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Acronym disambiguation is the process of determining the correct expansion of an acronym in given context, which can assist
many downstream natural language processing tasks. Typically, existing methods on this task will directly perform semantic
comparisons between the candidate expansions and the original sentence, ignoring the relevance of contextual information to
expansions. To solve this issue, this paper proposes a context-aware acronym disambiguationmethod with Siamese BERTnetwork
(ContextAD). First, we combine each candidate expansion with corresponding acronym’s context to form a new sentence set.
Ten, the new and original sentences are input into a Siamese BERT network that can obtain the semantic similarity. Te new
sentences and the separate candidate expansions are input into the Siamese BERT network, respectively, along with the original
sentences, which can obtain another semantic similarity. Finally, the two diferent semantic similarities are combined to de-
termine the most suitable expansion. We quantify the improvement of our proposed ContextAD model against a state-of-the-art
baseline using the public dataset of the shared tasks of acronym disambiguation (AD) held under AAAI-2021 workshop on SDU
and show that it achieves a better performance based on the same BERT model.

1. Introduction

Acronyms are shortened forms of longer phrases and are
often used in writing, especially academic writing, to save
space and streamline expression. However, in natural lan-
guage processing tasks such as question answering, machine
reading comprehension, information extraction [1], sensi-
tive word detection, and retrieval, it is often necessary to use
the defnition of acronyms. Acronym disambiguation can
provide an efective acronym comprehension scheme. Its
purpose is to select the most appropriate defnition from the
acronym dictionary according to the meaning of the sen-
tence containing the acronym. Te sources of the acronym
dictionary mainly includeWEB data acquisition andmanual
construction.

Early studies mainly used the construction of acronym
dictionaries using WEB information. For example, some
researches directly obtain web pages containing acronym
and defnitions [2] or automatically extract acronyms and
corresponding defnitions from the interaction between

users and network data [3].Ten, machine learning methods
[1], pattern matching [4–6], and semantic network gener-
ation [7] are used to achieve acronym disambiguation.
However, the level of network data is uneven, and it is not
easy to ensure the quality of the acronym dictionary.
Moreover, methods based on network data often require the
device to be connected to the network and cannot be applied
ofine. Terefore, some scholars use artifcially constructed
dictionaries and machine learning algorithms for disam-
biguation [8]. Examples thereof are shown in Figure 1. Te
model needs to pick out accurate defnitions based on ac-
ronyms and their contextual information from the corre-
sponding dictionary.

After the development of recent years, dictionary-based
acronym disambiguation methods have made great prog-
ress. Early researchers used statistical methods for feature
extraction, such as support vector machines, naive Bayes,
and k-nearest neighbors [9, 10]. Tis kind of method is
simple, but it has low precision and recall. After machine
learning algorithms, especially deep neural networks
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demonstrated powerful feature extraction, and neural
network-based acronym recognition methods began to
proliferate, e.g., convolution neural networks (CNNs) or
long short-term memory (LSTM) [11]. However, traditional
deep neural networks have difculty in incorporating prior
knowledge and can only extract features from the dataset.
While the transformer-based methods represented by BERT
and its derivative models are able to obtain features from
a large amount of unlabelled data and apply these features
(prior knowledge) to downstream tasks. However, tradi-
tional deep neural networks have difculty in incorporating
prior knowledge and can only extract features from the
dataset, while the transformer-based methods represented
by BERT [12] and its derivative models are able to obtain
features from a large amount of unlabelled data and apply
these features (prior knowledge) to downstream tasks. Tis
approach can greatly improve the accuracy of the model.
Singh and Kumar used the SpanBERT [13] model to
transform the acronym disambiguation problem into a span
prediction problem [14]. Pan et al. tried diferent BERT
models and fnally found that the SciBERT model [15] has
a signifcant advantage in the acronym disambiguation task
[16]. Weng et al. then used the DEBERTA [17, 18] model for
their experiments [19], while Song et al. verifed the validity
of the T5 model [20] which is an alias of text-to-text transfer
transformer, and the basic idea of this model is that all NLP
problems can be defned as “text-to-text” problems, i.e.,
“input text and output text” [21].

Existing methods tend to analyse paraphrases directly
with the original sentences, without taking full advantage of
the similarity feature between paraphrases and acronyms. In
this paper, we design a framework based on twin networks
mainly based on the property that acronyms are completely
alternative to exact paraphrases. Complete substitutability
means that an accurate paraphrase can replace the acronym
in the original text without changing the sentence para-
phrase. Tis property is similar to the way humans think,
and when they disambiguate acronyms, they usually choose
to replace the acronym with the candidate paraphrase and
analyse it in context to determine its suitability.

Terefore, this paper proposes a context-aware acronym
disambiguation method with Siamese BERT network
(ContextAD), which combines candidate paraphrases with
the context of acronyms to form new sentences and uses the
Siamese network model to obtain the similarity between the
new sentence and the original sentence. At the same time,

this paper verifes the robustness of the model by expanding
the candidate paraphrase dictionary, proving that the model
has good ductility. In general, the contributions of this paper
mainly include the following four points: (1) the analysis of
the advantages and disadvantages of existing methods is
adopted to show the impact of the absence of a context-
aware approach. (2) A context-aware approach is proposed
to achieve better disambiguation by combining candidate
paraphrases with acronym contexts. To the best of our
knowledge, this is the frst work to perform disambiguation
from the sentence level. (3) Te overall approach can si-
multaneously obtain sentence- and phrase-level similarity,
which can get more information. (4) Experiments show that
the proposed method can outperform the state-of-the-art
methods on the public dataset when using the same
BERT model.

