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The task of discovering equivalent entities in knowledge graphs (KGs), so-called KG entity alignment, has drawn much attention
to overcome the incompleteness problem of KGs. The majority of existing techniques learns the pointwise representations of
entities in the Euclidean space with translation assumption and graph neural network approaches. However, real vectors in-
herently neglect the complex relation structures and lack the expressiveness of embeddings; hence, they may guide the em-
beddings to be falsely generated which results in alignment performance degradation. To overcome these problems, we propose
a novel KG alignment framework, ComplexGCN, which learns the embeddings of both entities and relations in complex spaces
while capturing both semantic and neighborhood information simultaneously. The proposed model ensures richer expressiveness
and more accurate embeddings by successfully capturing various relation structures in complex spaces with high-level com-
putation. The model further incorporates relation label and direction information with a low degree of freedom. To compare our
proposal against the state-of-the-art baseline techniques, we conducted extensive experiments on real-world datasets. The

empirical results show the efficiency and effectiveness of the proposed method.

1. Introduction

The knowledge graph (KG) is directed graph-structured data
that captures intricate relationships of real-world objects. KGs
cover a wide range of real-world facts in the form of triples to
make them machine-readable. Following the resource de-
scription format, a triple is a single unit in KG and it can be
represented in the form of (subject, predicate, object) which
mirrors human language structure. More specifically, it can be
categorized into relation triple {entity,, relation, entity,) and
attribute triple {entity, attribute type, attribute value). Taking
an example from DBpedia, {Berlin, IsCapitalOf, Germany) is
one of the relation triples and (Berlin, areaCode, 030) is an
attribute triple. Due to the recent growth of the Linked Open
Data, KGs such as DBpedia [1], ConceptNet [2], and
WordNet have rapidly proliferated in a variety of domains
and languages by enabling AI upstream and downstream

applications (e.g., question-answering [3], recommendation
system [4], and semantic search [5]) to harness abundant
machine-readable knowledge-powered data.

Despite its advancement, there still remain many chal-
lenges such as incompleteness due to the ever-evolving na-
ture of KGs under the open-world assumptions. Besides,
KGs are often developed for different purposes by individual
experts and even in heterogeneous human languages, which
widens the knowledge gap between them. As a solution for
bridging the knowledge gap, KG alignment techniques aim
to find the corresponding entities between multiple KGs,
also known as anchor links, to complement each other.
However, only a limited number of anchor links exist in real-
world cases, and finding latent links manually is costly and
can be easily misguided.

To handle such tasks automatically in an efficient way,
a line of study has been conducted to develop effective KG
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alignment techniques by adopting machine learning
methods. The most renowned techniques are based on the
representation learning approach which represents resources
of KGs as points in multidimensional real coordinate spaces.
The main goal of such techniques is to retain the expres-
siveness of each point, so-called embeddings, as much as
possible by extracting salient alignment-oriented features.
Given partially aligned KGs, the alignment model learns
meaningful embeddings to automatically discover the links
between the equivalent entities (or relations) based on their
pairwise distances in the vector space. The representation
learning-based KG alignment techniques can be divided into
two main categories: semantic-based and neighborhood
structure-based techniques. Semantic-based [6-8] techniques
concentrate on capturing the semantic information con-
tained in the triples. One representative method used for
learning the semantic pattern of triples is TransE [9] which
considers the relation in triples as translation from head
entity to tail entity. In recent years, a number of state-of-
the-art graph neural networks (GNNs) [10-12] have ap-
proaches such as GCN which have been largely utilized for
capturing the structural information in the KGs. The fun-
damental intuition of GNNGs is to incorporate local neigh-
borhood information for representing entity embeddings.
They have demonstrated their robustness in learning
neighborhood-aware vector representations with various
message-passing schemes.

However, there is still much room for improvement
regarding the following challenges:

(i) Relation Patterns and Structure. There are some
significant challenges to be addressed for semantic-
based techniques which use the translation as-
sumption. First, the translation assumption cannot
cover triangular structure (e.g., cyclic) since all the
relation embeddings involved have to converge to
0 which results in a contradiction. Second, the same
contradiction occurs for capturing symmetry pat-
terns of relations which frequently appear in
practice [13] and has shown its robustness at cap-
turing triangular relation structures; however, it
requires extra graphs which represent the structure
of the relations, hence resulting in a scalability
problem when it comes to large-scale KGs. These
listed limitations can lead the embeddings to learn
incorrect semantic information which leads the
encoded vectors to be obsolete. Thus, to learn better
representations for KGs, it is stressed to carefully
model such intricate relation structures with a more
efficient and scalable approach.

