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In sand-dust environments, light is scattered and absorbed, and sand-dust images thus sufer from severe image degradation
problems, such as color shifts, low contrast, and blurred details. To address these problems, we propose a two-step unsupervised
sand-dust image enhancement algorithm. In the frst step, a convenient and competent color correction method is put forward to
solve the color shift problem. Considering the wavelength attenuation features of sand-dust images, a linear stretching and blue
channel compensation method is designed, and an adaptive color shift correction factor is developed to remove the color shift. In
the second step, to enhance the clarity and details of the images, an unsupervised generative adversarial network is proposed,
which does not require pairs of data for training. To reduce detail loss, the detail enhancement branch is designed, and the
generator considers to more details through the constructed coarse-grained and fne-grained discriminators. Te introduced
multiscale perceptual loss promotes the image fdelity well. Experiments show that the proposed method achieves better color
correction, enhances image details and clarity, has a better subjective efect, and outperforms existing sand-dust image en-
hancement methods both quantitatively and qualitatively. Similarly, our method promotes the application capability of the target
detection algorithm and also has a good enhancement efect on underwater images and haze images.

1. Introduction

In sand-dust environments, the atmosphere is flled with
many sand-dust particles, which seriously degrades the
images captured by outdoor devices. Tis issue manifests in
such images as color shifts, low contrast, and blurred details,
and even severe noise. Sand-dust-degraded images hinder
the ability to obtain valuable information and severely de-
grade the ability to run subsequent advanced tasks such as
scene understanding [1], object recognition [2], and video
surveillance [3]. Terefore, it is necessary and meaningful to
develop an image dedusting algorithm to obtain high-quality
clear images without sand dust. Such a method would
promote the intelligent application of computer vision.

Existing image dedusting algorithms are not ideal in
terms of color restoration and detail preservation. In terms
of color restoration, most color correction algorithms ignore
the features of the wavelength attenuation of dust images

and the cause of color shift; thus, when applied to sand-dust
images, color distortions occur. Image detail preservation is
primarily based on two mainstream technologies: image
enhancement technology and the image formation model.
Tese two methods restore the details of the image to some
extent but cause other problems, and the resulting image
visibility is poor. Deep learning methods obtain better re-
sults, but most require training paired data.

Because paired sand-dust datasets are difcult to obtain,
even if they can be synthesized by certain methods, the
generalizability of such methods to real scenes is weak due to
the gap between them and the real domain. To our
knowledge, few researchers have enhanced the details of
sand-dust images through unpaired methods of deep
learning. Inspired by image translation [4], we use generative
adversarial networks (GAN) to address the details of sand-
dust images and build an unpaired mapping between
blurred image space and clear image space, which reduces
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the dependence on paired sand-dust datasets. We introduce
a one-path GAN, and unlike [4, 5], we do not need to use
cycle-consistency and two-way GANs. Training the network
is difcult due to the scarcity of paired training data; thus, we
make certain improvements to the proposed method. To
reduce detail loss, we design a detail enhancement branch,
and there is no real label during training. We also introduce
a multiscale perceptual function to reduce the content de-
viation and guide the generator to focus on more image
details by the designed coarse-grained and fne-grained
discriminators.

We propose a two-step unsupervised sand-dust image
enhancement (SIE) algorithm. Te method can be decom-
posed into two processes: color correction and detail re-
fnement. A color correction method is frst designed based
on the property of wavelength attenuation of sand-dust
images. To enhance the contrast and details of the im-
ages, we propose an unsupervised method to enhance the
sand-dust images. Te visualization is shown in Figure 1,
and the specifc primary contributions are summarized as
follows:

(1) A convenient and competent color correction
method is proposed. Te method is designed with
a linear stretch, blue channel compensation, and
color shift removal to achieve color correction.

(2) We design an unsupervised generative adversarial
network to refne the image’s details. Te un-
supervised network reduces the detail loss by de-
signing a detail enhancement branch and guides the
generator to focus on more details by constructing
coarse-grained and fne-grained discriminators. Te
multiscale perceptual function is introduced to im-
prove the image fdelity.

(3) Experiments show that the method exhibits the
obvious advantages of high clarity and clear details.
In addition, the proposed method promotes the
application capability of the target detection algo-
rithm and is also suitable for other degraded images.