2. Related Work

Tis section describes the acronym disambiguation methods
based on dictionary and Siamese neural network.

2.1. Dictionary-Based Acronym Disambiguation. Existing
dictionary-based acronym disambiguation methods can be
divided into fve categories: feature matching (including
statistics-based and classic machine learning-based
methods), multiclassifcation, span prediction, binary clas-
sifcation, and similarity ranking [22].

2.1.1. Feature Matching Methods. Te feature matching
approach involves extracting features (e.g., discourse tags
and special characters) from the input sentences. Statistical
models are then used to predict the exact acronym in-
terpretation. Statistics-based methods refer to the imple-
mentation according to the calculation formula of statistical
word frequency and similarity, such as BM25 and TF-IDF.
However, these methods usually cannot understand the
semantic correlation between sentences and separate the
semantics of words and sentences. It is inconsistent with the
facts. With the development of machine learning, traditional
machine learning methods based on maximum entropy,
decision tree, and support vector machine are gradually
emerging [14]. Tese algorithms are based on dictionary
acronyms to eliminate discrimination as a classifcation
problem. Maximum entropy aims to select the model with
the most signifcant entropy among all possible probability
models (probability distribution) [23]. However, the max-
imum entropy model will binarize the features, only record
whether the features appear but cannot obtain the feature
strength. Te decision tree model is an attribute structure
describing instance classifcation, mainly composed of
nodes, and directed edges. Te decision tree model usually
starts from the root node, obtains the instance character-
istics, and then assigns the instance to its child nodes [24].
Te characteristics obtained by the decision tree model are
easy to be afected by the amount of data. Te support vector
machine is to fnd the support vector that can determine the
optimal classifcation hyperplane from the training samples

Sentence: CNN is a kind of feed-forward neural network

Convolutional Neural Network

Condensed Nearest Neighbor

Complicated Neural Networks

Citation Nearest Neighbour

Dictionary:

Figure 1: A toy example of acronym disambiguation.
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by maximizing the classifcation margin [25]. Te kernel
function directly determines the performance of the support
vector machine, but there is no suitable method to solve the
problem of kernel function selection.

2.1.2. Multiclassifcation Methods. Te multicategory
problem is trained with each candidate interpretation as
a category label. With the development of word vector
models and neural network models, textual information has
been able to be transformed into low-dimensional dense
vectors. Current methods for acronym disambiguation are
usually analysed on the basis of text embedding.Tis enables
more contextual information to be obtained.Te benchmark
model GAD given by Veyseh et al. [9] is to obtain sentence
embedding through Bi-LSTM and obtain context embed-
ding with the help of grammatical structure (such as de-
pendency tree) and GCN (graph progressive neural
networks) model. Finally, the acronyms and sentence em-
bedding under the two codes are spliced as the input of the
evaluation layer, and then the interpretation of acronyms is
predicted through a two-layer feedforward classifer. Te
number of neurons in the last classifer is equal to the
number of candidate defnitions of the acronym in the
dictionary, but this also means that when the number of
acronym defnitions in the dictionary increases, the model
structure will change signifcantly.

Jaber et al. combined three supervised machine learning
models (support vector machine, naive Bayes, and k-nearest
neighbor) with cosine similarity for acronym disambigua-
tion among the feature-based methods. Finally, they found
that the naive Bayes and cosine similarity method has the
best performance [9]. Pereira et al. combined a support
vector machine with the doc2vec method for acronym
disambiguation [10]. Tese methods mainly extract the
corresponding features from the text and predict the ac-
ronyms and corresponding interpretations by statistical
methods. Te neural network model challengers use mainly
LSTM and CNN [26].

2.1.3. Span Prediction Methods. Te transformer-based
model mainly encodes sentences for BERT and its vari-
ants (such as Sci-BERT [15] or RoBERTa [27]). Still, there are
diferences in using the output of these language models to
predict. Pan et al. [16] and Zhong [28] regarded the task as
a classifcation task, while Egan and Bohannon [29] adopted
the information retrieval method to calculate and sort the
score of each candidate word by using the cosine similarity
between candidate embedding and input. Singh and Kumar
modelled the problem as a span prediction problem. It
obtains the accurate interpretation from the connected text
of acronyms, candidate interpretation, and sentence com-
bination by the predicted probability of subsequence [14].

2.1.4. Binary Classifcation Methods. Binary classifcation is
to combine the interpretation of a single acronym with the
original sentence through the characteristic that BERT can
process two sentences simultaneously [11]. Te input format

of two sentences is processed by simulating BERT, and the
[CLS] identifer, candidate interpretation (according to the
number in the dictionary), and [SEP] identifer are spliced
with the original sentence as the model input and then train
a binary classifcation model to acquire the score. Tis
method is more robust and can handle longer dictionary
lengths. However, this method does not consider the
matching degree and correlation between the candidate
interpretation and the original context. When doing acro-
nym disambiguation, we can fnd the interpretation from the
meaning of the acronym in the context and judge whether
the interpretation conforms to the original context
information.

