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Intelligent learning diagnosis is a critical engine of intelligent tutoring systems, which aims to estimate learners’ current
knowledge mastery status and predict their future learning performance. Te signifcant challenge with traditional learning
diagnosis methods is the inability to balance diagnostic accuracy and interpretability. Although the existing psychometric-based
learning diagnosis methods provide some domain interpretation through cognitive parameters, they have insufcient modeling
capability with a shallow structure for large-scale learning data. While the deep learning-based learning diagnosis methods have
improved the accuracy of learning performance prediction, their inherent black-box properties lead to a lack of interpretability,
making their results untrustworthy for educational applications. To settle the abovementioned problem, the proposed unifed
interpretable intelligent learning diagnosis framework, which benefts from the powerful representation learning ability of deep
learning and the interpretability of psychometrics, achieves a better performance of learning prediction and provides in-
terpretability from three aspects: cognitive parameters, learner-resource response network, and weights of self-attention
mechanism. Within the proposed framework, this paper presents a two-channel learning diagnosis mechanism LDM-ID as
well as a three-channel learning diagnosis mechanism LDM-HMI. Experiments on two real-world datasets and a simulation
dataset show that our method has higher accuracy in predicting learners’ performances compared with the state-of-the-art models
and can provide valuable educational interpretability for applications such as precise learning resource recommendation and
personalized learning tutoring in intelligent tutoring systems.

1. Introduction

Te integration of modern information technology with
traditional teaching and education methods has promoted
the emergence of smart education, which refers to a new
form of education that relies on modern information
technology in the education feld [1]. It applies new tech-
nologies such as artifcial intelligence, virtual reality, cloud
computing, and big data to improve the quality and efec-
tiveness of education [2]. As a vital part of smart education,
the intelligent tutoring system can support monitoring and
measuring the learning process and digging out the learning

patterns of learners [3], as well as efectively presenting the
results to teachers and learners [4]. Correspondingly, in-
telligent learning diagnosis [5] is one of the key components
of the intelligent tutoring system [6], and it supports the
intelligent tutoring system through data mining and edu-
cational theories technically. To provide learners with per-
sonalized learning tutoring services, the intelligent learning
diagnosis employs educational psychology and data mining
technologies to diagnose the learner’s learning state and
predict possible future learning performances by collecting
and analyzing the exercise records and behavioral data,
which are generated by the learner during the learning
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process. In both online and ofine education scenarios, the
number of teachers is far lower than the number of learners.
Tere is an urgent need for intelligent means to assist
teachers in improving efciency and provide targeted
guidance for learners to bridge this resource mismatch. As
a result, intelligent learning diagnosis has been applied in
many e-learning systems such as Coursera, EDX, Khan
Academy, and ofine classes, and it has brought great
progress to the education industry [7]. While facilitating the
renewal of teachers’ teaching philosophy and driving smart
learning systems to provide large-scale personalized learning
services, the intelligent learning diagnosis can help teachers
provide appropriate guidance based on learners’ charac-
teristics, as well as help learners gain a more objective and
clear understanding of their learning progress and status,
enabling learners to regulate and standardize their learning
independently.

Te key to intelligent learning diagnosis is to mine the
learner’s potential learning state, including their mastery
state of knowledge points and learning ability, then predict
the learner’s performance on particular learning tasks. For
this pivotal problem, two types of solutions are widely de-
veloped at present: psychometrics-based methods [8–15]
and deep learning-based methods [16–23]. First,
psychometrics-based methods appeared earlier and have
been developed for more than 40 years. Tey usually de-
scribe the features of the learner and the exercises based on
a specifc cognitive perspective and employ an empirical
response function to express the relationship between
learners’ performance on exercises and their knowledge
status. Psychometrics-based methods are easy to un-
derstand, and the predefned parameters and the connec-
tions between them have clear actual signifcance and
interpretability. Second, deep learning diagnosis methods
appeared with the development of deep learning technology,
which collects the learning resource-related information and
learners’ learning data, then models learners’ learning
process and their knowledge status through deep neural
networks such as recurrent neural networks [16], con-
volutional neural networks [18], memory neural networks
[19], and graph neural networks [21]. With support from
deep neural networks’ powerful representation learning
capabilities, deep learning-based diagnosis methods achieve
higher accuracy in learning performance prediction.

Te abovementioned methods are well developed for
intelligent learning diagnosis and have been applied in
diferent scenarios of intelligent tutoring systems. However,
there are still some signifcant challenges. First, traditional
psychometric learning diagnosis models introduce a few
specifc cognitive parameters to model learners from a single
perspective, making them difcult to ft the actual learning
situation perfectly. For example, the Deterministic Input,
Noisy “And” gate (DINA) model can only diagnose the
learner’s mastery of knowledge in a relatively rough way
[12]. When diferent learners have not mastered a certain
knowledge point, it cannot refect more detailed diferences.
Second, due to the black-box characteristics of deep learning
methods, the interpretability of deep learning diagnosis is

relatively low. Given an example, the deep knowledge
tracing (DKT) model summarizes a learner’s state of all
knowledge concepts in one hidden state, so that it is difcult
to know exactly how much a student has mastered a certain
knowledge concept [16].

In this paper, we proposed a novel unifed interpretable
intelligent learning diagnosis framework that can efectively
solve the above problems. First, multichannel psychometric
learning diagnosis models are introduced to initialize the
learning diagnosis of learners from a multicognitive per-
spective. Second, the learner representation network and
learning resource representation network are constructed
separately using the stacked autoencoder (SAE) network.
Ten, the learner-learning resource response network is
designed to extract deep learning features. Subsequently,
deep learning features are fused with shallow learning fea-
tures, and a self-attention mechanism is introduced to weigh
the fused features. Finally, a learning performance pre-
diction network is designed through convolutional neural
networks. While obtaining better learning performance
predictions, the proposed framework provides in-
terpretability in three aspects: cognitive parameters, learner-
resource response network, and weights of self-attention
mechanism. Our main contributions can be summarized as
follows:

(i) Framework: Te proposed unifed interpretable
intelligent learning diagnosis framework, which
benefts from the powerful representation learning
ability of deep learning and the interpretability of
psychometrics, achieves a better performance of
learning prediction and provides interpretability
from three aspects: cognitive parameters, learner-
resource response network, and weights of self-
attention mechanism. Furthermore, the proposed
framework is a generic learning diagnosis pattern
that can incorporate a variety of diferent psycho-
metric models and deep learning diagnosis methods
into this framework.

(ii) Mechanisms: Based on the proposed framework,
a 2-channel learning diagnosis mechanism LDM-ID
is implemented based on the fusion of IRT and
DINA on the one hand, and a 3-channel learning
diagnosis mechanism LDM-HMI is implemented
based on the fusion of Ho-DINA,MIRT, and IRTon
the other hand. Te proposed two learning di-
agnosis mechanisms provide reference examples for
developing new learning diagnosis models in dif-
ferent educational scenarios. Te codes of these two
mechanisms are released at https://github.com/
CCNUZFW/LDM-ID-HMI.

(iii) Application: Te proposed two mechanisms are
compared with 11 state-of-the-art methods in two
publicly available online class databases and a self-
built ofine class database, and the proposed
method in this paper obtains better learning pre-
diction accuracy (AUC absolute improves by about
5%), while the stability of learning prediction is also
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better (RMSE relatively decreases by about 7%), and
is comparable to current deep learning diagnosis
methods in terms of prediction time cost. In ad-
dition, this paper constructs and open-sources
a database of participants in ofine courses
named CL21 to verify the efectiveness of this
method in both online and ofine classes. CL21 is
released at https://github.com/CCNUZFW/CL21.

Te rest of the paper is organized as follows: Section 2
briefy reviews some related work on intelligent learning
diagnosis. Section 3 presents the intelligent learning diagnosis
model, including the basic assumptions, defnitions, and
problem formula. Section 4 introduces our proposed unifed
interpretable intelligent learning diagnosis framework in
detail, and Section 5 describes two specifc implementation
methods under the proposed framework. Ten, experiments
are conducted on two real-world datasets and one virtual
dataset, and the results of the proposed method are compared
with several baseline methods in Section 6. Finally, we
conclude the paper and identify future research that could be
carried out based on our new fndings in Section 7.

2. Related Work

Tis section briefy reviews themain research work related to
intelligent learning diagnosis, which can be divided into two
categories: (1) learning diagnosis based on psychometrics
and (2) learning diagnosis based on deep learning. While the
psychometrics-based learning diagnosis methods aim at
mining learners’ potential cognitive situation, the deep
learning-based learning diagnosis methods focus on the
deep representation learning of learning data and the ac-
curate prediction of learning performance.

2.1. Learning Diagnosis Based on Psychometrics. Tis cate-
gory of learning diagnosis methods is derived from psy-
chometrics [24]. Tese methods are based on cognitive
psychological theories, using modern statistical methods to
construct learning diagnosis models and combining esti-
mation and inference to diagnose the cognitive structure and
state of learners [25]. Psychometrics-based learning di-
agnosis methods can be divided into two subcategories: (1)
continuous learning diagnosis models and (2) discrete
learning diagnosis models.