2. Related Works

2.1. Traditional Methods. Traditional methods primarily
include image enhancement and image formation models.
Image enhancement methods are primarily used to achieve
a specifc purpose by processing and transforming image
pixel values. Tis type of method is common in image
dehazing [6], low-light image enhancement [7], and other
felds. Specifcally, in image dedusting, Al Ameen et al. [8]
introduced fuzzy operators to process dust images. Although
the image’s sharpness is improved, the color shift problem is
still prominent. Fu et al. [9] designed a fusion method that
performs color correction and detail enhancement through
a statistical strategy and fusion of images with diferent
luminances derived from the gamma function; however,
severe dust images cannot be processed efectively. Gao et al.
[10] removed the dust through the YUV space. In the space,
the method achieves color correction by color components
U and V and enhances the contrast by processing the

luminance component Y. However, there is still sand dust in
some areas of the sky. Park and Eom [11] used the designed
color balance and histogram to enhance the sand-dust
image. Good results are achieved in detail enhancement
and color restoration. However, the image’s tone is cold,
which introduces considerable noise during enhancement.
Xu et al. [12] proposed the least square sand-dust image
model. Tese image enhancement methods enhance the
image detail information to some extent, but the subjective
visual efect is poor, and there are problems of color dis-
tortion and noise.

Te image formation model method is primarily used to
establish an approximate mathematical relationship by
analyzing the causes of image degradation. Gao et al. [13]
developed a method of reversing the blue channel to restore
the image. Tis method achieved good detail enhancement
and color correction using prior information and integrated
the factor into the image formation model. However, with
severely distorted sand-dust images, this prior information
was insufcient, resulting in color distortion. Kim et al. [14]
derived the scene transfer function by saturation and
combined it with a white balance technique to remove sand-
dust. Tis method was not robust and could not manage
most sand-dust images. Dhara et al. [15] improved the dark
channel and estimated accurate atmospheric light to recover
the sand-dust image. Tis improved method cannot elim-
inate the color shift and improve the image visibility. Yang
et al. [16] used the histogram matching method to remove
color bias and improved image clarity through the optimized
atmospheric scattering model, but the sky region was prone
to halo. Similar methods were also used in [17, 18]. Tese
methods based on image formation models cause color
distortions when encountering images with complex scenes,
which afect the overall visual efect. Tus, the robustness of
these methods must be improved.

2.2. Deep Learning Methods. Based on paired data, image
dehazing [19, 20], image deraining [21], and low-light image
enhancement [22] have achieved good results. However,
deep learning methods have not been well studied in image
dedusting, primarily due to the limitation of the dataset.
Recently, the sand-dust images were synthesized by Si et al.
[23], who conducted quantitative and qualitative evaluations
of the synthesized images. However, compared with the real
sand-dust image, the synthetic sand-dust image still has a big
gap. Huang et al. [24] developed a new loss function and
designed a network model with dust extraction and color
correction for image desanding. Tis method has achieved
certain results in real scenes but produces color distortion
and insufcient defnition. Huang et al. [25] developed
a network model for image desanding by using several di-
lated convolution residual blocks and designed weighting
modules. Afected by the synthetic dataset, this method
achieves better performance on synthetic datasets but is not
ideal in real scenarios. Liang et al. [26] remove sand-dust
based on color correction and dehazing network. Tis
method uses a similar dehazing method to process the image
after color correction and unwraps the model parameters
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through an unsupervised network. However, the image
recovered by this method is prone to color distortion.

2.3. Unsupervised Learning. Initially, unsupervised genera-
tive adversarial networks [4] achieved good results in the
feld of image translation. With subsequent developments,
unsupervised learning has been extended and applied to
other tasks. Recently, [27–30] have achieved good results in
image deblurring, image denoising, image dehazing, and
image deraining. Because unsupervised training is not su-
pervised by ground truth images, [29, 30] used a two-way
GAN with a joint loss function to constrain the network
training. References [31, 32] tried to use a single generative
adversarial network for aesthetic image and low-light image
enhancement. To train the network efectively, they designed
an attention module with some prior knowledge and
combined multiple loss functions to constrain the network.
Unlike these tasks, we use a one-way generation adversarial
network to refne the image details and improve the single
generation adversarial network to adapt to the task of in-
terest. To reduce detail loss, we design a detail enhancement
branch. To guide the generator to focus on more details, we
design coarse-grained and fne-grained discriminators and
constrain the network well with a multiscale perceptual
function.

3. Proposed Method

We propose a two-step unsupervised SIE method, including
an adaptive color correction module and an unsupervised
detail refnement network module. Details are shown in
Figure 2. Te technical details of the proposed modules are
described in terms of these two aspects.