2.1.5. Similarity Ranking Methods. Te similarity ranking
method specifcally refers to the way of ranking by com-
paring the similarity scores of two inputs. Egan and
Bohannon evaluated the similarity of the candidate para-
phrases by directly comparing them with the original sen-
tences and used the candidate with the highest similarity
score as the predicted result [29]. Tis approach has simi-
larity to the dichotomous approach. Nevertheless, the
candidate interpretations contain limited information and
the model may fail to evaluate when the two candidates
themselves have similarity. In fact, there is complete sub-
stitutability between exact paraphrases and acronyms in
contextual scenarios. In other words, replacing an acronym
in the original sentence with an exact paraphrase will not
change the meaning of the sentence at all.

Terefore, we propose a method to fuse the similarity of
sentences with the similarity of the candidate translation
itself. Tis approach can combine the candidate sentences
with the context and can convey more features for the
model. However, because of the limited text information
that the model can handle, the length of the input text may
exceed the upper limit that the model can handle better if the
binary classifcation approach is used. We propose an ac-
ronym disambiguation method based on similarity ranking
methods.

2.2. SiameseNeuralNetworks. Siamese neural networks, also
known as Siamese networks, were frst proposed by Bromley
et al. [30] to verify the signature on the credit card. Now, it
has been applied to many diferent felds, such as one-short
learning [31], text recognition [29, 30], and face similarity
recognition[32]. Unlike the traditional neural network
model, the Siamese neural network model comprises two
networks sharing weights. By transforming the two inputs
into high-dimensional vectors and interacting with their
features, the Siamese neural network model can realize the
method of classifcation or similarity prediction. Te ad-
vantage of a Siamese neural network is to identify the dif-
ferences and similarities between the two inputs. Tat is, the
Siamese network can measure the direct correlation degree
of two inputs, in which network-1 and network-2 can be two
same network models, such as CNN [33]or LSTM [34],
transformer [35], or attention [36]. When the two networks
do not share weights or utilize two diferent neural networks,
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such as an LSTM network and a CNN network, separately.
We called this kind of models as called the pseudo-Siamese
network [37]. With the development of BERT, Reimers N
proposed to transform sentence pairs into two vectors with
the same dimension through the same BERTmodel and then
use diferent loss functions according to diferent tasks [38].
In the existing acronym disambiguation tasks, the methods’
performance based on the pretraining language model is
relatively higher than that based on features and traditional
neural networks.Terefore, this paper will study the Siamese
network based on BERT.

3. Limitations of Existing Methods

(1) Feature matching method: feature matching methods
(including statistics-based and traditional machine
learning-based methods) are prone to performance
degradation and high cost in the face of large
quantities of data. Tis type of method usually ana-
lyses only the number of occurrences of the acronym
together with the paraphrase. If such methods tend to
select cable news network as the CNN paraphrase, this
selection is context-independent.

(2) Multiclassifcation method: the advantage of the
multicategorization approach is the ability to select
from multiple interpretations with only one calcu-
lation. However, the number of defnitions of ac-
ronyms in the dictionary is often uncertain, and the
number of categories is closely related to the shape of
the last layer of the classifcation model. Terefore,
the multiclassifcation method is easily disturbed by
the number of candidate defnitions of acronyms.
For example, acronym “CA” has 20 paraphrases,
which means the output dimension of the model is
20×1, while “RF” has only 5 paraphrases and the
output dimension of the model is 5×1. Tis vari-
ability increases the difculty of model training.

(3) Span prediction method: this method also attempts
to perform interpretation recognition through
a single computation. However, the input to the span
prediction method is the acronym, all candidate
paraphrases, and the concatenation of the original
sentence, i.e., [CLS] Acronym [SEP] Expansion_1 ...
Expansion_N [SEP] Sentence [SEP], which means
that the length of the input text is related to the
candidate. Te number of interpretations is directly
related. Neural network models often need to per-
form zero-padded alignment processing on the in-
put. When the length diference of each input is too
signifcant, it is easy to cause the input mean and
variance between diferent batches to be too difer-
ent, which is not conducive to the robust processing
of the model. Similarly, acronym “CA” has 20
paraphrases, which means that the input is the
original sentence plus 20 paraphrases i.e., 40 words,
while “RF” has only 5, adding only 10 words, which
will introduce too much information when padding
is used to compensate.

(4) Binary classifcation and similarity ranking algo-
rithm: binary classifcation algorithms are the
methods that splice candidate paraphrases with the
original sentences, i.e., [CLS] (Acronym [SEP])
Expansion_i [SEP] Sentence [SEP] and then use
a binary classifer to determine whether the para-
phrase is correct or not. Also, similarity sorting is to
sort the vector similarity between the original sen-
tence and each candidate paraphrase, which is closer
to the human way of thinking. Both methods are
more robust and are not disturbed by the length of
the lexicon. However, both ways do not consider
whether the candidate paraphrases’ match the
context of the acronyms. Te acronym candidate
paraphrase should not only be semantically similar
to the original acronym but also should be able to
replace the acronym in the original sentence directly.

In the example in Table 1, the phrases that are seman-
tically similar to the original sentence are random forest,
regression function, and regression forest. But most of the
models choose regression function or regression forest.
While when asking the opinion of humans not working on
machine learning, they mostly choose random forest. Be-
cause there is a tree in the original sentences, and they think
that they should choose between random forest and re-
gression forest. Also, since the RF is followed by a regression,
it would be rather unusual for two identical words to appear
next to each other in a sentence.Tey tend to choose random
forest. According to this, we propose a context-aware
method which analyses candidate paraphrases at both
sentence and phrase levels.