2.1.1. Continuous Learning Diagnosis Models. Continuous
learning diagnosis models which are based on item response
theory (IRT) [26] assume learners have a “latent trait” and
learners’ responses to exercises are determined by the ex-
ercise’s factors and the learner’s potential features jointly.
Te learner’s knowledge state diagnosis result is demon-
strated by modeling the relationship among the learner’s
potential features, the exercise’s factor, and the learner’s
answering response [8]. Typical methods, such as IRT [26]
use logical functions to describe the relationship between
learner parameters and responses, but the learner charac-
teristic parameters in this model are an expression of the

learner’s overall mastery level and cannot be refned to every
knowledge point. As a result, a multi-dimensional IRT
(MIRT) model [10] was developed, which estimates the
ability of learners in multiple dimensions at the same time,
and considers the relationship between each ability di-
mension. Furthermore, since MIRT does not consider the
hierarchical relationship between multidimensional ability
traits, De la Torre et al. proposed a high-order item response
model (Ho-IRT) [11], which can directly deal with the
potential traits of learners with a hierarchical structure.

2.1.2. Discrete Learning Diagnosis Models. Discrete learning
diagnosis models assume that the ability value is discon-
tinuous and the latent knowledge space is composed of K

dichotomous variables. Terefore, there are 2K knowledge
mastery states. Te learners are divided into these mastery
states according to their exercise responses and distinguish
their cognitive status of knowledge accordingly. For ex-
ample, the DINA [12] model uses guess and slip parameters
to defne the attributes of the exercise, and it employs
a knowledge mastery mode vector that takes the value of 0 or
1 to represent the learner’s mastery of each knowledge point.
It is assumed that the learner must master all the knowledge
points corresponding to the exercise to answer correctly
based on the noncompensation assumption. Correspond-
ingly, based on compensation assumption, the Deterministic
Input, Noisy “Or” gate (DINO) [13] model assumes that the
learner can make the correct answer after mastering at least
one of the knowledge points. Furthermore, for more fne-
grained modeling, the Noisy Input, Deterministic “And”
gate (NIDA) [14] model defnes the parameters at the
knowledge points level of the exercises, and refnes the scope
of the parameters compared with DINA and DINO models.
To be able to report both the macroscopic general ability and
the microscopic cognitive state at the same time, the High-
order DINA (Ho-DINA) model [15] is proposed, which
assumes that the knowledge points are independent of each
other and subordinate to higher-order general capabilities.
Assuming that the learner’s response matrix is determined
by the inner product of the learner’s knowledge profciency
matrix and the knowledge point vector contained in the
exercise, the probabilistic matrix factorization-based
learning diagnosis model (PMF-LDM) is established
through matrix decomposition [27].

Although psychometric-based learning diagnostic
methods can provide explanations of learning diagnosis in
terms of cognitive parameters, current methods defne
targeted cognitive parameters for a specifc learning sce-
nario. Tese learning diagnostic models based on specifc
cognitive parameters can only interpret learning diagnostic
results from a single perspective, so it becomes important to
construct a unifed learning diagnosis framework that in-
cludes multiple cognitive parameters from integrated per-
spectives and can be applied to multiple learning scenarios.

2.2. Learning Diagnosis Based on Deep Learning. Deep
learning methods have powerful representation capabilities
and have been widely used in computer vision [28, 29],
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speech processing [30, 31], natural language understanding
[32], and other felds [33].

Currently, advanced deep learning methods have been
widely studied in diagnosis and prediction tasks. For in-
telligent fault diagnosis, the advent of deep learning has
constructed an end-to-end diagnosis procedure [34]. Fur-
thermore, out-of-distribution detection-assisted trustworthy
machinery fault diagnosis approach is developed to enhance
the reliability and safety of intelligent diagnosis models [35].
For the wheel wear status diagnosis of high-speed trains,
a multiplex local temporal fusion architecture is combined
with the transformer architecture [36].

Deep learning is also extensively used in the learning
diagnosis task of learners in the feld of intelligent tutoring
systems [37]. Deep learning-based learning diagnosis usually
models the learner’s learning process based on their an-
swering records sequence through an end-to-end trainable
neural network. Classifed by the network structures, the
learning diagnosis methods based on deep learning could be
divided into fve categories: (1) the recurrent neural
network-based learning diagnosis, (2) the convolutional
neural network-based learning diagnosis, (3) the memory
network-based learning diagnosis, (4) the graph neural
network-based learning diagnosis, and (5) the deep neural
network-based learning diagnosis.

2.2.1. Te Recurrent Neural Network-Based Learning
Diagnosis. Te DKT proposed by Piech et al. [16] frst ap-
plied the recurrent neural network to learning diagnosis,
which could break the restriction of empirical response
function by simulating the interaction between the learner
and the exercise with recurrent neural networks. However,
DKTcan only simply predict whether a learner has mastered
or not mastered a specifc knowledge point, and can do
nothing about the intermediate state of learner knowledge
mastery. Furthermore, Su et al. [17] proposed the exercise-
enhanced recurrent neural network (EERNN) that predicts
the learner’s performance through the learner’s answer re-
cord and the text information of each exercise. For multi-
features, Xiong et al. [38] proposed an extended DKTmodel,
adding more answering features such as answering time,
question difculty, and learners’ previous knowledge to
assist in predicting learning performance. In terms of the
improvement of the model structure, Pandey and Karypis
[39] proposed the Self-Attentive Knowledge Tracing (SAKT)
model, which is the frst to apply the attention mechanism to
the learning diagnosis task. Besides, Ghosh et al. [40] used
a monotonic attention mechanism to limit the weight of
questions that are far away from the learner’s current an-
swer. Based on the attention mechanism, Choi et al. [41]
further applied the encoder-decoder model to the learning
diagnosis task.

2.2.2. Te Convolutional Neural Network-Based Learning
Diagnosis. Diferent from models based on recurrent neural
networks, to achieve personalized modeling, Shen et al. [18]
proposed the convolutional knowledge tracing (CKT)

method, which utilizes the sensitivity of convolutional
neural networks for the temporal and spatial information to
consider the prior knowledge and learning rate for each
learner. Furthermore, Wang et al. [42] combined a con-
volutional neural network and a recurrent neural network
into an integrated model to build convolutional recurrent
knowledge tracing (CRKT).

2.2.3. Te Memory Network-Based Learning Diagnosis.
Since DKT only uses a latent state to represent the learner’s
knowledge mastery state and cannot simulate the dynamic
change process of learners’ mastery of diferent knowledge
points, Zhang et al. [19] proposed Dynamic Key-Value
Memory Networks (DKVMN), which draws on the idea
of memory networks, uses a key matrix for representing the
knowledge and a value matrix for indicating the learner’s
mastery of each knowledge point and predicts learner’s
performance according to the key matrix and value matrix.
Furthermore, Tsutsumi et al. [20] add exercises’ difculty
and learners’ ability to DKVMN to improve the accuracy
and interpretability.

2.2.4. Te Graph Neural Network-Based Learning Diagnosis.
Inspired by cognitive theory, the structural information
between knowledge points is also helpful for learning di-
agnosis. Terefore, Nakagawa et al. [21] explored the
knowledge graph structure and applied it to learning di-
agnosis with graph neural networks. Besides, Yong et al. [22]
considered the exercise-knowledge correlations for learning
diagnosis through graph convolutional networks. At the
same time, Tong et al. [43] are more focused on using graph
neural networks to capture the relationship between dif-
ferent knowledge points, such as similarity or prerequisite
relationship. Furthermore, Abdelrahman and Wang [44]
used the latent knowledge graph to improve the reading and
writing process of the memory matrix of the
DKVMN model.

2.2.5. Te Deep Neural Network-Based Learning Diagnosis.
Neural Cognitive Diagnosis Model (NeuralCDM) [45] is
proposed to project students and exercises to factor vectors
and incorporates neural networks to obtain complex
learning interactions. Besides, deep matrix factorization-
based learning diagnosis (DeepMFLD) [46] acquires the
learners’ embedding and the exercises’ embedding sepa-
rately by deep matrix decomposition, then fuses them with
a deep neural network, and fnally predicts the learner’s
performance by a fully connected layer. Furthermore, item
response ranking (IRR) framework [47] introduces pairwise
learning into learning diagnosis to sufciently model the
monotonicity between learning interactions.

Although the accuracy of learning diagnosis can be
improved by introducing deep learning technology, its
black-box and end-to-end properties in learning modeling
[23] lead to its inability to provide supporting explanatory
information and model intermediate feedback for in-
structional and learning decisions.
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2.3. Research Questions and Motivation. Based on the re-
search of the related work, we summarized the research
questions and motivation of this paper as follows:

(i) RQ1: How to build a unifed learning diagnosis
framework that incorporates multidimensional
cognitive parameters and can be applied to
a broader range of learning scenarios?
Inspired by the multimodal approach, we fused
multiple psychometrics-based learning diagnosis
models containing diferent cognitive parameters
into a unifed multimodal learning diagnosis model.
On the one hand, this allows for multidimensional
interpretable cognitive parameters. On the other
hand, it also enables the proposed unifed learning
diagnosis framework to be extended to a more
practical and broader range of educational appli-
cation scenarios.

