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Graph neural networks (GNNs) have shown signifcant performance in various practical applications due to their strong learning
capabilities. Backdoor attacks are a type of attack that can produce hidden attacks on machine learning models. GNNs take
backdoor datasets as input to produce an adversary-specifed output on poisoned data but perform normally on clean data, which
can have grave implications for applications. Backdoor attacks are under-researched in the graph domain, and almost existing
graph backdoor attacks focus on the graph-level classifcation task. To close this gap, we propose a novel graph backdoor attack
that uses node features as triggers and does not need knowledge of the GNNs parameters. In the experiments, we fnd that feature
triggers can destroy the feature spaces of the original datasets, resulting in GNNs inability to identify poisoned data and clean data
well. An adaptive method is proposed to improve the performance of the backdoor model by adjusting the graph structure. We
conducted extensive experiments to validate the efectiveness of our model on three benchmark datasets.

1. Introduction

Graphs can abstractly describe the relationships between
objects and have received much attention from researchers
[1, 2]. Graph neural networks (GNNs) combine node fea-
tures and graph structure with learning better representa-
tions and have achieved signifcant performance in many
tasks, e.g., graph classifcation [3], node classifcation [4],
and link prediction [5, 6]. However, recent studies [7–9]
have shown that GNNs are vulnerable to adversarial attacks.
Te most famous graph adversarial attack is Nettack [8],
which reduces the accuracy of GNNs bymodifying the graph
structure or node features through a surrogate model.

Backdoor attacks are a completely diferent type of attack
from adversarial attacks [10]. In backdoor attacks, the ad-
versary frst generates a trigger and then embeds the trigger
into the data to generate the poisoned data [11]. Te
backdoor dataset contains the poisoned data, and the clean
dataset is composed of clean data without trigger embedding

[12, 13]. Te GNNs that train the backdoor dataset are called
backdoor GNNs, and the clean GNNs are trained on the
clean dataset [14]. Te output of backdoor GNNs has two
characteristics: (1) the output on the clean data is similar to
that of clean GNNs; (2) the output on the poisoned data is
predefned by the adversary.

Most of the existing works [15, 16] on backdoor attacks
are in the area of image and text and few studies on graph
backdoor attacks [14, 17–19]. However, GNNs are also
vulnerable to backdoor attacks. For example, in the case of
spam emails with triggers, they are treated as normal emails
in the system detection session. Besides, most preprocessing
models often download some relevant data from the In-
ternet.Te preprocessing models make the wrong decision if
the downloaded data contains poisoned data from backdoor
attacks.

Recent works on GNNs backdoor attacks has focused on
the graph-level classifcation task. Zhang et al. [18] proposed
a backdoor attack (subgraph backdoor) using a fxed
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subgraph as a trigger, where they will output the target label
if the same subgraph appears in the testing dataset. Xi et al.
[17] proposed a dynamically changing subgraph trigger
(GTA), where GTA would tailor diferent triggers to poison
the data based on the features of each graph. Yang et al. [14]
proposed a transferable graph backdoor attack (TRAP),
which uses a gradient score matrix-based surrogate model to
generate edge triggers. Te above backdoor attack models
are mainly for the graph-level classifcation task, where GTA
extends the node-level classifcation task, and the result
shows that GTA does not perform well in the node-level
classifcation task. Xu et al. [19] studied the optimal selection
strategy of triggers through GNNs explainable method and
developed the RSA model in graph-level classifcation and
node-level classifcation tasks. In practice, RSA needs to
modify the GNNs parameters, which leads to the incorrect
output of clean data. In addition, Zheng et al. [20] studied
graph backdoor attacks in the link prediction task and
proposed the Link-Backdoor model, which can be used in
both white-box and black-box scenarios. Link-Backdoor also
uses subgraphs as triggers, which difers from previous
works in that the triggers are composed of fake nodes and
attack nodes. Table 1 summarizes the information on the
diferent GNNs backdoor attacks.

Graph backdoor attacks are more difcult in the node-
level classifcation task than in the graph-level classifcation
task. Since the coupling between nodes is tighter than that
between graphs, graph backdoor attacks require not only
ensuring that the output of the poisoned nodes is the target
label, but also ensuring that clean nodes are unafected [17].
We try to investigate whether there is a backdoor attack that
does not perturb GNNs parameters [21, 22] and applies to
the node-level classifcation task.