4. Proposed Method

4.1. Problem Description. Given a sentence
S � [w1, w2, . . . , wn], the acronym position code is P, wP is
the acronym, the correct interpretation is di, and the ac-
ronym candidate interpretation dictionary is
D � wP: d1, d2, . . . , di, . . . , ds􏼈 􏼉, di ∈ D, where s is the
number of defnitions of each acronym in the dictionary.Te
acronym disambiguation task is to select the accurate in-
terpretation di from the interpretation dictionary D

according to the acronym wP and sentence S. Tat is, the
prediction of the model is argmax(p(di|S, wP, D)).

4.2. Overview of the Model. Diferent from the traditional
methods of candidate interpretation for similarity evaluation
with the original text, this paper will integrate the matching
degree between the candidate acronyms and the acronym
context at the same time.Te acronym candidate replaces the
acronyms in the original text to form a new sentence set and
then takes the new sentence set and the original text as input
to the Siamese network. Te training is carried out by
minimizing the loss function. If the label is 1 (similar), the
embeddings of the two sentences are as close as possible.
Otherwise, the distance between the two is as far as possible.
Tis paper will construct sentence pairs from two levels:
phrase and sentence levels. Te frst is to directly match the
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candidate interpretation with the sentence pair constructed by
the original text, a single interpretation, as in [29].Te second
is to match the new sentence formed by replacing the ac-
ronyms in the sentence with the candidate interpretation with
the sentence pair composed of the original sentence, that is,
the sentence pair. Te specifc examples are shown in Table 2.

It can be seen from Table 2 that in this experiment, there
is no need to add any special characters to improve the
attention of the model but only need to carry in two inputs
directly into the model. Te interpretation combination
simulates the scene where the candidate’s interpretation is
directly compared with the original text. Trough the direct
encoding of the candidate interpretation, the encoding is
transformed into a vector consistent with the encoding
dimension of the original text through the pooling layer and
then evaluated. Sentence combination is the result of
comparing the new sentence formed by replacing the cor-
responding acronyms in the original text with the candidate
interpretation. It is essentially the judgment between mul-
tiple sentences with the same context. Te model needs to
learn the diferences from sentence perspective. Te acro-
nym disambiguation task constructed in this section belongs
to the category of Siamese neural networks. We will evaluate
the semantic similarity of two diferent sentence pairs by
cosine similarity and take it as the score of the corresponding
interpretation in the combination. Te operation process is
as follows: inputting s (the number of candidate defnitions
of target acronyms in the dictionary) sentence combinations
and interpretation combinations into the Siamese network,
respectively, and using cross-entropy loss as the loss func-
tion of interpretation combination and sentence combina-
tion, the code of each sentence pair is obtained.

Figure 2 shows the general framework of Siamese net-
work structure based on BERT. We use interpretation
combination to obtain the similarity score between the
original sentence and the paraphrase and use sentence
combination to obtain the similarity score between the
original sentence and the paraphrase in the context-aware
case. Finally, we use the weighted sum of the two as the fnal
result. Te SiameseNet in the fgure represents the Siamese
networkmodel based on BERT, in which BERTmainly refers
to the current commonly used BERT models, including
BERT [12], RoBERTa [27], and Sci-BERT [15].

4.3. Siamese Neural Networks Based on BERT (SiameseNet).
We use the Siamese neural networks based on BERT [39] to
evaluate the correlation between the acronym candidate and
the original text, and the new sentence formed by replacing
the acronym with the candidate and the original text. Ten,

we sort the interpretation of the candidate according to the
two correlations. Te candidate interpretation with the
highest correlation is selected to be the answer. Siamese
neural network structure can be divided into regression
target structure and classifcation target structure according
to diferent tasks, as shown in Figure 3.

In the fgure, the model takes the two sentences (s1 and
s2) as input into the BERTmodel for embedding and unify
the sentence embedding dimension through the pooling
layer to obtain two-sentence vectors u and v with the same
dimension.

u � Pooling BERT s1( 􏼁( 􏼁,

v � Pooling BERT s2( 􏼁( 􏼁.
(1)

Ten, we augment the embedding by |u − v|, which
means subtracting the two vectors u and v in element-wise
and calculating the absolute value. Te vectors u, v, and |u −

v| are concatenated into the fully connected layer, followed
by the Soft Max layer, to obtain the fnal predicted score [40].
Te objective function can be expressed as follows:

h � Concat(u, v, |u − v|),

p � Softmax(FC(h)),
(2)

where FC means the fully connected layer.
We use the method based on classifcation and change

the acronym disambiguation task into the classifcation task
based on sentence similarity. In addition, diferent from the
traditional methods of candidate interpretation for simi-
larity evaluation with the original text, this paper will in-
tegrate the matching degree between the candidate
acronyms and the acronym context at the same time. Te
acronym candidate replaces the acronyms in the original text
to form a new sentence set and then takes the new sentence
set and the original text as input to the Siamese network.Te
training is carried out by minimizing the loss function. If the
label is 1 (similar), the embeddings of the two sentences are
as close as possible. Otherwise, the distance between the two
is as far as possible.

