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Image matching can be transformed into the problem of feature point detection and matching of images. Te current neural
network methods have a weak detection efect on feature points and cannot extract enough sparse and uniform feature points. In
order to improve the detection and description ability of feature points, this paper proposes a self-supervised feature point
detection and description network based on asymmetric convolution: ACPoint. Specifcally, frst, feature point pseudolabels are
learned from an unlabeled dataset, and pseudolabels are used for supervised learning; then, the learned model is used to update
pseudolabels. Trough multiple iterations of model training and label updating, high-quality labels and high-accuracy models are
obtained adaptively. Te asymmetric convolution feature point (ACPoint) network adopts an asymmetric convolution module to
simultaneously train three convolution branches to learn more feature information, which uses two one-dimensional convo-
lutions to enhance the backbone of square convolution from both horizontal and vertical directions and improve the repre-
sentation of local features during inference. Based on the ACPoint network, a cross-resolution image-matching method is
proposed. Experiments show that our proposed network model has higher localization accuracy and homography estimation
ability on the HPatches dataset.

1. Introduction

Te goal of image matching is to identify and align two
images to match at the pixel level. Te images to match are
usually taken from similar scenes or targets and have
a certain degree of compatibility [1, 2]. According to the
statistics of Automated Imaging Association, more than 40%
of visual perception applications rely on the accuracy and
efciency of image matching, including computer vision,
image synthesis, remote sensing, military security, and
medical diagnosis [3]. Image matching can be regarded as
the detection and matching of image feature points. It is
mainly divided into two parts: detecting feature points and

descriptor vectors and using descriptors to match similar
feature points in two images [4].

For images, features are specifc structures, such as
building edges, corners, and clearly shaped objects. Tese
features are usually referred to as localized features, which
usually need to be described by adjacent pixel blocks near the
feature point position [5]. A novel hashing method is
proposed [6], which combines the asymmetric hashing
learning strategy and adaptive fuse multimodal features and
learns binary codes as image features for efciency. Features
can be regarded as a simplifed representation of the entire
image. Using features for image matching reduces inefective
calculations, noise, and distortion. Te descriptor vector
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uniquely describes the feature points by recording the di-
rectional features and local appearance of feature points,
such as appearance contours, and the description should
have characteristics that are invariant to changes in illu-
mination, translation, scale, and in-plane rotation [7].

In recent years, with the continuous development of
convolutional neural networks, compared with traditional
handcrafted features, neural networks can detect more
sparse and uniform feature point sets from images, as well as
feature descriptors with discriminative and matchable ca-
pabilities [8, 9]. At present, the development of neural
network technology still relies on manually annotated
datasets [10]. Te semantics of dataset labels for object
detection or image classifcation tasks is deterministic;
however, the image feature points’ concept is semantically
ambiguous.

To address the lack of dataset labels, we use pseudolabel
datasets for model training (see Figure 1). To make the
feature point labels of the generated pseudoground-truth
datasets more repeatable and accurate, we propose a self-
supervised label solution based on confdence and label
distance, called model adaptation technology (see Figure 1).
Te degree of association between labels generated by dif-
ferent models is proportional to confdence and inversely
proportional to spatial distance. Te model adaptation
technology uses the two-dimensional distance and conf-
dence to achieve low-density separation of feature points
through the label data’s distribution.

First, the pretrained model combined with homography
adaptation technology is used to automatically label the
feature point labels of the real image dataset [8], and then,
the model adaptation technology is used to verify labels
generated by diferent models to obtain the feature point
labels with higher confdence. Te comparison of feature
points between diferent models can enhance the re-
peatability of feature points and make the generated labels
have higher accuracy. Similarly, samples with high conf-
dence will also improve the ftting ability of the model.
Intramodel homography adaptation and crossmodel label
comparison will help enhance the feature point detection
capability of the model, as well as the feature point locali-
zation capability at lower resolutions.

Te traditional VGG-style network structure is fat and
lacks an efective feedback path, and it is difcult for the
network model to achieve the accuracy of the complex
multibranch structure [11–13]. Te fat-style network has
slightly lower accuracy, but the inference speed is very ef-
fective. Similarly, the complex multibranch structure makes
the model difcult to implement and customize, reducing
the inference speed andmemory utilization [14, 15]. In order
to combine the accuracy of the multibranch network and the
inference speed of the fat network structure, this paper
proposes an image feature point detection and description
network based on asymmetric convolution: ACPoint. Te
network consists of a shared asymmetric convolutional
encoder, feature point decoder, and descriptor decoder. Te
asymmetric convolution block (ACB) [14] of the encoder
and decoder contains two one-dimensional convolutions
and one square convolution and learns more feature

information by simultaneously training three parallel
branches. During inference, two one-dimensional convo-
lutions are used to enhance the backbone of the square
convolution from both horizontal and vertical directions,
improving the representation ability of the square convo-
lution for local features and inference speed by merging the
three branches [13, 16].