For this paper, we propose a node feature trigger-based
graph backdoor attack (NFTA), which can be seen as
a black-box attack because it does not require knowledge of
GNNs parameters (GNNs knowledge not including graph
information) and downstream tasks. Note that NFTA is
similar to the data poisoning attack in adversarial attacks,
and both attacks poison the data before GNNs training.
However, NFTA needs to set the label of the poisoned nodes
to the target label, and the data poisoning attacks [23, 24]
usually fail to modify the label of the poisoned nodes.
Furthermore, NFTA attempts to interfere with the output
results of poisoned data by using backdoor GNNs, the data
poisoning attacks [25] aim to interfere with the output of the
entire testing dataset.

In this work, we face two challenges. First, determining
how do we choose triggers for the node-level classifcation
task. Most of the previous works used subgraphs as triggers
[14, 18]. Te subgraph trigger is similar to the example
popularized in image backdoor attacks. Specifcally, an
adversary uses a sticker as a trigger and then pastes the
sticker into an image of a trafc sign, which causes the deep
neural network models to change the prediction from “stop”
to “speed limit” [10]. Unlike images, graphs are non-
Euclidean data, subgraph triggers are easily noticed in the
node-level classifcation task, and GTA shows that subgraph
triggers do not perform well in the node-level classifcation

task. Terefore, we try to use the node feature trigger to
poison the data. Secondly, can a high success rate be
achieved by modifying only node features? In other words, is
it possible to improve the efciency of the backdoor attack by
balancing node features and graph structure information in
the backdoor datasets? To address this challenge, we frst
investigate the diferences in node feature smoothing be-
tween the original and backdoor datasets. It is found that
nodes tend to connect nodes with diferent features in the
backdoor datasets, which makes the information of the
backdoor GNNs confusing and misleading in the aggrega-
tion process, and the backdoor GNNs are challenging to
distinguish between clean and poisoned data. For this case,
we propose an adaptive strategy to balance feature
smoothing, which enables the graph structure to adjust
adaptively under diferent node feature spaces. By
addressing the above two challenges, NFTA can efectively
implement backdoor attacks in the node-level classifcation
task and achieve state-of-the-art performance on three
benchmark datasets. Te general architecture of NFTA is
shown in Figure 1. Te contributions of this paper are
summarized as follows:

We propose a black-box backdoor attack for the node-
level classifcation task: NFTA, which uses node fea-
tures as the trigger, and does not need a knowledge of
the GNNs.
We observe that the feature triggers destroy the sim-
ilarity of node features in the backdoor datasets. We
propose an adaptive method for adjusting the graph
structure and node feature information to achieve
optimal trigger activation.
We extend two attacks according to the diferent ways
of selecting attack nodes: NFTA-D and NFTA-BW.
NFTA-D attacks the node with the maximum degree,
and NFTA-BW attacks the node with the maximum
betweenness.
We evaluate the efectiveness of our models using three
commonly used graph datasets. Te experimental re-
sults show that our models can achieve high classif-
cation accuracy for poisoned data and a high evasion
rate for clean data.

2. Related Work

In this section, we introduce some work on adversarial
attacks and backdoor attacks.

2.1. Adversarial Attacks. GNNs have outstanding perfor-
mance, but recent studies [8, 22, 25] have shown that their
performance can be severely degraded under carefully designed
perturbations. Te goal of the adversary is to minimize the
accuracy of GNNs by modifying the graph structure (e.g., by
adding perturbed edges or nodes) or by changing node features
[26, 27]. Chen et al. [25] proposed the FGA model, when the
GNNs model is trained, the FGA iteratively modifes the graph
based on the gradient of the node pair. Wang et al. [28] used
a greedy algorithm to inject fake nodes into the graph to reduce
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the GNNs performance. Sun et al. [29] introduced projective
gradient descent into graph adversarial attacks to propose the
PGD attack. PDG is a poisoning attack for unsupervised node
embedding algorithms, and the efectiveness of the attack is
demonstrated in the downstream link prediction task. Wang
et al. [30] proposed a DS-entropy-based attack for the problem
of label specifcity attack, and guided the model to attack nodes
by the target label and maximum degree principles. Dai et al.
[31] proposed a universal attack by injecting fake nodes, in
which he is able to attack any victim node by changing its
output class to the attack node class. Liu et al. [32] proposed
Surrogate Representation Learning with Isometric Mapping
(SRLIM), which is able to improve the performance of
gradient-based adversarial attacks bymaintaining the similarity
of nodes.

2.2. Backdoor Attacks. Backdoor attacks were frst proposed
for image data, so most of the research on backdoor attacks
has been conducted in the feld of computer vision. For
example, Gu et al. [10] proposed the frst backdoor attack
model in images: BadNets, which uses some special patterns
as triggers which are pasted on the trafc indication images
to generate poisoned data. Ten, the label of the poisoned
data is changed to the target label, and the backdoor dataset
is trained using deep neural networks (DNNs). Te back-
door model will classify the data with triggers as target labels
and classify the clean data normally. Sarkar et al. [33]
successfully implemented an invisible backdoor attack
against a face recognition system using flter modifed facial
features or original facial features as triggers. Ning et al. [34]
used a self-encoder to convert the original trigger into

(c) Poisoned graph

Update structure

(e) Poisoned graph with
reconstruction

(a) Feature trigger

(b) Original graph

(d) Feature smoothing

Figure 1: Te overall framework of the NFTA.

