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Reinforcement learning (RL) with sparse and deceptive rewards is a signifcant challenge because nonzero rewards are rarely
obtained, and hence, the gradient calculated by the agent can be stochastic and without valid information. Recent work
demonstrates that using memory bufers of previous experiences can lead to a more efcient learning process. However, existing
methods usually require these experiences to be successful and may overly exploit them, which can cause the agent to adopt
suboptimal behaviors. Tis study develops an approach that exploits diverse past trajectories for faster and more efcient online
RL, even if these trajectories are suboptimal or not highly rewarded. Te proposed algorithm merges a policy improvement step
with an additional policy exploration step by using ofine demonstration data. Te main contribution of this study is that by
regarding diverse past trajectories as guidance, instead of imitating them, our method directs its policy to follow and expand past
trajectories, while still being able to learn without rewards and gradually approach optimality. Furthermore, a novel diversity
measurement is introduced tomaintain the diversity of the team and regulate exploration.Te proposed algorithm is evaluated on
a series of discrete and continuous control tasks with sparse and deceptive rewards. In comparison with the existing RL methods,
the experimental results indicate that our proposed algorithm is signifcantly better than the baseline methods in terms of diverse
exploration and avoiding local optima.

1. Introduction

In recent years, deep reinforcement learning has been
demonstrated to efectively solve sequential decision-
making problems in a great deal of application domains,
such as computer and board games playing [1, 2], contin-
uous control [3–5], and robot navigation [6]. Despite these
success stories, reinforcement learning with sparse and
deceptive rewards remains a challenging problem in the feld
of RL [7–9] because maintaining a good trade-of between
exploration and exploitation becomes more intractable in
tasks with sparse and deceptive rewards.

Optimizing with the sparse feedback requires agents
to reproduce past good trajectories efciently and avoid
being struck in local optima. In tasks with large state
spaces and sparse rewards, a desired positive reward can

only be received after the agent continuously executes
many appropriate actions, and hence, the agent can rarely
collect highly rewarded trajectories. In the meantime, the
gradient-based parameter update of modern deep RL
algorithms might result in a catastrophic forgetting of
past experiences because the gradient-based parameter
update is incremental and slow, and it has a global impact
on all parameters of the policy and the value function
[10]. Terefore, the agent might sufer from severe per-
formance degradation when the ideal trajectories with
highest returns are rarely collected, incurring the un-
stable policy optimization process. Finally, agents can
adopt suboptimal myopic behaviors and be struck in local
optima due to overly exploiting past imperfect experi-
ences and do not explore the state-action space
systematically.
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Such tasks with sparse and deceptive reward signals are
common in real-world problems. Recently, many workhas
studied how making use of the nonparametric memory of
past experiences improves policy learning in RL. Prioritized
experience replay [11] proposes prioritizing past experiences
before learning the policy parameters from them. Self-
imitation learning [9, 12, 13] builds a memory bufer to
store past good trajectories and thus can rapidly learn the
right strategies from these past experiences when faced with
a similar situation. Memory-augmented policy optimization
[14] leverages a memory bufer of prior highly rewarded
trajectories to reduce the estimate variance of the policy
gradient. Episodic reinforcement learning [15] uses past
good experiences that are stored in an episodic memory
bufer to supervise an agent and force the agent to learn good
strategies. Model-free episodic control [16] and neural ep-
isodic control [17] use episodic memory modules to estimate
the state-action values. Diverse trajectory-conditionedself-
imitation learning [10] proposes learning a novel trajectory-
conditioned policy that follows and expands diverse tra-
jectories in the memory bufer.

Tese existing work uses nonparametric memories of
past good experiences to rapidly latch onto successful
strategies and improve the learning efciency of policy and
value function. However, we must note that the exploitation
of the past good trajectories described in the above-
mentioned work might hurt the performance of the agent in
tasks with sparse and deceptive reward functions. Tere are
two main reasons that can cause the performance degra-
dation of algorithms in tasks with sparse and deceptive
rewards. First, the past self-generated trajectories stored in
the memory bufer are imperfect. Te trajectories in the
memory bufer are not gold trajectories but highly rewarded
trajectories collected by accident. Second, the RL agent
usually limits its exploration to a small portion of the state-
action space because of prior experience and network ini-
tialization [18]. In this way, the agent can easily generate
trajectories leading to suboptimal goals. Te exploitation of
these successful suboptimal trajectories with limited di-
rections might cause the agent to learn myopic behaviors.
Tis will limit the agent’s exploration region and prevent the
agent from discovering alternative strategies with higher
returns.