We summarize our contributions as follows:

(1) We propose a feature point detection and de-
scription network based on asymmetric convolution
to improve the accuracy of the model without in-
creasing time complexity.

(2) We propose a self-supervised model adaptation
method for benchmark label creation and improve
label accuracy through continuous iterative updates.

(3) We propose a novel cross-resolution image-
matching method based on the feature points and
descriptors detected by the ACPoint network model.

2. Related Work

2.1. Image Matching. Image-matching methods are mainly
divided into two types. Area-based methods use the entire
image or a cropped image patch as a direct-matching target.
Te cross-correlation method and the correlation coefcient
measurement method are used to align the image at the pixel
level byminimizing the diference in image gray information
[17, 18]. Te Fourier transform method, the phase corre-
lation method, the Walsh transform method, and other
image-matching methods based on image domain trans-
formation frst transform the image information into the
domain and then perform similarity matching on the image
in the transformed domain [19–21]. Area-based image-
matching methods are extremely sensitive to imaging
conditions and image deformation (especially requiring
extremely high overlap of image pairs) and have high
computational complexity, which limits their application
capabilities, and the most critical point is that the area-based
matching method is only applicable to the same or similar
scales and cannot solve the matching problem of cross-scale
images.

Feature-based image-matching algorithms study the
detection of physically signifcant structural features from
images, including feature points, lines or edges, and salient
morphological regions. Te detected structural features are
then matched, and a transformation function is estimated to
align the rest of the images [22, 23]. For the entire feature-
based matching framework, features can be regarded as
a simplifed representation of the entire image, which re-
duces inefective computation and reduces the impact of
noise, distortion, and other factors on matching
performance.

Tere are currently two diferent approaches to feature-
based matching: sparse matching by minimizing the
alignment error and dense matching by fnding the corre-
sponding matching points for all points on the image [24].
Sparse matching relies on sparse feature points, and
matching correspondence is obtained by fltering putative
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matching pairs. Dense matching usually assumes that im-
ages are similar in the temporal domain, as in optical fow
estimation of video sequences, and based on local
smoothness assumptions [25]. Dense matching is difcult
when image pairs are inconsistent in color or when there are
a large number of repeating textureless regions. Compared
with sparse matching, dense matching has stricter re-
quirements for image pairs and is more computationally
difcult.

2.2. Detector-Free Local Feature Matching. Detector-free
methods remove the feature detector phase and directly
generate dense feature matches. SIFT fow [26] is the frst
traditional detector-free dense matching method, which
uses the optical fow method to realize the dense matching
between two images from pixel to pixel. UCN [27] used the
learning-based method for dense correspondence to di-
rectly extract the features from two images and perform the
nearest neighbor search per pixel on the feature space to
obtain the predicted match. NCNet [28] used an end-
to-end dense matching method to obtain matching pairs by
analyzing the neighborhood consistency of all possible
corresponding points between a pair of images in a four-
dimensional space. SuperGlue [29] used a learning-based
local feature-matching method, which uses the graph
neural network (GNN) to learn feature point matching.
LoFTR [25] used CNN to treat every pixel as feature points
to extract dense features and used the transform’s global
receptive feld to obtain dense matching of low-texture
regions. In these works, dense matching is afected by
receptive felds, and correspondences generated by
neighboring regions lack sufcient robustness. Dense
matching would incur huge computational costs and rely
on more complex models.

2.3. Detector-Based Local Feature Matching. Classic key-
point detectors, such as SIFT [30] and SURF [31], use the
histogram of oriented gradients (HOGs) as the descriptor
to maximize detection accuracy. SIFT can reliably identify
objects even in the presence of noise and partial occlusion,
but its HOG-based descriptors need to calculate intensity

gradients, resulting in low computational speed and un-
favorable real-time applications. SURF is optimized for
speed and is still too computationally expensive. In addi-
tion, some binary-based descriptors such as ORB, FREAK,
and KAZE rely on the intensity information of the image
itself, encode the intensity information around keypoints as
a string of binary numbers, and utilize binary-
distinguishing features [32–34]. Traditional methods lack
the description of global information, and pixel-by-pixel
detection is prone to feature point aggregation, and clut-
tered and dense feature points will increase the difculty of
later matching.

