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Blind image quality assessment (BIQA) has made signifcant progress, but it remains a challenging problem due to the wide
variation in image content and the diverse nature of distortions. To address these challenges and improve the adaptability of BIQA
algorithms to diferent image contents and distortions, we propose a novel model that incorporates multiperspective consistency.
Our approach introduces a multiperspective strategy to extract features from various viewpoints, enabling us to capture more
benefcial cues from the image content. To map the extracted features to a scalar score, we employ a content-aware hypernetwork
architecture. Additionally, we integrate all perspectives by introducing a consistency supervision strategy, which leverages cues
from each perspective and enforces a learning consistency constraint between them. To evaluate the efectiveness of our proposed
approach, we conducted extensive experiments on fve representative datasets. Te results demonstrate that our method out-
performs state-of-the-art techniques on both authentic and synthetic distortion image databases. Furthermore, our approach
exhibits excellent generalization ability. Te source code is publicly available at https://github.com/gn-share/multi-perspective.

1. Introduction

Nowadays, the digital images have become a crucial media
format in people’s daily life, thanks to the widespread of
intelligent devices. However, various distortions can occur
during the image capture, processing, and transmission
processes, making image quality assessment (IQA) an urgent
need. IQA methods can generally be categorized into sub-
jective image quality assessment and objective image quality
assessment [1]. Subjective image quality assessment is re-
liable and accurate as it relies on human participation.
However, it is also time-consuming and laborious. Tere-
fore, considerable efort has been dedicated to objective
image quality assessment in past decades [2–6]. Te goal of
objective image quality assessment is to explore image
quality perception models that conform to the human vision
system (HVS). Based on the availability of reference images,
objective image quality assessment methods can be further
divided into three categories, namely, full-reference IQA
(FR-IQA) [7, 8], reduced-reference IQA (RR-IQA) [9], and
no-reference IQA (NR-IQA) [10]. FR-IQA and RR-IQA

models utilize either the entire or part of the pristine images
to predict the quality scores, which usually performwell [11].
However, their application scenarios are very limited as
reference images are not available in most cases. On the
other hand, the NR-IQA predicts image quality without any
pristine image information. Despite being the most chal-
lenging problem in IQA, blind image quality assessment
(BIQA) continues to attract signifcant attention due to its
wide range of applications [12].

In addition to the absence of reference images, the
existing datasets for blind image quality assessment (BIQA)
exhibit diverse image contents and distortions. Figure 1
shows several sample images from LIVE Challenge
(LIVEC) and LIVE datasets. It is evident that the LIVEC
dataset, comprising authentic distortion images, encom-
passes a wide range of content, including indoor and out-
door scenes, day and night scenarios, as well as natural and
artifcial landscapes. Similarly, the synthetic distortion im-
ages in the LIVE dataset demonstrate signifcant diferences
compared to authentic distortions and cover various cate-
gories. Te diversity in both distortion and image content
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variation further amplifes the challenge associated with the
BIQA problem. Firstly, it necessitates a more robust rep-
resentation capability to efectively capture the nuances of
images with diverse content. Secondly, adapting the model
to encompass a broad spectrum of authentic and synthetic
distortions poses signifcant difculties. Over the past few
decades, extensive research has focused on identifying ef-
fective quality-aware features that accurately represent im-
age content and distortion. Early studies predominantly
employed handcrafted features such as natural scene sta-
tistics (NSS) [13] and the generalized Gaussian distribution
(GGD) [13]. In recent years, learning-based approaches,
particularly convolutional neural network (CNN) methods
[4, 14–16], have gained signifcant attention in BIQA re-
search. While these studies have achieved promising results,
further eforts are required to bridge the gap between BIQA
methods and the human visual system (HVS) for enhanced
performance.

An exemplary method that demonstrates the advantages
of utilizing powerful feature learning and content-aware
hyperparameter generation is HyperIQA [4]. HyperIQA
leverages the ResNet-50 architecture [17], known for its
robust feature learning capabilities, and incorporates
a content-aware hyperparameter generation mechanism
based on hypernetworks [18]. Tis approach surpasses the
performance of state-of-the-art methods when evaluated on
databases containing authentic distorted images. However, it
is worth noting that HyperIQA’s performance on synthetic
distorted image databases is comparatively weaker. Tis
observation further highlights the challenge of adapting the
model to handle a wide range of distortion types and
characteristics. Te difculty in achieving consistent per-
formance across various distorted images underscores the
need for further advancements in BIQA research.

As the ancient Chinese poem described, “It’s a range
viewed in face and peaks viewed from the side,” the concept of
perceiving diferent aspects through various perspectives
serves as inspiration for our proposed approach. We aim to

enhance the adaptability of our algorithms to accommodate
the content variation and diverse distortions present in im-
ages. Interestingly, similar ideas can be observed in con-
trastive self-supervised learning algorithms [19, 20], where
two augmented views of an input image are processed by two
encoders to generate similarity features in an embedding
space. In our approach, we deviate from contrastive self-
supervised learning by employing distinct architectures to
simulate diferent perspectives specifcally tailored for the
blind image quality assessment (BIQA) task. By leveraging
multiple perspectives, we aim to capture a more compre-
hensive understanding of image quality, efectively addressing
the challenges posed by content variation and diverse dis-
tortions. More specifcally, we apply two diferent ResNet
architectures to extract information from two diferent per-
spectives. Figure 2 illustrates the visualization results of partial
feature maps using diferent networks. For the same image,
diferent perspectives learn diferent cues. When using
multiple perspectives, we must solve the problem of how to
integrate these perspectives into the model. To efectively
incorporate both the multiperspective cues and network
complexity, we propose a consistency supervision strategy to
integrate multiple perspectives. Tis strategy allows us to
merge and harmonize the information from multiple per-
spectives. Te proposed training strategy is similar to
knowledge distillation [21], which is utilized in a recently
proposed dual-branch semisupervised framework named
SSLIQA [22].Temain diference between our model and the
knowledge distillation based method is that subnetworks in
our proposed model promote each other in the training
process instead of using a single direction supervision.
Moreover, to take the advantage of content-aware ability of
hypernetworks, we employ HyperIQA as a backbone for two
diferent perspectives.