(ii) RQ2: How to efectively characterize learners and
learning resources and appropriately establish ef-
fective interactive responses between learner and
learning resource features?
Inspired by the representational power of deep
learning methods, on the one hand, we constructed
a learner network and a learning resource network
based on shallow learning features to extract better
representational deep learner features and deep
learning resource features; on the other hand, we
characterized the interactive responses between
them by constructing a learner-learning resource
response network. Furthermore, the prediction
network is constructed by combining shallow and
deep learning features to obtain better representa-
tiveness as well as to provide interpretable cognitive
parameters.

(iii) RQ3: How to efectively improve learning perfor-
mance predictions while also providing appropriate
explanatory information that can be used to im-
prove the acceptability and usability of learning
diagnosis?
Inspired by the interpretable AI approach, frst, we
provided self-contained explanatory information
describing learners’ cognitive states from multidi-
mensional cognitive parameters; second, we pro-
vided explanatory information on the interaction
responses between learners and learning resources
by constructing learner-learning resource response
networks for discovering which learning interaction
channels are more efective; and fnally, we obtained
global explanatory information on the importance
of diferent learning features in terms of decision
making due to the attention mechanism for iden-
tifying essential learning cues.

3. Intelligent Learning Diagnosis Model

Tis section introduces some assumptions and defnitions,
and then details the problem defnition.

3.1. Assumptions and Defnitions of Intelligent Learning
Diagnosis. First, this paper is based on the following as-
sumptions and defnitions:

Assumption 1. Te obtained online and ofine learning data
is used with permission.

Assumption 2. Te data is authentic and complete. Te
learners participating in the data collection are required to
take the course seriously and use their initiative to complete
each exercise, to ensure that there is no halfway exit leading
to incomplete data or inconsistency in answering results.
And the data can refect the actual level of learners.

Assumption 3. Te learner’s answer results are partially
independent. On the one hand, it means that the learner’s
answering results of course exercises will not be afected by
other people. At the same time, it will not afect others. On
the other hand, it means that the answering results of
learners in diferent exercises will not be afected by
each other.

Defnition 1. Shallow feature of learning resource.
For the learning resources involved in the course (mainly

refer to the exercises performed by learners), it obtains
descriptive parameters for them based on diferent educa-
tional interpretation meanings to form a parameter matrix
EC ∈ Re×de , where e and de represent the number of exer-
cises and the dimension of shallow learning resource feature,
respectively.

Defnition 2. Shallow feature of learners.
Combining multiple focal points of diferent cognitive

diagnosis models, it describes learners from diferent angles
and forms a parameter matrix SC ∈ Rs×ds , where s and ds,
respectively, represent the number of learners and the di-
mension of shallow learner feature.

Defnition 3. Deep feature of learning resources and
learners.

Based on the two descriptive parameters, it introduces
deep learning technology to mine higher-order bottleneck
features, which models and characterizes the response be-
tween learning resources and learners more efectively.

3.2. ProblemDescription. According to the above defnitions
and assumptions, the unifed interpretable intelligent learning
diagnosis task is described as follows. Given that S learners
study the same course and complete the same exercise E

corresponding to course C, the multiple psychometric models
are integrated to obtain the learner and learning resource
parameter matrix, and the learner’s answer performance and
cognitive state are predicted based on the parameter matrix.
Among them, S is a set of learners, E is a set of exercises, K is
a set of knowledge points, and the answer record of learner s is
Rs � (e1, r1), (e2, r2), . . . , (et, rt)􏼈 􏼉. Among them, et is the
exercises performed by the learner s at time t, rt is the
corresponding answer result, rt ∈ 0, 1{ }, rt � 1 means the
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answer is correct, and rt � 0 means the answer is wrong. qi is
the set of knowledge points involved in exercise i and qij � 1
means that there is a correlation between exercise i and
knowledge point j, otherwise, it is irrelevant. Te set of
answer records of all learners R � R1, R2, . . . , Rs􏼈 􏼉 consists
the answer matrix R, and Q � q1, q2, . . . , qi􏼈 􏼉 consist of the
exercise-knowledge point association matrix Q. Ten, the
problem can be defned as follows:

Defnition 4. Intelligent learning diagnosis problem.
Given the exercising logs of each learner and the

knowledge points involved in each exercise, our goal is
threefold: (1) extract interpretable parameters of learners
and learning resources; (2) construct a learner-resource
response network and deep-shallow feature fusion mecha-
nism to obtain the explanatory information on the im-
portance of learning features; and (3) predict the learning
performance 􏽣rt+1 of the specifc learner on time t + 1 and
ofer interpretable information for decision-making.

4. Proposed Unified Interpretable Intelligent
Learning Diagnosis Framework

Based on the assumptions and defnitions of the above
learning diagnosis model, this paper proposes a unifed
interpretable learning diagnosis framework, which is ver-
satile and can fexibly formulate specifc strategies according
to diferent needs to realize the interpretable learning di-
agnosis and performance prediction of learners. As shown in
Figure 1, the proposed framework mainly consists of fve
components: initial learning diagnosis, learner and learning
resources representation network, learner-resource response
network, deep-shallow learning feature fusion, and learning
performance prediction network. Te framework that takes
advantage of the powerful representation learning ability of
deep learning and the interpretability of psychometrics,
achieves a good performance of learning prediction and
provides interpretability from three aspects: cognitive pa-
rameters, learner-resource response network, and weights of
self-attention mechanism.

4.1. Initial Learning Diagnosis. Te main purpose of the
initial learning diagnosis module is to construct the mul-
tichannel cognitive parameter set.

Te cognitive parameter set construction process is
shown in Figure 1. Based on the learner’s historical learning
records and learning resource information, themultichannel
psychometric model is used to make a preliminary diagnosis
of the learner, and to estimate the parameters of the learning
resource at the same time, thereby constructing the learning
resource parameter set EC and learner parameter set SC.

Taking into account the interpretability of the learner’s
cognitive state, it is worth noting that the parameters are
highly interpretable with practical signifcance in cognitive
theory and psychometrics, such as the difculty and dis-
crimination of the exercise, the ability of the learner, which
difers from learning parameters through network training
in the deep learning-based learning diagnosis methods.

EC � PM1(R, Q), PM2(R, Q), . . . , PMn(R, Q)􏼈 􏼉,

SC � PM1(R, Q), PM2(R, Q), . . . , PMn(R, Q)􏼈 􏼉.
(1)

PMn is the nth psychometric model. Ten, based on the
answer record Rs � (e1, r1), (e2, r2), . . . , (et, rt)􏼈 􏼉 of learner s,
we obtained the learner parameter vector SCs and the
learning resource parameter vector EC1 to ECt related to
learner s.

4.2. Learner and Learning Resources Representation Network.
Tis module consists of two parts: learners representation
network and learning resources representation network.

Specifcally, given the learner parameter vector SCs of
learner s and the learning resource parameter vector ECe of
exercise e, frstly, in order to eliminate the diference be-
tween the ranges of various parameters, the parameter values
are discretized and one-hot encoded, and then SCs is coded
as a d0 dimensional 0-1 vector xs and ECe is coded as a d1
dimensional 0-1 vector xe.

To better represent learners and learning resources based on
cognitive parameters, the learner representation network and
learning resource representation network are designed, re-
spectively, which take advantage of auto-encoder to excavate the
deep learning features of learners and learning resources. Te
SAE can copy the input to the output through a hidden layer. It
consists of two parts: an encoder that can be represented by the
function h � f(·) and a decoder that generates reconstruction
information y � g(·), by training the auto-encoder to re-
produce the input, h can obtain some useful features, to achieve
the purpose of feature learning for the learner’s parameter
vector. Te learners and learning resource auto-encoder
designed in this paper can be expressed as follows:

h
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+ b

e
2( 􏼁,

(2)

W, b, and σ(·) are weights, bias, and activation function,
respectively. We take the intermediate results hs and he of
the coding layer as the feature learning results, which can
represent a more valuable part of the information in the
original parameter vector.