Te fast [35] corner detector is the frst algorithm to
address fast corner detection as a machine learning problem.
Close to traditional patch-based detection and description
methods, LIFT [36] employs sliding-window detection
similar to SIFT and is the frst end-to-end pipeline but still
requires the supervision of ground truth generated by
classical SIFT and SFM. Dosovitskiy et al. [37] proposed
a general feature detection method using unlabeled data to
train convolutional neural networks. Yang et al. [38] pro-
posed a nonrigid registration method based on the same
idea, where they used a pretrained VGG network layer to
generate a multiscale feature descriptor while preserving
convolutional information and local features. Simo-Serra
et al. [39] used a Siamese network to focus on training
samples that were difcult to distinguish categories and
input image patch pairs and used the nonlinear mapping
output by CNN as a descriptor and Euclidean distance to
calculate similarity and minimize its hinge loss. Te TILDE
[40] interest point detection system used a principle similar
to homographic adaptation; however, this approach does
not beneft from the power of large fully convolutional
neural networks. Superpoint [8] used a self-supervised
pipeline to train detectors and descriptors simultaneously
and outperformed traditional algorithms in HPatches [41]
evaluation using homography adaptation techniques. Tese
features or descriptors outperform hand-crafted descriptors
on geometric matching tasks. However, the feature points
extracted by the existing neural network models are still not
sufcient and accurate. Tese diferences are summarized in
Table 1.
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Figure 1: Self-supervised training overview.
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3. Method

3.1. Asymmetric Convolution. Asymmetric convolution is
used for model and parameter compression by approxi-
mating square convolution. Some previous works have
shown that a conventional n × n convolution can be split
into an n × 1 convolution and a 1 × n convolution [16],
decomposing the square convolution can get more decou-
pled features while reducing the number of parameters and
speeding up the training of the network.

ACNet [14] discovered a property of asymmetric con-
volutions: multiple size compatible 2D convolutions share
the same sliding window with the same stride to perform
linear operations on the same input, resulting in outputs of
the same resolution. When these convolution kernels are
added at corresponding positions, the obtained fused con-
volution kernel produces the same convolution result as
follows:

I × K
1

+ I × K
2

� I × K
1⊕K2

 , (1)

where I is the input feature rectangle, K1 and K2 are the two
linear convolution kernels, and ⊕ is the element-wise ad-
dition of the linear convolution kernels at the corresponding
positions. Afected by the shape of the linear convolution
kernel, the matrix I needs to be edge clipped or flled during
the convolution process.

3.2. Reparameterization

3.2.1. BN Fusion. Batch normalization (BN) can accelerate
the convergence speed of the network, making network

training easier [42]. At present, many deep models use the
BN layer for batch normalization after the convolution layer
to improve the generalization ability of the model. During
the training process, the BN layer learns the mean μ and
variance σ2 of all elements xi in a minibatch of input features
and then subtracts the mean and divides the standard de-
viation from input elements. Finally, afne transformation is
carried out with the learnable parameters c and β to realize
translation and scaling.

After training, the parameters of the convolution kernel
and the BN layer are fxed, and the BN layer’s parameters are
represented by the following formula:

μB �
1
m



m

i�1
xi,

σ2B �
1
m



m

i�1
xi − μB( 

2
,

xi �
xi − μB�����

σ2B + ϵ
 ,

BNc,β xi(  � cxi + β.

(2)

We bring the formula y � ω∙x + b of the convolutional
layer into the BN layer as follows:

BNc,β xi(  � c
ω∙x + b − μB�����

σ2B + ϵ
 + β �

c∙ω
�����

σ2B + ϵ
 ∙x +

c
�����

σ2B + ϵ
 ∙ b − μB(  + β. (3)

Let ω � (c ∙ω/
�����

σ2B + ϵ


), b � (c/
�����

σ2B + ϵ


) ∙ (b − μB) + β;
then, BNc,β(xi) � ω ∙xi + b. Te homogeneity of convolu-
tion allows equivalent fusion of the BN layer’s parameters
into the convolutional layer with bias, resulting in a new
convolution kernel and bias term.

3.2.2. ACB Fusion. Te feature map (M) with C channels
output by the convolution kernel (F) is expressed as

O: ,:,j � 
C

k�1
M: ,:,k×F

(j)

: ,:,k. (4)

Table 1: Qualitative comparison to relevant methods.

Interest points Descriptors Full image
input Single network Self-supervised Real time

ACPoint (ours) √ √ √ √ √ √
LoFTR √ √
LIFT √ √
UCN √ √ √
TILDE √ √
DeepDesc √ √
SIFT √ √
ORB √ √ √
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In the convolutional neural network (CNN), in order to
suppress the overftting of the network model and accel-
erate the network convergence speed, the BN layer will be
added after the linear transformation to enhance the feature
expression ability of the model. After the convolutional
layer and the BN layer are fused, Equation (4) can be
expressed as

O: ,:,j � 
C

k�1
M: ,:,k×F

(j)

: ,:,k − μj
⎛⎝ ⎞⎠

cj

σj

+ βj, (5)

where μj and σj are the values of the channel-wise mean and
standard deviation of batch normalization and cj and βj are
the learned scaling factor and bias term, respectively.

F
′(j)

�
cj

σj

F
(j) ⊕

cj

σj

F
(j) ⊕

cj

σj

F
(j)

,

bj � −
μjcj

σj

−
μjcj

σj

−
μjcj

σj

+ βj + βj + βj,

O: ,:,j + O: ,:,j+
O: ,:,j � 

C

k�1
M: ,:,k×F

′(j)

: ,:,k + bj,

(6)

where F′ is the convolution kernel after fusion, bj is the bias
term, and O: ,:,j, O: ,:,j, and O: ,:,j are the outputs of the
original branch.