(ii) Relation-Aware Neighborhood Information. GNN-
based models have shown their superiority in
learning local neighborhood structure; however,
they often overlook to consider several important
factors such as the multiple perspectives of re-
lational information. For example, the adjacency
matrix that propagated through GCN layers only
preserves simple connection information while
losing informative indicators by ignoring other
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additional relational information (e.g., direction,
pattern, and relation type). Existing works [14, 15]
attempt to incorporate type and direction in-
formation of relations; however, such techniques
either rely on abstract concepts or suffer from a high
degree of freedom. Moreover, it exclusively learns
representations of entities while embeddings of
relations play a significant role in many tasks.

(iii) Expressiveness of Embeddings. Existing GCNs are
limited to being trained in Euclidean space where
the vectors are represented with real numbers.
However, it has been manifested by recent studies
that the embeddings in complex space have more
potential to retain rich feature information com-
pared to those in real vector space [16-18] by using
complex computations. For example, unlike the dot
product in real vector space, the Hermitian product
in complex space can capture higher-order features
of relation based on the antisymmetric nature of it
[17]. Hence, the GCN that operates in the complex
space is worth to be explored to go beyond the
existing works.

To tackle the aforementioned issues, we propose
a complex embedding-based model combined with a novel
complex GCN framework, namely, ComplexGCN. Com-
plexGCN takes advantage from two modules: rotation-based
embedding module (RE) and deep integration module (DI) to
complement two respective perspectives of knowledge se-
mantic and neighborhood information simultaneously by
learning embeddings in complex space. RE learns
alignment-oriented complex vector representations in
complex space C" of both entities and relations with rotation
constraints. By leveraging the rotation concept, it can in-
herently model all of the relation patterns (e.g., hierarchy,
symmetry, and composition) resulting in better semantic-
preserving embeddings compared to the translation as-
sumption. We further discover that cyclic structures such as
a set of three triples (e.g., {e;,7,e,),{e, 1,€5), {es,7,€1))
can be captured properly with the rotation assumption. With
the rotation score function, we fuse two loss functions to
encourage the equivalent entities to be generated close to
each other. We further combine DI with RE to consider both
semantic and neighborhood information. Different from
vanilla GCN, DI has the capability to generate both entity
and relation embeddings while keeping track of multiple
perspectives of relation information (e.g., direction and
relation type). It is worth noting that our proposal prevents
overparameterization with the weight-sharing mechanism.
Also, it effectively passes the complex embeddings through
GCN layers with the Hadamard product. Therefore, our
model successfully preserves the expressiveness of the em-
beddings with more meaningful and intense computation.
Note that, we not only train the embeddings based on
alignment likelihood but also the plausibility of the triples
via the end-to-end learning framework of the DI module.
After generating two separate embedding spaces with SE and
DI, the alignment result is then estimated by combining the
alignment scores generated by the respective module.
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1.1. Contributions. The main contributions of this paper can
be summarized as follows:

(i) ComplexGCN learns the representation of both
entities and relations in complex spaces from the
two viewpoints: semantic-based (RE module) and
neighborhood information (DI).

(i) RE module generates knowledge semantic-
preserving embeddings in complex space to better
capture both triangular structure and relation
patterns [16] than conventional translation as-
sumption. We further prove that Hadamard
products can capture not only relation patterns but
also cyclic structure in KGs.

(iii) DI module successfully incorporates additional
relation information (e.g., direction and type) while
propagating KGs through GCN layers. To surpass
the expressiveness of real vector representations, it
learns embeddings with complex numbers with an
efficient  calculation method inspired by
QGNN [19].

(iv) Different from existing methods, our DI module
requires simpler equations and fewer parameters.
Moreover, it is a pioneering approach to model the
representation learning of knowledge graphs in
complex spaces. Different from complex-based
GNNs [19, 20], our DI module incorporates di-
rectional, self-loop, and relational information that
are specific for knowledge graphs.

(v) The fusion of RE and DI modules guarantees to
retain the semantic and topological information at
the same time by complementing each other. The
vanishing problem of semantic features of DI is
supplemented by the RE, while the lack of structural
information of the RE module is filled up with DI.

(vi) We conduct extensive experiments on popular
publicly available real-world datasets to evaluate
ComplexGCN with state-of-the-art baselines. The
empirical results demonstrate that our model pro-
duces the best performance against the baselines.

The remainder of this paper is organized as follows. The
motivations of our work are discussed in Section 2. In
Section 3, the problem is formulated and a succinct overview
of our framework is presented. In Section 4 and Section 5,
the details of our proposal are demonstrated. Our empirical
results are organized in Section 6. Finally, the related works
are reviewed in Section 7, and Section 8 concludes the paper.

2. Preliminaries

2.1. Motivations. In Figure 1, we offer an example of a KG
entity alignment problem containing four main relation
patterns: symmetry, inversion, composition, and cyclic
patterns. Furthermore, the KG in the upper container is
English-version KG, and the one in the lower container is
German-version KG, respectively. The black solid arrow
connecting entities in different KGs depicts seed alignments

(e.g., owl:sameAs), a solid arrow connecting entities in
a single KG is an example of typical relation, and all the
dotted arrows or entities in a single KG are newly discovered
resources. As we can observe from the illustration, there are
four types of relation patterns depicted in different colors of
arrows: a set of green arrows depicts a composition pattern,
a set of pink arrows describes an inversion pattern, blue
arrows represent a symmetry pattern, and a set of orange
arrows shows the cyclic structure.