3.1. Adaptive Color Correction Model. Under sand-dust
conditions, images have serious color shifts due to the in-
fuence of the medium during the propagation of light. Most
sand-dust images are yellow or red, which afects their visual
appeal. Terefore, such color correction algorithms need to
be developed urgently. Some traditional color correction
algorithms, such as the Gray World algorithm [33], Gray
Edge [34], Shades of Gray [35], and Max RGB [36], im-
plement color correction by relying on specifc assumptions.

However, the specifc assumptions in these algorithms are
not tailored for sand-dust images; thus, it is inappropriate to
correct the sand-dust images. Unlike these algorithms, we
specifcally study the sand-dust image and explore the cause
of color shift by analyzing the wavelength attenuation
characteristics in Figure 3 to achieve color correction.
Compared with the wavelength attenuation of clear images,
it has the following characteristics: (a) the dynamic range is
narrow; (b) the blue channel’s attenuation is more severe
than the other two channels; and (c) the deviation of the
three channels is larger. Tus, we design an adaptive color
correction strategy (i.e., red-green channel stretch-com-
pensation-blue channel stretch-color shift removal). Con-
sidering (a) and (b) above, to extend the pixel-level
distribution, the red and green channels are frst stretched,
with formulae (1) and (2). Due to the serious attenuation of
the blue channel, direct stretching will cause excessive color
correction. Terefore, a method of compensating blue
channel is designed, which compensates by selecting well-
preserved green channel, with the aim of reducing blue
artifacts and distortions. Te relevant formula is shown in
(3), and the compensated blue channel is stretched to the
entire pixel level, as shown in (4):
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where Ir
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s , and Ib
s refer to the RGB channels after

stretching, respectively; Ir, Ig, and Ib represent the RGB
channels of the input image, respectively; Ir

max and Ir
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to the maximum and minimum values of the input image’s
red channel, respectively; similarly, the meaning of Ig

max and
I
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min can be derived; Ig
s−mean is the blue channel’s mean value

after stretching; Ib
mean is the blue channel’s mean value of the

input image; Ib
c is the blue channel after compensation; α is
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Figure 1: Visualization examples. (a) Sand-dust images and (b) our results.
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the compensation gain coefcient; and Ib
c−max and Ib

c−min are
the maximum and minimum values of the blue channel after
compensation, respectively. After these operations, there is
a deviation in the wavelength distribution of the three
channels, resulting in color shifts. Considering the charac-
teristic c of the sand-dust image, we adjust each channel by
the color shift correction factor. Taking the information of
the green channel as a reference, we adjust the other two
channels so that the three-channel wavelength has a similar
distribution; the specifc formulae are as follows:

I
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where Ir
s−mean, Ig

s−mean, and Ib
s−mean are the mean values of the

RGB channels after stretching, respectively; β is the color
shift adjustment coefcient; and Ir

f inal and Ib
f inal are the fnal

color correction’s red channel and blue channel. Te entire
color correction process is shown on the left in Figure 2. Te
image corrected by the above formulae and the corre-
sponding wavelength attenuation maps are shown in Fig-
ures 4 and 5. Figures 4 and 5(g) show that the pixel range is
well extended to the entire pixel level after the stretching
operation for the red and green channels. As shown in
Figures 4 and 5(h), after the compensation operation, the
blue channel is efectively compensated, but the pixel-level
distribution is not balanced, and the blue channel must be
further adjusted. As shown in the histogram distribution in
Figures 4 and 5(i), the range of pixels is adjusted by

stretching the blue channel and then becoming balanced,
which attenuates color distortion. Although the color shift is
attenuated in Figures 4 and 5(d), there is a small amount of
sand and dust. Trough the corresponding wavelength
distribution, there is also a marginal deviation in the dis-
tribution of the three channels. After the color shift factor
adjustment, Figures 4 and 5(e) show natural colors, and the
corresponding wavelength distribution is further ftted,
showing a better color correction efect.

3.2. Unsupervised Detail Refnement Network. After color
correction, the color shift is removed efectively, but image
details are not sufciently clear, the contrast is low, and the
image must be further processed to improve its visibility.
Tus, we propose an unsupervised detail refnement gen-
erative adversarial network, and the network structure is
shown on the right side of Figure 2 and includes the gen-
erator structure and coarse-grained and fne-grained dis-
criminator structures. Te structures of the generator and
discriminator and the loss functions used are described in
detail.