In this paper, we present a novel approach to address the
BIQA problem using a multiperspective way. Te main
contributions of our paper are outlined as follows:

(1) We introduce a multiperspective approach for BIQA
that enhances the adaptability of the algorithm to
account for content variation and diverse distortions.
By incorporating multiple perspectives, we capture
a more comprehensive understanding of image
quality. To simulate these perspectives, we employ
diferent ResNet architectures, each representing
a distinct viewpoint.

(2) We devise a training strategy based on multi-
perspective consistency to efectively integrate the
perspectives. Tis strategy leverages the specifcity of
individual perspectives and the generality achieved
by consideringmultiple perspectives.Te integration
of these perspectives leads to improved assessment
accuracy. Extensive experiments conducted on fve
representative IQA datasets validate the efectiveness
and generalization ability of our proposed method.
Te results demonstrate signifcant improvements in
blind image quality assessment, highlighting the
advantages of our multiperspective approach.

Figure 1: Images from LIVE Challenge (LIVEC) and LIVE
datasets. Images on the left are authentic distorted samples, which
contain various content. Images on the right are synthetic distorted
samples, including JPEG/JPEG2K compression distortion, white
noise, fast fading, and Gaussian blur.

2 International Journal of Intelligent Systems



2. Related Work

In the past two decades, many algorithms have been pro-
posed to address the BIQA problem. Tese approaches can
be broadly categorized into two main groups: the hand-
crafted feature and learning feature-based methods.

Early studies in BIQA focused on representing distorted
images by designing artifcial features. One common used
approach was to leverage natural scene statistics (NSS) as
a basis for handcrafted feature design. For example, the
blind/referenceless image spatial quality evaluator (BRIS-
QUE) [13] used NSS of locally normalized luminance co-
efcients to measure the unnaturalness of an image. Tese
extracted features were then fed into a support vector re-
gression (SVR) model to predict the image score. NIQE [23]
constructed “quality-aware” collection of statistical features
based on the NSS model. Zhang et al. [24] integrated the
local natural image quality evaluator (ILNIQE) by in-
corporating more local quality-aware information into
NIQE, which measures the distance between statistical
features of the NSS model learned from pristine images and
statistical features of the distorted image. Additionally, Jain
et al. proposed a model that combined NSS with CNN and
achieved promising results [25]. Multiple distributions such
as generalized Gaussian distribution (GGD) [13], asym-
metric generalized Gaussian distribution (AGGD) [13, 24],
and histogram counting [26] were also used to capture the
statistics from distorted images. Yue et al. combined sta-
tistical property, NSS-based features, and structure and
texture features to predict the quality of transparently
encrypted images [27]. Moreover, some works used corner
descriptors (e.g., SIFT [28] and Harris [29]) to predict image
quality.

Learning feature-based methods seek to automatically
learn quality-aware features from images. For example, Xu
et al. [30] proposed an efcient and robust BIQA model
based on a high order statistics aggregation (HOSA). It was
a codebook-based approach, which utilized local normalized
image patches as local features and constructed codebook
using K-means. Very recently, a convolutional neural net-
work (CNN) has been adopted for BIQA and made a great
progress. Additionally, Kang et al. [14] addressed the BIQA
problem using a simple end-to-end CNN model consisting
of one convolutional layer, one maxpooling, one min
pooling layer, and three fully connected layers, which is
considered to be the earliest CNN-based approach for BIQA.
Kim and Lee [15] proposed a blind image evaluator based on
a convolutional neural network (BIECON), which imitated

FR-IQA behavior by generating a local quality map using
a deep convolutional neural network. To simultaneously
handle both synthetic and authentic distortions, Zhang et al.
[16] proposed a deep bilinear CNN (DB-CNN) model for
BIQA.Tey adopted a specifc CNN architecture inspired by
VGGnet [31] to extract features for synthetic distortion and
a tailored VGGnet for authentic distortion. VGGnet was also
used to construct feature extractors in [12], in which the
authors proposed weighted average deep image quality
measure (WaDIQaM) for both FR-IQA and BIQA. In ad-
dition to VGGnet, AlexNet [32] and ResNet [3, 32, 33] were
also typical learning feature-based approaches for BIQA.

Recent studies in blind image quality assessment
(BIQA) have aimed to construct more powerful architec-
tures to tackle the challenges in this task. Similar to DB-
CNN, Yue et al. proposed a dual-branch network for screen
content images’ quality assessment [34]. Te original image
was frst decomposed into predicted and unpredicted
portions, which were then fed into two branches for feature
extraction. Su et al. [4] proposed a model that learns
multiscale features for distorted images and estimated the
quality score in a self-adaptive manner through a hyper-
network. Compared with the previous supervised learning
methods, Madhusudana et al. [35] considered the image
quality prediction problem in a self-supervised manner.
Tey used an unlabelled image dataset containing both
synthetic and authentic distortions to train a CNN model.
Furthermore, Zhang et al. [36] proposed a unifed BIQA
model optimized by a pairwise learning-to-rank training
strategy to overcome the challenge of cross-distortion-
scenario. Moreover, Golestaneh et al. [37] extracted both
local and nonlocal features for BIQA by using a hybrid
approach that benefts from CNN and self-attention
mechanism in transformers. Zhang et al. [38] proposed
a continual learning approach that incorporates the con-
cept of distillation learning to address the devastating
forgetfulness brought by the growth of IQA new databases.
Similarly, Liu et al. [39] proposed a lifelong blind image
quality assessment (LIQA) approach to efectively mitigate
the catastrophic forgetting in cases of continuous distor-
tion types and even dataset shifts.