Table 1: Summary of information on existing GNNs backdoor attacks.

Model Trigger type Target task GNNs parameter
Link-backdoor Adaptive subgraph Link prediction ×/✓
Subgraph backdoor Fixed subgraph Graph-level classifcation ×

GTA Adaptive subgraph Graph-level classifcation ×

TRAP Adaptive edge Graph-level classifcation ×

RSA Node feature Node-level classifcation ✓
NFTA (ours) Node feature Graph/node-level classifcation ×

International Journal of Intelligent Systems 3



a noisy image invisible to humans, which has the same
feature representation as the original trigger and can achieve
the same efect when performing the backdoor attack. Kwon
and Kim [35] proposed a blind watermark backdoor
method, which inserts triggers consisting of images into the
input data to generate blind watermark samples that are not
visible to the humans.

In recent years, there has also been a lot of work [13, 36]
on backdoor attacks in the feld of text. Dai et al. [37] explored
a backdoor attack against LSTM-based models for text
classifcation tasks, they use specifc statements as triggers,
such as “I watched this 3Dmovie,” to misclassify the model as
a target label. For the recent large number of pretrained
models active in natural language processing, Kurita et al. [38]
used specifc keywords as triggers to poison the model
weights. Qi et al. [13] used synonym substitution to generate
poisoned data with trigger features, and their experimental
results showed that this attack can achieve high invisibility.
Pan et al. [39] proposed a linguistic style-motivated backdoor
attack (LISM) using a linguistic style as a trigger. LISM does
not rely on commonwords or phrases that can implement the
attack; and thus, is not easily detected by defense models.

In the feld of graphs, RSA [19] is the most relevant work
to us. However, RSA requires modifcation of the model
parameters, which leads to the degradation of model ac-
curacy. Our work proposes a novel backdoor attack based on
node feature triggers, which does not need to change the
model’s parameters to achieve high efciency.

3. Preliminaries

3.1. Graph Neural Networks. Let G � (V, E, X) is a graph, V

is the set of nodes v1, . . . vN , N � |V| is the number of
nodes, E is the set of edges, X � [x1, . . . , xN]T ∈ RN×d is the
set of features, and d is the dimension of the feature. For
a node v, its feature xv is a d-dimensional vector. Te ad-
jacency matrix A(A ∈ RN×N) of the graph is computed by V

and E, there are only two elements in A, i.e., 0 and 1. When
Aij � 1, there exists an edge between vi and vj. Otherwise,
Aij � 0, there is no edge between vi and vj.Te degreematrix
D is defned as Dii � 

n
j�1 Aij.

In this paper, we focus on using Graph Convolutional
Networks (GCN) [40] to verify the efectiveness of our
models. Here, we briefy introduce the GCN. First, a graph G

is taken as the input, and the GCN iteratively learns the
representation of each node through a neighborhood ag-
gregation strategy. After the l-th iteration, the output of
GCN at the l-layer is as follows:

H
(l)

� σ AH
(l− 1)

W
(l)

 , (1)

where H(l− 1) is the output of l − 1 layer and also the input of
l layer, H(0) � X. W(l) is the learnable parameter of l layer,
and σ is defned as the nonlinear activation function, usually
using ReLU. A � D

− 1/2 A D
− 1/2 is the symmetrically nor-

malized adjacency matrix, where A � A + I is the adjacency
matrix of graph G after adding the self-loop, and D is the
diagonal degree matrix of A. A GCNmodel with k layers can
be defned as follows:

Z � f(A, X) � softmax A · · · σ AXW
(1)

  · · · W
(k)

 . (2)

During the training process, the parameters are updated
using the cross-entropy loss function [41, 42].

3.2. Treat Model

3.2.1. Attack Scenario. We consider a practical scenario in
which the data is poisoned before GNNs are trained, i.e., the
adversary has no knowledge regarding downstream models.
For example, the adversary publishes some E-mail datasets
containing triggers on some public platforms, then users use
the datasets for GNNs inference, and some important emails
will be inferred as spam by backdoor GNNs.

3.2.2. Attack Target. Our threat model uses node features as
triggers, and the adversary embeds the triggers into the nodes
and also changes their labels to the attacker-specifed labelsyt.
Since poisoned nodes in the training set share triggers,
feeding the backdoor dataset to GNNs learn the correlation
between triggers and target labels. If a node with trigger
embedding appears in the test set, GNNs output the node
label as the target label yt. In this paper, we study the
backdoor attack on the node classifcation task because it is
more challenging compared with the graph classifcation task.