To enhance the robustness and generalization of the
model, adversarial loss is used to train the SiameseNet
network [39].Te objective loss function can be expressed as
follows:

Ltotal �
1
N

􏽘

N

n�1
CE Yn, pn( 􏼁 + β

1
N

􏽘

N

n�1
L

n
adv,

L
n
adv � Yn · p

2
n + 1 − Yn( 􏼁 · max m − pn, 0( 􏼁

2
,

(3)

Table 1: A confused example.

Raw sentence

Suppose θ is
the parameter that
determines a specifc
splitting node of

RF regression trees

Raw dictionary RF: ① random forest, ② radio frequency, ③ regression function, ④ regression
forest, ⑤ register fle
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where CE is the cross-entropy loss, which is used to portray
the similarity between the actual output probability and the
expected output probability. m represents the margin value,
and N is the number of training samples. Te value of Y is 1
or 0. If the two inputs are similar, it is 0, otherwise is 1. If the
diference between the two inputs is less than the marginal
value, the loss will be calculated; otherwise, the loss will be 0.
In the process of adversarial training, this loss function can
be split into a loss function when the samples are similar and
a loss function when the samples are diferent, which can be
expressed as follows:

L
n
adv �

p
2
n, Yn � 1,

max m − pn, 0( 􏼁
2
, Yn � 0.

⎧⎨

⎩ (4)

4.4. ScoreFusion. We use the loss function of the formula (4)
to train the SiameseNet included in the interpretation
combination and sentence combining structures,

respectively. After that, the two trained models are used for
inferencing to obtain semantic similarity, and the score
fusion is performed based on this, as shown in Figure 2.
Assuming that the original sentence is sori, the interpretation
statement of sint � [s1int, s2int, , ss

int], the new sentence obtained
by the combination is snew � [s1new, s2new, . . . , ss

new], the se-
mantic similarity score of the word dimension is

p � p1, p2, . . . , ps􏼂 􏼃,

pi � SiameseNet sori, s
i
int􏼐 􏼑,

(5)

where the output of SiameseNet is the SoftMax score in
equation (2), which can be regarded as p(di|S, wP, D),
represents the similarity of the i-th candidate paraphrase to
the original sentence. Also, the score of the sentence di-
mension is

􏽥p � 􏽥p1, 􏽥p2, . . . , 􏽥ps􏼂 􏼃,

􏽥pi � SiameseNet sori, s
i
new􏼐 􏼑.

(6)

Table 2: Te input form of model.

Raw sentence S
CNN is a kind

of feedforward neural
network

Raw dictionary D CNN: ① convolutional neural network, ② condensed nearest neighbor, ③
complicated neural networks, and ④ citation nearest neighbor

Ground truth Convolutional neural network

Interpretation combination
Interpretation combination 1

Input 1: CNN is a kind of feedforward neural network
Input 2: convolutional neural network

Sentence combination
Sentence combination 1:

Input 1: CNN is a kind of feedforward neural network
Input 2: convolutional neural network is a kind of feedforward neural network

Interpretation Combination

Sentence Combination

Score Fusion

p1
p1

p2

ps

p2

ps

pm=argmax (p) dm

S
N
S
B

Original
Sentence

Sentence Embedding Score

S
N
S
B

Interpretation1

Sentence Embedding Score

Original
Sentence

Interpretation s

Original
Sentence

New
Sentence1

Original
Sentence

New
Sentence s

Model

Model

p1

p1

p2

ps

ps

p1

ps
~

~

...

Figure 2: Illustration of the proposed ContextAD model.

6 International Journal of Intelligent Systems



Ten, adding the scores of the word dimension and the
sentence dimension, which is the fnal score

p � αp +(1 − α)􏽥p, (7)

where α is the weighting coefcient.

5. Experiments

5.1. Experimental Setup

5.1.1. Dataset and Benchmarks. We selected the AD data set
in the SDU challenge in AAAI-2021 for experimental
demonstration [9]. Te original data include 50,034 training
samples, 6,189 validation samples, and 6,218 test samples.
However, because the label of the test sample is not disclosed
and the challenging task has been closed, this paper will
randomly select 10% of the data from 50,033 training
samples as the verifcation set and the original verifcation
set as the test set. Terefore, our experiment’s number of
training samples, verifcation set samples, and test samples
are 45,031, 5,003, and 6,189.

Te benchmark model framework of this paper includes
the model of the dataset and single interpretation scoring,
which are compared with sentence matching and double
scoring. From the perspective of the model, this paper will
select BERT-base, RoBERTa-base, and Sci-BERT-base, re-
spectively, for experiments to provide a reference for follow-
up research.

BERT refers to the BERT model initially proposed by
Google. BERT-base uses 12 stacked embedding layers, each
embedding layer uses 12 head attention, the feedforward
network in embedding contains 768 hidden units, and the
total parameters of the model are about 110million [12].

Te full name of RoBERTa is a robustly optimized BERT
pretraining approach, which is a version of refned tuning of
BERT [27]. Te model mainly makes the following

improvements to BERT: ① the dynamic mask method is
adopted for model training, and the static mask is adopted
for BERT, that is, the data are masked in advance, while
RoBERTa adopts diferent mask modes when inputting
sequences to themodel, whichmeans that the same data may
have diferent mask modes in diferent epochs. RoBERTa
believes that this method can teach more language repre-
sentations.② More training data, larger model parameters,
larger batch size, and longer training time are used. ③ In
RoBERTa, the next sentence prediction task is cancelled, and
multiple sentences are input continuously until the maxi-
mum length is reached (cross text or not can be set, which is
better in general).Tis means that the model can read longer
text sequences simultaneously. Tis training method is
called full sentences.④ BERTuses Unicode characters as the
subwords unit, with a size of about 30K, while RoBERTa’s
embedding method combines character level and word level
representation (BPE). Tis method includes 50K subwords
units without any additional preprocessing or word seg-
mentation for input.