3.3. Label Generation and Validation

3.3.1. Homography Adaptation. Te homography adapta-
tion technique imitates the change in the camera angle of
view to perform random homography transformation on the
real image. In order to well simulate the homography of
camera transformation, the homography adaptation tech-
nique uses a truncated normal distribution to sample within
a predetermined range of translation, scaling, in-plane ro-
tation, and symmetric perspective distortion.

H I; fθ(  �
1

Nh



Nh

i�1
H

−1
i fθ Hi(I)( , (7)

where fθ(∙) represents the initial interest point function
we wish to adapt, I is the input image, H is a random
homography, and Nh is the number of
homographic warps.

Te homography-transformed image is sent to the
model to detect feature points, and then, the detected
feature points are restored to original image coordinates.
Te confdence of the detected feature points is averaged,
and then, the fnal feature point coordinates are fltered out
by threshold.

3.3.2. Model Adaptation. For labels generated by diferent
models for the same image, each label has coordinate in-
formation and confdence. Te higher the confdence, the
higher the probability that the point is a feature point. We
perform label selection on the dataset based on label con-
fdence and spatial distance as follows:

Corr mi, mj  � min
j∈1,...,N

1 −
pmj


N
n�1 pmn

⎛⎝ ⎞⎠ mi − mj

�����

�����, (8)

where ‖mi − mj‖< ε, ε is set to 3, which limits the coordinate
error of the corresponding point to 3 pixels. Te association
degree between feature point pairs is proportional to con-
fdence and inversely proportional to the spatial distance.
Te smaller the distance measure, the higher the degree of
association. When there are multiple corresponding feature
points within the error range, the point with the smallest
distance metric is selected as the verifcation label point, and
the points where mi and mj are verifed by each other should
be reserved as feature points.

3.4. Focal Ratio. Te ratio of the focal lengths between the
images is calculated from the input images I1 and I2.
ACPoint is used to calculate the feature points of the image
pairs I1 and I2, and the feature correspondence and
homography relationship between the images are obtained
after matching. Te image I2 is mapped to I2′ according to
the homography matrix H, and the image area of I2′ can be
approximately regarded as a convex quadrilateral. Calculate
the area of the convex quadrilateral according to the image
vertices of I2′ and obtain the ratio of the focal length by
comparing the areas of I2 and I2′ as follows:

AreaL �
1
2



n

i�1
Px[(i + 1)mod(n)]Py[i]

− Px[i]Py[(i + 1)mod(n)],

(9)

where AreaL represents the area of I2 projected to the
corresponding position in I1, AreaL represents the actual
area of I2, P is the polygon vertex matrix stored in clockwise
order, Px[i] and Py[i] are, respectively, the ith vertex
abscissa and ordinate, and the number of vertices n is 4.

Te fnal focal length ratio of the global camera to the
local camera is

Fratio �
AreaL

AreaL

. (10)

4. ACPoint Architecture

4.1. SharedEncoder. As shown in Figure 2, our model adopts
a VGG-style encoder to extract semantic features and reduce
the dimensionality of images [12]. Te shared encoder uses
diferent modules for training and inference, respectively.
Te ACB module shown in Figure 3 is used to enrich the
feature space during training, and the fat 3 × 3 convolu-
tional module is replaced during inference. Te model uses
the ELU (exponential linear unit) [43] activation function to
increase the nonlinearity of the network and then uses
parallel maximum pooling and average pooling layers to
reduce the image dimension.

Te role of the encoder is to compress the input image
into a latent spatial representation, which maps the input
image I ∈ RH×W into an intermediate tensor B ∈ RHc×Wc×F
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with smaller dimensions and larger channel depth so that the
neural network can learn the most informative features. We
integrate the pixels of the 8 × 8 region on the input image
into one unit on the low-latitude output by three 2 × 2
pooling operations, reducing the H × W input image to
Hc � H/8 and Wc � W/8 .

4.2. Feature Point Decoder. Each pixel value output by using
the feature point decoder corresponds to the probability that
the pixel on the input image belongs to the feature point.
Feature point detectors with explicit decoders use pixel
shufe to upsample feature maps back to full resolution size.
Te feature point detector head computes X ∈ RHc×Wc×65

ACB
W/8

H/8
65

Softmax Reshape

Feature Point Decoder

W/8

H/8
256

Bi-Cubic
Interpolate L2 Norm

Descriptor Decoder

Input

W

H

1

Encoder

W

H

1

256

H

W
Conv

Conv

ACB

Figure 2: ACPoint network structure.

3×1 Conv

BatchNorm2d

3×3 Conv

BatchNorm2d

1×3 Conv

BatchNorm2d

Input

ELU

Output

Maxpooling Avgpooling

Figure 3: Asymmetric convolution block.
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and outputs a tensor of size RH×W. 65 output channels,
respectively, correspond to the 8 × 8 pixel area on the input
image, and the remaining channel represents that there are
no feature points in this area.