It is crucial to carefully encode these complex relation
patterns into the relation embeddings since the former
works have proven that the local semantic information
greatly impacts on the meaningful alignment-oriented
embeddings [6, 7, 9]. However, the score function that
is constrained by translation assumption [9] has its limi-
tations at coping with these relation patterns. For example,
when we attempt to encode the semantics of three triples
{(Michael_Jackson, Is Brother Of, Jackie_Jackson), {Jackie_
Jackson, Is Brother Of, Tito_Jackson), and {Tito_Jackson,
Is Brother Of, Michael_Jackson) based on the translation
assumption in a 2-dimensional Euclidean space, it faces
discrepancy in relation embedding of relation
IsBrother Of by producing multiple embeddings for it.
Such a problem can cause the inconsistency of embeddings
and can seriously harm the aligners by hindering to capture
of semantic information.

2.2. A Solution Based on Complex Vector Space. In recent
years, the majority of representation learning methods have
focused on generating embeddings in Euclidean space where
each element of a vector is a real number. However, the
computations in Euclidean space have shown their limita-
tions in capturing diverse facets of KGs. One remedy for this
problem is that recent studies have been started to utilize
complex space where each entry of a vector is composed of
a complex number with the form, a + bi. By involving ad-
ditional imaginary parts, complex vector representations
enable more expressive rendering with intense
computations.

In particular, instead of using a real-valued space, en-
tities and relations are represented in a complex space, in
which for example the head entity has a real part and an
imaginary part [21]. ComplEx [17] introduced a complex
vector space that can capture both symmetric and anti-
symmetric relations using the Hermitian dot product for the
composition of the relation, head, and the conjugate of the
tail. Inspired by Euler’s identity, RotatE [16] proposed
a rotational model that considers the relation as a rotation
from head entity to tail entity in the complex space, where
the elementwise Hadamard product is used for composition.
QuatE [22] extends the complex-valued space to a hyper-
complex space by using a quaternion that has three imag-
inary components, and the Hamilton product is used as the
compositional operator for the head entity and relation.
Both RotatE and QuatE can capture inversion and com-
position patterns, as well as symmetry and antisymmetry.
However, QuatE incurs more computational overhead than
RotatE, as it uses the Hamilton product to capture latent
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FiGure 1: Example of entity alignment between KGs with four relationship patterns. The upper KG represents the English-version KG, and

the lower one is the toy graph of the German-version KG.

interdependencies within the 4-D space of entities and re-
lations. Especially for the KG representation learning tasks,
complex vector representations successfully reflect the
complicated relationships of entities compared to real em-
beddings. Starting from ComplEx [17], RotatE [16] to
MRotatE [18], encodings of complex embedding for KG
have been explored extensively by applying various calculus
and measurements. We further develop our model by
generating complex embeddings which capture not only the
semantic information but also the topological information
of KGs.

One remedy for this issue can be the representation
learning method in complex spaces. Based on the expressive
computation using the Hadamard product in complex
spaces [16], we can successfully capture all four relation
patterns based on the rotation approach resulting in se-
mantic well-preserved embeddings. For instance, in Fig-
ure 2, the rotation assumption-based RotatE [16] in complex
space can capture cyclic relation patterns which have been
neglected by the translation assumption in Euclidean space.
Despite the significance of the rotation-based score function,
only resorting to the local semantic information can lead the
model to neglect the global scale of information. To consider
both local and global information, the GNN mechanism that
works in complex spaces is highly needed. We believe that
a reliable and promising alignment can be performed by

Img
4

[N
f Y

FIGUuRe 2: Examples of TransE and RotatE attempting to capture
cyclic structure in 1-dimensional real and complex spaces. The x-
axis denotes the real axis, and the y-axis denotes the imaginary axis
in complex space. The picture demonstrates how RotatE captures
cyclic structure, while TransE fails to capture it.

N

=)

fusing the semantic-preserving and neighborhood-aware
methods that operate in complex spaces.

3. Problem Statement

3.1. Knowledge Graph Structure. Before getting to the for-
mulation, some necessary notations are provided as follows:

Resources. Resources in KGs denote every component
in KG such as a unique identifier or literal value (e.g.,
string and integer) indicating entities and predicates
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(e.g., relation type) placed between subject and object in
triple. KG consists of the set of each resource E, R, and
TR, where E denotes the set of entities, R denotes the set
of relation types, and TR indicates the set of relation
triples.