In this study, we conduct a practical RL algorithm by
regarding previous diverse trajectories as guidance in the
sparse reward setting, even if these trajectories are sub-
optimal or not highly rewarded. Our critical insight is that
we can utilize imperfect trajectories with or without sparse
rewards to regulate the direction of policy optimization
while preserving the diversity of agents by virtue of two
steps. In the frst policy improvement (PI) step, we develop
a new method that exploits the self-generated guidance to
enable the agent to reproduce diverse past trajectories ef-
fciently, while encouraging agents to smoothly expand these
trajectories and visit underexplored regions of the state-
action space gradually. Specifcally, our method guides
agents to revisit the regions where past good trajectories are
located by minimizing the distance of state representations
of trajectories. Meanwhile, our method allows for fexibility

in the action choices to help the agent choose diferent
actions and visit novel states. In the second policy explo-
ration (PE) step, we introduce a novel diversity measure-
ment to drive the diferent agents on the team to reach
diverse regions of the state space and maintain the diversity
of an ensemble of agents. By designing this new diversity
measurement, our algorithm does not have to maintain a set
of autoencoders [19] and can prevent the agents from being
stuck in local optima. Our main contributions are sum-
marized as follows:

(1) We develop a novel two-step RL framework that
makes better use of diverse self-generated demon-
strations to promote learning performance in tasks
with sparse and deceptive rewards

(2) To the best of our knowledge, this is the frst study
that regards self-generated imperfect demonstration
data as guidance and shows the importance of
exploiting these previous experiences to indirectly
drive exploration

(3) We illustrate that by regarding the agent’s self-
generated demonstration trajectories as guidance,
the agent can reproduce diverse past trajectories
quickly and then smoothly move beyond to result in
a more efective policy

(4) A new diversity metric for the ensemble of agents has
been proposed to achieve deep exploration and avoid
being stuck in local optima

(5) Our method achieves superior performance over
other state-of-the-art RL algorithms on several
challenging physical control benchmarks with sparse
and deceptive rewards in terms of diverse explora-
tion and improving learning efciency

Te rest of this article is organized as follows: Section 2
describes the progress of the related work. Section 3 briefy
describes the preliminary knowledge for the article. Section 4
introduces our proposed method for reinforcement learning
with sparse and deceptive rewards. Experimental results are
presented in Section 5. Finally, we draw our conclusions in
Section 6.

2. Related Work

2.1. Exploration and Exploitation. It is a long-standing and
intractable challenge to balance exploration and exploitation
in the feld of RL. Te exploration enables the agent to visit
the underdiscovered state-action space and collect trajec-
tories with higher returns. Te exploitation, on the contrary,
encourages the agent to make use of what it already knows to
maximize the expected returns. Tere is lots of work which
aims to improve the exploration ability of the RL agent.
Some work proposes to add stochastic noise to the output
actions [1, 3–5, 20] or parameters of policy and value net-
works [21–23] to encourage exploration. Many other work
defnes the concept of intrinsic reward to promote the agent
to visit the underexplored state-action space [24–26]. Fur-
thermore, there are plenty of work which introduces a new
optimization objective to change the gradient update
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direction of parameters [18, 27–29]. Another straightfor-
ward idea to expand the agent’s exploratory area is to employ
a team of agents to explore the environment collaboratively
and share the collected experiences with each other [30–32].
In all these methods, although the agent can access the
underdiscovered area due to randomness and artifcial in-
centive, it is still difcult for the agent to get rid of local
optima in long horizon, sparse reward tasks because it is rare
for the agent to collect trajectories with nonzero rewards in
these hard-exploration environments. Our method main-
tains diferent memory bufers to store past good trajectories
for each agent in the team, and an agent only shares past
good trajectories with each other in order to calculate
a diversity measurement.

2.2. Memory-Based RL. Te existence of a memory bufer
enables the agent to store and utilize past experiences to aid
in online RL training. Many prior work proposed storing
past good experiences in replay bufers with a prioritized
replay mechanism to accelerate the training process
[6, 11, 33]. Episodic reinforcement learningmethods [15–17]
memorize past good episodic experiences by maintaining
and updating a look-up table and act upon these good
experiences in the decision-making process. Self-imitation
learning (SIL) methods [9, 12] train the agent to imitate the
highly rewarded trajectories with the SIL and GAIL ob-
jective, respectively. Tere are many other previous works
where the agent learns a range of diverse exploratory policies
based on episodic memory [10, 34]. Unlike these previous
methods, our method encourages the agent to visit the part
of the state space where the agent can obtain higher rewards
by calculating the distance between the current trajectory
and the past good trajectory.

2.3. ImitationLearning (IL). Te goal of imitation learning is
to train a policy by imitating the demonstration data gen-
erated by human experts. Behavior clone (BC) is regarded as
a simple IL approach where the unknown expert policy is
estimated from demonstration data by supervised learning.
BC methods, however, usually sufer from the heavy dis-
tribution shift problem [35]. Inverse reinforcement learning
(IRL) solves forward RL problems by recovering the reward
function from demonstration data [36, 37]. Generative
adversarial imitation learning (GAIL) [38] formulated the IL
problem as a distribution matching problem, which can
avoid estimating the reward function. All these IL methods
rely on the availability of high-quality and sufcient human
demonstrations. In contrast, our method treats the past good
trajectories generated by the agent as demonstration data.

3. Preliminaries

In this study, we show that the MMD metric can be used as
a distance constraint to prevent the agent from falling into

local optima. Using the exterior penalty functionmethod, we
transform the constrained RL optimization problem into an
unconstrained optimization problem, and the MMD dis-
tance can be regarded as a kind of intrinsic reward. Our
method can be naturally combined with the hierarchical
reinforcement learning algorithm, and the policy gradient
can adjust pretrained skills and the high-level policy during
the training phase.