Given a set of labeled nodes as training data, the goal of
the node classifcation task is to train a node classifer f that
infers the label of unlabeled nodes. Formally, the set of labels
of a node is denoted as Y � 1, 2, . . . , LK with K diferent
classes. Te backdoor GCN can be represented as
fb(v, xb; G), where xb is the feature of the backdoor dataset.
Te clean GCN can be represented as fc(v, x; G), where x is
the feature of the clean dataset. Te aim of the adversary is
defned as follows:

fb v, x
b
;G � yt,

fb(v, x; G) � fc(v, x; G).

⎧⎨

⎩ (3)

From equation (3), we can see that the frst objective is
the efectiveness of the backdoor GCN model, i.e., the
backdoor GCN predicts poisoned nodes to the target label yt.
Te second objective is the evasiveness of the backdoor GCN,
i.e., the backdoor GCN behaves similarly to the clean GCN on
clean data.

4. Methodology

In this section, we introduce the NFTAmodel in detail. First,
we describe how to generate and embed feature triggers.
Second, the negative efects of the feature trigger on the
original feature space are analyzed. Finally, an adaptive
approach is used to reconstruct the graph structure to op-
timize feature smoothness. Figure 1 shows the general
framework of the NFTA.

4.1. Trigger Generation and Injection. Te datasets studied in
this paper are bag-of-words features, i.e., only two elements
of 1 or 0 in the feature vector. Our trigger consists of
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a randomly generated binary mask m(m ∈ Rd). Let u is the
poisoned node, when mi � 1 means fipping the i-th feature:

xu,i � 0⇒xu,i � 1 orxu,i � 1⇒xu,i � 0. (4)

Meanwhile, change the true label of the node u: Yu � yt.
Otherwise, no interaction when mi � 0.

A previous work [8] has shown that if two features never
appear together in the original feature space, but they appear
simultaneously in the feature space after the attack, this is
easily noticed. Terefore, we need to flter the features that
are easy to notice. We require the added features to have co-
occurred with other features at least once. Specifcally, the
feature co-occurrence matrix C ∈ 0, 1{ }d×d is defned for the
original graph. Te condition needs to be satisfed when
adding feature i: 1(

d
j�1 Cij > 0), where 1(x) is the indicator

function. Adding a feature i is hidden when x is true,
otherwise, it is not added when x is false.

4.2. Feature Smoothness. In our experiments, we observe
that by injecting the trigger only, the backdoor attack success
rate ASR only achieve about 75%, and the clean accuracy
drop CAD is high (the results are shown in Table 2). Tis
indicates that by attacking only on node features, the
backdoor GCN cannot identify clean data and poisoned
data well.

Many studies [43, 44] have shown that connected nodes
in graphs may have similar features, for example, in citation
networks where two related papers tend to have similar
topics. Inspired by this, our intuition is that the embedding
of the trigger destroys the node similarity in the original
feature space, which will reduce the efectiveness of GCN
learning representations and decrease the efciency of
downstream tasks.Terefore, we investigate the diference in
the node feature smoothness before and after the attack. We
give the defnition of feature smoothness Fs:

Fs �
1
2



N

i,j�1
Aij xi − xj 

2
, (5)

where (xi − xj)
2 represents the diference in features be-

tween node i and node j. Fs can be rewritten as follows:

Fs � tr X
T AX 

�
1
2



N

i,j�1
Aij

xi��
di

 −
xj
��
dj

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

,

(6)

where di denotes the degree of the node. Te smaller
equation (6) indicates that the neighboring nodes are more
similar. Figure 2 shows the diference in the smooth dis-
tribution of node features before and after the backdoor
attack. It can be observed that our attack tends to increase
the node feature smoothing. GCN aggregates confusing
information when nodes connect many dissimilarity nodes,
further misleading it to make wrong decisions [45]. To
reduce the impact of NFTA on the feature space, we propose
an adaptive method that modifes the graph structure.

4.3. Optimization of the Graph Structure. In most cases,
connected node pairs tend to have similar features. How-
ever, NFTA leads to a decrease in the similarity of neigh-
boring nodes.We propose an adaptive method to modify the
poisoned graph structure to solve this problem. Te
neighboring nodes in the reconstructed poisoned graph have
similar features. Specifcally, we set the optimization ob-
jective as follows:

argminLs � ‖A − A‖
2

+
α
2



N

i,j�1
Aij xi − xj 

2

�‖A − A‖
2

+ αtr X
TLX s.t. ‖A − A‖

2 ≤ 2Δ

�‖A − A‖
2

+
α
2



N

i,j�1
Aij

xi��
di

 −
xj
��
dj

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

,

(7)

where α is the hyperparameter to balance the feature
smoothness, A is the modifed adjacency matrix, and ∆ is the
number of modifed edges. We study undirected graphs, so
the budget is 2∆.