3.2.1. Generator. We use a U-Net structure similar to [4] as
the backbone of the generator, consisting of an encoder,
a feature transformer, and a decoder. Figure 2 shows its
structure. Te encoder consists of a feature extraction unit
and two downsampling units. Te downsampling unit
consists of a convolution with a stride of 2, a normalization
function InsNorm, and an activation function ReLU. Te
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Figure 2: Proposed unsupervised SIE framework, where the size in the icon refers to the convolution kernel size, and R, G, and B represent
the red, green, and blue channels, respectively.
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Figure 3: Images and the corresponding wavelength attenuationmaps. (a) Sand-dust and clear images and (b) wavelength attenuationmaps
corresponding to (a).
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Figure 4: Color correction process and corresponding wavelength attenuation maps. (a) Sand-dust image, (b) red and green channel
stretching, (c) blue channel compensation, (d) blue channel stretching, (e) color shift removal, and (f)–(j) are wavelength attenuation maps
corresponding to (a)–(e), respectively.
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Figure 5: Color correction process and corresponding wavelength attenuation maps. (a) Sand-dust image, (b) red and green channel
stretching, (c) blue channel compensation, (d) blue channel stretching, (e) color shift removal, and (f)–(j) are wavelength attenuation maps
corresponding to (a)–(e), respectively.
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feature transformer is composed of 6 identical residual
blocks. Te decoder consists of two upsampling units, fol-
lowed by a feature enhancement module. In the upsampling
unit of the decoder, we used a bilinear sampling layer and
a 1 ∗ 1 convolution layer instead of the deconvolution
operation used in [4] to reduce the checkerboard efect,
followed by the spectral normalization function.Te spectral
normalization function has been shown to be stable in
network training [37]. In addition, to make use of the
shallow information, we also use the skip connection op-
eration. Although encoder-decoder structures such as U-Net
can extract deep semantic information, which is important
for image representation, this upsampling and down-
sampling operation will result in the loss of details.
Terefore, to retain more information, we design the detail
enhancement branch, as shown in the upper part of Figure 2.
Tis detail enhancement branch uses a full convolution
operation, by which the detail loss can be efectively reduced.

3.2.2. Discriminator. Te discriminator continuously guides
the generator to produce more realistic images by dis-
criminating between the real and generated images. Dis-
criminators play an important role in generative adversarial
training. In this study, we use the PatchGAN structure in [4]
and introduce a spectral normalization function to increase
the stability of training. Because PatchGAN uses a single-
scale convolutional kernel 4 ∗ 4, this perceptual feld lim-
itation can only guide the generator to generate details at
a global scale. Tis guidance is coarse-grained and cannot
guide the generation of minute details. Tus, based on
a coarse-grained discriminator, we propose a fne-grained
discriminator. Tis fne-grained discriminator guides the
generator to focus on local details by employing a small-scale
2 ∗ 2 convolution kernel. Its structure is shown on the right
side of Figure 2. Te constructed coarse-grained and fne-
grained discriminators are experimentally verifed to be
efective in promoting the enhancement of more details.

3.2.3. Loss Function. Te adversarial loss is exploited to ft
the distribution between images. Least-square GAN
(LSGAN) loss [38] can make the network training more
stable, and we thus use LSGAN loss as the generative
adversarial loss, and the formulae are as follows:

LG � EG(x)∼pfake
DC(G(x) − 1)

2
 

+ EG(x)∼pfake
DF(G(x) − 1)

2
 ,

LD � Ey∼Preal
DC(y) − 1( 

2
  + EG(x)∼Pfake

DC(G(x))
2

 

+ Ey∼Preal
DF(y) − 1( 

2
  + EG(x)∼Pfake

DF(G(x))
2

 ,

(7)

where LG is the adversarial loss of generator G; DC and DF

are the coarse-grained discriminator and fne-grained dis-
criminator, respectively; x is the image after color correc-
tion; y contains high-quality clear domain images; and LD is
the loss of discriminator D. Because the training is unpaired,
there is no supervision of ground truth images. We also

introduce a multiscale perceptual loss function that sends
the generated and input images to a pretrained VGG19
network [39] and calculates their feature distances in feature
space to reduce the bias of semantic features and enhance the
image fdelity. Te formula is as follows:

LP � 
I

i�1 φi(x)
���� − φi(G(x))2, (8)

where φi(·) is the feature map, which comes from the output
of the i-th layer of the VGG19. In this study, we use the
Relu_1_1, Relu_2_1, Relu_3_1, Relu_4_1, and Relu_5_1
layers to calculate the feature distance between the two
images. ‖ · ‖2 stands for the l2 norm; I is the total number of
layers; and LP is the multiscale perceptual loss. Ten, the
total loss of the generator is

L � LG + LP. (9)

4. Experimental Results and Analysis

4.1. Dataset and Application Details. Because no large sand-
dust datasets are publicly available, we collected 700 sand-
dust images and 1500 high-quality clear domain images to
create a training set and train the generative adversarial
network; the test set consists of 130 sand-dust images and
240 high-quality clear images, where 240 high-quality clear
domain images are primarily used to calculate the Fréchet
inception distance (FID) [40] with the recovered images.
During network training and testing, the size of the input
image is resized to 256 ∗ 256, and the network output image
is in PNG format.

Te color correction process was implemented in
MATLAB with a computer with Intel(R) Core(TM) i7-8700
CPU @ 3.20GHz, 16GB RAM, and the network training
model was implemented in PyTorch on an NVIDIA Tesla
V100 GPU with 16G of memory. ADAM is used as an
optimizer for the generator and discriminator with a batch
size of 1.200 epochs were trained. Te frst 100 epochs were
run with a fxed learning rate of 0.0002, and the learning rate
for the last 100 epochs decayed linearly to 0. In this study, α
in formula (3) is equal to 5, and β in formula (5) is equal
to 1.5.

4.2. Parameter Sensitivity Analysis. In the following, we
explore the efect of α and β on the color correction. After
several experiments, the color correction is shown to obtain
better results when α� 5 and β� 1.5. To verify the efect of α
on color correction, we set β� 1.5 and explore the efect
when α is equal to 1, 3, 5, and 7. Figure 6 shows that when
α� 1, blue artifacts occur; when α� 3, blue artifacts decrease
in frequency markedly; and when α� 5 and 7, no artifacts
occur. Terefore, we set α� 5. To describe the efect of β on
color correction, we set α� 5 and explore the recovery efect
when β equals 1, 1.5, 2, and 2.5. Figure 7 shows that when
β� 1, the image has slight dust: when β� 1.5, the dust of the
image is weakened, and the color is relatively normal; when
β� 2 and 2.5, the image has a cyan tone. Terefore, we set
β� 1.5 in this study.
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4.3. Qualitative Evaluation

4.3.1. Qualitative Evaluation of Color Correction. For
qualitative evaluation, we compare it with several other al-
gorithms, including Gray Edge [34], Max RGB [36], Shades of
Gray [35], Gray World [33], and OTM [16]. Figures 8 and 9
show that Gray Edge [34], Max RGB [36], and Shades of Gray
[35] cannot remove the color shift. Although Gray-World
[33] removes the color shift to some extent, it produces blue
artifacts and color distortions in the color correction process
because it does not consider the serious attenuation of the
blue channel, while the image processed by OTM [16] is
brighter, loses some details, and has color distortions in the
foreground. Te proposed algorithm removes the color shift
well, does not introduce color distortions, and maintains
image details, which is superior to other algorithms.

4.3.2. Qualitative Evaluation of the Sand-Dust Image En-
hancement Efect. Te visualization is more intuitive to
refect the recovery efect. Tus, we compare it with seven
other sand-dust comparison algorithms (RDCP [18], CC
[15], FSS [14], VR [16], RBCP [13], SES [11], and AOP [17])
and report visual recovery results in Figures 10 and 11. Te
source code is published by the author. Our code will be
available at https://github.com/ggxzxc/Sand-dust-Image-
Enhancement.

As shown in Figure 10, RDCP [18], VR [16], RBCP [13],
and SES [11] perform well, while other comparison algo-
rithms cannot efectively remove sand dust, and the resulting
visibility is poor. RDCP [18] appears overenhanced, and the
image is cool-toned. VR [16] has insufcient contrast. RBCP
[13] shows color distortions, and SES [11] has a lot of noise.
As shown in Figure 11, except for SES [11], all other

(a) (b) (c) (d) (e)

Figure 6: Efect of α on color correction. (a) Sand-dust images, (b) color correction results for α� 1, (c) color correction results for α� 3,
(d) color correction results for α� 5, and (e) color correction results for α� 7.