Triples. Triples in the set of relation triples TR indicate
the relationships of real-world objects or events fol-
lowing the format of (subject, predicate, object). Sub-
jects and objects are from the set of entities E, and the
predicates are selected for the set of relations R. For
example, (Barack_Obama, IsChildOf, Barack_Obama_
Sr.) is a relation triple where it denotes the relationship
that Barack Obama Sr. is the child of the former
president Barack Obama with a given triple format.

Triangular Structure. One of the most representative
triangular structures is a cycle structure. Specifically,
such as a set of relation triples (e, IsFriendOf,e,),
(e,, IsFriendOf, e;), and {e;, IsFriendOf, e, ) can form
a cyclic structure. It is crucial for KG embedding
models to be able to express such intricate relation
structures  explicitly to generate meaningful
embeddings.

Relation Patterns. There are three main relation patterns
frequently observed in KGs: symmetry, inversion, and
composition. More precisely, symmetry can be a pattern
such as {e;,IsFriendOf,e,) and <e,,IsFriendOf,e,),
inversion can be a pattern between {e;, IsStudentOf, e, )
and {e,,IsTeacherOf,e,), and lastly, an example of
composition can be a pattern where the {e;, IsFatherOf,

e;y exists when <{e;,IsSpouseOf,e,) and (e,
IsMotherOf, e;) hold.

3.2. Knowledge Graph Alignment. Formally, the problem of
embedding-based KG entity alignment can be defined as
follows.

Problem 1. With two different input KGs, KG, = (E,, R,, T)
and KG, = (E,, R, TY) where each component denotes en-
tities, relations, and relation triples in order, KG alignment
techniques focus on computing distance between embeddings
of two entitiesv(e;) and v(e;) where e; € E; and e; € E,.

Given the distances between every entity pair from KG;
to KG,, it identifies the corresponding entities under the
premise that the entity with the shortest distance from the
current entity embedding is the most likely to be equivalent
to it.

Seed Alignment.Most existing KG entity alignment
techniques train their model in a supervised or
semisupervised manner which requires a sufficient
amount of prealigned entities as their reference.
These prealigned entities are often called as seed
alignment and can be obtained with various ap-
proaches such as leveraging semantic owl:sameAs in
DBpedia. However, seed alignments demand lots of
human effort to acquire which makes the process
costly resulting in a lack of seed alignment in real-
world datasets.

Entity Similarity. The similarity between entities is
decided by the distance of the embeddings in a point-
wise space. The shorter distance denotes that the two
entities are more likely to be the same entities. The final
alignments are determined by the top-1 closest entity
among other candidates. The distance can be calculated
in the embedding space with various types of distance
metrics. The most popular measures are Manhattan
distance, L2 norm, and cosine similarity.

Importation notations are summarized in Table 1.

3.3. Requirements. In the scope of this work, there are three
main requirements that need to be satisfied which are as
follows:

(R1) Relation Pattern-Aware Embedding. To guarantee
accurate embeddings, it is crucial to integrate relation
pattern information. In order to capture the afore-
mentioned four major relation patterns, it has been
validated that the rotation constraint [16] can be ap-
plied in complex spaces. While making the embeddings
to capture the semantic structure with relation patterns,
we also need to consider alignment-oriented features to
enforce the equivalent embeddings to be close as much
as possible. The details of the implementation of this
process are provided in Section 4.

(R2) Neighborhood-Aware Complex Embedding. Along
with the semantic features of triples, we need to con-
sider the similarity of neighborhood structure in-
formation of entities. Since a number of research
studies have shown that the sophisticated calculus can
be performed with embeddings in complex spaces, it is
highly on demand to explore the GCNs that operate
with such expressive computations. In the scope of this
paper, we propose a novel GCN framework that gen-
erates complex embeddings by using the Hadamard
product-inspired method. We discuss it in more detail
in Section 5.

(R3) Auxiliary Relation Information Integration. The
expressiveness and the accuracy of the embeddings can
be further improved by integrating auxiliary relation
information such as relation type and direction.
However, the majority of the existing GCNs ignores the
supplementary relation information and simply
propagates the connectivity information. Besides, in-
tegrating such additional information often requires
excessive parameters and increases the complexity of
the computation. To overcome such problems, we
design simple but effective approaches to integrate
relation type and direction information. A more in-
depth explanation about this approach is provided in
Section 5.