3. The Proposed Method

In this paper, we present a novel approach for image quality
assessment that leverages multiperspectives to better rep-
resent image content and distortion. Te proposed method
utilizes information from diferent aspects of an image to

(a) (b) (c)

Figure 2: c diferent perspectives. (a) Original image; (b) feature maps from perspective 1 (ResNet-50); (c) feature maps from perspective 2
(ResNet-18).

International Journal of Intelligent Systems 3



better capture its quality characteristics. Figure 3 shows the
overall architecture of our proposed method. Our model
includes two content-aware subnetworks, namely, Master
Network and Assistant Network. We will use Master Net-
work and Assistant Network to learn quality prediction from
two diferent perspectives. To construct Master Network and
Assistant Network, we adopt the hypernetwork architecture
of HyperIQA [4], which demonstrates powerful feature
learning capabilities and content awareness.

Te reason we use two subnetworks is that we design two
networks to collaborate on image quality prediction, in which
each network is associated with a diferent perspective. We
name these two subnetworks, Master Network and Assistant
Network, based on their roles in the test phase. More spe-
cifcally, during the training stage, the Master Network and
Assistant Network interact and provide each other with
valuable cues from diferent perspectives. Tis collaboration
allows them to assist each other to learn more cues efectively.
However, in the test phase, only the Master Network is used
for image quality prediction. To achieve this goal, we in-
troduce a perspective consistency training strategy to in-
tegrate two perspectives learned from two networks for the
BIQA problem. We will discuss more details about the
proposed model in the following subsections.

3.1.Multiperspective BIQAModel. Multiperspective strategy
is applied for BIQA to take more benefcial cues into
consideration for the prediction task. To capture diferent
perspectives for image quality assessment, we employ dif-
ferent feature extraction architectures that simulate distinct
viewpoints. Specifcally, we use two diferent ResNet mod-
ules (ResNet-50 and ResNet-18) as a feature extractor to
extract features from two diferent perspectives to construct
the Master Network and Assistant Network. Te architec-
ture details of Master Network and Assistant Network are
shown in Figure 3. It can be seen that the architecture
diference between the two networks only exists in the
backbone network for feature extraction (ResNet-50 for
Master Network and ResNet-18 for Assistant Network). It
needs to be clarifed again that the only role diference
between Master Network and Assistant Network is that
Master Network is used for quality prediction in the test
phase. We denote the proposed network by
H � (HM,HA), where HM and HA represent the Master
Network and Assistant Network, and the superscript M and
A of HM and HA stand for “Master” and “Assistant,” re-
spectively. As shown in Figure 3, the Master Network HM

and Assistant Network HA are structurally independent of
each other. Both networks are integrated through per-
spective consistency constraints. Since HM and HA share
the similar structures, we apply the unifed notation HC,
where C ∈ M, A{ } represents HM and HA. Given an input
image X ∈ RW×H×C, we learn the two subnetworksHM and
HA so as to map the input image X to a scalar score as

q
C

(X) � H
C

X;ΘC ,C ∈ M, A{ }, (1)

whereΘC is the parameters ofHC (Master Network whenC
is M and Assistant Network when C is A) and qC(X) ∈ R
represents the scalar quality score generated by HC.

Next, we will demonstrate more details about the pro-
posed two subnetworksHC,C ∈ M, A{ }. From Figure 3, we
can see that both the Master Network HC (C � M) and
Assistant Network HC (C � A) are composed of a feature
extractor φC(·;ΘC1 ), a hypernetwork ψC(·;ΘC2 ) and a target
network ϕC(·;ΘC3 ) with ΘC1 , Θ

C
2 , and Θ

C
3 as of their pa-

rameters, where ΘC � ΘC1 ∪Θ
C
2 ∪Θ

C
3 . Terefore, we rewrite

HC as HC � (φC,ψC,ϕC). To extract representative fea-
tures from diferent perspectives, ResNet-50 and ResNet-18
are adopted to construct the feature extractors for Master
Network and Assistant Network, respectively. Suppose for
an input image X, the output of the four stages of ResNet
(conv2_10, con3_12, con4_18, and conv5_9 in ResNet-50
and conv2_5, con3_4, con4_4, and conv5_4 in ResNet-18)
are denoted as sC2 (X), sC3 (X), sC4 (X) and sC5 (X), where C �

M for ResNet-50 is used in Master Network and C � A for
ResNet-18 is used in Assistant Network, and then we can
extract multiscale features for the input image using the
feature extractor φC as

φC
X;ΘC1  � LDA s

C
2 (X) ⊕ LDA s

C
3 (X) 

⊕LDA s
C
4 (X) ⊕GAP s

C
5 (X) ,

(2)

where ⊕ represents Concatenate operation and LDA and
GAP are the local distortion aware module and global average
pooling, respectively.

To cover wide image content variation, the dynamically
generated parameter strategy is adopted to adaptively learn
the quality perception rule according to percepted contents.
Te dynamic parameters in this type of network are known
as hypernetworks [18]. Moreover, the hypernetwork and
target network are used to form a hypernetwork for quality
regression. Te hypernetwork ψC takes the output of the last
stage of ResNet sC5 (X) as input. For an input image X, the
output of the hypernetwork is

ΘCho � ψC
s
C
5 (X);ΘC2 . (3)

As the hypernetwork consists of three 1 × 1 convolution
layers and four hyperparameter modules (HPM), the
computing procedure of ψC is as follows:

ψC
(·) � (HPM(Conv × 3(·)),HPM(Conv × 3(·))

HPM(Conv × 3(·)),HPM(Conv × 3(·))).
(4)

Te target network ϕC takes the multiscale feature
extracted by φC as input and consists of four fully connected
layers. Te target network maps the multiscale feature
extracted from image X to a scalar quality score as

q
C

(X) � ϕC φC
X;ΘC1 ;ΘC3 . (5)

As introduced previously, the target network and
hypernetwork together form a hypernetwork. We replace
parameters of ϕC with the output of ψC. It means that we use
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ΘCho instead of ΘC3 in equation (5). Terefore, equation (5)
can be rewritten as

q
C

(X) � ϕC φC
X;ΘC1 ;ΘCho 

� ϕC φC
X;ΘC1 ;ψC

s
C
5 (X);ΘC2  .