(a) (b) (c) (d) (e)

Figure 7: Efect of β on color correction. (a) Sand-dust images, (b) color correction results for β� 1, (c) color correction results for β� 1.5,
(d) color correction results for β� 2, and (e) color correction results for β� 2.5.
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algorithms cannot manage severe sand-dust images and
sufer from color distortions. SES [11] produces a lot of noise
but also enhances details. Our method recovers clear details
and has better visibility, and the resulting image quality is
markedly better than those of the other methods.

4.4. Quantitative Evaluation

4.4.1. Quantitative Evaluation of Color Correction. Since
there is no special evaluation index for color correction of
sand-dust images, the quality of color correction cannot be
quantitatively evaluated by indicators. We performed user
studies to determine the quality of recovery by scoring the
results of Gray Edge [34], Max RGB [36], Shades of Gray
[35], Gray-World [33], OTM [16], and the proposed
method. Te score is between 1 and 5, with high scores
indicating good results. We selected 10 experts with image

processing experience and 10 colleagues without image
processing experience to conduct user evaluation. Te re-
sults processed by various algorithms are combined, and
then, the user scores them; however, the user does not know
the corresponding algorithm during the evaluation process.
We report the average scores of 20 people on 100 sand-dust
images in Figure 12.

Figure 12 shows that the proposed method obtained the
highest score, predicting that it has better color recovery.

4.4.2. Quantitative Evaluation of the Sand-Dust Image En-
hancement Efect. Te lack of ground truth images makes
the reference metrics PSNR and SSIM unusable. Te liter-
ature [23] explored the nonreference metrics spatial-spectral
entropy-based quality SSEQ [41] and blind image quality
index BIQI [42] to evaluate the sand-dust images and proved
their validity. In this study, we used these two metrics to

(a) (b) (c) (d)

(e) (f ) (g)

Figure 8: Performance comparison of diferent color correction algorithms. (a) Sand-dust image, (b) Gray Edge [34], (c) Max RGB [36],
(d) Shades of Gray [35], (e) Gray-World [33], (f ) OTM [16], and (g) Our.

(a) (b) (c) (d)

(e) (f ) (g)

Figure 9: Performance comparison of diferent color correction algorithms. (a) Sand-dust image, (b) Gray Edge [34], (c) Max RGB [36],
(d) Shades of Gray [35], (e) Gray-World [33]. (f ) OTM [16], and (g) Our.

8 International Journal of Intelligent Systems



evaluate the image quality on the test set, and the smaller
their values, the better the image. In addition, we used the
Fréchet inception distance (FID) [40] and average gradient
(AG) [43] to measure the perceptual quality and the average
gradient. Te smaller the FID value is, the better the image,
and the larger the AG value is, the better the image. From
Table 1, the quantitative results indicate that the proposed
algorithm is superior to other algorithms except RDCP [18].
In particular, for RDCP [18], its metrics SSEQ and AG are
higher than those of the proposed algorithm, showing that
RDCP [18] has a higher average gradient and contrast, but
the improvement of this metric sacrifces the perceptual

quality of the image. From the perceptual distance FID of
RDCP [18], its value is markedly higher than that of the
proposed algorithm. Combined with Figures 10 and 11(b),
we can also see that the perceptual quality of RDCP [18] is
low. Tese results thus show that the proposed unsupervised
generative adversarial network has great advantages with
regard to image quality.

4.5. Ablation Studies. To verify the efectiveness of the
proposed model, we performed three groups of ablation
studies on the test set: (1) validation of the proposed two-step

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 10: Qualitative comparison results: (a) sand-dust images, (b) RDCP [18], (c) CC [15], (d) FSS [14], (e) VR [16], (f ) RBCP [13], (g) SES
[11], (h) AOP [17], and (i) Ours.
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 11: Qualitative comparison results: (a) sand-dust images, (b) RDCP [18], (c) CC [15], (d) FSS [14], (e) VR [16], (f ) RBCP [13], (g) SES
[11], (h) AOP [17], and (i) Ours.
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Figure 12: User scores.

10 International Journal of Intelligent Systems



strategy; (2) validation of the proposed color correction
strategy; and (3) validation of the unsupervised detail re-
fnement network module component. Te details of the
ablation experiments are given as follows.

4.5.1. Validation of the Efectiveness of the Proposed Two-step
Strategy. Te proposed two-step strategy includes a color
correction model in the frst step and network refnement in
detail in the second step. To verify the efectiveness of the
two-step strategy, we perform the following ablation ex-
periments: (1) color correction and (2) color correction plus
detail refnement network. Te objective metrics are shown
in Table 2.