4.3. Learner-Resource Response Network. Ten, the learner-
resource response network is used to simulate the answer
process in the actual situation. It takes the deep charac-
teristics of learners and learning resources as the input and
outputs the deep characteristics after the interaction between
learners and learning resources.

f � concat h
s
, h

e
( 􏼁,

fd � σ W3 × f + b3( 􏼁,
(3)

where σ is the tanh activation function and h and y are the
encoder and the decoder, respectively. In addition, the
learner parameter encoder’s weight matrix Ws

1 ∈ Rd2×d0 , the
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bias vector bs
1 ∈ Rd2 , the decoder’s weight matrix

Ws
2 ∈ Rd0×d2 , bias vector bs

2 ∈ Rd0 , the learning resource
parameter encoder’s weight matrix We

1 ∈ Rd3×d1 , bias vector
be
1 ∈ Rd3 , decoder’s weight matrix We

2 ∈ Rd1×d3 , and the bias
vector be

2 ∈ Rd1 are the parameters of the learner

representation network and learning resource representa-
tion network. Te weight matrix W3 ∈ R(d2+d3)×d4 and the
bias vector b3 ∈ Rd2+d3 are the parameters of the learner-
resource response network. fd is the deep feature of learners
and learning resources.

l1 l2

e1 e2 e3

kNk2k1

lI
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…

…
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1 Interpretability from
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2 Interpretability from
LRRNet
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Figure 1: Te inputs of the proposed unifed interpretable intelligent learning diagnosis framework are the learners’ response matrix R and
the exercise-knowledge point matrix Q. Te proposed framework contains fve main components: (1) initial learning diagnosis, (2) learner
and learning resource representation network, (3) learner-resource response network, (4) deep-shallow learning feature fusion, and (5)
learning performance prediction network. Te interpretability can be obtained from three aspects: (1) the interpretability from cognitive
parameters, (2) the interpretability from LRRNet, and (3) the interpretability from attention weights.
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4.4. Deep-Shallow Learning Feature Fusion. To improve the
performance and interpretability of the model, we regard the
original cognitive parameter vector as shallow features and
the deep characterization features as deep features, and then
we combine the two features as the overall features for
diagnosis and prediction.

f � concatenate fd, SCs, ECe( 􏼁, (4)

where the dimensions of f are d5, in which
d5 � d4 + de + ds.

In terms of interpretability for the prediction process, we
focus on the reasons why the model makes such predictions.
Terefore the prediction network in this paper employs the
self-attention mechanism to process the fusion features of
the learner and the learning resource, in order to fully mine
the correlation and importance information between the
features of each dimension, so as to provide interpretability
from the feature level for the fnal diagnosis and prediction
results, in other words, we can know exactly which features
have a more signifcant impact on the fnal prediction result.

A convolutional layer is used with a convolution kernel
size of 1 to obtain the query vector matrix Query, the key
vector matrix Key, and the value vector matrix value through
f as follows:

Query � Conv(f),

Key � Conv(f),

Value � Conv(f).

(5)

Te weight of each dimension of data in the feature is
calculated by calculating the dot product between the query
vector matrix and the key vector matrix, and the weight
indicates the degree of relevance between the task to be
queried and each input data.

similarity Query,Keyi( 􏼁 � Query•Keyi. (6)

On the one hand, numerical conversion of the degree of
relevance can be carried out to normalize and organize the
original calculated scores into a probability distribution with
the sum of weights being 1. On the other hand, it can also
highlight the weights of essential elements.

ai � SoftMax similarityi( 􏼁 �
e
similarityi

􏽐
ds

j�1e
similarityj

. (7)

Te input data is weighted and summed to obtain the
fused feature data.

fa � 􏽘

d5

i�1
ai · Valuei. (8)

4.5. Learning Performance Prediction Network. With the
features acquired from the feature extraction process, we
constructed a learner performance prediction network based
on a convolutional neural network, used learner feature
vectors and learning resource feature vectors to predict the
probability of learners answering a specifc exercise

correctly, and diagnosed the knowledge mastery of learners
and analyze the learning resources through the feature in-
formation of learners and learning resources.

Te convolutional layer is used to extract the spatial
information of the deep-shallow fusion feature, the con-
volution kernel size is set to 3, and the step size is set to 1.
Ten, the ReLU activation function is added to reduce the
dependence between parameters, overftting is avoided, and
the maximum pooling layer is used to reduce the feature
dimension, then the predicted value p of the learner’s answer
is obtained under a specifc learning task accordingly. It can
be expressed as follows:

fc � Conv fa( 􏼁,

fre � Relu fc( 􏼁,

fp � MaxPool fre( 􏼁,

p � σ W4 × fp + b4􏼐 􏼑,

(9)

where fc, fre, and fp are the intermediate variables of the
prediction network.

To learn the various parameters of the model, the cross-
entropy loss function is used between the student’s real
answer value rt and the predicted answer value pt as the
objective function L of the model as follows:

L � − 􏽘
N

i�1
rtlogpt + 1 − rt( 􏼁log 1 − pt( 􏼁. (10)

4.6. Interpretability of the Proposed Framework. Te in-
terpretability of our proposed framework includes three
aspects, which correspond to the three modules of the
framework:

4.6.1. Interpretability from Cognitive Parameters. Based on
the learner’s historical learning records and learning resource
information, the multichannel psychometric model is used to
make a preliminary diagnosis of the learner, and to estimate the
parameters of the learning resource at the same time, thereby
constructing the learning resource parameter setEC and learner
parameter set SC. Taking into account the interpretability of the
learner’s cognitive state, it is worth noting that the parameters
are highly interpretable with practical signifcance in cognitive
theory and psychometrics, such as the difculty and discrim-
ination of the exercise and the ability of the learner, which
difers from learning parameters through network training in
the deep learning-based learning diagnosis methods.

4.6.2. Interpretability from Learner-Resource Response
Networks. In this module, we frst characterize the learners
and learning resources, and then construct the learner-
resource response network. Te learner-resource response
network is used to simulate the complex learning activities in
the process of learners’ answers, that is, the interactive re-
sponse between learners and learning resources, which is
closer to the actual situation and has a better interpretability
of the learning process.
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4.6.3. Interpretability from Weights of Self-Attention
Mechanism. In terms of interpretability for the prediction
process, we focused on the reasons why the model makes
such predictions, therefore the prediction network in this
paper employs the self-attention mechanism to process the
fusion features of the learner and the learning resource, in
order to fully mine the correlation and importance in-
formation between the features of each dimension, so as to
provide interpretability from the feature level for the fnal
diagnosis and prediction results, in other words, we can
know exactly which features have a greater impact on the
fnal prediction result.

5. Multichannel Intelligent Learning
Diagnosis Mechanisms

Within the proposed unifed interpretable intelligent
learning diagnosis framework in Section 4, two specifc
multichannel intelligent learning diagnosis mechanisms are
implemented in this section. As shown in Figure 2, the frst
implementation is a two-channel learning diagnosis
mechanism based on the fusion of IRT and DINA (LDM-
ID), and the other is a three-channel learning diagnosis
mechanism based on the fusion of Ho-DINA, MIRT, and
IRT (LDM-HMI).

5.1.Two-ChannelLearningDiagnosisMechanismBasedon the
Fusion of IRT and DINA (LDM-ID). Generally, LDM-ID
applies the IRT and DINA models for initial learning di-
agnosis, in which the DINA model uses a mastery vector to
represent the master of the learner on each knowledge

component. Te dimension of the mastery vector is equal to
the number of knowledge, and the slip rate and guess rate are
employed to represent the exercise parameters.Te IRTmodel
uses only one value to represent the overall ability of the
learner and describes the exercises with difculty and dis-
crimination. Te information on the parameters used to de-
scribe the learners and learning resources in these two models
is integrated to obtain the original input parameter sets EC

and SC, and then it performs subsequent learning diagnostics.

5.1.1. Initial Diagnosis Models of LDM-ID. Te process of
learning diagnosis from the initial parameter set has been
described in detail in Section 4.

Te response function of the IRT model is as follows:

P sI θ( 􏼁 � eI gues +
1 − eI gues

1 + e
−DeI di sc sI θ−eI di ff( )

, (11)

where sI θ is the learner’s learning ability parameter. Te
parameter eI guess is generally called the “guessing param-
eter”, that is, when the learner’s ability value is very low (for
example, close to negative infnity), it is still possible to give
the right answer to this problem. eI di ff is the problem
difculty parameter and eI di sc is the problem discrimina-
tion parameter.

Te response function of the DINA model is as follows:

P sD α( 􏼁 � e
(1−η)

D gues · 1 − eDslip
􏼒 􏼓

η
, (12)

where sD α is the learner’s mastery vector for each piece of
knowledge, η is the learner’s ideal answer situation under the
corresponding mastery state, eD slip and eD gues are the guess
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Figure 2: Based on the proposed unifed interpretable learning diagnosis framework, two learning diagnosis mechanisms were developed.
LDM-ID was based on IRT and DINA, which extracted two categories of learner cognitive parameters and four categories of exercise
cognitive parameters. LDM-HMI was based on Ho-DINA, MIRT, and IRT, which extracted four categories of learner cognitive parameters
and seven categories of exercise cognitive parameters, respectively.
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and slip parameters of the exercises, respectively, and the slip
parameter indicates that the learner has mastered all the
knowledge required by the exercises he answered, but an-
swered incorrectly.Te guessing parameter is the probability
that the learner has not mastered all the knowledge needed
to answer the exercises or even not mastered one knowledge,
but answered correctly. Te specifc parameter estimation
process is shown in steps 1–7 of algorithm 1.

Accordingly, a parameter set of learners and a parameter
set of learning resources are constructed based on the learner’s
learning record data and learning resource data as follows:

EC � eI diff , eI disc, eD gues, eD slip􏽮 􏽯,

SC � sI θ, sD α􏼈 􏼉.
(13)

5.1.2. Representation and Prediction Network of LDM-ID.
We modeled learners and learning resources separately
and constructed a performance prediction network to
complete the learning diagnosis task as described in
Section 4 of the paper. Te process is described in steps
12–28 of Algorithm 1.