(6)

Tus, given an input image X, equation (6) is to compute
the scalar quality scores qM(X) and qA(X) for the Master
Network HM and Assistant Network HA, respectively.

3.2. Multiperspective Consistency-Based Model Training.
Te main idea behind our proposed method is to use cues
learned from diferent perspectives for image quality as-
sessment. To meet this goal, we need to not only consider the
specifc features of the individual perspective but also ef-
fectively use the generality cues of diferent perspectives.
Based on such requirements, we will design a training ob-
jective function for the proposed network H.

Let D � Xi, qi|i � 1, . . . , N  be a training set, where Xi

is the i-th training image and qi represents the ground true
(mean opinion scores (MOS) or diferent mean opinion
scores (DMOS)) for Xi. Ten, to use the specifcity features
of each perspective, we train both Master NetworkHM and
Assistant Network HA to predict that scalar scores are as
close to the ground true scores as possible. We use 1-norm to
evaluate the distance between the predicted score and the
ground truth and obtain the perspective specifcity loss term
LC

S for individual subnetworks as

L
C
S �

1
N



N

i�1
q
C

Xi(  − qi

�����

�����1

�
1
N



N

i�1
q
C

Xi(  − qi



.

(7)

Te subscript S of LC
S indicates specifcity. Note that

when C � M, the specifcity loss term LM
S is for the Master

NetworkHM, and whenC � A, the specifcity loss termLA
S

is for the Assistant Network HA.
Te generality of the two perspectives makes two sub-

networks to learn unifed representation for image content
and distortion from diferent aspects. Tis integration
strategy is a consistency constraint between perspectives.We
propose a multiperspective consistency loss term LPC,
where the subscript PC refers to perspective consistency, to
constrain each subnetwork to learn under the supervision of
each other. L1 loss is used to measure the diference between
the outputs of two perspectives. Tus, the multiperspective
consistency loss term LPC can be defned as

LPC �
1
N



N

i�1
q

M
Xi(  − q

A
Xi( 

����
����1

�
1
N



N

i�1
q

M
Xi(  − q

A
Xi( 



.

(8)
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Note that both the Master Network and Assistant
Network have the same consistency loss term LPC as
follows:

L
M
PC �

1
N



N

i�1
q

M
Xi(  − q

A
Xi( 



 � LPC,

L
A
PC �

1
N



N

i�1
q

A
Xi(  − q

M
Xi( 



 � LPC.

(9)

After defning the specifcity loss term LC
S and the

perspective consistency loss termLPC, we fnally obtain the
optimization loss function forHM andHA as equations (10)
and (11), respectively.

L
M

� 1 − λ1( L
M
S + λ1LPC, (10)

L
A

� 1 − λ2( L
A
S + λ2LPC. (11)

With the previously defned loss functions for Master
Network HM and Assistant Network HA, the Adam al-
gorithm is used as an optimizer to optimize the parameters
of the the proposed network H. Furthermore, the training
procedure is described in Algorithm 1. Adam(·) in Algo-
rithm 1 adjusts the original gradient using adaptive mo-
mentum estimation, and we update ΘM and ΘA using ∆ΘM

and ∆ΘA. Te outputs of Adam(·) are illustrated in equa-
tions in Algorithm, respectively. In the procedure of Al-
gorithm 1, the Master Network and Assistant Network play
the same role during training. However, once we have
obtained the trained network H, only the subnetwork HM

(Master Network) is used for image quality score prediction
in the test phase. Tis is the reason we nameHM as “Master
Network.”

4. Experimental Results and Discussion

4.1. Datasets. To test our proposed model on both au-
thentically and synthetically distorted images, three au-
thentic distortion image databases including LIVE
Challenge (LIVEC) [40], KonIQ-10k [41], and BID [42] and
two synthetic distortion databases including LIVE [43] and
CSIQ [44] are used for evaluation. Te score type for the
three authentic distortion image databases LIVEC, KonIQ-
10k, and BID is MOS. Te score type for LIVE and CSIQ is
DMOS. Te authentic distortion dataset LIVE contains fve
diferent types of distortion including JP2K (JPEG2000)
compression, JPEG compression, White Gaussian Noise
(WN), Gaussian Blurring (GB), and Fast Fading (FF).
Similarly, CSIQ contains six types of distortions including
JP2K compression, JPEG compression, additive White
Gaussian Noise (WN), additive Pink Gaussian Noise (PN),
global Contrast Decrements (CD), and Gaussian Blurring
(GB). More details about image number, score range, etc., of
each dataset are shown in Table 1.

4.2. Comparison Methods and Evaluation Metrics. To eval-
uate the performance of our proposed model, thirteen state-
of-the-art BIQA methods are selected for comparison.
Among the comparison methods, ILNIQE [24] and BRIS-
QUE [13] are handcrafted feature-based approaches. Te
other approaches including HOSA [30], BIECON [15],
WaDIQaM [12], SFA [33], PQR [32], DB-CNN [16],
HyperIQA [4], CONTRIQUE [35], UNIQUE [36], Graph-
IQA [45], and TReS [37] are learning feature or deep
learning-based methods.

We employ two commonly used criteria, namely,
Spearman’s rank-order correlation coefcient (SRCC) and
Pearson’s linear correlation coefcient (PLCC) to evaluate
the performance of the proposed method and compared
methods. Before computing PLCC, the predicted quality
scores are frst processed by a four-parameter logistic re-
gression to remove nonlinear rating, which is caused by
human visual observation according to the report from the
Video Quality Expert Group [46]. Te better method pro-
duces a higher SRCC and PLCC ranging between −1 and 1.
Te defnitions of SRCC and PLCC are as follows:

SRCC � 1 −
6id

2
i

n n
2

− 1 
,

PLCC �
i qi − qm(  qi − qm( 

���������������������

i qi − qm( 
2
i qi − qm( 

2
 ,

(12)

where di is the rank diference between MOS and the
predicted score of the i-th image and n represents the
number of images. qi and qi refer to MOS and the predicted
score of the i-th image, respectively, and qm and qm are
corresponding mean values for all images.