Table 2 shows that after the frst step of color correction,
SSEQ, BIQI, and FID decreased by 1.02, 1.44, and 7.11,
respectively, and AG improved by 0.65 compared to the
sand-dust image. Te image quality is improved. After the
second step of the detail refnement network, the SSEQ,
BIQI, and FID decreased by 8.56, 5.22, and 21.04, re-
spectively, compared with the results of the frst step, and the
AG improved by 2.90 compared with the results of the frst
step. Image quality improved markedly after the second step
of detail refnement of the network. Te visualization results
are shown in Figure 13.

Figure 13(b) shows that, after color correction, the color
shift has been sufcient removed. As shown in Figure 13(c),
after the detail refnement network, the detail and clarity of
the image are markedly improved, and the image has better
visibility. Terefore, the efectiveness of the proposed two-
step strategy at enhancing sand-dust images is demonstrated
in terms of both objective metrics and subjective efects.

4.5.2. Ablation Experiments of the Efectiveness of the Pro-
posed Color Correction Strategy. We design a color cor-
rection strategy, that is, red-green channel stretch-
compensation-blue channel stretch-color shift removal. To
prove its efectiveness, we conduct the following ablation
experiments. First, the red-green channel stretching oper-
ation is removed, and the other operations remain un-
changed. In this experiment, the remove red-green channel
stretching operation in this study includes three experi-
ments: one is to remove only the red channel stretching
operation, one is to remove only the green channel stretch,
and the other is to remove both the red-green channel

stretch. Second, we remove the compensation operation, and
other operations remain unchanged. Tird, the blue channel
stretching operation is removed, and the other operations
remain unchanged. Fourth, the color shift correction factor
is removed, and other operations remain unchanged. Ex-
perimental results are shown in Figure 14. Compared with
the complete model, Figure 14(b) shows a slight color de-
viation without red channel stretching, and some details of
the image are dark. As shown in Figures 14(c) and 14(d),
when there is no green channel stretching or red-green
channel stretching, serious color distortion occurs.
Figure 14(e) shows that no compensation operation results
in blue artifacts. As shown in Figure 14(f ), no blue channel
stretching causes the image to turn yellow. As shown in
Figure 14(g), no color shift factor operation will cause slight
dust or distortion.Terefore, each operation of the proposed
strategy is necessary, and its efectiveness is proven.

To more comprehensively evaluate the efectiveness of
color correction strategy, we give the user study scores for
the diferent operations, taken in the same way as in section
4.4.1. Te user study scores are shown in Figure 15. No red
channel, no green channel, no red-green channel, no color
compensation, no blue channel, no color shift, and com-
pleted in Figure 15 correspond to operations (b)–(h) in
Figure 14, respectively. From Figure 15, the complete color
correction algorithm has a higher score, which shows that
each operation of the proposed strategy is benefcial to the
improvement of color correction, and proves its
efectiveness.

4.5.3. Ablation Experiments of the Proposed Components in
the Unsupervised Detail Refnement Network. In the un-
supervised detail refnement network, we primarily verify
the impact of the proposed detail enhancement branch, the
proposed coarse-grained discriminator and fne-grained
discriminator, and the multiscale perception function on
the network. To verify the efect of these components, we
conduct the following ablation experiments: (1) no D: we
remove the detail enhancement branch, and the other
components remain unchanged; (2) no C: we remove the
coarse-grained discriminator, and the other components
remain unchanged; (3) no F: we remove the fne-grained
discriminator, and the other components remain un-
changed; (4) no LP: we remove multiscale perception loss,
and other components remain unchanged; and (5) the
complete proposed model. Te objective metrics are shown
in Table 3. Except for no LP, the complete model performs
best compared to the other models in terms of metrics,
which demonstrates the efectiveness of the proposed

Table 1: Average quantitative metric values.

SSEQ↓ BIQI↓ FID↓ AG↑
RDCP 13.32 27.13 180.84 9.13
CC 16.72 27.22 188.26 5.79
FSS 14.87 25.22 210.08 5.86
VR 18.56 25.47 181.88 5.01
RBCP 18.05 24.85 191.68 6.00
SES 14.80 24.20 176.55 6.52
AOP 15.57 26.03 183.74 5.36
Ours 14.25 20.34 158.16 6.38

Table 2: Average metric values for diferent components.