5.2. Tree-Channel Learning Diagnosis Mechanism Based on
the Fusion of Ho-DINA, MIRT, and IRT (LDM-
HMI). LDM-HMI is an implementation of a three-channel
learning diagnosis mechanism under our proposed in-
telligent learning diagnostic framework, which employs the
Ho-DINA model, MIRT model, and IRT model for initial
learning diagnosis. Based on the knowledge state vector of
learners in the DINA model, the Ho-DINA model con-
structs high-order potential abilities for learners to describe
learners further. Compared with the one-dimensional ability
value of the IRT model, the MIRT model uses a multidi-
mensional ability vector to represent learners’ knowledge
states. Similarly, the parameter information used to describe
learners and learning resources in the three models is in-
tegrated to obtain the original input parameter set, which
can be used for subsequent learning diagnosis.

5.2.1. Initial Diagnosis Models of LDM-HMI. Te Ho-DINA
model assumes that the cognitive knowledge αk is in-
dependent (partially independent) under a given ability sH θ.
Cognitive knowledge has the following relationship as
follows:

(i) Input: Student exercise response matrix R and question-knowledge correlation matrix Q

(ii) Output: Student exercise score prediction and interpretable parameters
(1) Initialize parameters matrix EC and SC:

(2) EC(0) � e
(0)
I di ff , e

(0)
I di sc, e

(0)
D gues, e

(0)
D slip􏼚 􏼛, SC(0) � s

(0)
I θ, s

(0)
D α􏽮 􏽯

(3) while not converge or not reach iterations do
(4) L(R) � 􏽑

U
u�1L(Ru) � 􏽑

U
u�1􏽐

L
l�1P(Ru | αl)P(αl)

(5) L(R | δ, π) � 􏽑
N
k�1􏽑

M
j�1p(πk | δj)

rjk [1 − p(πk|δj)]
1− rjk

(6) //update parameters in DINA
(7) eD slip � 􏽢eD slip, eD gues � 􏽢eD gues←z log L(R)/zeD slip � 0, z log L(R)/z eD gues � 0
(8) //update parameters in IRT
(9) eI disc � 􏽢eI disc, eI diff � 􏽢eI diff , sI θ � 􏽢sI θ←z log L(R)/z eI disc � 0, z log L(R)/zeI diff � 0, z log L(R)/zsI θ � 0
(10) end while
(11) for student s and exercise e do
(12) //extract student features and exercise features via auto-encoder
(13) hs � f(SCs) � σ(Ws

1 × SCs + bs
1)

(14) ys � g(hs) � σ(Ws
2 × hs + bs

2)

(15) he � f(ECe) � σ(We
1 × ECe + be

1)

(16) ye � g(he) � σ(We
2 × he + be

2)

(17) hs(·), ys(·) � argminhs(·),ys(·)‖hs − SCs‖
2, he(·), ye(·) � argminhe(·),ye(·)‖he − ECe‖

2

(18) ((SCs, hs), (ECe, he))⟶ (exercise, stude nt), f � concat(exercise, stude nt)
(19) //calculate keys queries and values in attention function
(20) for l in len(f) do
(21) Query � Conv(f)Key � Conv(f)Value � Conv(f)

(22) fa � 􏽐
ds

j�1e
similarityi /􏽐ds

j�1e
similarityj · Valuei

(23) similarity(Query,Keyi) � Query•Keyi

(24) end for
(25) end for
(26) fp � MaxPool(Relu(Conv(fa)))

(27) p � σ(W3 × fp + b3)

(28) return p, EC, SC, attention weights

ALGORITHM 1: Two-channel learning diagnosis mechanism based on the fusion of IRT and DINA (LDM-ID).
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P α ∣ sH θ( 􏼁 � 􏽙
K

k�1
P αk ∣ sH θ( 􏼁, P αk ∣ sH θ( 􏼁 �

e
λ0k+λ1ksH θ

1 + e
λ0k+λ1ksH θ

,

(14)

where λk represents the loading of knowledge k on the ability
sH θ, that is, under the DINA model, it is assumed that
knowledge is locally independent and subordinate to
a higher-order ability.

Te response function of the MIRTmodel is as follows:

P sM α( 􏼁 � eM gues +
1 − eM gues

1 + e
−D·eM disc sM α+eM diff( )

, (15)

where D is a constant; sM α is the learner’s multidimensional
ability vector, and each dimension is defned on a specifc
knowledge point; eM di sc is the multidimensional discrim-
ination vector of exercise, which is also defned in the di-
mension of the knowledge point; eM gues and eM diff are,
respectively, guessing degree and difculty parameters in the
dimension of the question. Te parameter estimation pro-
cess is described in steps 1 to 18 in algorithm 2. Te IRT

model is the same as in Section 5.1. Based on this, we
constructed a parameter set of learners and learning re-
sources as follows:

EC � eI diff , eI disc, eH slip, eH gues, eM disc, eM gues, eM dif f􏽮 􏽯,

SC � sI θ, sH θ, sM α, sH α􏼈 􏼉.

(16)

5.2.2. Representation and Prediction Network of LDM-HMI.
Te learners and learning resources are modeled separately,
and the performance prediction network is constructed to
complete the learning diagnosis task in the same way as
described in Section 4. Te detailed steps are shown in steps
19–33 in algorithm 2

6. Experiment Evaluation

In this section, we evaluated the learning performance
prediction and interpretability attained by the proposed
LDM-ID and LDM-HMI. We also provided some potential

(i) Input: Student exercise response matrix R and question-knowledge correlation matrix Q

(ii) Output: Student exercise score prediction and interpretable parameters
(1) Initialize parameters matrix EC and SC:
(2) EC(0) � e

(0)
I diff , e

(0)
I disc,􏽮 e

(0)
H slip, e

(0)
H gues, e

(0)
M disc, e

(0)
M gues, e

(0)
M diff }, SC(0) � s

(0)
I θ, s

(0)
H θ,􏽮 s

(0)
M α, s

(0)
H α}

(3) while not converge or not reach iterations do
(4) p(􏽢θ←θ) � min p(α | θ, 􏽢λ)p(􏽢θ)/􏽮 p(α | θ, 􏽢λ)p(θ), 1}, p(􏽢α←α) � min L(s, g;􏼈 􏽢α)p(􏽢α | θθ, 􏽢λ)/L(s, g; α)p(α | 􏽢θ, 􏽢λ), 1},

p(􏽢s, 􏽢g←s, g) � min L(􏽢s, 􏽢g;􏼈 􏽢α)p(􏽢s)p(􏽢g)/L(s, g; 􏽢α)p(s)p(g), 1}

(5) L1(R) � 􏽑
N
k�1􏽑

M
j�1p (πk | π)p(πk | δj)

rkj [1− p(πk | δj)]
1− rkj , L2(R) � 􏽑

I
i�1􏽑

J
j�1e

rij(aj θi + dj)/1 + erij(ajθi+dj)

(6) //update parameters in Ho-DINA
(7) eH slip � 􏽢s, eH gues � 􏽢g, sH θ � 􏽢θ, sH α � 􏽤H α
(8) //update parameters in IRT
(9) eI disc � 􏽢eI disc, eI diff � 􏽢eI diff , sI θ � 􏽢sI θ←z log L1(R)/zeI disc � 0, z log L1(R)/zeI diff � 0, z log L1(R)/zsI θ � 0
(10) //update parameters in MIRT
(11) eM gues � 􏽢eM gues, eM diff � 􏽢eM diff , eM disc � 􏽢eM di sc, sM α � 􏽢sM α←z log L2(R)/zeM gues � 0,

z log L2(R)/zeM diff � 0, z log L2 (R)/zeM disc � 0, z log L2(R)/zsM α � 0
(12) end while
(13) EC(final) � e

(f inal)
I diff , e

(f inal)
I disc, e

(f inal)
H slip,􏼚 e

(final)
H gues, eM disc(f inal), e

(final)
M gues, e

(f inal)
M diff }

(14) S C(f inal) � s
(f inal)
I θ ,􏽮 s

(final)
H θ , s

(final)
M α , s

(f inal)
H α }

(15) for student s and exercise e do
(16) hs � f(SCs) � σ(Ws

1 × SCs+ bs
1)

(17) ys � g(hs) � σ(Ws
2 × hs + bs

2)

(18) he � f(ECe) � σ(We
1 × ECe + be

1)

(19) ye � g(he) � σ(We
2 × he + be

2)

(20) hs(·), ys(·) � argminhs(·),ys(·)‖hs − SCs‖
2, he(·), ye(·) � argminhe(·),ye(·)‖he − ECe‖

2

(21) ((SCs, hs), (ECe, he))⟶ (exercise, student), f � concat(exercise, student)
(22) for l in len(f) do
(23) Query � Conv(f)Key � Conv(f)Value � Conv(f)

(24) fa � 􏽐
ds

i�1e
similarityi /􏽐d5

j�1􏽐
d5
j�1e

similarityj · Valuei

(25) similarity(Query,Keyi) � Query•Keyi

(26) end for
(27) end for
(28) fp � MaxPool(Relu(Conv(fa)))

(29) p � σ(W3 × fp + b3)

(30) return p, EC, SC, attention weights

ALGORITHM 2: Tree-channel learning diagnosis mechanism based on the fusion of Ho-DINA, MIRT, and IRT.
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applications of the proposed method in the feld of in-
telligent tutoring systems.Te details of the experiments will
be discussed below, while the codes for the experiments in
this paper are released at https://github.com/CCNUZFW/
LDM-ID-HMI.