4.3. Implementation Details. We train and test our model
using an NVIDIA Tesla K40 Graphics Card with video
memory 12GB.Te Adam optimizer with a learning rate 2e-
5 and weight decay 5e-4 is employed to train the network for
15 epochs with a batch size of 48. In addition, we set pa-
rameters λ1 � 0.3 and λ2 � 0.3 throughout the experiment.
We employ the same experimental protocol as HyperIQA
[4]. Specifcally, we split each dataset into the training set
and test set by 4:1. Note that synthetic distortion image
datasets LIVE and CSIQ are split into train and test sets
according to reference images to avoid content overlapping.
In the test phase, we randomly select N cropped subimages
from each test image X. Te fnal quality score q(X) of the
test image is defned as the mean of the scores of all sub-
images predicted by the Master Network as follows:

q(X) �
1
N



N

i�1
q

M
Xi( , (13)
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where Xi is the cropped subimage of X, and N is set to 25 for
all the test datasets. We repeat the experiment 10 times and
implement the random train-test splitting operation at each
time. Te median SRCC and PLCC values are used as the
fnal results. For more details, refer to our released source
code at https://github.com/gn-share/multi-perspective.

4.4. Performance Evaluation

4.4.1. Quantitative Evaluation. First, we conduct experi-
ments on a single dataset and summarize the results in
Table 2. Te colors red, blue, and green refer to the highest,
second, and third score for all comparison methods. For the
three authentic distortion datasets, the results indicate that
our proposed method outperforms others on LIVEC and
BID. Both SRCC and PLCC of our method are only less than
those of TReS. For the two synthetic distortion datasets, our
proposed model achieves the best results on LIVE for both
SRCC and PLCC evaluation, and the SRCC and PLCC are
the second and third largest on CSIQ. We highlight that (1)
our method outperforms HyperIQA on all the fve test
datasets; (2) our proposed model achieves the best results on
all authentic distortion datasets except for KonIQ compared
to the state-of-art HyperIQA [4], UNIQUE [36], CON-
TRIQUE [35], GraphIQA [45], and TReS [37]. Furthermore,
our method performs only weaker than TReS on KonIQ; (3)
our proposed method also achieves competitive results on
the two synthetic distortion datasets (i.e., LIVE and CSIQ).

In particular, our model shows a signifcant performance
improvement over HyperIQA; (4) the average SRCC and
PLCC of our method are larger than those of all the com-
pared approaches, which indicate that the overall perfor-
mance of our proposed model is better than compared
methods.

Ten, we further conduct experiments to evaluate the
performance of our approach on diferent distortion types of
images. As not all comparisonmethods reported SRCC values
for individual distortion, we only show the results of methods
reported from [4] in Table 3. Table 3 presents the SRCC values
on individual distortion of each method on LIVE and CSIQ
datasets. Based on the experimental results, our approach
outperforms the compared methods on four of the fve
distortion types on the LIVE dataset. For Gaussian blurring
(GB) distortion on the LIVE dataset, our approach obtains the
second largest SRCC (0.956), which is only lower than the
result of BRISQUE (0.964). For the CSIQ dataset, our method
achieves the best results on three of the six distortion types,
while theWaDIQaM obtains the best results on two out of the
six distortion types as shown in Table 3. Note that WaDIQaM
has the best performance for the CSIQ dataset in Table 2.
Overall, ourmethod ismore efcient compared with the other
methods on the individual distortion test.

In order to validate the generalization ability of our pro-
posed method, we run cross database tests for the performance
evaluation. Due to the lack of source code and reported results,
three competitive methods PQR, DB-CNN, and HyperIQA are

Input: D � Xi, qi|i � 1, . . . , N , learning rate ηM
t and ηA

t , Epochs, λ1, λ2
Output: HM,HA

Initialize parameters of HM and HA: initialize ΘM
1 ,ΘA

1 with pretrained parameters on ImageNet, initialize ΘM
2 ,ΘM

3 ,ΘA
2 ,ΘA

3
randomly; t←0;
while t< Epochs do
while Fetch minibatch from D do

Compute parameters ΘM
ho,ΘA

ho using equation (3);
Compute qM, qA for images in minibatch using equation (6);
Compute LM,LA using equations (10) and (11), respectively;
Compute the gradient and update ΘM and ΘA using Adam optimizer as equations:
∆ΘM

� Adam(zL
M/zΘM

)

ΘM ←ΘM
+ ηM

t ∆Θ
M

∆ΘA
� Adam(zL

A/zΘA
)

ΘA ←ΘA
+ ηA

t ∆Θ
A

end
t←t + 1;

end
return HM,HA;

ALGORITHM 1: Multiperspective Consistency-Based Model Training.

Table 1: Details of each image dataset.

Dataset Distortion type No. of images No. of distortions Score range
LIVEC Authentic 1162 — [0, 100]
KonIQ-10k Authentic 10073 — [0, 100]
BID Authentic 586 — [0, 5]
LIVE Synthetic 29 + 779 5 [0, 100]
CSIQ Synthetic 30 + 866 6 [0, 1]
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selected for comparison. We use four test protocols, which are
(1) train on LIVEC and test on BID, (2) train on BID and test on
LIVEC, (3) train on LIVE and test on CSIQ, and (4) train on
CSIQ and test on LIVE. Te frst two test protocols are for the
authentic distortion, and the last two are for the synthetic
distortion. Te SRCC values of each comparison method for
each test protocol are summarized in Table 4. Te results show
that our approach signifcantly outperforms the compared
methods for all of four cross database test cases. Specifcally,
when using LIVEC for training and BID for test set, the SRCC
value of our approach is 0.882, which is much higher than the
second largest SRCC of 0.762 (DB-CNN).