SSEQ↓ BIQI↓ FID↓ AG↑
Input 23.83 27.00 186.31 2.83
a 22.81 25.56 179.20 3.48
b 14.25 20.34 158.16 6.38
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components. In particular, for no LP, the metrics SSEQ,
BIQI, and AG are shown to be better than those of the
complete model when the multiscale perceptual loss is re-
moved. Considering the subjective appearance of
Figure 16(e), the image is shown to be severely distorted,
including many false images and nonexistent details, and
leading to the abnormality and failure of these metrics SSEQ,
BIQI, and AG. However, the perceptual quality of the image
is low. As shown in the FID metric, the complete model
performs better with no perceptual loss, which also shows
the important role of multiscale perceptual loss. Based on the
subjective appearance of Figure 16, the complete model
includes more detailed information and better visibility and
thus performs better than the other models. Terefore, the
efectiveness of the proposed components is demonstrated
by both subjective and objective comparisons.

4.6. Run Time. We report the average running time of each
algorithm on the test set. All models are executed on the
same confguration, and results are shown in Table 4. Be-
cause the other algorithms are relatively simple traditional
methods, the running time is short, while the proposed
algorithm is a neural network, and the running time is long
but is similar to that of RDCP [18]. Te average time of
processing image size 256 ∗ 256 is less than 1 second, which
does not signifcantly limit practical applications.

4.7. Other Applications

4.7.1. Application 1: Enhancement of Underwater Images and
Haze Images. Figures 17 and 18 demonstrate that themethod
also has a good enhancement efect on haze images and
underwater images, refecting a good application scalability.

(a) (b) (c)

Figure 13: Two-step efect images of our method: (a) sand-dust images, (b) results of color correction, and (c) results of detail refnement
network.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 14: Efectiveness of the proposed color correction strategy: (a) sand-dust images, (b) no red channel stretching operation, (c) no
green channel stretching operation, (d) no red-green channel stretching operation, (e) no color compensation operation, (f ) no blue channel
stretching channel operation, (g) no color shift factor operation, and (h) complete color correction algorithm.
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Figure 15: User study scores for diferent operations.

Table 3: Average metric values for diferent components.

SSEQ↓ BIQI↓ FID↓ AG↑
No D 14.74 21.19 162.24 6.12
No C 17.61 23.10 173.74 4.81
No F 14.66 20.89 163.37 5.73
No LP 11.16 19.55 178.92 8.25
Ours 14.25 20.34 158.16 6.38
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4.7.2. Application 2: Application of Impact on Target
Detection. Figure 19 shows that more targets can be detected
in the enhanced image using the target detection Ssd al-
gorithm [44], which also improves the detection capability
and accuracy of the targets. Te proposed algorithm pro-
motes the application of advanced tasks well.

4.8.FailureCases. Teproposed algorithm does not perform
well with some seriously degraded images. Color distortion
and halo are introduced during enhancement in Figure 20.
Te reason for these results is that sand-dust occurs at night,
and severe sand-dust weather increases the difculty of
removing sand from the image. Te proposed method has

(a) (b) (c)

(d) (e) (f )

Figure 16: Impact of diferent components on network performance: (a) sand-dust images, (b) no D, (c) no C, (d) no F, (e) no LP, and
(f) ours.

Table 4: Te average running time of each algorithm.

Methods Platform Time (seconds)
RDCP MATLAB/CPU 0.756
CC MATLAB/CPU 0.132
FSS Python/CPU 0.059
VR MATLAB/CPU 0.165
RBCP MATLAB/CPU 0.190
SES Python/CPU 0.258
AOP MATLAB/CPU 0.168
Proposed MATLAB+Pytorch/CPU 0.848
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(a)

(b)

Figure 17: Examples of haze images enhancement: (a) haze images and (b) the dehazing results.

(a)

(b)

Figure 18: Examples of underwater images enhancement: (a) underwater images and (b) underwater images enhancement results.

(a)

(b)

Figure 19: Impact on target detection: (a) target detection of sand-dust images and (b) target detection after enhancement.
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insufcient constraints on unsupervised image enhance-
ment, which is also a cause of image distortion.

5. Conclusion

In this paper, we propose a two-step unsupervised SIE
method. In the frst step, a color correction method based on
linear stretching, blue channel compensation, and color shift
correction factor removal is proposed. In the second step, an
unsupervised detail refnement network restores the details
well. Te network reduces information loss by designing
a detail enhancement branch, and the constructed coarse-
grained and fne-grained discriminators guide the generator
to generate more details. Te introduced multiscale per-
ception function promotes image fdelity. Experiments show
that the method has good visibility with natural colors and
clear details and thus outperforms existing methods.
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