Sci-BERT is pretrained with a total of 1.14million sci-
entifc papers in 82% biomedicine, 12% computer science,
and 6% other disciplines [15], so it is more suitable for
natural language processing tasks in the direction of sci-
entifc papers. In the SDU task of AAAI-2021, the data are
collected from scientifc and technological papers.Terefore,
in the existing models, the efect based on Sci-BERT is often
higher than that of other models. In addition, it can also be
replaced with other network models, but the efect may be
relatively poor. In this way, the relationship between the
acronym and the interpretation, and the relationship be-
tween the context of the acronym and the interpretation of
the acronym can be considered simultaneously, and the
robustness can be taken into account. Te model structure is
independent of the length of the acronym dictionary and can
deal with candidate dictionaries of any length.

5.1.2. Evaluation Protocol. In acronym disambiguation,
precision, recall, and F1 score are usually used for evaluation.

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 �
2∗ precision∗ reccall
precision + reccall

,

(8)

where TP represents the number of entities predicted correctly,
that is, the number of sequences whose predicted sequence is
consistent with the real sequence, FP represents the number of
entities predicted incorrectly, and FN represents the number of
entities predicted incorrectly but actually correct.

5.1.3. Experimental Process. Te experiment is divided into
fve steps: verifcation set division, dataset processing, model
training, verifcation evaluation, and result evaluation. Te
specifc operation contents are as follows.

BERT

Sentence s1

Pooling

BERT

Sentence s2

Pooling

FC

Share
Parameter

Softmax

|u-v|

Concat

u v

p

Figure 3: Siamese network structure based on BERT (SiameseNet).
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Step 1: verifcation set partition. Since the submission
channel of the original challenge task has been closed, it
is necessary to extract 10% of the data from the training
set as the verifcation set and the ofcial verifcation set
as the test set.
Step 2: data processing. Replace the corresponding
acronyms in the original text with the candidate
interpretation of acronyms to form a new sentence
set and pair it with the original text. Among them,
the sentence pair containing the accurate in-
terpretation is labelled as 1, and the sentence pair
where the other candidate interpretation is located
is marked as 0 (a single interpretation is to pair the
candidate interpretation directly with the original
text to form a sentence pair, and the marking
method is consistent with the sentence matching).
In this way, it can also realize the expansion of the
dataset in essence. Te training set of the original
dataset is 45,031, but the number of training set
samples obtained by sentence matching is 203,438,
which is expanded by 4.52 times. Te number of
samples of the original verifcation set is 5,003, while
the number of samples of sentence matching is
22,779, which is expanded by 4.55 times. Also, the
number of samples in the original verifcation set is
6,189, while the number of training samples is
28,286, which is expanded by 4.57 times. Tis
processing method can have the efect of data
enhancement.
Step 3: model training. According to diferent BERT
models (mainly including three models: BERT-base,
RoBERTa-base, and Sci-BERT-base), the training is
carried out with the help of the sense transformer
framework, and the loss function is a comparative loss.
Step 4: validation evaluation. Te trained model is used
to encode each sentence pair in the test set, and the
cosine similarity is calculated. Te candidate in-
terpretation corresponding to the sentence pair with
the highest cosine similarity is considered to be the
correct interpretation.Te values of α are 0, 0.1, 0.2, 0.3,
..., 0.9, 1.0, respectively.
Step 5: result evaluation. Results were evaluated using
precision and recall and the harmonic mean F1 value of
both, i.e., P, R, and F1 in the table. Also, the ofcial
ranking is mainly based on the macro F1 value. Because
the current challenge task submission channel has been
closed, this paper will directly compare with the Binary
classifcation model on the verifcation set (the test set
in this paper).

5.2. Experimental Results. Te pretraining model in this
paper mainly adopts huggingface (https://huggingface.co/
models) and uses the sense transformer framework to build
the model [22]. At the same time, this paper does not add
any characters to the text or carry out any preprocessing to
test the robustness of the model to unprocessed data. Te
experimental results are shown in Table 3.

Binary classifcation model in the table indicates the
results obtained by the current state-of-the-art model on the
ofcial validation set (i.e., the test set of this experiment)
using the corresponding pretrained model [16]. All other
papers only have results from the test dataset, but we cannot
get the results of our method on the original test set because
the ofcial access to it has been closed. It can be seen from
Table 3 that under the same training conditions, the efect of
sentence matching is signifcantly higher than that of using
interpretation to match directly with the original document.
Te fnal scoring is the weighted sum of sentence matching
and single interpretation. Experiments were conducted with
values of α from 0.0 to 1.0, and the results of validation
dataset showed that a sentence combination weight of 0.9
and a paraphrase combination of 0.1 worked best. Trough
the comparison of standard models, the dual scoring macro
F1 value of Siamese network using Sci-BERT, that is, the F1
value of ofcial ranking is the highest, reaching 91.965,
2.95% higher than that of the ofcial embedding method.
However, the relative efect of RoBERTa is poor. Te reason
may be that the model based on the Siamese network mainly
obtains the embedding of sentence vector through fne-
tuning, while RoBERTa’s dynamic embedding mechanism
and whole sentence training mechanism may lead to dif-
ferent concerns of the same sentence in diferent epochs, but
the method of using Siamese network in the four models is
better than that of the binary classifcation model.