4.4.2. Qualitative Evaluation. In addition, to intuitively
evaluate the performance of our proposed method, we
present the scoring results for the authentic distortion
dataset LIVEC and synthetic distortion dataset LIVE in this
section. Figure 4 shows scoring results for images of LIVEC,
from which we can see that our proposed method produces
remarkable results in the 1st to the 4th columns although the
content of images in LIVEC varies. Some failure cases are
observed, as shown in the last column of Figure 4, which

correspond to two images with serious distortion and very
high quality.

Moreover, Figures 5 and 6 are scoring results for dis-
torted images from the LIVE dataset. Figure 5 shows the
predicted scores and the corresponding standard deviations
of the plane images distorted by fve diferent types of
distortion. Te results indicate that our method produces
prediction scores close to the DMOS for images of diferent
distortions with satisfactory standard deviations (maximum
std 7.06 (std of FF distorted image) and minimum std 1.09
(std of WN distorted image)). Figure 6 presents the pre-
diction scores for images with the same distortion (GB) but
diferent distortion intensities. Te distortion intensities
increase from left to right, and our model generates pre-
diction scores that are consistent with the expectations.

Figure 7 is the scatter plots of DMOS/MOS versus pre-
diction scores on the test sets of LIVE andLIVEC.Teblue solid
line represents the ftting line, which is the ftting for all scatter
points, while the red dash line represents the desired ftting line.
From the scatter plots we conclude that, on one hand, these
scatter points can be distributed along the desired line. On the
other hand, the result of LIVE is better than that of LIVE, which
is consistent with the quantitative results shown in Table 2.

Table 2:Te SRCC and PLCC values of various methods on LIVEC, BID, KonIQ, LIVE, and CSIQ datasets. Red, blue, and green refer to the
best, second, and third score among all comparison methods, respectively. Te values listed in the Average columns are the average of
datasets except for BID for fair comparison.

Dataset LIVEC BID KonIQ LIVE CSIQ Average
Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

2015
2016
2016
2017 0.955 0.973
2017 0.882 0.965 0.971
2018
2018 0.968 0.971 0.946 0.959
2020 0.882 0.869 0.878 0.906 0.917
2021 0.890 0.858 0.873

0.775 0.794 0.880 0.884

0.896 0.901 0.969
2022
2022 0.911 0.915 0.979 0.980 0.947 0.959
2022

0.608 0.629 0.562 0.593 0.665 0.681
0.432 0.508 0.516 0.554 0.507 0.523
0.640 0.678 0.721 0.736 0.671 0.694
0.595 0.613 0.539 0.576 0.618 0.651
0.671 0.680 0.725 0.742 0.797 0.805
0.857
0.812 0.833 0.826 0.840 0.856 0.872
0.851 0.869 0.845 0.859 0.875 0.884
0.859
0.854
0.845 0.857 – – 0.894 0.906
0.845 0.862 – –
0.846 0.877 – – 0.915 0.928 0.969

0.939 0.935 0.746 0.829
0.902 0.865 0.806 0.808
0.946 0.947 0.741 0.823
0.961 0.962 0.815 0.823
0.954 0.963

0.873 0.901
0.883 0.895 0.796 0.818

0.962 0.966 0.923 0.942
0.968 0.902 0.927

0.960 0.961 0.942 0.955

0.968 0.922 0.942

0.740 0.769
0.662 0.676
0.750 0.786
0.747 0.753
0.844 0.855
0.894 0.910
0.837 0.855
0.910 0.921
0.913 0.927
0.905 0.922
0.910 0.920
0.921 0.929
0.913 0.929

Ours 0.869 0.887 0.879 0.883 0.910 0.922 0.975 0.976 0.950 0.956 0.925 0.935

PublicationYear
2012BRISQUE [13]

ILNIQE [24]
HOSA [30]
BIECON [15]
WaDIQaM [12]
PQR [32]
SFA [33]
DB-CNN [16]
HyperIQA [4]
UNIQUE [36]
CONTRIQUE [35]
GraphIQA [45]
TReS [37]

Table 3: SRCC values for each distortion type on LIVE and CSIQ datasets. Red, blue, and green refer to the highest, second, and third score
among all comparison methods, respectively.

Database LIVE CSIQ

Type JP2K JPEG WN GB FF WN JPEG JP2K PN GB CD

BRISQUE [13] 0.929 0.965 0.982 0.964 0.828 0.723 0.806 0.840 0.378 0.820 0.804
ILNIQE [24] 0.894 0.941 0.981 0.915 0.833 0.850 0.899 0.906 0.874 0.858 0.501
HOSA [30] 0.935 0.954 0.975 0.954 0.954 0.604 0.733 0.818 0.500 0.841 0.716
BIECON [15] 0.952 0.974 0.980 0.956 0.923 0.902 0.942 0.954 0.884 0.946 0.523
WaDIQaM [12] 0.942 0.953 0.982 0.938 0.923 0.974 0.853 0.947 0.882 0.979 0.923
PQR [32] 0.953 0.965 0.981 0.944 0.921 0.915 0.934 0.955 0.926 0.921 0.837
DB-CNN [16] 0.955 0.972 0.980 0.935 0.930 0.948 0.940 0.953 0.940 0.947 0.870
HyperIQA [4] 0.949 0.961 0.982 0.926 0.934 0.927 0.934 0.960 0.931 0.915 0.874

Ours 0.966 0.982 0.989 0.956 0.959 0.967 0.958 0.954 0.956 0.934 0.935

8 International Journal of Intelligent Systems



Table 4: SRCC comparison on cross database tests. Best results in boldface.

Train Test PQR DB-CNN HyperIQA Ours
LIVEC BID 0.714 0.762 0.756 0.  2
BID LIVEC 0.680 0.725 0.770 0.795
LIVE CSIQ 0.719 0.758 0.744 0.762
CSIQ LIVE 0.922 0.877 0.926 0.934
Values in boldface denote the best SRCC (PLCC) result in Tables 4 and 5.