We use the gradient descent method to solve the update A

A←A − μ1∇A
‖A − A‖

2
+
α
2



d

i,j�1
Aij

xi��
di

 −
xj
��
dj

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (8)

During each update of the adjacency matrix A, the
constraint ‖A − A‖2 ≤ 2∆ needs to be satisfed.

Since the elements of A are only 1 and 0, we set A< 0 to
A � 0, A> 0 to A � 1. Note that we set the number of
updates in equation (8) to T in the experiments. When the
number of iterations t is small, A appears as ‖A − A‖2≫ 2∆.
As t increases, ‖A − A‖2 slowly decreases. ‖A − A‖2 ≤ 2∆ can
be achieved when t � T, in which case it can be seen that the
number of modifed edges is less than 2∆. However,
‖A − A‖2 > 2∆ happens occasionally when t � T. To limit the
number of modifed edges, we randomly select the node
pairs (i, j) that satisfy the condition Aij ≠Aij, then fip his
state, i.e., Aij � Aij, repeat the above process until
‖A − A‖2 � 2∆.

Te above process is shown in Algorithm 1.

4.4. Time Complexity. Te time complexity of NFTA is
O(d + T + e), where d is the generation trigger size, T is the
number of update. e � ‖A − AT‖2 is the budget exceeded,
where AT is the adjacency matrix after the end of the it-
eration. NFTA does not require knowledge of the GCN, so
the time complexity is small.

4.5. Model Extension. NFTA is set to random attack when
selecting attack nodes. Te attack node selection afects the
attack model’s performance [25], so we extend the two
diferent attack models, NFTA-D and NFTA-BW.

(1) Maximum node degree attack: Node degree is the
number of edges on a node. Nodes with a greater
degree are often important in the graph. In NFTA-D,
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Figure 2: Smoothed distribution of poisoned nodes and their neighboring nodes features in CiteSeer when the trigger size is 0.05 and the
data poisoning rate is 0.1.

Table 2: Comparison of the ASR (%) and CAD (%) of a backdoor attack. ASR represents the success rate of classifying poisoned nodes into
target classes, and the larger ASR is better. CAD represents the diference between clean GCN and backdoor GCN, and the smaller CAD is
better.

Dataset
ASR CAD

RSA NFTA-wo NFTA NFTA-D NFTA-BW RSA NFTA-wo NFTA NFTA-D NFTA-BW
Polblogs
yt � 1 74.11 72.98 75.83 85.42 83.33 2.63 4.91 1.47 2.97 2.19
yt � 2 82.12 70.83 85.42 87.62 86.86 3.46 6.12 2.01 4.41 3.30
Citeseer
yt � 1 80.64 73.06 82.14 98.81 82.86 5.13 8.31 2.51 4.05 3.98
yt � 2 89.12 79.29 90.48 97.62 90.48 5.15 7.93 2.77 4.48 3.89
yt � 3 81.02 77.38 83.33 97.67 88.29 5.45 7.51 3.11 5.65 2.04
yt � 4 84.66 79.76 85.71 97.62 92.86 4.97 8.17 3.41 4.42 3.53
yt � 5 84.15 83.33 89.29 93.48 90.52 5.45 9.24 2.66 4.55 5.24
yt � 6 87.37 75.00 90.48 96.43 91.43 5.64 6.85 4.50 5.69 3.44
Blogcatalog
yt � 1 88.64 71.31 91.30 90.82 91.79 3.91 6.15 −3.08 2.11 3.55
yt � 2 85.46 70.12 87.44 94.20 94.69 3.64 5.56 −2.42 1.44 2.03
yt � 3 89.13 70.05 92.14 96.14 92.34 3.11 5.02 −4.23 2.28 2.86
yt � 4 84.24 72.13 88.41 95.44 90.67 5.06 6.06 −0.03 1.76 3.94
yt � 5 85.79 69.97 90.69 95.75 93.86 4.18 5.34 0.26 3.56 3.81
yt � 6 88.48 71.16 90.34 94.20 92.82 3.51 5.48 −0.09 2.29 1.04
Important experimental results are bolded.