5.3. Efect of the FusionHyperparameter. In the score fusion,
there is an adjustable parameter α, which has a range of
0.0–1.0. It plays the role of weigh of sentence combination
similarity. For the infuence of the results, the experimental
results are shown in the table. Te classifcation results can
be afected by a suitable adjustment parameter α. Figure 4
shows the results of F1 when α is set to various values. It has
been found that when α is 0.9, the most accurate classif-
cation is provided. When α equal to 0, it represents the result
of interpretation combination, when α equal to 1, it rep-
resents the result of sentence combination.

6. Further Analysis

6.1. Data Preprocessing. Te statistical analysis of the
equipped acronym dictionaries shows that the dictionaries
contain a total number of 732 acronyms. Te average
number of interpretations of each acronym is about 3; the
highest number of interpretations of each acronym is 20, and
the lowest number is 2. Where 660 acronyms have less than
fve interpretations, accounting for 90.16% of the total
number; 55 acronyms have between 5 and 10 in-
terpretations, accounting for 7.51% of the total; 13 acronyms
have between 10 and 15 interpretations, accounting for
1.78% of the total; and only four acronyms have more than
20 interpretations, accounting for 0.55% of the total, while
the number of interpretations above 20 is only four acro-
nyms, accounting for 0.55% of the total. Te analysis of the
test set revealed the number of samples containing these four
acronyms, namely, “CA,” “CS,” “CC,” and “SC.”Te number
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of samples containing these four acronyms, namely “CA,”
“CS,” “CC,” and “SC,” was 44, 40, 35, and 18, respectively,
accounting for only 2.21% of the total number of samples.
Most of the samples contain the number of acronyms
paraphrased concentrated in less than fve. Moreover, these
four acronyms should correspond to two-word phrases, and
the acronyms for such phrases are not very meaningful but
rather increase the difculty of understanding the text. Te
specifc overview is shown in Figure 5. However, the ad-
vantage of machines over humans is that they can process
more information and data; so, this section will expand the
existing lexicon based on the AcronymFinder (https://
acronymfnder.com) website and conduct experiments to
verify the robustness of the model.

From Figure 5, we can see that more than half of the
acronyms in the lexicon are two quantities. Terefore, we
will verify the sensitivity of the model by increasing the
number of lexical acronyms with the help of the acronym
website resource. Te threshold of expansion is noted as
Num, i.e., the number of acronym paraphrases less than
Num is expanded to Num. Te distribution of the expanded
dictionary is shown in Figure 6.

Terefore, this section will be analysed using an extended
lexicon as shown in Figure 6. First, only the test set and
validation set are expanded. Also, the predictions are made
using the model trained on the initial training set to
demonstrate the sensitivity of the model. In the end, the
entire dataset is expanded. Also, the model is retrained on
the expanded training set for evaluation to demonstrate the
expandability of the model.

6.2. Sensitivity Experiment Results. An overview of the
dataset augmented according to the expanded dictionary is
shown in Table 4.

From Table 4, when Num� 3, the test dataset will grow
by 7.70%, i.e., the number of negative samples in test dataset
grows by 7.70%. Also, when Num� 6, the test set will grow
by a total of 50.23% of negative samples. When Num� 10,
there will be an increase of 120.39%, and the ratio of positive
to negative samples in the dataset will be nearly 1 : 9.

Table 3: Experimental results.

Models Precision Recall F1
Baseline (maximum word frequency) [22] 89.00 46.36 60.97
UC3M [10] 92.15 77.97 84.37
Acronym expander [26] 93.57 83.77 88.40
Human performance [22] 97.82 94.45 96.10

BERT-base

Binary classifcation [16] 91.76 81.60 86.38
Interpretation combination [29] 89.91 71.64 79.74
Sentence combination (ours) 93.16 82.43 87.47

Score fusion (ours) 93.3 82.66 8 .69

RoBERTa- base

Binary classifcation [16] 90.08 76.87 82.95
Interpretation combination [29] 88.06 54.19 67.09
Sentence combination (ours) 91.80  8.63 84. 0

Score fusion (ours) 91.99 78.00 84.42

Sci-BERT-base

Binary classifcation [16] 92.63 85.69 89.02
Interpretation combination [29] 92.66 81.28 86.60
Sentence combination (ours) 94.92 88.87 91.80

Score fusion (ours) 94.96 89.15 91.9 
Te bold values in the fgure represents the best result obtained by the corresponding BERT model under the same conditions.

86.6

88.04
88.76 89.17

90.16
91.02 91.31 91.51 91.7 91.97 91.8

α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

83
84
85
86
87
88
89
90
91
92
93

F1
 (%

)

Figure 4: Te F1 with diferent fusion hyperparameter.
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Tis experiment uses the Siamese network framework
based on Sci-BERT with the highest F1 value for the experi-
ment, the epoch of the model is 4, the batch size is 16, and the
maximum length of the encoding is 400. Data validation is
performed once every 500 batch sizes, and the model with the
best performance in the validation set is retained. Te specifc
experimental results data are shown in Figure 7.