3.1. Reinforcement Learning. We consider a discounted
Markov decision process (MDP) defned by a tuple
M � (S,A, P, r, “0, ”), in which S is a continuous state
space, A is a (discrete or continuous) action space, P: S ×

A × S⟶ [0, 1] is the transition probability distribution,
r: S × A⟶ [Rmin, Rmax] is the reward function, in which
we assume that the minimum and maximum value of the
reward function is Rmin and Rmax, respectively. Fur-
ther,ρ0: S⟶ [0, 1] is the distribution of the initial state s0,
and c ∈ [0, 1] is a discount factor. A stochastic policy
πθ: S⟶ P(A), parametrized by θ, maps the state spaceS
to the set of probability distributions P(A) over the action
space A. Te state-action value function is defned as
Q(st, at) � Eρ0,P,π[

∞
t′�tc

t′− tr(st′ , at′)].
In general, the objective of RL algorithms is to fnd an

optimal policy πθ that maximizes the expected discounted
return:

η πθ(  � Eτ 

∞

t�0
c

t
r st, at( ⎡⎣ ⎤⎦. (1)

We use τ � (s0, a0, . . .) to denote the entire history of the
state and action pairs, where s0 ∼ ρ0(s0), at ∼ πθ(at|st), and
st+1 ∼ P(st+1|st, at).

Similar to [39], when c � 1, we defne the stationary
state-visitation distribution for the policy πθ by
ρπ(s) � limt⟶∞ P(st � s|s0, π), where the initial state
s0 ∼ ρ0. Te expected discounted return can be rewritten as
Eρπ(s,a)[r(s, a)], where ρπ(s, a) � ρπ(s)πθ(a|s) is the state-
action visitation distribution.

3.2. Policy Gradient Algorithms. Te study of this paper is
based on policy gradient RL algorithms, which is one of two
classes of RL algorithms. Policy gradient algorithms use gra-
dients to iteratively optimize policy parameters of the agent.
Here, we give a brief introduction of a well-known policy
gradient algorithm: proximal policy optimization (PPO).

3.2.1. PPO. PPO [20] uses a clipped objective function to
constrain the step size during an update and prevent drastic
parameter changes. Tis leads to a stable training process
compared with other algorithms. Te PPO agent adjusts the
parameters of the policy by maximizing the following
clipped objective function:
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max
θ

L(θ) � Eθ min
πθ at st

 

πθold
at st

 
, clip

πθ at st

 

πθold
at st

 
, 1 − ε, 1 + ε⎛⎝ ⎞⎠⎛⎝ ⎞⎠A st, at( ⎡⎢⎢⎣ ⎤⎥⎥⎦, (2)

where πθ(·) and πθold(·) represent the current policy and the
old policy, respectively, and ε is the clipping ratio, which is
a hyperparameter that is empirically determined.

3.3. Maximum Mean Discrepancy. Maximum mean dis-
crepancy (MMD) can be used to measure the diference (or
similarity) between two probability distributions [29, 40–43]. Let
x : � x0, x1, . . . , xl  and y : � y0, y1, . . . , ym} be two sets of
samples, which are taken independently and identically from
two distributions p and q. p and q are defned in a nonempty
compact metric space X. Ten, we can defne MMD as

MMD(p, q,F) ≔ sup
f∈F

Ex∼p[f(x)] − Ey∼q[f(y)] , (3)

where x ∈ x, y ∈ y and F is a class of functions on X. If F
satisfes the condition p � q, if and only if Ex∼p[f(x)] �

Ey∼q[f(y)], ∀f ∈F, then MMD is a metric in the space of
probability distributions in X measuring the discrepancy
between any two distributions p and q [44].

What kind of function class makes the MMD a metric?
According to literature [40], the space of bounded contin-
uous functions F on X satisfes the condition, but it is
intractable to compute the MMDwith fnite samples in such
a huge function class. Fortunately, whenF is a reproducing
kernel Hilbert spaceH defned by kernel k(·, ·), it is enough
to uniquely identify whether p � q or not, and the MMD is
tractable in the space:

MMD2
(p, q,H) � E k x, x

′
   − 2E[k(x, y)] + E k y, y

′
  .

(4)

4. Proposed Approach

In this section, we formulate a novel RL framework named
Policy Optimization with Soft self-generated guidance
and diverse Exploration (POSE). Te proposed method
utilizes a team of agents to explore the environment si-
multaneously and encourages them to visit non-
overlapping areas of state spaces. Every agent in the team
maintains a memory bufer storing past good trajectories,
and these ofine data can be regarded as guidance to
enable the agents to revisit diverse regions in the state
space where the agents can receive high rewards and drive
deep exploration.

4.1. Overview of POSE. One feasible approach to achieve
better exploration in challenging tasks with sparse and
deceptive rewards is to simultaneously employ a team of
agents and enforce them to explore diferent parts of the
state-action space. In this way, diverse policies can be
learned by diferent agents in the team, which prevent agents
from being stuck in local optima.