Input: Clean graph G � (V, E, X), budget ∆, original graph node adjacency matrix A, number of update T

Output: Poisoned graph with reconstruction G � (V, E′, X′)

Initialization parameter t � 0;
Generate a trigger m;
Embed the trigger m into the node to obtain X′;
while t<T do
argmin Ls � ‖A − A‖2 + α/2

N
i,j�1 Aij(xi/

��
di


− xj/

��
dj


)2

where
A←A − μ1∇A(‖A − A‖2 + α/2

N
i,j�1 Aij(xi/

��
di


− xj/

��
dj


)2)

end
if ‖A − A‖2 > 2∆ then
while ‖A − A‖2 ≠ 2∆ do
Randomly selected node pair (i, j) where Aij ≠Aij

Aij � Aij

end
end

ALGORITHM 1: Node feature trigger-based graph backdoor attack (NFTA).
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we select the top K nodes in the degree ranking as the
attack nodes.

(2) Maximum node betweenness attack: Te between-
ness is also a measure of the importance of node.Te
betweenness is the number of shortest paths between
a node and other node pairs. In NFTA-BW, we select
the top K nodes in the betweenness ranking as the
attack nodes.

Note that the attack nodes selected by NFTA-D and
NFTA-BW may not be the most important nodes, but
important nodes in the graph.

5. Experiment

5.1. Settings

5.1.1. Dataset. Te experiments are performed on three
commonly used benchmark datasets (Polblogs, Citeseer,
https://github.com/danielzuegner/gnn-meta-attack/tree/ma
ster/data and Blogcatalog, https://github.com/Chandler
Bang/Pro-GNN/tree/master/other_datasets) that feature
nodes with bag-of-words vectors [46–48]. Te dataset sta-
tistics are summarized in Table 3. For each dataset, we
randomly divided the nodes into a clean training set (70%),
a clean testing set (20%), and the rest for the embedding
trigger (10%). Te poisoned nodes are selected from the
nontarget classes, and their label will be changed to the target
label. A part of the poisoned nodes (50%) will be mixed with
the clean training set to construct the poisoned training set,
and the rest of the poisoned nodes (50%) will be used for
testing during inference. In addition, the training set shares
the trigger with the testing set. Table 4 shows the information
of the top 5 nodes with node degree and betweenness in the
three datasets.

5.1.2. Metrics. In this paper, we use the clean accuracy drop
and attack success rate metrics to evaluate the efectiveness
and evasiveness of our models.

(1) Clean Accuracy Drop (CAD). CAD measures the
diference in accuracy between the clean GCNfc and
the backdoor GCNfb when predicting on clean data.

(2) Attack Success Rate (ASR). ASR measures the suc-
cess rate of the backdoor GCN when predicting the
poisoned data.

ASR �


n′

i�1 I fb vi, x
b
i ; G  � yt 

n
′ , (9)

where n′ represents the number of poisoned data and yt

represents the target label.

5.1.3. Parameters. Our experiments are based on a PyTorch
environment. Te main parameters are trigger size St � λd,
modifed structure budget ∆ � ε|E|, and the data poisoning
ratio c. Unless otherwise stated the parameters for the main
experimental results are set to λ � 0.05, ε � 0.5, c � 0.1.

Target label yt set to the label with the least number of
instances in the datasets, as shown in Table 3. We use GCN,
Graph Attention Network (GAT), and Chebyshev Network
(ChebNet) models to verify NFTA’s efectiveness and
transferability. GNNs structure consists of 2 layers of fully
connected layer, softmax layer, and maxpooling. Where
hidden units are 128, optimizer is set to Adam, weight decay
is 5e− 4, the dropout rate is 0.5, epochs set as 300 and the
learning rate is 0.01. In particular, the number of GAT heads
is set to 3.

5.1.4. Baseline. We use RSA [19] and NFTA-wo to verify the
efectiveness and evasiveness of NFTA, NFTA-D, and
NFTA-BW. RSA is the most relevant work to us, which also
uses features as the trigger, the diference is that the trigger is
randomly generated under the guidance of the GNNs ex-
plainable method. NFTA-Wo is the backdoor attack model
without graph structure optimization, and we use it to verify
the efect of graph structure optimization.

5.2. Main Results. Table 2 reports the ASR and CAD results
for the backdoor attacks with diferent target label yt.

(1) Overall, our proposed backdoor attacks exhibit ex-
cellent efectiveness and evasiveness on the three
datasets. Specifcally, the ASR and CAD of NFTA,
NFTA-D, and NFTA-BW outperformed the base-
lines. On the one hand, in Citeseer, when yt � 1, the
ASR of RSA and NFTA-wo are 80.64%, 73.06%,
while the ASR of NFTA, NFTA-D, and NFTA-BW
are 82.14%, 98.81%, 92.86%, respectively. Te higher
ASR indicates that our models can successfully
achieve the prediction of the poisoned nodes label as
the target label. On the other hand, the CAD of both
RSA and NFTA-wo are 5.13%, 8.31%, and the CAD
of NFTA, NFTA-D, and NFTA-BW are 2.51%,
4.05%, and 3.98%, respectively, which indicates that
our models can still maintain the accuracy of clean
node prediction to achieve the hidden attack.