4.3. Descriptor Decoder. Te descriptor decoder computes
D ∈ RHc×Wc×256 and outputs a tensor of size RH×W×D. First,
the decoder outputs a semidense grid of descriptors and
performs pixel-wise patch normalization in the feature space
to output a descriptor. Ten, we perform bicubic in-
terpolation of the descriptor and obtain the weighted av-
erage of the sixteen nearest samples in each direction at that
location. Finally, L2 normalization is performed on unit

length, and the descriptor corresponding to the feature point
is obtained.

4.4. Loss Functions. Te fnal loss function consists of two
parts: loss Lp for the feature point detector and Ld loss for the
descriptor detector. During the training process, for a given
input image, the homography ground truth H is frst ran-
domly generated, and H is used to generate the corre-
sponding warped image and the pseudoground-truth feature
point label of the warped image. We use pairs of original and
synthetic warped images to optimize both parts of the loss at
the same time, and the fnal loss is as follows:

L X, X
′
, D, D

′
, Y, Y
′
, S  � Lp(X, Y) + Lp X

′
, Y
′

  + Ld D, D
′
, S . (11)

Te feature point loss Lp is the fully convolutional cross-
entropy loss over the unit xhw ∈ X, and we call the true
feature point labels Y and the independent matrix elements
yhw. Te feature point loss function is

Lp(X, Y) �


Hc,Wc

h�1,w�1 lp xhw, yhw( 

HcWc

, (12)

where lp denotes as follows:

lp xhw, y(  � −log
exp xhwy 


65
k�1 exp xhwk( 

⎛⎝ ⎞⎠. (13)

Te descriptor loss is applied to all pairs of descriptor
units, dhw ∈ D from the input image and d′

h′w′ ∈ D′ from the
warped image. Te induced homography correspondence
between descriptor units (h, w) and (h′, w′) can be written as

Shwh′w′ �
1, Hphw − ph′w′

����
����≤ 8,

0, otherwise,

⎧⎨

⎩ (14)

where phw represents the position of the center pixel in the
cell (h, w) and Hphw represents the cell position phw

multiplied by the homography H and divided by the last
coordinate. Tis is typically used to convert homogeneous
coordinates back to Euclidean coordinates. We use S to
denote the entire corresponding set of a pair of images. We
use the hinge loss with the positive margin mp and negative
margin mn and use the sparse loss to reduce the compu-
tational cost of the training process. Te descriptor loss is
defned as

Ld D, D
′
, S  �


HcWc

h�1,w�1 ld dhw, d
′
h′w′ , Shwh′w 

NMatch
+


HcWc

h′�1,w′�1 ld dhw, d
′
h′w′ , Shwh′w′ 

MNomatch
, (15)

where ld(d, d′, s) � s × max (0, mp − dTd′) + (1 − s)×

max (0, dTd′ − mn), mp � 1, and mn � 0.2.

5. Experimental Details

In this section, we provide some implementation details for
training the ACPoint model. Te ACPoint network consists
of a shared asymmetric convolutional encoder, feature point
decoder, and descriptor decoder. Te asymmetric con-
volutional encoder adopts a VGG-style network structure
with 8 asymmetric convolutional blocks (ACB) of size 64-
64-64-64-128-128-128-128. As shown in Figure 2, the ACB
module adopts three branches of 3 × 3, 3 × 1, and 1 × 3 to
learn feature information at the same time, and each branch
is followed by a BN layer for batch normalization. After

every two layers of the ACB module, the parallel maximum
pooling layer and the average pooling layer are used to
reduce the image dimension, and the window size and the
stride size of the pooling layer are 2.

Te pooling operation is a commonly used down-
sampling operation, which can reduce the parameter
matrix’s size and the feature map’s dimension, reduce the
parameters and calculation amount of the model, and ef-
fectively prevent overftting. Te pooling operation con-
tinuously abstracts the regional features of the feature map,
which increases the translation invariance to a certain extent,
but pooling also inevitably loses information. Average
pooling averages local values, which are biased towards the
overall characteristics of the background. It retains the
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overall feature information of the feature map but easily
loses details. Maximum pooling is to take the maximum
value of the local area, and it is biased towards features such
as texture outlines, which can flter out more useless in-
formation, and is sensitive to edge gradients. It is easy to
select features with higher recognizability and better re-
tention of texture information. Te parallel connection
method of average pooling and maximum pooling loses less
information than single pooling so that information can be
transmitted better.