6.1. Experimental Datasets. To verify the efectiveness of the
proposed intelligent learning diagnosis model, three datasets
were employed to carry out the experiments. Tese datasets
include two real-world datasetsMath11, CL212, and a virtual
dataset Synthetic-53, of which Math1 and Synthetic-5 are
both open datasets that are widely used in intelligent
learning diagnosis tasks and are of moderate size, containing
information such as learner-response matrices and
question-knowledge point matrices that are commonly used
in online intelligent learning diagnosis. CL21 is a smaller
dataset of real data collected in four actual university ofine
classrooms and can be used to validate the applicability of
the LDM framework in small ofine classrooms. Te details
of experimental datasets are as follows:

(i) Math1: Tis dataset comes from several objective
and subjective test questions, and answer records
are collected by Wu et al. [48] from a college
mathematics fnal test. For the consistency between
datasets, this experiment selects the records of the
learners’ answers to the objective questions, which
contains 4209 learners’ answers on 15 exercises with
11 knowledge points.

(ii) CL21:Tis dataset is collected by one of our authors,
Dr. Chunyan Zeng, who is serving as the instructor
of a C programming language class at the Hubei
University of Technology in 2021. Te dataset is
collected through an intelligent tutoring system,
named Chaoxing. Tis dataset includes the answer
records of 93 learners on 36 exercises with 12
knowledge points.

(iii) Synthetic-5: Tis is a virtual dataset that contains
the answer records of 2,000 learners on 50 questions
with 5 knowledge points.

Table 1 shows a summary of these three datasets. Te Q

matrices were labeled by domain experts, and the historical
responsematricesR were collected by the intelligent tutoring
systems. With the availability of the above data, the ex-
periments were carried out with an NVIDIA GeForce GTX
2080Ti GPU in the environment of Python 3.6 and
Pytorch 1.9.0.

6.2.TeMethods toBeCompared. Tree proposals need to be
evaluated: the efectiveness of learner and learning resource
representation networks, the efectiveness of deep and
shallow learning feature fusion, and the efectiveness of
attention mechanisms. In addition, the proposed models are
compared with 11 state-of-the-art methods such as item
response theory (IRT) [26], multidimensional item response
theory (MIRT) [10], deterministic input noise and door

model (DINA) [12], Ho-DINA [15], PMF-LDM [27], neural
cognitive diagnosis model (NeuralCDM) [45], DeepMFLD
[46], and IRR [47], which are listed as follows:

(i) IRT [26]: Te IRT model is a psychometrics
learning diagnosis model that uses logic functions
to model the relationship between the learner’s
learning state, the distinction, and difculty of test
questions, and the learner’s response.

(ii) MIRT [10]:TeMIRTmodel can estimate learners’
abilities in multiple dimensions at the same time,
and consider the relationship between diferent
dimensions of ability. Terefore, MIRT can esti-
mate multidimensional abilities more efectively.

(iii) DINA [12]: Te DINA model is also a psycho-
metrics learning diagnosis model. DINA describes
the learner as a multidimensional knowledge point
mastering vector and judges the learner’s an-
swering results according to the question-
knowledge correlation.

(iv) Ho-DINA [15]: Based on the DINA model, the
Ho-DINA model assumes that the mastery state of
knowledge points is also related to the learner’s
general ability, which is the learner’s high-level
ability.

(v) PMF-LDM [27]: PMF-LDM is an intelligent
learning diagnosis method based on probability
matrix decomposition, which assumes that the
learner’s response matrix is determined by the
inner product of the learner’s knowledge pro-
fciency matrix and the knowledge point vector
contained in the exercise, and uses the random
gradient descent method to constantly diagnose
the learning performance.

(vi) NeuralCDM [45]: NeuralCDM is a deep learning-
based learning diagnosis method that combines
neural networks to learn the complex answering
process, projecting learners and exercises as latent
space vectors, and using multiple neural layers to
model its interaction process to predict learners
answering results.

(vii) DeepMFLD [46]: DeepMFLD is a matrix de-
composition learning diagnosis method based on
deep learning. It obtains the learners’ embedding
and the exercises’ embedding separately by deep
matrix decomposition, then fuses them with a deep
neural network, and fnally predicts the learner’s
performance by a fully connected layer.

(viii) IRR-IRT, IRR-MIRT, IRR-DINA, and IRR-
NeuralCDM [47]: Te IRR is a general frame-
work, which introduces pairwise learning into
learning diagnosis. Four specifc methods based on
the IRR framework are used as the baseline: IRR-
IRT, IRR-MIRT, IRR-DINA, and IRR-NCDM.Te
frst three methods enhance the traditional psy-
chometric diagnostic models IRT, MIRT, and
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DINA based on the IRR framework, while the
NeuralCDM is also used to integrate with the IRR
framework to form IRR-NeuralCDM.

6.3. Evaluation Metrics. Since the diagnosis results of the
learners’ knowledge mastery state cannot be judged objec-
tively and accurately, the diagnosis results are usually used to
predict the probability that the learner will answer correctly
and compare it with the true value to evaluate the perfor-
mance of themodel.Tis paper uses AUC (area under curve)
and RMSE (root mean square error) as the evaluation in-
dicators of the experimental results. AUC is the area under
the indicator curve. Te AUC value of 0.5 represents the
randomly obtainable score. Te higher the AUC score, the
more accurate the prediction result. RMSE is used to
measure the deviation between the estimated value and the
true value.Te smaller the value, the closer the mining result
is to the true value. Te calculation formula is as follows:

RMSE yi, 􏽢yi( 􏼁 �

�������������

1
m

􏽘

m

i�1
yi − 􏽢yi( 􏼁

2
,

􏽶
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where m represents the size of the test data set, yi is the true
value of the student’s answer, and 􏽢yi is the predicted value of
the student’s answer.

6.4. Experimental Results and Analysis. In our experiments,
a 5-fold cross-validation is performed, and the average AUC
and RMSE of fve times experiments are used as the evaluation
metrics. Furthermore, 80% samples of each dataset are
employed as the training set, and 20% of the data are left for the
test to check whether the proposed method is generalized well.

6.4.1. Comparison with the State-of-the-Art Methods. For the
LDM-ID and LDM-HMI methods, detailed settings are as
follows: Sigmoid is used as the activation function of the fully
connected layer, and the CNN in the prediction network
consists of a convolutional layer, a ReLU activation layer,
and a maximum pooling layer, where the convolutional
kernel size is 3. Te model is parameterized by the Adam
optimizer, the learning rate is set to 0.001, and the dropout
ratio is set to 0.2. In the learner representation network and
learning resource representation network, the learner po-
tential vector and learning resource potential vector di-
mensions are set to 128 and 64, respectively. In addition, in
the baseline models, 3PL-IRT is used for comparison, and
the capability latitude value is set to 3 in the MIRT model.

As shown in Table 2, in terms of the accuracy of learning
performance prediction, among the traditional psychometric-
based learning diagnostic models, MIRT outperformed IRT,

DINA, Ho-DINA, and PMF-LDM overall on the three
datasets. Te performance of NeuralCDM, DeepMFLD, IRR,
and the proposed methods LDM-ID and LDM-HMI gen-
erally outperformed the psychometric-based learning di-
agnostic models, which indicates that the deep network-based
learning diagnostic methods outperform the traditional
psychometric-based learning diagnostic methods. Usually,
deep networks have more complex structures and more
parameters, and the information they can characterize will be
richer, while psychometric-based methods usually have
simpler structures, fewer parameters, and limited character-
ization capabilities.

As shown in Figure 3, the LDM-ID and LDM-HMI
methods proposed in this paper outperformed all baseline
models in terms of the accuracy of learning performance
prediction. On the three datasets, their AUC improved by
about 11.45% and RMSE decreased by about 0.07 compared
to MIRT on average, their AUC improved by about 8.57%
and RMSE decreased by about 0.06 compared to Neu-
ralCDM on average. On the one hand, the cognitive pa-
rameters in this paper provide more efective input
information for the diagnosis and prediction tasks from the
source. On the other hand, this paper constructs a more
capable network of learners and learning resources and
explores the potential characteristics of learners and learning
resources more efectively.

Furthermore, among the two implementations of the
LDM framework proposed in this paper, LDM-HMI
performs better on the larger-scale datasets Math1 and
Synthetic-5, with an AUC about 1.39% higher and an
RMSE about 0.007 lower than that of LDM-ID over the
two datasets, while on the smaller-scale dataset CL21,
LDM-ID performs better, with an AUC about 0.53%
higher and an RMSE about 0.002 lower than that of LDM-
HMI. Tis indicates that the LDM-ID method may be
more suitable for small data volume scenarios. In other
words, under the LDM framework of this paper, the
specifc implementation can be fexibly adjusted according
to the requirements to achieve better adaptation to the
actual scenarios.