3.4. Framework Overview. To realize the existing challenges,
we designed a novel framework, namely, ComplexGCN,
consisting of two main modules: rotation-based embedding
module (RE) and deep integration (DI) module. As
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TaBLE 1: Overview of important notations.
Notation Description
KG,, KG, Input source and target knowledge graphs
Img, Re Imaginary axis and real axis
ey, € Head entity and tail entity from triple
d(e;e;) Distance between entity ¢; and entity e;
lley, o h —e,ll Rotation-based score function
e e Hidden representations of node v and its neighbors at (I—1)-th layer
rt(.) Hadamard product-based composition operator
-, « Outgoing and incoming directions of relation
1ol L .
h, . H, Real and imaginary parts of a node embedding at I-th layer
whwt Weight and relation weight matrices at the I-th layer
SRE gD Similarity results from RE and DI modules
S Final similarity result

e

demonstrated in Figure 3, there are two main components in
our framework: rotation-based embedding module in Section
4 and deep integration module in Section 5. The overview of
our framework is presented as follows:

Rotation-Based Embedding Module. First, to be able to
capture the four prevalent relation patterns, we exploit the
rotation score function [16] which rotates the head entity
with the constrained relation embedding and minimizes
the distance between the rotated head entity and tail entity
in each triple in complex spaces. By rotating the entities
by given angles instead of adding them [9], the relation
patterns can be aptly captured by solving contradictions
that the translation assumption often neglects (R1). Note
that, this module is different from the original RotatE in
the sense that we enforce the embeddings to secure both
semantic and alignment information by optimizing the
semantic-preserving objective function and alignment
loss function at the same time.

Deep Integration Module. Despite the promising di-
rection of the RE module, there still remains space for
improvement in terms of neighborhood information.
Neighboring entities and the relations that connect the
entity with its neighbors play an essential role in the
alignment task since there is a tendency that the entities
on par to have a similar neighborhood. In our work, we
propose a deep integration module (DE) which is
a generalized GCN framework that is inspired by
reference [19] to generate complex embeddings while
incorporating neighboring information (R2) with extra
relational information. Specifically, the DE module
captures the direction and type information of relations
with specific weight matrices and rotation composition
operations (R3). Besides, our DE module enables the
Hadamard product-inspired computation between
direction-specific weight matrices and hidden node
embeddings to give more expressiveness through
a more sophisticated calculus (R2).

4. Rotation-Based Embedding Module

This section first discusses the learning approach of the
semantic-preserving embeddings based on the rotation

assumption which was devised by the authors in reference
[16]. We then train them to retain both semantic and
alignment features by constraining with two individual loss
functions.

4.1. Rotation-Based Embedding. 'The ultimate goal of the RE
module is to learn alignment-oriented complex vector
representation of entities and relations by preserving re-
lation triple information. Hence, we leverage the rotation
function [16] to generate complex embeddings that better
reflect complicated relational structures and relation pat-
terns in complex space C". To estimate the legitimacy of each
relation triple ¢t € TR, we calculate the rotation-based score
function as

I (@) =le(hyoc(r) —c@l, (1)

where c(-) denotes complex vector representation, ® in-
dicates entrywise product, | - | is the Manhattan distance
metric, and h, r, and ¢ denote head entity, relation, and tail
entity, respectively. In essence, the score function is based on
Euler’s formula e = cos () + i sin (6) which is another form
of the complex number z =a +bi. By constraining the
modulus of every relation representation le?®i| (r = €%) to
be equal to 1, entrywise multiplication between head entity
embedding and relation embedding e’ can be regarded as
rotation from head entity to tail entity by 6,; radians. For
example, if we assume c(r) is i = ¢, then the multipli-
cation of c(h) = €% and c(r) equals to e/®*9. However,
the rotation-based score function is not tailored for the
alignment problems since the purpose of such a score
function is to recognise the semantics in triples. Hence, we
turther combine two different loss functions to ensure that
the RE module is alignment-oriented.

It is worth noting that such rotation calculus in complex
spaces guarantees that the model is able to capture three
popular relation patterns along with the cycle structure. The
following definitions demonstrate the effectiveness of the
rotation function in preserving the relation patterns and
structure.

Definition 2. A relation r; is symmetric, if and only if the
phase 0,; of relation embedding ¢ equals to 0 or 7.



International Journal of Intelligent Systems

Rotation-based embedding (RE) module

Img

/ \ Img
o N M Eh i\

4 ¢
/ .\L 8‘ ° .
h
Re Re

o
[Few®r=e]|

Img

Alignment Inference
e
i

<
‘" dee)  Entity ( \
R

Embed Late - fusion

I I
! I
! I
! I
! I
! I
I 2 |
! I
! I
! I
! I
! l

W&man

Seed alignments tic preserving

~

Entity calibration

Final
Alignment Matrix

RE

Deep Integration (DI) module

.+.
()

\ Nl

’ W \
I = . 1 Deep Integration
i ! v K N
1l ; 2
o\ Lwe X A ™ Entity e . - .
o\ / ! I — "t (0—-—0) @7 e, Head entity and tail entity from triple
\nit, | : o1 Embed
. \ﬁ V’/ : : _ ||E,, °h-e, H Rotation-based score function
Nge——2"% I \l/+ I PR .
/ i | / ‘ AR Node embeddings at (/- 1)-th layer
‘| w Xﬁ rt (@ »®) ) rt(.) Hadamard product-based composition operator
\ AN e _ S h[,w. h,’,w Real and imaginary parts of embeddings at I-th layer
‘( 777777777 ; T ;\;/F 7777777 \‘ w, W Weight and relation weight matrices at I-th layer
elation
\ : e Bibed : / NaNe Similarity results from RE and DI modules
\ /
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i0. . 1 where 0 0 ) TR, while keeping the rotated head entity and tail entity to be
e ™ = zxl,where0,; = <. .
’ niT far away from each other where those are from the negative