As shown in Figure 1, our POSE method employs a team
of K agents to interact with the environment and generate
many state-action sequences. Diferent from the multiagent
RL setting [46], where all agents live in a shared environment
and the action of an agent can afect other agents’ states and
action choices, in our design, each agent exists in an in-
dependent copy of the same environment and has no in-
teraction with other agents in the team when sampling data.
In each training iteration, every agent of the team collects an
on-policy training batch B containing M trajectories in the
environment. Meanwhile, we also maintain a replay bufer
M for each agent to store specifc trajectories generated in
previous rollouts. Furthermore, POSE is introduced in Al-
gorithm 1 of Appendix A in detail. Next, we will explain how
to organize the trajectory bufer.

4.1.1. Organizing Trajectory Replay Memory for Exploration
and Exploitation. We maintain a trajectory replay memory
Mi � (τ(1), e(1), n(1)), (τ(2), e(2), n(2)), · · ·  for the i-th agent
of the team. Te number of trajectories in Mi is no more
than k, and hence, τ(j) in Mi is one of the top-k trajectories
ending with the state embedding e(j). n(j) is the number of
steps of the trajectory τ(j). Diferent from the SIL method
[9], in which only the successful trajectory with a return
above a certain threshold is eligible to be added to these
memories, the imperfect trajectories that are not highly
rewarded or even do not reach any goal can also be con-
sidered as ofine demonstrations in our method. For ex-
ample, the trajectory is on the path to some goal, although it
does not reach the goal. Furthermore, every replay memory
only stores trajectories with similar state embeddings, which
correspond to the same goal or state region. If the em-
bedding e of a new trajectory τ is similar with the trajectories
in the i-th agent’s memory and this trajectory is better than
(i.e., higher return, shorter trajectory length, or shorter
distance to the goal) the worst trajectory of this memory, we
replace this worst trajectory by this new entry τ, e, n{ }.

4.1.2. Guiding Agent to Reproduce Trajectory to State of
Interest. To achieve better performance than existing RL
methods in the sparse and episodic reward setting, we in-
troduce a novel method that is benefcial to improve the data
efciency of RL algorithms and help the agent to reproduce
previous trajectories in the memory bufer efciently. We
introduce a new distance measure that calculates the dif-
ference between diferent trajectories and then develop an
RL optimization problem with distance constraints by
regrading diverse past demonstrations as guidance. In-
tuitively, POSE can be viewed as a simple method to en-
courage the agent to revisit the parts of state space where the
past trajectories are located. We will introduce how to train
the policy in detail in Section 4.2.
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4.1.3. Improving Exploration by Generating Diverse
Trajectories. Compared with typical distributed RLmethods
such as A3C [30] and IMPALA [32], our POSE method not
only simply employs multiple agents to collect amounts of
trajectories independently by interacting with the parallel
environments but also uses a diverse explorationmechanism
to ensure exploration efciency. We propose a new diversity
metric to drive the diferent agents on the team to reach
diverse regions in the state space and maintain the diversity
of an ensemble of agents. In our framework, an agent of the
team is impelled to pay more attention to visiting the state
underexplored by other agents. Consequently, this helps the
agents in the team to explore the environment systematically
and avoid being stuck in local optima.

4.2. Policy Improvement with Soft Self-Generated Guidance.
We assign a trajectory τ to a domain-dependent behavior
characterization functionb(τ) to describe its behavior. For
example, in MuJoCoMaze tasks described as the benchmark
[47], b(τ) can be as simple as a two-dimensional vector
sequence, and each component of the sequence represents
the agent’s (x, y) location in every timestep:

b(τ) � b s0, a0( , . . . , sn, an(   � x0, y0( , . . . , xn, yn(  .

(5)

Te behavior characterization b(τ) suggests that states or
position information, not actions, are used to distinguish
diferent trajectories, and a similar approach is adopted by
[48, 49]. If needed, other behavior characterization functions
can also be defned to adjust the focus of the distance
measurement based on diferent aspects such as state visit,
action choices, or both.

A particular distance between the current trajectory τ
and the replay memory M can be computed as follows:

dist(τ, μ) � DMMD(b(τ), b(μ)) � MMD2
(p, q,H). (6)

Here, b(·) extracts the coordinate information corre-
sponding to each state-action pair of the trajectory.
Meanwhile, τ and μ are viewed as two deterministic policies
in equation (6), and p and q are the state-action distributions
that are induced by deterministic policies τ and μ, re-
spectively. Furthermore, the distance between the current
trajectory τ and the trajectory replay memory M is defned
as follows:

dist(τ,M) � minμ∈MDMMD(b(τ), b(μ)), (7)

i.e., dist(τ,M) is the minimum value of distances between τ
and each trajectory in the replay memory M.

Existing methods maintaining a memory bufer may
overly exploit those good experience data, but these tra-
jectories collected during the training process can be im-
perfect. Te excessive exploitation of the imperfect
demonstrations might lead to myopic behaviors and hurt
performance in some cases. We choose to update the pa-
rameters of the agent by regarding previous good trajectories
as guidance rather than directly imitating these imperfect
trajectory data. By imposing a distance constrains in the
trajectory space, each agent of the team is encouraged to
revisit the region where past good trajectories are located. In
this way, the agent not only exploits what it already knows to
maximize reward but also reduces the overuse of previous
good trajectories. Furthermore, our method allows for
fexibility in the action choices and enables the agent to
smoothly move beyond to fnd near-optimal policies. Tis
intuition is based on the following observation:

Assumption 1. For any given bounded tolerance factor d,
there always exists trajectories with higher returns than the
demonstration trajectory, and they stay in a region of radius
d around the demenstration trajectoryd, even when the
demonstration trajectory is imperfect and generated by the
agent interacting with the environment.