Te decoder reconstructs the input from the latent
representation space, and both the feature point decoder
head and the descriptor decoder head have a 256-
dimensional ACB module, followed by a 1 × 1 convolu-
tional layer. Te interest point detector has 65 dimensions,
and the descriptor detector has 256 dimensions. All con-
volution modules in the network are followed by an ELU
activation function. Compared with the RELU activation
function, the gradient of ELU is nonzero for all negative
values, there is no problem of neuron death, and as
a nonsaturating activation function, it will not encounter the
situation of gradient explosion or disappearance. It is
continuous and diferentiable at all points. Te ELU acti-
vation function is used to shorten neural network training
time and improve accuracy.

We adopt MS COCO 2017 [10] as our real image dataset
and use the Superpoint [8] and DeepFEPE [44] pretrained
feature point detection models to generate pseudoground-
truth datasets, respectively. Te images were converted to
grayscale images and kept the original resolution, while the
images were subjected to 100 homography transformations
and model detection to create initial feature point labels. For
the 8 × 8 pixel blocks on the input image, of the 65 channels
of the feature heatmap obtained by model detection, one
channel represents whether there are feature points and the
remaining 64 channels represent the probability of each
pixel point. Te feature point decoder uses pixel shufe to
sample the full-resolution size image on the feature heatmap.
When reshaping back to the original size, the point with the
highest score is retained by softmax as the quasi-feature
point, and the scores of the remaining positions are zeroed
out; only the quasi-feature points and their probabilities are
retained. In order to increase the applicability of the model,
100 random homography transformations were carried out,
the 100 heatmaps of not identical feature points were
superimposed and normalized, and then, the quasi-feature
points below the threshold were removed. We set the
threshold to 0.015.

In order to make the feature points detected by the
model sparse and uniform, nonmaximum suppression
(NMS) is used to suppress elements that are not maximal in
the local range. We take the NMS value to be 4 to ensure that
each feature point has no other feature points within the
9 × 9 range centered on itself.Ten, we use model adaptation
technology to compare the labels generated by diferent
models to obtain more accurate feature point labels. Tese
labels are used as benchmark labels to perform supervised
learning on the network, the trained model is combined with
model adaptation technology to construct new feature point

labels, and the accuracy of the labels is improved through
continuous iteration.

In order to improve the robustness of the network for
illumination and perspective changes during training,
standard data augmentation techniques such as random
Gaussian noise, motion blur, and brightness adjustment are
also used. First, we used a grid search for the required
parameter combinations and the 5-fold cross-validation
method to ft them onto toy experiments with small sam-
ple sets. Finally, the best combination was selected according
to the cross-validation scores. In addition, the AdamW
stochastic gradient descent optimization algorithm was
adopted. Te learning rate is automatically adjusted by the
adaptive mechanism, the model training process basically
requires no intervention, and the hyperparameters are well
interpretable. All training is performed based on the
PyTorch framework with a minibatch size of 16 and the
ADAMW solver with parameters lr � 0.0001 and β� (0.9,
0.999).

6. Experiment

In this paper, we use the MS COCO 2017 image dataset to
train the ACPoint network model and the HPatches dataset
to test the accuracy of homography estimation. Te
HPatches dataset includes 57 illumination scenes and 59
viewpoint scenes, with a total of 696 individual images
grouped into 580 image pairs. Te repeatability of feature
points refers to the probability that the feature points de-
tected in the frst image also appear in the second image. We
use the repeatability of detection points on image pairs to
test the model’s ability to detect feature points. Table 2 shows
the feature point repeatability of diferent detectors in dif-
ferent scenes, and our model has better performance under
illumination and viewing angle changes.

Te total number of parameters to train is 1.3 million.
Te model occupies less than 5MB of memory space. We
take a 240 × 320 image as an example to analyze the cal-
culation cost, and the foating point arithmetic is about
6.5GFLOPs. We use AMD Ryzen 7 5800H and NVIDIA
GeForce RTX 3060 hardware devices with Python 3.6 and
PyTorch 1.10 to test the running time on the HPatches
dataset. Te image input size is 240 × 320. Superpoint can
reach 18.71FPS, DeepFEPE can reach 15.67FPS, and our
proposed ACPoint network can reach 17.84FPS, about 4.8%
more running time than that of Superpoint; however, the
performance is greatly improved.Te repeatability of feature
points increases by 6% in illumination scenes and increases
by about 9.8% in viewpoint scenes.

As shown in Tables 3 and 4, we comprehensively evaluate
the model performance from three aspects: homography
estimation, detector metrics, and descriptor metrics.
Homography estimation frst calculates the transformation
matrix between images according to the feature point
correspondence of the image and compares the average
accuracy of feature point detection with the label homog-
raphy matrix to measure the algorithm’s ability to estimate
image homography. Te more accurate the homography
estimation, the more accurate the image matching. ε is the
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error threshold for determining the detected position point
relative to a set of real feature points; that is, the error
distance at which the pixel point is judged has to be correct.