MOS:10.44,
Prediction:9.53 (1.81)

MOS:61.01,
Prediction:60.85 (1.57)

MOS:68.60,
Prediction:68.42 (4.00)

MOS:68.92,
Prediction:66.46 (1.48)

MOS:24.97,
Prediction:52.27 (3.74)

MOS:46.05,
Prediction:46.80 (5.02)

MOS:67.62,
Prediction:67.90 (1.87)

MOS:56.14,
Prediction:55.07 (3.68)

MOS:38.10,
Prediction:37.10 (4.33)

MOS:88.34,
Prediction:72.82 (2.03)

Figure 4: Scoring results from LIVEC. Results in the left four columns are successful examples, and the last column shows the failure cases.
Values in parentheses behind the predicted score are standard deviations.

Reference Image Distortion: Fast Fading (FF),
DMOS: 49.81

Prediction: 44.58 (7.06)

Distortion: Gaussian Blurring (GB),
DMOS: 72.83

Prediction: 76.17 (4.71)

Distortion: JP2K Compression (JP2K),
DMOS: 70.84

Prediction: 68.22 (4.68)

Distortion: JPEG Compression (JPEG),
DMOS: 88.92

Prediction: 85.88 (6.21)

Distortion: White Gaussian Noise (WN),
DMOS: 64.70

Prediction: 64.84 (1.09)

Figure 5: Scoring results of distorted images from LIVE. Image in the left top corner is the pristine image, and other fve ones correspond to
distortion types FF, GB, HP2K, JPEG, and WN. Values in parentheses behind the predicted score are standard deviations.
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4.5. Efect of Diferent Experimental Settings. In this section,
more experiments are conducted to explore the efect of
diferent hyperparameters, backbone architectures, and
training set size.

4.5.1. Selection of Weight Parameter Value for Perspective
Consistency Term. As the loss function forHM andHA are
composed of two terms, namely, the perspective specifcity
loss term LC

S and multiperspective consistency loss term
LPC, we further conduct experiments to verify the per-
formance of our proposed model using diferent weight
values. During the implementation, we always set λ1 and λ2
as the same value. Table 5 presents the SRCC and PLCC
values on LIVE and LIVEC datasets using diferent λ1 and λ2
ranging from 0.0 to 0.9 with a step length of 0.3. Te results
demonstrate both SRCC and PLCC obtain the maximum
value when λ1 � λ2 � 0.3 on both LIVE and LIVEC datasets.
Note that λ1 � λ2 � 0.0means that the model is not using the
perspective consistency constraint during the model train-
ing. Te results on both LIVE and LIVEC indicate that the
perspective consistency term can improve the performance

of the algorithm. However, an improper weight value may
lead to degradation of model’s performance (e.g., both SRCC
and PLCC values corresponding to λ1 � λ2 � 0.9 are less
than those of without using perspective consistency).

4.5.2. Evaluation of Architectures of Master Network and
Assistant Network. Te network architecture signifcantly
afects the performance of the algorithm. We also experi-
mentally compare diferent network structures to test their
efectiveness. We test ResNet-18 and ResNet-50 for both
Master NetworkHM and Assistant NetworkHA and obtain
four test cases results as shown in Table 6. Te results in-
dicate that, on one hand, the model performs better when we
use ResNet-50 as the architecture ofHM. On the other hand,
using diferent architectures for HM and HA has more
advantages than using the same architectures. As a result, we
apply ResNet-50 and ResNet-18 for HM and HA, re-
spectively, which generate the best testing performance both
on LIVE and LIVEC as shown in Table 6. We further im-
plement t-tests between average SRCC values of the above
HM and HA combinations to ascertain whether the results

DMOS: 18.64
Prediction: 22.74

DMOS: 37.34
Prediction: 44.04

DMOS: 50.78
Prediction: 58.16

DMOS: 64.56
Prediction: 70.06

DMOS: 72.83
Prediction: 76.17

Figure 6: Scoring results of distorted images containing diferent intensities of Gaussian blurring (the distortion intensities increase from
left to right).
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Figure 7: Scatter plots of DMOS/MOS versus prediction scores on the test sets of LIVE and LIVEC.Te ftting line is the ftting of all scatter
points, and the target line represents the desired ftting line. (a) LIVE and (b) LIVEC.
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are signifcant or not. Te test results indicate that the ar-
chitecture of HM �ResNet-50 and HA �ResNet-18 is sig-
nifcantly better than the combination of HM �ResNet-18
andHA �ResNet-50 (p� 0.0496 on LIVE and p � 0.0109 on
LIVEC) and HM �ResNet-18 and HA �ResNet-18
(p � 0.0052 on LIVE and p� 0.0202 on LIVEC). How-
ever, the performance advantage of the architecture
HM �ResNet-50 and HA �ResNet-18 over the combina-
tion of HM �ResNet-50 and HA �ResNet-50 is not sig-
nifcant, with p� 0.2946 on LIVE and p � 0.2148 on LIVEC.

4.5.3. Performance of the Proposed Method Using Diferent
Sizes of the Training Set. In this section, we conduct ex-
periments to verify the performance of our proposed model
with diferent sizes of training sets. Te relationship between
the performance of the proposedmethod and the proportion
of the training set is shown in Figure 8. It is obvious that both
SRCC and PLCC on LIVE and LIVEC gradually decrease
when the proportion of the training set in all the datasets
decreases. It indicates the importance of training data. Te
model still performs well even when trained with 20%
samples of the whole dataset, which further verifes the
efectiveness of our proposed method.

4.6.More Results for theMultiperspective Strategy onDiferent
Backbone Networks. To further verify the proposed method,
we conduct more experiments using diferent backbone
networks including VGGNet [31], DenseNet [47], ResNet
[17], and GoogleNet [48]. Additionally, to better study the
performance impact of diferent backbone networks, we do
not use HyperNet throughout the experiments in this section.
Specifcally, we remove the last softmax layer of each back-
bone network and combine it with a three-layer MLP to form
a baseline. It should be noted that we use the sameMLP in the
following experiments. Each layer of the MLP contains 512,
32, and 1 neurons, respectively, and ReLU is used as the
activation function for the frst two layers. Te weights for
perspective consistency terms are set to λ1 � λ2 � 0.3. Te
SRCC and PLCC values for these baseline methods on LIVE
and LIVEC are listed in Table 7. Te results show that (1)
ResNet-50 and DenseNet-169 achieved better performance
compared to other baseline algorithms, especially on dataset
LIVEC, and (2) for models of the same type, deeper networks
(i.e., VGG-16, DenseNet-169, and ResNet-50) perform better.