∀μ ∈M,∃d ∈ (0,∞), dist(τ, μ)≤ d, R(τ)≥R(μ). (8)

Based on this distance in the trajectory space, we defne
a new RL optimization problem with constraints for the i-th
agent as follows:

θi
k+1 � maxθi J θi

k ,

s.t. dist τ(j),M
i

 ≤ δ,∀τ(j) ∈B
i
.

(9)

Here, δ is a constant, andMi is the replay memory of the
i-th agent. Bi contains the trajectory data collected by the
i-th agent at the current epoch, and τ(j) represents a tra-
jectory in the bufer Bi.

From the perspective of policy optimization, it indicates
that using constraints would better ft our problem settings
for two reasons:

Update Agent k

Policy
Improvement

Gradient

Samples

Samples

Samples

Trajectory Replay
Memory

On-policy
Training Batch

Diverse Exploration 

PI
Reward

Diversity
Measurement

Diversity
Gradient

PI
Objective

PI
Gradient

Task 
Reward

Task
Objective

Task
Gradient 

Agent 1

Agent 2

Agent 3

Policy
Exploration

Figure 1: Te framework of POSE. Te diverse exploration in POSE leverages multiple agents to sample training batches and use the
measurement of diversity to encourage agents to collect diverse trajectories, while the traditional RL, e.g., PPO [20] or SAC [45], uses a single
agent to collect data. In the meantime, every agent maintains a replay bufer and stores specifc trajectories in this bufer. Tese past good
trajectories can be used to guide the agents to revisit the region where the agents can obtain rewards with a higher probability.
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(1) Convergence. Te constraint could afect the policy
update when there are trajectories that do not satisfy
the constraints. In this way, it directs the agent to
generate trajectories that stay in the constraint do-
main defned by the distance on the trajectory space.
According to Assumption 1, the more frequently the
agent visits the state space around demonstration
trajectories, the more likely the agent is to produce
trajectories with higher returns.

(2) Optimality. Te agent’s replay bufer containing
previous specifc trajectories is maintained by a dy-
namic update mechanism. Once the agent collects
better trajectories with higher returns, shorter tra-
jectory length, or shorter distance to the goal, the
worst trajectories in the bufer will be replaced.
Consequently, compared with the self-imitation
learning methods, our method can leverage the
imperfect demonstration trajectories for guiding the
policy while eliminating their side efects in opti-
mization, thus working better with imperfect dem-
onstration trajectories.

4.2.1. Optimization Process of Soft Self-Imitation RL
Objective. Tis section mainly describes how to efciently
optimize the RL objective with the distance constraint on the
trajectory space. For simplifcation, we have omitted the
superscript i for some symbols, and these symbols have the
same meaning as above unless otherwise specifed.

First, using the Lagrange multiplier method, the opti-
mization problem (9) can be converted into an un-
constrained form:

L(θ) � J(θ) − σEτ∈Bid τ,M
i

 , (10)

where σ > 0 is a Lagrangemultiplier, which is used to determine
the efect of the constraint, and d(τ,Mi) � 0, if dist(τ,Mi)≤ δ,
else d(τ,Mi) � dist(τ,Mi). Ten, the gradient with respect to
the policy parameters θ of the objective (8) is given by

∇θL � ∇θJ − σEτ∈Bi d τ,M
i

 ∇θlogpθ(τ) , (11)

where pθ is a distribution induced by πθ over the trajectory
space, and pθ represents the probability of the trajectory τ.
pθ can be expressed in terms of the environment dynamics
model and the policy of the agent, i.e., pθ(τ) �

ρ(s0)
T
t�0πθ(at|st)p(st+1|st, at). Terefore, the gradient of

the score function of the trajectory distribution has the
expression ∇θlogpθ(τ) � 

T
t�0logπθ(at|st), and it does not

contain the environment dynamic model.

4.3. Policy Exploration. As described in Section 4.2, if an
agent has collected specifc trajectories when interacting
with the environment and stores them in the trajectory
bufer, our method will regard these trajectories as
guidance in the policy improvement step and direct the
agent to revisit the regions where past good trajectories
are located gradually. However, it might cause the agent

to get stuck in local optima. To achieve better exploration
performance in challenging tasks with sparse and de-
ceptive rewards, we employ a group of heterogeneous
agents to interact with the environment simultaneously.
We hope to enable diferent agents on the team to reach
diverse regions of the state space and drive deep
exploration.