Repeatability (Rep) tests the ability of the model to
detect feature points. Te higher the repeatability is, the
more potential feature points will correspond. Te
matching location error (MLE) is used to calculate the
correctly detected feature point location error, and the
value range is (0, ε), where ε is 3.Te nearest neighbor mean
precision (NNmAP) computes the distinguishability of
descriptors by measuring the area under the curve of the
precision-recall (PR) curve using nearest neighbor
matching. Te discriminative ability of descriptors is
evaluated by multiple descriptor distance thresholds, cal-
culated symmetrically over image pairs, and averaged. Te
matching score (M.s) measures the overall performance of
the feature point detector and descriptor combination by

measuring the ratio of the ground-truth correspondences
recovered by the algorithm to the number of features
detected in the shared viewpoint region. It is also calculated
symmetrically over image pairs and averaged.

Te linear convolutional branch in the ACB module
enhances the model’s extraction ability of the feature point
and the single stress estimation ability of the model. Te
detection of ORB tends to form sparse clusters of feature
points in the image, which can achieve the highest re-
peatability, but too sparse feature clusters also lead to dif-
fculty in image matching. NMS is used by the model to be
sparsely processed to extract feature points, making the fnal
characteristic point sparse and uniform, and the reduction in
the number of feature points will cause repetitive reductions.
Superpoint scores well on descriptor-centric metrics, but
optimization of the matching score does not lead to better
matching or further homography estimation.

In order to obtain sparse, uniform, and accurate feature
points, we use the sparse loss instead of the dense loss when
training the descriptor loss, which can speed up the training
time but also make M.score slightly lower than Superpoint.
Benefting from the enhanced detection capability of
asymmetric convolutions for feature points, our model
outperforms other methods on homography estimation,
average nearest neighbor accuracy, and matching
localization error.

As shown in Table 5, the ablation experiments are used to
verify the role of each part of the network model. Because
each part of the model is an essential part of the network, we
use the most commonly used modules as the baseline and
replace the corresponding module to verify its efectiveness.
Te convolutional layer, RELU activation function, and max
pooling layer are used as the baseline to evaluate perfor-
mance. It can be seen that the experimental results show that
the asymmetric convolutional modules, ELU activation
functions, and mixed pooling layers are used separately to
have a small performance improvement to the model, which
proves that each module is efective for the model. In ad-
dition, the combination strategy of each module enables the
model to achieve optimal performance.

We iteratively update pseudolabels through model ad-
aptation technology to continuously improve the accuracy
and quantity of labels, which help improve model accuracy.
After iteration, the number of labels increased by 29.86%.
Te experiments in Figure 4 show that the iterative labels
have lower matching positioning accuracy, higher nearest
neighbor average accuracy and matching score, and better
accuracy in homography estimation. A slight decrease in
repeatability indicates that the model also flters out some
feature point correspondences that are irrelevant to
matching, making the fnal feature point correspondences
more accurate throughout the image, as shown in Figure 5.

As shown in Figure 6, we adopt a 5-fold cross-validation
method to prove the stability of the model. 25,000 images are
randomly extracted from the fnal data set and divided into 5
parts. Te four parts are used as a training set, and the
remaining part is used as a validation set for 5 training sets.
Te experimental results prove that our model has strong
stability and generalization capabilities.

Table 2: HPatches detector repeatability.

57 illumination
scenes 59 viewpoint scenes

NMS� 4 NMS� 8 NMS� 4 NMS� 8
Random 0.101 0.103 0.100 0.104
Harris 0.620 0.533 0.556 0.461
Shi 0.606 0.511 0.552 0.453
FAST 0.575 0.472 0.503 0.404
Magicpoint 0.575 0.507 0.322 0.260
Superpoint 0.652 0.631 0.503 0.484
ACPoint (ours) 0. 12 0.656 0.602 0.528
Temeanings in bold in Table 2 represent the values of the best performing
methods for the indicators in this column. Meanwhile, the method pro-
posed in this paper has the best performance in all indexes in this table.

Table 3: HPatches homography estimation.

Homography estimation
ε� 3↑ ε� 5↑ ε� 10↑

SIFT 0.750 0.802 0.824
SURF 0.614 0.700 0.755
ORB 0.455 0.524 0.566
LIFT 0.689 0.698 0.722
LoFTR 0.659 0.756 0.846
Superpoint 0.753 0.821 0.845
DeepFEPE 0.752 0.822 0.851
ACPoint (ours) 0.  8 0.845 0.8 1
Temeanings in bold in Table 3 represent the values of the best performing
methods for the indicators in this column. Meanwhile, the method pro-
posed in this paper has the best performance in all indexes in this table.

Table 4: HPatches detector and descriptor performance.