As shown in Table 3, the LDM-ID and LDM-HMI
proposed in this paper are comparable to the deep learning
diagnostic method NeuralCDM, DeepMFLD, and IRR in
terms of time loss. Te prediction time loss of the proposed
method on the medium-sized dataset Math1 is comparable
to that of the traditional psychometric methods. On the
small dataset CL21 and large dataset Synthetic-5, the time
loss of the proposed method is one order of magnitude
higher compared to the traditional psychometric methods.
Overall, the prediction time of the proposed method is about
0.2ms on a single sample, which is sufcient for practical
educational application scenarios.

Table 1: Summary of experimental datasets.

Dataset Answering records Number of learners Knowledge points Number of exercises
Math1 63135 4209 11 15
Synthetic-5 100000 2000 5 50
CL21 3348 93 12 36
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6.4.2. Efectiveness of Learner and Learning Resource Rep-
resentation Networks. To verify the efectiveness of the
learner and learning resource characterization network in
the interpretable intelligent learning diagnosis framework
proposed in this paper, experiments are conducted to
compare the auto-encoder-based characterization network

in this paper with the fully connected deep neural network in
the traditional approach.

As shown in Table 4, in the LDM-ID and LDM-HMI
methods, compared with the fully connected deep neural
network, the auto-encoder-based representational network
improves the AUC of the model by about 0.85% and 0.9% on
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Figure 3: Te proposed methods were compared with 11 state-of-the-art methods. In this paper, 11 state-of-the-art learning diagnosis methods
were replicated and experiments were conducted on two publicly available datasets and one self-built dataset, and evaluated using two metrics,
AUC and RMSE. A larger AUC indicates higher prediction accuracy, and a smaller RMSE indicates better stability of the methods.

Table 2: Comparison with the state-of-the-art methods in terms of learning performance prediction.

Model
CL21 Math1 Synthetic-5

AUC RMSE AUC RMSE AUC RMSE
IRT [26] 73.12% 0.4365 68.31% 0.5164 78.52% 0.4824
MIRT [10] 73.24% 0.4352 69.83% 0.4946 79.80% 0.4733
DINA [12] 69.92% 0.4859 64.46% 0.5297 73.80% 0.4968
Ho-DINA [15] 70.37% 0.4723 66.58% 0.5215 72.45% 0.4988
PMF-LDM [27] 63.74% 0.6515 68.03% 0.4884 62.40% 0.6038
NeuralCDM [45] 76.88% 0.4274 72.90% 0.4533 79.77% 0.4756
DeepMFLD [46] 80.40% 0.4226 77.74% 0.4356 76.68% 0.4897
IRR-IRT [47] 71.23% 0.4395 74.10% 0.4505 72.65% 0.4996
IRR-MIRT [47] 81.29% 0.4213 80.72% 0.4231 81.35% 0.4073
IRR-DINA [47] 75.51% 0.4271 81.40% 0.4234 81.03% 0.4087
IRR-NeuralCDM [47] 75.02% 0.4279 78.56% 0.4278 75.85% 0.4917
Proposed LDM-ID 86.44%  .41 5 81.35% 0.4171 88.02% 0.3667
Proposed LDM-HMI 85.91% 0.4122 81.89%  .4163 9 .25%  .3528
Te signifcance of bold values means the best learning performance prediction on each dataset.

14 International Journal of Intelligent Systems



average over the three data sets, respectively, and reduces the
RMSE by about 0.002 and 0.003, respectively. It proves that
the auto-encoder-based learner and learning resource rep-
resentation network is more efective. Among them, the
encoder learns to retain as much relevant information in the
potential space and discard irrelevant parts, and the decoder
learns the potential space information to reconstruct the
input, which achieves an efective denoising efect and
contributes to a more efective potential feature represen-
tation of learners and learning resources.

6.4.3. Efectiveness of Deep and Shallow Learning Feature
Fusion. To verify the efectiveness of the fusion of deep and
shallow features in the interpretable intelligent learning
diagnosis framework proposed in this paper, experiments
are conducted in three forms: using only shallow features,
using only deep features, and fusing deep and shallow
features.

As shown in Table 5, the fusion of deep and shallow
features has the most signifcant efect on the model ef-
fectiveness on the average over the three datasets, with the
AUC of the fusion of deep and shallow features improving
by about 1.46% and 1.73% and the RMSE decreasing by
about 0.011 and 0.016 in the LDM-ID and LDM-HMI ap-
proaches relative to the use of only shallow features, relative
to the use of only deep features, the AUC of deep and shallow
feature fusion is increased by about 0.42% and 0.72%, and
the RMSE is reduced by about 0.003 and 0.011. Terefore,
the fusion of deep and shallow features helps to improve the
performance of the model, because the deep and shallow
features provide diferent valid information from the high-
dimensional space and low-dimensional space, respectively,
to achieve better prediction results. Also, the fusion of deep
and shallow features has better interpretation compared to
using only deep features.

6.4.4. Efectiveness of Attention Mechanism. Based on the
deep and shallow feature fusion, considering that each di-
mension of deep features and shallow features may have

diferent efects on the performance of model prediction,
giving diferent degrees of attention to diferent dimensional
features may produce better results. Terefore, this paper
introduces an attention mechanism in the prediction net-
work to further process the deep and shallow fused features,
and conducts experimental validation.

As shown in Table 6, after introducing the attention
mechanism, the AUC is improved by about 0.92% and 1.42%
and the RMSE is reduced by about 0.004 and 0.005 on
average in the three datasets in the LDM-ID and LDM-HMI
methods, which fully illustrates that the introduction of the
attention mechanism can improve the performance of the
model. Te attention mechanism assigns diferent weights to
the features of diferent dimensions, which not only helps to
improve the accuracy of the prediction results but also can
provide explanatory information for the prediction results. It
can help us to know the potential connection between the
features and the output.

In addition, this paper also verifes the efect of the joint
action of the auto-encoder-based learner and learning re-
source representation network and attention mechanism
based on deep and shallow feature fusion, which is con-
ducted in three cases, namely, introducing the auto-encoder-
based learner and learning resource representation network
alone, introducing the attention mechanism alone, and
introducing the auto-encoder-based learner and learning
resource representation network and attention mechanism
simultaneously. Te experiments were conducted.

As shown in Table 7, the model has the best performance
when the auto-encoder-based learner and learning resource
representation network and the attention mechanism are
introduced simultaneously. Te AUC improves by 1.02%
and 1.82%, and the RMSE decreases by 0.003 and 0.004 in
the LDM-ID and LDM-HMI methods on average of the
three datasets compared to the auto-encoder-based learner
and learning resource representation network alone.
Compared with the attention mechanism alone, the AUC of
the model increased by 0.96% and 1.29%, and the RMSE
decreased by 0.001 and 0.001. Tis indicates that the model
performs best when the auto-encoder-based learner and
learning resource representation network and the attention
mechanism are combined, which can efectively represent
the learners and learning resources while assigning diferent
weights to the features of diferent dimensions.

6.4.5. Interpretable Analysis and Educational Applications.
Te interpretable intelligent learning diagnostic framework
proposed in this paper has good interpretability, which
comes from three main aspects: cognitive parameters,
learner-resource response network, and weighting in-
formation of attention mechanisms.

1) Interpretability of cognitive parameters: In the initial
part of the model, this paper conducts a preliminary di-
agnostic evaluation of learners based on diferent cognitive
diagnostic model, and obtains some cognitive parameters
that have practical signifcance in the educational feld, such
as the multidimensional ability values of learners in the
MIRT model, the binary vector of learners’ knowledge

Table 3: Comparison with traditional methods in terms of pre-
diction time cost.

Model
Time cost for prediction

CL21 Math1 Synthetic-5
IRT [26] 16ms 203ms 141ms
MIRT [10] 90ms 385ms 597ms
DINA [12] 16ms 31ms 47ms
Ho-DINA [15] 57ms 198ms 124ms
PMF-LDM [27] 15ms 45ms 61ms
NeuralCDM [45] 156ms 216ms 3359ms
DeepMFLD [46] 270ms 352ms 3822ms
IRR-IRT [47] 192ms 401ms 3591ms
IRR-MIRT [47] 229ms 435ms 3603ms
IRR-DINA [47] 223ms 462ms 3609ms
IRR-NeuralCDM [47] 218ms 316ms 3583ms
Proposed LDM-ID 187ms 277ms 3397ms
Proposed LDM-HMI 203ms 303ms 3374ms
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mastery in the DINA model, the difculty, diferentiation, the
skipping rate and guessing rate of learning resources. Tese
parameters can complement each other and form a compre-
hensive and multidimensional description of the learners and
learning resources, which can be used as input to the sub-
sequent prediction network to provide a better explanation.