To maintain the diversity of the team, we frst introduce
a novel measurement of diversity. Considering the con-
tinuous control tasks that we focus on, we use the mean
MMD distance of the diferent agents in the team as the
diversity measurement. Te mean MMD distance is com-
puted with current trajectories collected by the team and
their mean trajectories. Te mean trajectory is generated by
performing the mean of Gaussian action distribution of the
agent at each timestep. Specifcally, let τi denote the mean
trajectories of agent i, and let Π denote the ensemble of
agents we employ, and letS be the set of mean trajectories of
all agents. Te diversity measurement of an agent is cal-
culated as

div(Π) �
1

|Π|


|Π|

i�1
DMMD πi

,Π\πi
 , (12)

where DMMD(πi,Π\πi)is defned as

DMMD πi
,Π\πi

  � minτj∈SEτ∈Bi MMD b(τ), b τj
   .

(13)

For discrete control tasks, we utilize the current optimal
trajectories to compute the diversity measurement of agent
team T, and the optimal trajectory are produced by the agent
through performingthe action with the highest Qvalueat
each timestep. Finally, the objective function of policy ex-
ploration is given as

θk+1 � maxθ div Πθk+1/2
 ,

s.t. DKL πi
k+1, π

i
k+(1/2) ≤ δ, i ∈ 1, . . . , |Π|.

(14)

Intuitively, the policy exploration step prevents the team
of agent from being stuck in the same local optimum by
driving diferent agents to reach diverse regions of the state
space. Tis is achieved by fnding an ensemble of policies
that maximizes the diversity measurement defned in
equation (12). In the meantime, we require that every new
policy πk+1 after the policy update lies inside the trust region
around the old policy πk+1/2

, which is defned as
π: DKL(π, πk+1/2)≤ δ , and hence it can avoid sufering
severe performance degradation.

4.3.1. Optimization Process for the Diversity RL Objective.
To solve the constrained optimization problem, we propose
to approximately solve it linearizing around current policies
πi

k, i � 1, . . . , |Π|. Te gradient of diversity measurement in
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equation (14) with respect to the policy parameters can be
easily calculated with the mean trajectories and current
rollouts. Denoting the gradient of diversity measurement as
g and the Hessian matrix of the KL-divergence for agent i as
Hi, the linear approximation to equation (14) is as follows:

θk+1 � max
θ

g
T θ − θk( ,

s.t.
1
2
θ − θk( 

T
H

i
k θ − θk( ≤ δ, i ∈ 1, . . . , |Π|.

(15)

Ten, we adopt the conjugate gradient method [4] to
approximately compute the inverse of Hi

k and the gradient
direction. However, the trust-region optimization can incur
slow update of parameters and thus reduce the sample ef-
fciency and improve the computational cost. In the be-
ginning phase of the training process, we can use a frst-
order optimization method like [20] to solve the optimi-
zation problem in equation (14).

5. Evaluation of Results

In this section, we present our experimental results and
compare our method’s performance with other baseline
methods. In Section 5.1, we present an overview of exper-
iment setups we used to evaluate our methods. Sections
5.2∼5.3 report the results in diferent experiment environ-
ments, respectively.

5.1. Experimental Setup

5.1.1. Environments

(1) Grid World. To illustrate our method’s efectiveness, we
design a huge 2D grid world based on Gym [50] with two
diferent settings: sparse rewards and deceptive rewards. At
each timestep, the agent observes its coordinates relative to
the starting point and chooses from four possible actions:
move east, move south, move west, and move north. At the
start of each episode, the agent starts from the bottom-left
corner of the map, and an episode terminates immediately
once a reward is collected. In the sparse reward setting,
shown in Figure 2(a), there is only a single goal located at the
top-right corner, and the agent will be rewarded with 6 when
reaching this goal. On the other hand, in the deceptive
reward setting depicted in Figure 2(b), there are a misleading
goal with a reward of 2,in the upper left room of the grid
world that can lead to local optima.

(2) MuJoCo. For continuous control tasks, we also conduct
diferent experiments in environments based on theMuJoCo
physical engine [51]. Two continuous robotic control tasks,
ant and swimmer mazes, are selected to evaluate the per-
formance of our methodology and baseline methods. In each
task, the agent takes a vector of physical state containing the
agent's joint angles and task-specifc attributes as the input of
the policy. Examples of task-specifc attributes include goals
walls and sensor readings. Ten, the control policy generates
a vector of action values which the agent performs in the

environment. We compare our method to previous algo-
rithms in the following tasks:

(i) Swimmer maze: the swimmer is rewarded for
reaching the goal positions in the maze shown in
Figure 3(a). Te agent can obtain suboptimal re-
wards (+200) by arriving at the leftmost goal, and the
agent is rewarded by 500 when it reaches the optimal
goal in the rightmost of the maze of maze.

(ii) Ant maze: the ant is rewarded for arriving at the
specifed positions in the maze, as shown in
Figure 3(b). Te ant can collect the small rewards
when reaching the goal below the maze and maxi-
mize the reward if it reaches the goal up the maze.

5.1.2. Baseline Methods. Te baseline methods used for
performance comparison vary in diferent tasks. For discrete
and continuous control tasks, we compare our algorithm
with the following baseline methods: (1) PPO [20], (2) SAC
[45], (3) DPPO: distributed PPO [52], (4) Div +A2C: A2C
with a distance measure regularization [27], (5) PPO+ SIL:
PPO with self-imitation learning [9], and (6) PPO+EXP:
PPOwith count-based exploration bonus augmented reward
function: r(s, a) + (λ/

���
Ne


), where Ne is the number of

times the state cluster under the state representation e is
visited during training, and λ is the hyperparameter that
controls the weight of the exploration bonus term. For each
baseline, we adopt the parameters that produce the best
performance during the parameter search, and not all
baselines are adopted in each task.