(2) We can see that the ASR and CAD metrics are
optimized after reconstructing the poisoned graph.
Table 2 shows that NFTA-Wo has the lowest ASR
and the highest CAD over the other models. In the
BlogCatalog, comparing NFTA-wo and NFTA, we
can fnd that the ASR increases by about 20% and the
CAD decreases by about 7%, which shows that
optimizing the graph structure can improve the
efciency of backdoor attacks.

(3) Comparing the three graph reconstruction attacks
reveals that NFTA-D and NFTA-BW have a higher
ASR than NFTA. We consider that these datasets
have scale-free properties. Te nodes (with a larger
degree/betweenness) that are more “special,” the
backdoor GCN can distinguish these nodes more
efciently, and thus the ASR of NFTA-D and
NFTA-BW are higher than those of NFTA. In ad-
dition, the CAD of NFTA-D and NFTA-BW is
higher than that of NFTA. Te reason is that
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poisoned nodes with larger node degree and be-
tweenness have a greater impact on clean data.

(4) Table 2 shows that in most cases, the larger the graph
size, the more efcient the models will be. For ex-
ample, in NFTA in Polblogs and BlogCatalog, the
average ASR is about 80.62% and 90.05%, the average
CAD is about 1.74% and 1.59%, respectively. Te
reason is that when the graph size is small, the
perturbation information of the injection trigger
does not provide much useful information to the
backdoor GCN for distinguishing between poisoned
and clean nodes.

5.3.Te Impact of Trigger Size. In this set of experiments, we
investigate the impact of the trigger size on our models.
Figure 3 shows the variation of the ASR and CAD for
backdoor attacks with diferent trigger sizes.We observe that
the ASR increases and then decreases, and the CAD de-
creases and then increases when the trigger size increases. In
NFTA-BW, taking BlogCatalog as an example when λ
� 0.01, 0.05, 0.1{ }, ASR� 91.79%, 94.69%, 93.67%{ },
CAD� 3.12%, 2.03%, 2.41%{ }. Te ASR increases and the
CAD decreases when the trigger size increases, which means
that the backdoor GCN can distinguish poisoned data and
clean data well. However, when the trigger size continues to
increase, the ASR and CAD start to decrease and increase,
respectively. We suspect that the backdoor GCN encounters
graph feature homogenization when embedding large size
triggers, i.e., the representation of many nodes is approxi-
mately the same, which results in a negative impact on the
ASR and CAD.

5.4. Te Impact of Poisoning Rate. Tis section investigates
the efect of poisoning rate on ASR and CAD, as shown in
Figure 4. We obtain two observations:

(1) On the one hand, the ASR increases with the increase
in the poisoning rate, and the same trend is observed
in all three datasets. Specifcally, in BlogCatalog,
when c � 0.05, the ASR of NFTA, NFTA-D, and
NFTA-BW are 79.2%, 79.57%, and 76.33%, re-
spectively. When c is 0.2, their ASR increased to
82.16%, 97.50%, 99.52%, and 97.58%, respectively.
Specifcally, when c increased from 0.05 to 0.13, the
ASR increased rapidly. However, the ASR changed
very little when c increased from 0.13 to 0.2, which
shows that our models do not depend on a higher
poisoning rate to achieve high accuracy.

(2) On the other hand, the increase of c has a negative
impact on CAD. From Figure 4, we can see that the
CAD is small when c is small, indicating no sig-
nifcant impact on clean data for backdoor attacks.
However, as c increases, the CAD gradually in-
creases. For example, in Citeseer, when c increases
from 0.05 to 0.2, the CAD increases from 1.11%,
2.07%, and 1.38% to 4.47%, 4.61%, and 4.69% for
NFTA, NFTA-D, and NFTA-BW, respectively. In
contrast to ASR, CAD does not show a slowing trend
when c continues to rise.

5.5. Te Impact of Budget. In this section, we evaluate the
efect of budget on our models, and the results are shown in
Figure 5. Since NFTA-wo does not optimize the graph
structure, NFTA NFTA-D, and NFTA-BW can be used as

Table 3: Dataset statistics.

Dataset Polblogs Citeseer Blogcatalog
# node 1222 2110 5196
# feature 1490 3757 171743
# edge 16714 3703 8189
# class 2 6 6
# accuracy 90.80% 74.64% 75.61%
# target label 1 1 2

Table 4: Node degree and betweenness sorting top 5 nodes information (without the target class node).