Definition 3. A relation r; is an inverse of r; and vice-versa, if
and only if r; is a conjugate of r; (or in reverse).

i0,;, _ .. i@r'. _ ..
e =cosf,;—isinb, ; Ve’ =cosb,; —isin6,;. (3)

Definition 4. A relation r; and r; compose 1y, if and only if
rl' @r] = Tk.
otk = i @ it — i (0t6)) (4)

Along with the abovementioned three relation patterns
[16], we define additional definitions for the cyclic structure
which is prevalent in real-world KGs.

Definition 5. A relation r; can reflect a cycle structure, if its
phase equals to 2m/3.

c(el)Gei(zm) =c(ey),
i(27/3) - C(€3), (5)

c(es)0e @ = c(e).

c(ey) @€

The examples of the definitions are illustrated in Figure 2.
The listed definitions ensure that the intricate relation patterns
can be expressed in embedding spaces using the rotation
concept.

4.2. Semantic and Alignment-Preserving Loss Functions.
Based on this assumption, the RE module attempts to ensure
that the rotated head entity is as close as possible to the
corresponding tail entity from the positive relation triple set

triple set T . Formally, the knowledge semantic-preserving
objective function is defined as follows:

0.-Y Y [rrrw-1()]. @

teTR t/eT’R

where y is the margin hyperparameter, f,(t) denotes the
rotation-based score function, [-], is max(-, 0), and ¢ € TR
and t € T'® indicate the positive and negative relation tri-
ples, respectively. Note that, we further guarantee the dis-
tance between positively aligned entity pairs to be close as
much as possible with the following loss function:

6., f > d(cle)e(e)), 7)

e,-,ej)e[l_e

where d (-) is the cosine distance, L, is the set of entity seed
alignments, and [-], returns the argument if it is larger than
0, otherwise 0. The final loss function for the RE module is
the sum of O, and the 0, is multiplied by the importance
coefficient «; as

6,, = 0, + a,0,,. (8)

The « is chosen from the list of candidates «, € {10, 20, 50},
and we select the one that provides the best result.

5. Deep Integration Module

In this section, the details of the Hadamard product-inspired
GCN framework that works in complex spaces are discussed.
To incorporate additional relation information, we use com-
position operator and specific weight matrices during the
propagation.



5.1. Complex Graph Convolutional Networks. To harness the
advantage of hypercomplex space, QGNN [19] has first
introduced a GNN model that can produce embeddings
within the quaternion space. Borrowing the computation
method of the Hamilton product, the product between the
weight matrix and the hidden node vector representation
has been defined as follows:

hslﬂ)’Q _ 0_< Z

a, W"end? ), (9)
ueN ,Ufv}

where o is the activation function, /7, is the set of neighbors
of v, ® denotes the Hamilton product, hy“)‘Q is the qua-
ternion embedding of node v in (I +1)th layer, a,,,, denotes
the edge constant, and W®¥Q is the weight matrix. Since
QGNN leverages the weight-sharing method across the real
and imaginary component vectors of a node representation,
it enables capturing the subtle differences between different
nodes. To the best of our knowledge, such a GCN framework
is compatible with complex spaces that have not been
handled in our research field so far. Despite the achievement
of QGNN, it is still worth developing a generalized GCN
framework that works in complex spaces since embeddings
in complex spaces still show the runner-up performance in
practice while having less degree of freedom.

5.1.1. Direction-Aware Hadamard Product. To reflect di-
rection information, we adopt two types of direction-aware
weight matrices Wy_ and Wy, for incoming and outgoing
neighbors, respectively. We use individual weight matrix W
which is specified for self-loop to integrate the embedding of
the source entity from the previous layer with a relation that
connects it to itself. Moreover, we aim to replace the
Hamilton product with the Hadamard product for the
following reasons. First, the former is applicable to square
matrices, while the latter can be applied to matrices of any
size. This is suitable for imbalanced graph alignment, where
the two input graphs do not have the same size. Second, the
Hadamard product is straightforward to compute, as it
requires only elementwise multiplications.

More precisely, going beyond QGNN [19], we re-
construct the weight matrix as a nodewise concatenation of
the direction-aware matrices and the individual matrix, that
is, W = (Wq,_, W4, W,). In that, each inside matrix is de-
fined as follows:

Wa = Wapr + Wyid,
Wd—( :Wd_‘r +Wd_¢ii, (10)
W, =W, + Wi,

where W, denotes the real part of the corresponding weight
matrix and Wi is the imaginary part of the weight matrix.
Each F, 4, and s denotes outgoing directions, incoming
directions, and self-loop of relations. Unlike R-GCNs [15]
where a specific weight matrix is assigned to each relation
type, we leverage the weight-sharing mechanism for the
three aforementioned relation directions so that the model
can avoid the overparameterization problem. While keeping
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the simplicity of the model, it still can capture meaningful
features by incorporating relation-type information with the
rotation-based composition operator.