5.2. Performance inHugeGridWorld. In this experiment, we
evaluate diferent methods in 2D mazes with diferent re-
ward settings: sparse rewards and deceptive rewards. We
consider fve baseline methods in these experiments: A2C,
PPO, PPO+ SIL, PPO+EXP, and Div-A2C. Te perfor-
mances of each method are reported in terms of average
return and success rate learning curves. All learning curves
are averaged over 8 runs.

5.2.1. Sparse Reward. Figure 2(a) shows the sparse reward
grid world. In this maze environment with the discrete state-
action space, we implement our method based on the PPO
[20] algorithm. In this experiment, we select A2C, vanilla
PPO, PPO+ SIL, Div-A2C, as well as PPO+EXP as the
baselines. For each method, we adopt the settings that
produce the highest performance during the hyper-
parameter search. Te learning curves are presented in
Figure 4. Compared with other baseline methods, we notice
that ourmethod is able to learn the optimal policy at a higher
learning rate and achieve better performance evaluations in
terms of average return and success rate in this task. Our
method can encourage the agent to visit the underexplored
regions of the state space and make better use of past good
trajectories maintained in the memory bufers. Terefore,
our method can prompt the agent to focus on the state space,
from which the agent can collect the sparse rewards with
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(a) (b)

Figure 2: A collection of environments with discrete state-action spaces that we use. (a) Huge grid world with sparse rewards: key-door-
treasure domain. Te agent should pick up the key (+2) in the right-down room in order to open the blue door (+4) and collect the treasure
(+4) in the middle-up room to maximize the reward. (b) Huge grid world with deceptive rewards. Tere is an apple in the left-up room that
gives small rewards (+2) and a treasure in the middle-up room, which generates higher rewards (+10).

(a) (b)

Figure 3: A collection of environments with continuous state-action spaces that we use. (a) Swimmer in the maze. (b) Ant in the maze.
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Figure 4: Learning curves of average return and success rate in the huge gridworld with sparse rewards. Specially, the success rate is used to
illustrate the frequency at which agents reach the globally optimal goal during training process.
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a higher probability. Te PPO and A2C agents do not have
any specially designed mechanisms for exploration; hence,
they only arrive at the treasure and obtain the sparse rewards
with a very low probability.Tese agents are not able to learn
the optimal policy leading to the treasure due to the low
percentage of valid samples. In the training process, the
PPO+EXP agent can explore the environment better and
occasionally collect treasure to achieve the best episode
return. We also note that it is rare and difcult for the Div-
A2C method to encounter the sparse rewards in one short
burst. While the PPO+ SIL agent can utilize past good
trajectories, the success rates and average returns of this
method are lower than those of our method at the end of the
training process.

5.2.2. Deceptive Reward. Figure 2(b) illustrates the deceptive
grid world. From Figure 5, we notice that the average re-
wards of the baseline methods have a slight increase com-
pared with those in the sparse reward settings. Tese
methods, except for PPO+EXP, can only achieve sub-
optimal rewards by collecting the apples, and hence, the
agents are stuck with the suboptimal policy due to deceptive
rewards. In contrast, our method not only adopts myopic
and suboptimal behaviors but also treats the past good
trajectories as guidance and allows the agent to reach diverse
regions in the state space by improving upon past trajec-
tories to generate good new trajectories. Although
PPO+EXP can reach the treasure and obtain the highest
rewards, its learning process has greater instability, leading
to inferior performance.

As shown in Figure 6, we also plot the state-visitation
counts for all methodsin the maze with deceptive rewards,
which explicitly illustrate how diferent agents explore the
2D gridworld environments. From the state-visitation count

graph, it can be seen that the four baseline approaches are
either prone to falling into a local optimum or they cannot
explore the environment sufciently to visit the goal with
larger reward. PPO+EXP can obtain optimal rewards from
the treasure, but it requires considerable computation to
visit the meaningless region of the state-action space due to
intrinsic rewards. However, it can be observed from Figure 6
that our POSE method is able to escape from the area of
deceptive rewards, explore a wider and farther region of the
2D grid world signifcantly, and arrive at the goal with the
optimal reward successfully without spending too much
computation visiting the insignifcant region of the
state space.

5.3. Performance Comparison in MuJoCo Environments.
We evaluate our method on continuous control tasks shown
in Figure 3 with sparse and deceptive rewards based on the
MuJoCo physical engine and similarly plot the in-training
median scores in Figures 7 and 8. We consider four baseline
methods in these experiments: SAC, PPO, PPO+ SIL, and
DPPO.Te performance of eachmethod is reported in terms
of average return and success rate learning curves. Similar to
the experiments in the discrete maze, all learning curves are
averaged over 5 runs.

