the tool nodes in
the network instance in turn. For any tool node ti ∈T (tool
set), activate all user nodes connected to ti, and the other
nodes are inactive. Using bwv indicates that node v is afected
by its neighbor node w. bwv is defned as the calculation (10),
where sti

represents the quality score of security tool ti and
wwv represents weight of edge between node w and node v.
in(w) means the direction of the edge is the node pointing to
nodew. Node u belongs to the node set which links to nodew.

bwv �

􏽘
u∈in(w)

buw · 1 + sti
􏼐 􏼑 · wwv, u≠ ti,

1 + sti
􏼐 􏼑 · wwv, u � ti.

⎧⎪⎪⎨

⎪⎪⎩
(10)

Te quality score of the security tool sti
is calculated by

the multiattribute decision-making method TOPSIS [53].
TOPSIS uses the distance between the evaluation object and
the optimal solution and the worst solution to judge the
quality of the evaluation object. Te quality score of the tool
can be obtained without preset attribute preference. We
assumed that except the number of star or watch of open-
source tools, the description documents and post-
maintenance refect the quality of the tools to some extent.
For example, a qualifed GitHub repository usually has
a complete Readme fle and not one-of. Hence, six features
are selected to represent the quality of the tools. Tey are (a)
the length of Readme, (b) if the tool has description in-
formation, (c) if the tool has open issues, (d) if the Readme
follows markdown paragraph specifcations, (e) if the owner
introduces the tool function in Readme, and (f) if the owner
maintains the repository after the frst commit. Based on
these features, we turned tool attributes into feature eval-
uation metrics. Ten, calculate the distance of each vector to
the optimal solution and the worst solution; the closeness
between the evaluation object and the optimal solution is the
quality score of tool sti

.
When the sum of the infuence of the neighbor nodes of

node v is greater than the threshold of node v, node v is
activated, that is, the cumulative infuence of the activated
neighbor nodes of node v on v is greater than the threshold
θv of node v.

􏽘
w∈in(v),active(w)≠ 0

bwv ≥ θv. (11)

After node v is activated, it will afect its neighbor nodes
the next time and repeat the abovementioned process. When
the sum of the infuence of all existing active nodes in the
network cannot activate the inactive neighbor nodes, the
propagation process ends. Defne the number of activated
nodes as the fnal node infuence score.
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Figure 8: A visualization sample of SecTKG. Te purple, orange,
red, green, brown, dark blue, light blue, and pink nodes represent
SecTool, SecUser, attack-phase, consequence, type, vulnerability,
location, and issue entity types.
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Influential SecTool Rank � 􏽘
active node

Rank. (12)

6.3.2. Infuential Repositories’ Analysis. According to the
page-level classifcation model for the security tool’s attack-
phase, the collected tools are classifed into diferent cate-
gories. Calculate the infuence ranking of tools for each
attack-phase and analyze the results. Table 12 shows the top
5 infuence tools for each attack-phase based on our security
tools’ infuence-measuring method. We compare these 25
security tools with the Kali tools’ list and found 21 tools not
included in the latest Kali tools’ list. We fnd that although
Kali has comprehensive coverage of tools in the re-
connaissance phase, it has poor coverage in the lateral
movement phase and action phase security tools. Observing
that some of these security tools are unfamiliar to us, we list
repositories’ full name and access URL in Table 13, which
can be accessed to learn about these tools.

7. Limitations

It should be noted that the fve categories of security tools
identifed by us do not cover defense tools such as
frewalls or intrusion detection systems. Currently,
SecTKG only identifes tools that belong to the fve attack
stages of reconnaissance, exploit, persistence, lateral
movement, and actions. Defense tools, tutorials, and
tools unrelated to security are classifed as others. In
addition, due to a lack of relevant research, there is no
public dataset available for evaluating the efectiveness of
our knowledge extraction approach for security tools.
Tus, we can only compare our results with similar
studies that used datasets constructed for tasks with
similar characteristics. However, due to diferences in the
datasets and recognition tasks, these comparative models
often fail to achieve the same level of accuracy reported
in their original papers when applied to the security tool
dataset.