The new version of the weight matrix allows the
Hadamard product between the weight matrix and the node
representation to successfully generate complex embeddings
with richer information. More precisely, the Hamilton
product in equation (9) is replaced by the Hadamard
product between the abovementioned weight matrices and
the hidden complex representation of entities that can be
described as follows:

W, %, O ew,On,Oi—w, O, O e w, Op, 05 (11)

For the sake of simplicity, the equation can be expressed
as matrix multiplication represented as

o o [TTWO w01 kO
w@ehn," =|" l l y I (12)
il [-w," w,]ln,®

v

where W, is the real part of the weight matrix, W; denotes
the imaginary part of the weight matrix, ], is the real part,
and &, is the imaginary part of the hidden node embedding.
By transforming the hidden representations in complex
space instead of the Euclidean space through the Hadamard
product, we can more rigorously tune the embeddings which
can result in capturing the features more precisely.

After propagating through the GCN framework, the final
vector representations are generated by concatenating the
hidden node representations at all GCN layers and then
performing the linear transformation on them. Hence, we
can incorporate local and global aspects of the neighborhood
information to make the embeddings more consolidated.

5.1.2. Entity-Relation Composition. The key idea to in-
corporating relational-type information is to feed forward
the synthesis of entity and relation through the GCN layers.
To keep its expressiveness and simplicity in complex spaces,
we leverage the rotation concept using the Hadamard
product as follows:

t(h0,h0), (13)

where rt (x,y) denotes the Hadamard product between x and
v, h{" represents the entity embedding, and "’ denotes the
relation embedding that connects entity u and v. Note that,
to follow the track of relation information, the hidden
embedding h,, D" in equation (12) is replaced by
equation (13).

5.1.3. Put It Altogether. In the end, we design a novel GCN
mechanism that learns complex embeddings in a more
careful manner while considering both relation type and
direction information at the same time via end-to-end
learning. As the embeddings in the complex plane (i.e., the
Argand plane) can imply meaningful semantic information
through the entrywise product (i.e., the Hadamard product),
we also leverage this property into our GCN model to move
beyond the traditional multiplication between weight matrix
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and embeddings. More precisely, the embeddings of entities
are updated via the following propagation rule per node:

W=ol > w,Pot(n™n
(u,r)eN (v)

where o denotes the activation function, ./ (-) denotes the
set of pair of neighboring nodes and corresponding re-
lations, W, = (W, ,Wq,), and W, are trainable weight

matrices, hy) is the hidden representation of node v in layer [,
rt(-) is the Hadamard product-based composition operator
inspired by rotate [16], and © denotes the Hadamard
product between the weight matrix and node representation.
Note that, the reasons W,; and W are separated instead of
combined into one weight matrix as the former represents
neighbor information, while the latter preserves the node
identity across layers.

1
@de_m Z

(e,-,ej ) €L, (e,- ,e})él]_/e

where y represents the hyperparameter, L, is a set of cor-
rupted entity pairs, and d(-) denotes the cosine distance. L,
is built by replacing either ¢; or e; in truly alignment entity
pairs with an entity in s-nearest neighbor candidates [13]. By
sampling the negative alignments with close neighbors in-
stead of randomly selecting from a uniform distribution, it
can enforce the model to be able to distinguish subtle dif-
ferences between a truly corresponding counterpart and the
falsely corresponding one which has a high alignment
possibility.

It is noteworthy that the real and the imaginary parts of the
hidden node embeddings are obtained via the backward
propagation when training the model with the loss function in
equation (15). In particular, h, and h, are treated as two
variables in equation (11); thus, they can be obtained using an
optimizer such as stochastic gradient descent. The partition of
hidden embeddings into real and imaginary parts enables the
representation learning of high-order features, thus capturing
the subtle difference between correct and incorrect alignments.

5.3. Alignment Inference. The final alignment score is de-
termined by considering both similarity results generated from
RE and DI modules. To effectively integrate two individual
similarity results, it is efficient to utilize the late-fusion method
instead of the early-fusion approach to maintain the charac-
teristics of separated embedding spaces. Before we calculate the
final result, we concatenate the embeddings generated from
each GCN layer in order to consider from local range to the
global scope of neighborhood information. Then, we fuse S**
and SP' by following the late-fusion method as follows:

vur

@) +ws<l>@rt(hyl>,hyvg>)>, (19)

In summary, we use a different approach compared to
QGNN to incorporate the information of relation types by
updating embeddings not only with its neighbors but also
with the neighbors and their corresponding relations that
connect them to the source entity.