Detector metrics Descriptor metrics
Rep.↑ MLE.↓ NNmAP↑ M.score↑

SIFT 0.512 1.163 0.695 0.267
SURF 0.510 1.363 0.700 0.265
ORB 0. 11 1.068 0.455 0.151
LIFT 0.434 1.137 0.665 0.264
Superpoint 0.606 1.156 0.833 0.545
DeepFEPE 0.632 1.071 0.780 0.449
ACPoint (ours) 0.656 1.024 0.845 0.534
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As shown in Figure 7, traditional feature point de-
tectors such as SIFT and SURF detect a large number of
potential feature points that are densely clustered and
susceptible to noise. At the same time, it is easy to miss
some points whose external characteristics are not ob-
vious. Te feature points detected by the traditional
methods are many and messy, which will greatly increase
the difculty of matching in the later stage. Too many
points bring a huge computational and storage burden to
feature point matching, and sparse and uniformly accu-
rate points are necessary. Te detection of feature points
by Superpoint and DeepFEPE is sparse and uniform, but
they still lack sufcient detection ability to detect potential
feature points as accurately as possible. Our model has
higher feature detection ability, and the detected feature
points are accurate and uniform.

As shown in Figure 8, we tested the feature point
matching of the algorithm on images. Although the tradi-
tional algorithm detected a huge group of feature points, the
fnal matching efect was poor. In the deep method, our
proposed model can not only detect sparse, uniform, and
accurate feature points but also achieve uniform and ac-
curate feature matching on remote sensing images.

We use a zoom camera to capture images from diferent
perspectives of the same scene. To verify the efect of image
matching across focal lengths, matching image blocks are taken
from a local image with a resolution of 4936 × 3266, the original
global image has a resolution of 4936 × 3266, and the resolution
is adjusted to 600 × 397 when the diference is 8 times.

We use ACPoint to detect feature points in the image,
calculate the focal length scale of the image based on the
feature points of the image, and help the image pair reach

Table 5: HPatches ablation experiment.

Homography estimation Detector metrics Descriptor metrics
ε� 1↑ ε� 3↑ ε� 5↑ Rep.↑ MLE.↓ NNmAP↑ M.score↑

Conv +RELU+max pooling 0.486 0.764 0.821 0.644 1.093 0.800 0.490
ACB+RELU+max pooling 0.495 0.775 0.830 0.647 1.074 0.806 0.491
Conv +ELU+max pooling 0.497 0.771 0.824 0.645 1.091 0.811 0.490
Conv +RELU+mix pooling 0.500 0.765 0.827 0.648 1.072 0.809 0.500
ACB+ELU+mix pooling 0.548 0.  8 0.845 0.656 1.024 0.845 0.534
Te meanings in bold in Table 5 represent the values of the best performing methods for the indicators in this column. Meanwhile, the method proposed in
this paper has the best performance in all indexes in this table.

ε=1 ε=3 ε=5 Rep. MLE. NN mAP M.Score
0.5

0.7

0.9

1.1

base
iter

Figure 4: Metric comparison after iteration.
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the same scale by scaling. We use the FLANN-based
matcher to match the feature points according to the de-
scriptor vector, we use the RANSAC algorithm to flter the
false matches in an iterative manner, and we use the
projective transformation to obtain the homography
transformation matrix. Te algorithm uses the

transformation matrix to transform the image and fnally
uses the mask to synthesize the image to realize the image
matching of the cross-resolution image. Experiments have
shown that our algorithm can achieve a good matching
efect whether at the same resolution or at a resolution
diference of up to 8 times.

SIFT SuperPoint LoFTR ACPoint (ours)

Figure 5: Feature point matching diagram.
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Figure 6: Efectiveness of experiments for random splitting.
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SIFT SURF AKAZE SuperPoint DeepFEPE ACPoint (ours)

Figure 7: Feature point detection schematic diagram.
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Figure 8: Continued.
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7. Conclusion and Future Work

In this paper, we propose an asymmetric convolution-based
feature point detection and description network, which has
stronger detection capability for image feature points and
descriptors. We propose a new model adaptation technique,
which is used together with the homography adaptation
technique to generate label datasets with higher accuracy
and uses self-supervision to break the reliance on manual
labeling. Experiments show that model adaptation tech-
niques are helpful for training network models for sparse
and accurate feature point detection and description.
However, the ELU activation function that we use can ac-
celerate training during the training phase, but it will in-
crease the weak inferring time. Similarly, the mix pooling
layer performs parallel pooling operations, which will also
increase the inferring time. Nevertheless, the increased
reasoning time does not afect the real-time nature of the
model. We also propose a new image-matching method
based on the feature points and descriptors detected by
ACPoint, which can achieve accurate matching of images
across scales.

Same-resolution or cross-resolution image matching
tasks help generate high-defnition scenes with a large feld
of view. For higher-resolution image synthesis tasks, how to
deal with the color relationship between the pasted image
and the background image, as well as the image distortion
caused by ultrahigh-resolution lenses, is the focus of our
future work.

Data Availability

TeHPatches dataset that supports the fndings of this study
is available at https://icvl.ee.ic.ac.uk/vbalnt/hpatches/. Te
MSCOCO dataset that supports the fndings of this study is
available at https://images.cocodataset.org/zips/train2017.
zip, https://images.cocodataset.org/zips/val2017.zip, and
https://images.cocodataset.org/zips/test2017.zip.
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