For example, for learners, the proposed interpretable
intelligent learning diagnostic framework can be combined
with multiperspective cognitive diagnostic theories to
evaluate learners’ learning states, which can not only un-
derstand the diferences in learners’ multidimensional and
fne-grained potential cognition status but also obtain the
overall ability level of learners. In addition, it can provide
refned tutoring information for subsequent teaching practice.
Figure 4(a) shows the knowledge mastery of four randomly

selected learners in the CL21 dataset and their overall pro-
fciency level. It shows that learner S1 has a low mastery of
knowledge points K8 and K10. Figure 4(b) shows the overall
profciency level of the four learners, and we can see that the
overall profciency level of learner S4 is low, indicating that his
foundation may be weak and needs to consolidate his basic
knowledge. Figure 5(a) visualizes six cognitive parameters of 20
exercises on the CL21 dataset. Tis information can be ef-
fectively applied in various aspects, such as learner profling
and learner profciency analysis.

Second, for learning resources, this method can provide
comprehensive parameter characterization information of
learning resources. Based on these parameters, a more ac-
curate learning resource recommendation service can be
provided for learners. For example, when learners have

Table 5: Learning performance prediction experiments with a fusion of deep and shallow features.

Model Representation
CL21 Math 1 Synthetic-5

AUC RMSE AUC RMSE AUC RMSE

LDM-ID
Shallow feature 83.16% 0.4291 77.41% 0.4388 85.23% 0.3749
Deep feature 84.31% 0.4206 78.69% 0.4265 85.91% 0.3718

Shallow+ deep feature 84.78%  .4179 79.26%  .4223 86.15%  .3691

LDM-HMI
Shallow feature 79.66% 0.4435 78.33% 0.4397 86.73% 0.3664
Deep feature 81.04% 0.4359 79.21% 0.4342 87.48% 0.3638

Shallow+ deep feature 81.56%  .4219 79.74%  .4215 88.6 %  .3579
Te signifcance of bold values means the best learning performance prediction on each dataset.

Table 6: Experiments on the prediction of learning performance of attention mechanism.

Model Attention setting
CL21 Math 1 Synthetic-5

AUC RMSE AUC RMSE AUC RMSE

LDM-ID Without attention 84.78% 0.4179 79.26% 0.4223 86.15% 0.3691
With attention 85.39%  .4123 79.84%  .4192 87.71%  .3669

LDM-HMI Without attention 81.56% 0.4219 79.74% 0.4215 88.60% 0.3579
With attention 84.7 %  .4134 8 .33%  .4185 89.14%  .3537

Te signifcance of bold values means the best learning performance prediction on each dataset.

Table 7: Learning performance prediction experiments for the representation network and attention mechanism.

Model Attention setting
CL21 Math 1 Synthetic-5

AUC RMSE AUC RMSE AUC RMSE

LDM-ID
SAE 85.32% 0.4157 80.47% 0.4184 86.96% 0.3682

Attention 85.39% 0.4123 79.84% 0.4192 87.71% 0.3669
SAE with attention 86.44%  .41 5 81.35%  .4171 88. 2%  .3667

LDM-HMI
SAE 82.65% 0.4201 81.02% 0.4168 88.93% 0.3562

Attention 84.70% 0.4134 80.33% 0.4185 89.14% 0.3537
SAE with attention 85.91%  .4122 81.89%  .4163 9 .25%  .3528

Te signifcance of bold values means the best learning performance prediction on each dataset.

Table 4: Learning performance prediction experiments for learner and learning resource representation networks.

Model Network structure
CL21 Math 1 Synthetic-5

AUC RMSE AUC RMSE AUC RMSE

LDM-ID DNN 84.78% 0.4179 79.26% 0.4223 86.15% 0.3691
SAE 85.32%  .4157 8 .47%  .4184 86.96%  .3682

LDM-HMI DNN 81.56% 0.4219 79.74% 0.4215 88.60% 0.3579
SAE 82.65%  .42 1 81. 2%  .4168 88.93%  .3562

Te signifcance of bold values means the best learning performance prediction on each dataset.
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a higher mastery of knowledge point a, we can recommend
more difcult learning resources to help learners master
knowledge point a more frmly, or when there is a small
diference in the diagnostic results of diferent learners’ mastery
of knowledge point b, we can select more diferentiated
learning resources about b to provide detailed learning di-
agnosis for these learners.Tis rich information about learning
resources can assist in practical applications such as educational
resource modeling and test question quality analysis.

2) Interpretability of learner-resource response network:
After deep characterization of learners and learning re-
sources, this paper constructs a learner-learning resource
response network to model the learner-learning resource
response process in the actual scenario, simulating the in-
terrelationship between the potential learning state of
learners and the response results in the response process,
which is more suitable for the actual situation and provides
explanations in the modeling method. Te heat map of the
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Figure 5: As in Figure (a), 6 groups of the relevant cognitive parameters of 20 exercises are intercepted from CL21. Te darker the color is,
the greater the value is. For Figure (b), the correlation coefcients between learner embedding and learning resource embedding are
extracted in the learner-resource response network. For Figure (c), the weight factors of the self-attentionmechanism on the learning feature
vector are used to speculate the answering results.
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Figure 4:Tere are two sets of interpretable cognitive parameters for learners, the knowledge mastery cognitive parameters and the learning
ability parameters. For the knowledge mastery cognitive parameter, 0 represents no mastery of the knowledge, and 1 represents full mastery
of the knowledge. For the cognitive parameter of learning ability, the range of values is from −1.5 to 1.5, representing low to high learning
ability. Te higher the learning ability parameters, the higher the probability of answering the exercise correctly. (a) Knowledge Mastery
status parameters of learners 1∼4 on knowledge points K1∼K12. (b) Learning ability parameters of learners 1∼4.
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Pearson coefcient correlation between the learner char-
acteristics and the learning resource characteristics is con-
structed, and Figure 5(b) shows that there is a more
signifcant connection between the two.Te learner-learning
resource response network can be applied to learning re-
source recommendation, learning interaction analysis, and
adaptive learning systems.

3) Interpretability of attentionmechanisms: Based on the
model’s deep and shallow integration features of learners
and learning resources, an attention mechanism is in-
troduced to obtain the diference in the degree of infuence
of features of diferent dimensions on the actual response
results of learners, so that the importance level of features
provides retrospective explanatory information for pre-
dicting results and provides support for educational cue
analysis, educational visualization research, etc.

Second, from the perspective of learning resources, this
method can provide comprehensive parameter character-
ization information for learning resources. Figure 5(c) shows
the exercise parameter information of the CL21 data set.
Based on these exercise parameters, it is possible to provide
learners with more accurate learning resource recommen-
dation services. For example, when the learner has a high
degree of mastery of knowledge point a, we can recommend
difcult topic resources about knowledge point a to help
learners grasp this knowledge point more frmly, or when
diferent learners have a small diference in the diagnosis
result of the mastery of knowledge point b, we can make
a more detailed learning diagnosis for these learners by
selecting exercise resources with a greater degree of
discrimination.

 . Conclusion

To address the challenge of balancing diagnostic accuracy
and interpretability in traditional learning diagnostic
methods, this paper proposed a unifed interpretable in-
telligent learning diagnosis framework that integrates the
interpretability of cognitive diagnosis methods and the
powerful representation learning ability of deep learning
methods, which uses learners’ learning records and learning
resources related information to perform learning diagnosis
and learning performance prediction for learners. Using the
diagnostic results of multichannel prior cognitive diagnosis
as the basis for embedding representation, a learner-learning
resource response network is constructed to simulate the
process of learners’ answering behaviors. More important
infuencing factors for prediction results are mined through
the self-attention mechanism, making the model more
interpretable.

Specifcally, in the modeling process, we frst constructed
cognitive parameter sets to form shallow features based on
educational theories frommultiple cognitive diagnosismodels.
Ten, we designed a learner representation network and
learning resource representation network to mine the deep
feature of learners and learning resources, to facilitate the use
of shallow features in combination with deep features. In the
diagnosis process, a fusion self-attention mechanism based on
convolutional neural network architecture is used for learners’

performance prediction, which is helpful in fnding the fea-
tures that have a greater impact on the learner’s performance.
Experiments on real-world data sets verify the efectiveness of
the proposed method, and the analysis of the experimental
results can prove to a certain extent the possibility of the
method proposed in this paper in real education scenarios.

Our method can obtain the predicted value of the correct
probability of the learner’s answer, diagnose the learner’s
overall knowledge point mastery through the characteristic
information of the learner and the learning resource, conduct
the parameter representation of the learning resource, and
provide reference information for the individualized learning
of the learner and the intelligent recommendation of the
learning resource of the learning platform. Future research
can be carried out from the following aspects: (1) in the
intelligent learning diagnosis framework of this paper, more
learning diagnosis models could be introduced, and diferent
methods and perspectives could be used to model learners
and learning resources; (2) it could monitor the learner’s
learning process more macroscopically and evaluate the
learner’s learning in periods, and dynamically observe the
change process of the learner’s knowledge mastery status and
learning ability during learning; and (3) it could introduce
multimodal data, such as the text, video, and audio in-
formation in the learning resources. Te learner’s behavior
information could be used to enrich the input data of the
model to obtain more accurate learning evaluation results.
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