Polblogs Citeseer Blogcatalog
Id Label Degree Id Label Degree Id Label Degree
671 2 301 1454 5 30 4 4 439
1177 2 199 1001 5 29 7 3 409
829 2 182 1894 5 23 14 3 397
881 2 170 1390 2 22 16 5 376
945 2 138 1453 5 20 25 5 344
Id Label Betweenness Id Label Betweenness Id Label Betweenness
671 2 0.0980 1735 2 0.1135 4 4 0.0074
1177 2 0.0422 1523 6 0.1056 7 3 0.0068
829 2 0.0177 295 5 0.1054 14 3 0.0058
881 2 0.0154 1001 5 0.1027 40 3 0.0051
945 2 0.0144 915 6 0.0825 41 1 0.0048
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references. Intuitively, the optimized graph structure im-
proves the models’ efciency, i.e., the ASR increases and the
CAD decreases with increasing ε. For example, in the

BlogCatalog, when ε� 0.3, the ASR of NFTA, NFTA-D, and
NFTA-BW increases from 70.12% to 83.09%, 90.22%, and
88.14%, respectively. Te CAD decreased from 9.56% to
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Figure 3: Te impact of trigger size λ on the ASR (%) and CAD (%) of backdoor attacks. (a) Polblogs. (b) Citeseer. (c) Blogcatalog.
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Figure 4: Te impact of poisoning rate c on backdoor attacks. (a) Polblogs. (b) Citeseer. (c) Blogcatalog.
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2.14%, 3.67%, and 4.13%, respectively. We can observe that
the ASR and CAD changed signifcantly when ε increased
from 0.3 to 0.5. Te ASR and CAD did not change signif-
icantly when ε increased from 0.5 to 0.7. Other datasets show
similar trends, which refects that optimizing the graph
structure cannot infnitely improve the performance of our
models.

5.6. Te Performance in Diferent GNNs. In this set of ex-
periments, we focus on the transferability of NFTA to
diferent GNNs. Table 5 shows the ASR and CAD results in
the Graph Attention Network (GAT) and Chebyshev Net-
work (ChebNet) models. From Table 5, it is observed that

our attacks are efective in diferent GNN classifers, i.e., our
attacks have excellent transferability. For example, NFTA
can achieve the high ASR of 85.57%, 88.61% in BlogCatalog
when attacking GAT and ChebNet, NFTA can achieve low
CAD of 0.31%, −0.62%, respectively. Moreover, in most
cases, NFTA-Wo has the worst performance and NFTA-D
and NFTA-BW have better performance, which is the same
as the previous fndings.

5.7. Te Performance in Diferent Triggers. In the above
experiments, the position of the trigger patch is randomly
generated. In this section, we study a kind of trigger with
continuous patch positions, called a continuous trigger.
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Figure 5: Te impact of budget ε on backdoor attacks. (a) Polblogs. (b) Citeseer. (c) Blogcatalog.

Table 5: Transferability results of our models.

GAT Chebnet
Polblogs Citeseer Blogcatalog Polblogs Citeseer Blogcatalog

NFTA-wo
ASR 75.16 81.48 82.70 93.13 96.43 84.61
CAD 3.02 4.46 3.45 −6.01 3.55 1.34
NFTA
ASR 77.08 83.48 85.57 94.02 98.81 88.61
CAD 1.53 3.39 0.31 −4.61 2.62 −0.62
NFTA-D
ASR 82.46 90.12 91.90 96.10 96.67 90.27
CAD 2.02 5.48 4.13 −1.54 3.46 2.15
NFTA-BW
ASR 85.11 87.64 92.49 96.20 95.02 93.88
CAD 3.54 4.16 4.50 1.61 3.07 4.16
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Figure 6 shows that using the random trigger is more ef-
fective than the continuous trigger. Taking the BlogCatalog
as an example, the ASR of the random trigger is 2.42% higher
than the ASR of the continuous trigger, and the CAD of the
random trigger is 0.58% lower than the CAD of the con-
tinuous trigger in NFTA-BW. We suspect that nodes im-
portant features are usually not continuous, so the possibility
of using a random trigger to disturb important features is
higher than the continuous trigger, and the backdoor GCN
is easier to identify nodes in which their important features
are disturbed.

6. Conclusion

In this paper, we discuss the feasibility of implementing
backdoor attacks in the node classifcation task. Unlike
images, graphs are nonEuclidean data. For attribute graphs,
we use features as triggers to perform backdoor attacks. Te
experimental results show that NFTA can efectively attack
on node classifcation tasks. Current works on graph
backdoor defense are scarce, and we hope that the work in
this paper will help develop better models for graph defense.
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