Overall, the model efect fuctuates with Num changes.
Although there is an overall decreasing trend, the overall
amount of fuctuation is within 2%. In interpretation
combination, the recall value is the lowest, followed by the
F1 value, while precision is the best. It is noteworthy that
both precision and F1 values achieve the maximum value at
Num� 3 when the data growth rate of the test sets is 7.70%.

Table 4: Overview of the expanded validation and test dataset.

Train Validation Test Total
Growth rate

of test
dataset

Original dataset 45,031 5,003 6,189 11,192 —
Raw experimental data 203,438 22,779 28,286 254,503 —
Num� 3 203,438 24,590 30,463 258,491 7.70%
Num� 4 203,438 27,288 33,777 264,503 19.41%
Num� 5 203,438 30,602 37,886 271,926 33.94%
Num� 6 203,438 34,303 42,493 280,234 50.23%
Num� 7 203,438 38,111 47,231 288,780 66.98%
Num� 8 203,438 42,251 52,347 298,036 85.06%
Num� 9 203,438 46,582 57,671 307,691 103.89%
Num� 10 203,438 50,334 62,340 316,112 120.39%
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Figure 7: Te result of the sensitivity analysis experiments. (a) Precision. (b) Recall. (c) F1. (d) Accuracy.
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Te mean, range, and variance distribution of the F1 values
of the three models are shown in Table 5.

Most existing researches directly compare the candidate’s
paraphrases with the original sentences. Tat is, the in-
terpretation combination is used. However, it can be seen from
Table 5 that the interpretation combination has the disad-
vantage of a lower F1 score than the sentence combination, but
it is more stable. Both the range and variance are lower. Te
score fusion combines the two advantages: a higher average F1

value, lower range and variance, and more stability. Terefore,
using the score fusion is more robust and efcient than existing
interpretation combination methods.

6.3. ScalabilityExperimentResults. Scalability experiments are
performed on an expanded training set using the same model
with the same parameters and environment. An overview of the
dataset after expanding the training set is shown in Table 6.

Table 6: Overview of the expanded dataset.

Train Validation Test Total Growth rate
Original dataset 45,031 5,003 6,189 56,223 —
Raw experimental data 203,438 22,779 28,286 254,503 —
Num� 3 220,136 24,590 30,463 275,189 7.70%
Num� 4 244,863 27,288 33,777 305,928 19.41%
Num� 5 275,234 30,602 37,886 343,722 33.94%
Num� 10 453,200 50, 334 62, 340 565, 874 50.23%

Table 5: Comparison of statistical indicators of F1 value.

Models Average Range Variance
Interpretation combination 86.85 1.54 0.21
Sentence combination 91.00 1.79 0.41
Score fusion 91.41 1.35 0.1 
Te bold values in the fgure represents the best result obtained by the corresponding BERT model under the same conditions.
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Figure 8: Te F1 values comparisons of raw and retrained models. (a) Interpretation combination. (b) Sentences combination. (c) Score fusion.
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It can be seen from the table that after the training set is
expanded, the growth rate of the total sample size is similar to
that of the test set. However, with the same batch
size� 16,12,715 iterations are required in a single epoch in the
original training data, and when training with the RTX 3090,
the duration of a single epoch is about 43minutes (only the
duration of the frst epoch is recorded). When using the ex-
panded dataset, when Num� 3, a single epoch requires 13759
iterations, and the training time of a single epoch is about
57minutes 500 iterations are set for one validation during
training, with the number of validation sets increasing. When
Num� 4, a single epoch takes about 1hour and 27minutes;
when Num� 10, a single epoch takes about 5hours and
2minutes, and four epochs will take about 5hours and
2minutes. For more than 20hours, the consumption of
electricity and computing resources is enormous.Te F1 values
result comparison of original model and the retrained model
on the expanded dataset is shown in Figure 8.

Te time and resource cost of retraining is several times the
training cost of the original model, but as can be seen from the
Figure 8, the retrained model results are very close to the actual
model results or even worse than the initial model results. Tis
means that the model has good scalability. In practical, a small-
scale dictionary can be used for training and then applied to
a large-scale dictionary to save resources.

7. Conclusion

In this paper, we propose ContextAD, a context-aware
similarity ranking method, which mainly exploits the fea-
ture of complete substitutability between exact paraphrases
and acronyms. ContextAD mainly performs ranking pre-
diction by comparing the similarity between new sentences
containing candidate paraphrases and the original sentences
containing acronyms. Ten, a score fusion method is
designed to weight and rank candidates according to the
similarity score of the interpretation and sentence combi-
nation, to improve performance and robustness. Te ex-
periments results show that the model does not require
additional trained models and data to achieve results beyond
SOTA. In addition, we also design an experiment to extend
the number of acronyms paraphrases, which efectively
verifes the robustness of the model.

In future work, we will conduct further research from two
aspects. (1) Multilingual applications, acronyms are not unique
to English, but Chinese (Pinyin), Spanish, and French all have
this phenomenon. Terefore, we will carry out multilingual or
even cross-lingual disambiguation to better understand sci-
entifc literature. (2) Large-model generative disambiguation.
With the development of large-scale generative language
models, we will study disambiguation methods that directly
generate acronyms paraphrases.
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