To verify the efectiveness of the proposed multi-
perspective strategy, we conduct experiments to test the
performance of diferent combinations of baseline networks.
Table 8 shows the SRCC and PLCC values for diferent
combinations of backbone networks. From the results in
Tables 7 and 8, we conclude that the proposed multi-
perspective strategy has a signifcant improvement for all
baselines (i.e., DenseNet-169, ResNet-50, GoogleNet, and
VGG-16). For example, the SRCC value on LIVEC increases
from 0.833 (line 6 of Table 7) to 0.857 (line 4 of Table 8) if we
use ResNet-50 to assist DenseNet-169, and the SRCC value
on LIVE increases from 0.959 (line 9 of Table 7) to 0.974 (line
12 and 13 of Table 8) if we use ResNet-50 or VGG-16 to assist
GoogleNet.

Table 5: Te SRCC and PLCC corresponding to diferent λ1 and λ2
values on LIVE and LIVEC datasets, and we always set λ1 � λ2
throughout all experiments.

Dataset LIVE LIVEC
λ1, λ2 SRCC PLCC SRCC PLCC
0.0 0.965 0.966 0.857 0.878
0.3 0.975 0.976 0. 69 0.  7
0.6 0.966 0.968 0.857 0.878
0.9 0.970 0.971 0.842 0.866
Te bold values indicate the best SRCC and PLCC values.
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Figure 8: Relationship between the performance and the size of the
training set.

Table 6: Te SRCC and PLCC results correspond to diferent
architectures of HM and HA on LIVE and LIVEC datasets.

Dataset LIVE LIVEC
HM HA SRCC PLCC SRCC PLCC
ResNet-18 ResNet-18 0.960 0.963 0.836 0.857
ResNet-18 ResNet-50 0.966 0.968 0.834 0.871
ResNet-50 ResNet-18 0.975 0.976 0. 69 0.  7
ResNet-50 ResNet-50 0.972 0.973 0.859 0.871

Table 7: Te SRCC and PLCC values for baselines using diferent
backbone networks on LIVE and LIVEC datasets.

Dataset LIVE LIVEC
Backbone SRCC PLCC SRCC PLCC
VGG-11 0.952 0.956 0.804 0.819
VGG-16 0.955 0.960 0.825 0.855
DenseNet-121 0.965 0.968 0.828 0.846
DenseNet-169 0.967 0.970 0.833 0.852
ResNet-18 0.961 0.965 0.827 0.850
ResNet-50 0.968 0.971 0.836 0.859
GoogleNet 0.959 0.962 0.824 0.859
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4.7.Discussion. Temain idea of this study is to improve the
performance of BIQA with valuable cues learned from
diferent perspectives. To achieve this, we utilize diferent
architectures to construct diferent perspectives and propose
a multiperspective consistency-based training strategy.
Specifcally, architecture of HyperIQA is used to construct
diferent perspectives. As a BIQA model designed for real-
world images, HyperIQA achieves competitive performance
on authentic distortion datasets. However, its performance
on synthetic distorted images is relatively limited. Tis
discrepancy can potentially be attributed to the limited
content diversity present in synthetic distortion datasets,
which poses challenges for efective model learning. Te
proposed multiperspective strategy can alleviate this chal-
lenge as it can take advantage of both specifc features and
generality cues of diferent perspectives. By considering
information from diferent perspectives, the proposed
strategy enables mutual exchange of valuable insights while
also constraining each perspective to reduce the risk of
overftting.

Moreover, the selection of Master Network has a great
impact on performance of our proposed model. Based on
experimental results, we adopt the ResNet-50-based
HyperIQA as the Master Network. Te deeper networks
generally have stronger representation abilities. Intuitively,
selecting a deeper network as the Master Network from
multiple perspectives seems reasonable. In fact, deeper
networks usually have better performance with proper
training confgurations. Te experimental results in Tables 7
and 8 support this view to some extent.Te results in Table 8
show that using a deeper network as Master Network always
performs better.

Lastly, while our proposed model achieves better overall
performance compared to other state-of-the-art methods, it
is important to acknowledge the notable advancements
made by some recent models. For instance, some latest
models (e.g., transformer-based TReS [37] and graphical
convolutional network (GCN)-based GraphIQA [45]) show
great promise, especially for large scale of data. In addition,

some early deep models still show competitive performance.
For example, the overall performance of the dual-stream
network DB-CNN is very close to some recent models,
which is still instructive for BIQA model design.

5. Conclusions

In this paper, we propose a novel model for BIQA problem
to increase the adaptability of the BIQA model for image
content variation and a diverse range of distortions. To
represent the image from diferent aspects, we employ
a multiperspective strategy that incorporates more cues.
Specifcally, we present a perspective consistency con-
strained training strategy to integrate diferent perspec-
tives efectively, considering both multiperspective cues
and the complexity of the network. Extensive experi-
mental results show that our proposed approach has
a promising performance both of authentic and synthetic
distorted image databases compared to the state-of-
the-art methods. Moreover, generalization ability of the
proposed method is also remarkable, further enhancing its
practical applicability.

Despite the competitive performance of the proposed
multiperspective method and recent models, there is still
considerable room for improvement in efectively handling
authentic images with diverse content and distortion.
Moving forward, our future research will focus on exploring
architectures with enhanced representational capabilities,
leveraging transformer, GCN, and other advanced tech-
niques. Additionally, we aim to conduct further in-
vestigations into the multiperspective integration strategy to
enhance the model’s adaptability to a wide range of content
and distortion variations.
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