Table 12: Popular infuence SecTools.

Category SecTool
Reconnaissance bettercap, subfnder, torsnif, AutoRecon, and gping
Exploit ncrack, SecLists, wif-cracking, routersploit, and Java-Deserialization-Cheat-Sheet
Persistence webshell, shellcheck, fabric, PowerSploit, and xonsh
Lateral movement trpc, bash-it, winston, localtunnel, and Keylogger
Actions MHDDoS, poisontap, dnscat2, evil-winrm, and botnet-hackpack

Table 13: Details of popular infuence SecTools.

Category SecTool repository URL

Reconnaissance

bettercap/bettercap https://github.com/bettercap/bettercap
projectdiscovery/subfnder https://github.com/projectdiscovery/subfnder

fanpei91/torsnif https://github.com/fanpei91/torsnif
Tib3rius/AutoRecon https://github.com/Tib3rius/AutoRecon

orf/gping https://github.com/orf/gping

Exploit

nmap/ncrack https://github.com/nmap/ncrack
danielmiessler/SecLists https://github.com/danielmiessler/SecLists

brannondorsey/wif-cracking https://github.com/brannondorsey/wif-cracking
threat9/routersploit https://github.com/threat9/routersploit

rrrDog/Java-Deserialization-Cheat-Sheet https://github.com/rrrDog/Java-Deserialization-Cheat-Sheet

Persistence

tennc/webshell https://github.com/tennc/webshell
koalaman/shellcheck https://github.com/koalaman/shellcheck

fabric/fabric https://github.com/fabric/fabric
Mafa/PowerSploit https://github.com/Mafa/PowerSploit

xonsh/xonsh https://github.com/xonsh/xonsh

Lateral movement

trpc/trpc https://github.com/trpc/trpc
Bash-it/bash-it https://github.com/Bash-it/bash-it

winstonjs/winston https://github.com/winstonjs/winston
localtunnel/localtunnel https://github.com/localtunnel/localtunnel
GiacomoLaw/Keylogger https://github.com/GiacomoLaw/Keylogger

Actions

MatrixTM/MHDDoS https://github.com/MatrixTM/MHDDoS
samyk/poisontap https://github.com/samyk/poisontap
iagox86/dnscat2 https://github.com/iagox86/dnscat2

Hackplayers/evil-winrm https://github.com/Hackplayers/evil-winrm
TreeHacks/botnet-hackpack https://github.com/TreeHacks/botnet-hackpack
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8. Conclusion and Future Work

In this work, we conduct the frst study on how to build
a large-scale knowledge graph for open-source security tools.
A security tools’ ontologymodel is designed to portray security
tools’ application scenarios, technical characteristics, popu-
larity, related security users, and their associations. Diferent
knowledge extraction methods are designed according to the
characteristics of open-source security tools and demonstrated
the efectiveness of SecTKG knowledge extraction methods by
comparing them with multiple baseline and state-of-the-art
models. Te analysis of experimental results yielded valuable
insights into open-source security tools. In addition, we re-
alized a practical application for measuring the infuence of
security tools, which proved capability of identifying some
high-quality but uncommon security tools. SecTKG associates
security tools’ features, vulnerabilities, consequences, and
relevant users into a whole graph, facilitating the tracing of
relevant security tools and attackers from fragmented attack
information. Our work flls a void in research on open-source
security tools and provides a foundation for security pro-
fessionals to conduct forensics and traceback.

In future work, we plan to enhance the granularity of the
knowledge extraction by considering the issues of nested
entity and discontinuous entity recognition, in addition to
the current entity recognition methods in the paper. We also
aim to expand the scope of the security tools’ collection and
develop a knowledge base of open-source security tools from
multiple open-source community platforms. In addition, we
will investigate knowledge merging and inference tech-
niques for the SecTKG, exploring ways to mine similarities
between security tools, identify community divisions, and
analyze interactions among security users.

Data Availability

Te dataset is not publicly available directly due to the se-
curity issue of attack tools. Data are available from the
corresponding author upon request.
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