Compared with baseline methods, it is observed that
our method can learn considerably faster and obtains
higher average returns and success rates. Te average
returns and success rates of POSE and other baseline
methods in the swimmer maze are usually higher than
those in the ant maze because the dimensions of the state
and action space of the swimmer are lower than those of the
ant, and the swimmer will not trip over due to incorrect action
inputs. POSE achieves a success rate of almost 100% in less than
200 epochs.
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Figure 5: Learning curves of average return and success rate in the huge grid world with deceptive rewards. Specifcally, the success rate is
used to illustrate the frequency at which agents reach the globally optimal goal during the training process..
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(a) (b) (c)

(d) (e) (f )

Figure 6: State-visitation counts of the grid world for diferent algorithms: (a) PPO, (b) A2C, (c) Div-A2C, (d) PPO-SIL, (e) PPO-EXP, and
(f) ours. PPO, A2C, and PPO-SIL are easily trapped into local optimum. Div-A2C could visit diferent regions where the apple does not
locate, but it cannot arrive at the treasure and obtain the optimal reward. PPO + EXP enables the agent to reach the treasure and obtain the
highest rewards; however, it spends amounts of computation to visit parts of state-action space where it cannot obtain any useful rewards.
Our algorithm can explore the state-action space systematically and collect the optimal rewards quickly, which enables the agent to learn the
optimal policy at a high learning rate..
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Figure 7: Learning curves of average return and success rate in swimmer maze. Specially, the success rate is used to illustrate the frequency
at which agents reach the globally optimal goal during training process.
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While PPO and PPO+ SIL often adopt myopic behaviors
and converge to suboptimal policies, POSE is able to
eliminate the local optimum and fnd better strategies to
obtain larger episode returns. We also compare our algo-
rithm with the state-of-the-art RL methods, SAC and DPPO.
SAC is based on the maximum entropy RL framework,
which trains a policy by maximizing the trade-of between
expected return and entropy. As a result, SAC cannot
achieve a signifcantly better performance of exploration
than PPO in our experiments. It rarely encounters the

optimal rewards received from the treasure and occasionally
gathers trajectories leading to the treasure in the swimmer
maze. Tus, this of-policy method might forget the past
good experience and fail to learn the optimal policy to
achieve the best reward. DPPO can learn the policy leading
to the optimal reward, but this method has a lower learning
rate and success rate. In contrast, our POSE method can also
successfully generate trajectories that visit novel states and
save the trajectories with high returns in the bufer. Te
POSE agent is able to replicate the past good experience by
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Figure 8: Learning curves of average return and success rate in ant maze. Specially, the success rate is used to illustrate the frequency at
which agents reach the globally optimal goal during the training process.

Input: number of agents N, learning rate α, and on-policy training buferRi for each agent, highly rewarded trajectory buferDi

for each agent, sequence length m, and number of epochs M.
(1) Initialize policy weights θ of each agent.
(2) Initialize the prior good trajectory bufer Mμ.
(3) for i � 0 to M do
(4) Collect rollouts and store them in their own on-policy training Ri for each agent.
(5) Update the soft self-imitation training batches Di for each agent.
(6) Compute advantage estimates Ai, i � 1, 2, . . . , N{ }.
(7) Estimate the distance between current trajectories τi and highly rewarded trajectories in soft self-imitation replay buferDi for

each agent.
(8) Estimate the gradient ∇θLi in equation (11), i � 1, 2, . . . , N{ }.
(9) Perform policy improvement step: θi+1/2⟵ θi + α∇θLi for each agent.
(10) Estimate g and Hi

k.
(11) Perform policy exploration step by update policy parameters according to equation (15).
(12) end for

ALGORITHM 1: Policy optimization with soft self-generated guidance and diverse exploration (POSE).
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using the highly rewarded trajectories as guidance and
learning the optimal policies with the highest learning rate
and success rate.

6. Conclusion

In this study, we study the problem of how to design
a practical RL algorithm for tasks where only sparse and
deceptive feedback is provided. We propose a novel two-
step policy optimization framework called POSE, which
exploits diverse imperfect demonstrations for faster and
more efcient online RL. By regarding diverse past tra-
jectories as soft guidance, the agent can reproduce the
trajectories easily and smoothly move beyond them to fnd
near-optimal policies, which regulates the direction of
policy improvement and accelerates the learning speed.
Furthermore, a novel diversity measure is introduced to
drive each agent of the team to visit the diferent
underexplored regions of the state space and achieve deep
exploration. Experimental results on physical control
benchmarks demonstrate the efectiveness of our ap-
proach over other baseline methods in terms of the ef-
cient exploration and avoidance of local minima in tasks
with long horizons and sparse or deceptive rewards.

Appendix

Algorithm training process.
Algorithm 1 describes our method in detail. At each
iteration, the algorithm is executed according to the
framework shown in Figure 1, and the experiences
generated by each agent in the environment are
stored in their respective on-policy training batches.
Ten, we use the on-policy trajectory data to update
the soft self-imitation learning batches M according
to Section 4.1. Furthermore, we compute the ad-
vantage of the current policy and the distance be-
tween the current trajectory τ and the soft self-
imitation replay bufer Di for each agent, and we
utilize them to estimate the gradient of ∇θL in
equation (11). Finally, we update the parameters of πθ
with the gradient ascent algorithm and adapt the
penalty factor according to the MMD distance.
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