5.2. Loss Function. To enforce aligned entities to be closer
than those that are not, we utilize prealigned entities set L, as
a reference when training the DI module. The model aims to
minimize the below margin-based scoring function [13].

Z max{O, d(v(ei),v(ej)) - d(v (e,-),v(e})) + ya}, (15)

S, = BSE + (1 - p)SL, (16)

where f € [0,1] denotes the balance coefficient that defines
the importance of each module. Note that, in our model,
similarity scores are calculated by measuring the cosine dis-
tance between entities in every entity pair. Finally, the likely-
to-be-aligned counterparts are selected by the popular heu-
ristic approach such as the greedy search algorithm. To retrieve
the one-to-one alignments, we first sort the possible candidates
of each entity in a descending order of similarity score and
choose the one with the highest cosine similarity & (i, j) as the
final alignment. Then, the entries in the similarity matrix
which represent the similarity between i or j and other nodes
are deleted. With the updated similarity matrix, we repeat the
same procedure and end the iterations when all the entities of
one of the source and target KGs have been matched.

6. Experiments
6.1. Experiment Setup

6.1.1. Datasets. We conduct experiments on the eight
benchmark datasets constructed by the authors in reference
[23] using the IDS (iterative degree-based sampling) algo-
rithm. Based on the renowned real-world KGs: DBpedia [1],
Wikidata [24], and YAGO [25], we adopt two monolingual
and three multilingual KG datasets with tens of thousands of
entities to evaluate the performance in various cases. The
chosen curated datasets are divided twofold depending on
the density of the average node degree: (1) V1: sparse version
and (2) V2: denser version. V2 has a more similar structure
to the real-world dataset by keeping the nodes with a high
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degree while pruning those that are connected to fewer
neighbors. The detailed statistics of the V1 and V2 datasets
are organized in tables Tables 2 and 3.

6.1.2. Metrics. We utilize three representative metrics that
are widely used for assessing the performance of KG
alignment techniques.

(i) Hits@m (the higher the better): Hits@m is one of
the widely adopted measures that aims to estimate
the alignment performance based on whether the
true positive alignment appears within the top-m
ranked candidates.

ZVSEVS 1S (vs,vt)etop—ms (vs)

: (17)
#{True anchor links}

Hits@Qm =

(ii) MR (mean rank, the lower the better): to examine
the alignment in terms of how high the anchor node
is ranked among other anchor candidates, we use
MR (mean rank) formulated as follows:

MR = mean (ra), (18)

where ra indicates the rank of a truly aligned target
node among the other candidates.

(iii) MRR (mean reciprocal rank, the higher the better):
another popular metric is MRR, represented as
follows:

1
MRR = mean(—), (19)
ra
where alignment performance is measured based
on the average of reciprocal rank of truly aligned
entities.

6.1.3. Comparative Models. To investigate the ability of our
model, we carefully choose 7 competitive state-of-the-art KG
alignment approaches organized as follows:

(i) MTransE. It is based on the translation assumption
to train the alignment-oriented embeddings of
entities and relations and then learns the trans-
formation matrix to assist truly matching pairs to
have similar embeddings [8]

(ii) JAPE. It utilizes both relation and attributes triples
to generate embeddings and uses the parameter-
sharing method to unify the embedding spaces [6]

(iii) GCN-Align. It employs GCN (graph convolutional
networks) to produce entity embeddings while
considering both relation and attribute triples
simultaneously [14]

(iv) BootEA. It augments the training data during it-
erations by labeling close embeddings as newly
generated seed alignments by using the boot-
strapping method [7]

(v) RDGCN. It generates relation-aware embeddings
by encouraging attentive interaction between input
KGs and their dual relation graphs. Then, it feed-
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TABLE 2: Statistics of V1 datasets.

V1 datasets #Ent #Rel #Rel.tri
EN-FR-ISK-VI S }ﬁ;ggg e igﬁii
EN-DE-sK-v1  Enish 2000 1 some
DRPASKVE RS e e omses
DWASKVI bR 1se0  1e9  aa7ie
D-Y-15K-V1 ?{i%eg? ig:ggg e igjégé

TABLE 3: Statistics of V2 datasets.

V2 datasets #Ent #Rel #Rel tri
EN-FRISK-V2 S 121388 oo zgﬂi
EN-DEI5K-V2  L8ish 2000 96 oress
popaskvi  EE e i 1avass
DWISKVZ  WiER  1s00 a1 saas
D-Y-15K-V2 g B0 o a9

forwards the embeddings through two-layer GCNs
with highway gates [13]

(vi) AliNet. It extends the scale of the neighborhood to
incorporate informative distant neighbors and
then aggregates neighboring nodes by giving high
importance to helpful neighbors based on atten-
tion GNNs and gating mechanism [26]

(vii) MultiKE. It generates three perspectives of entity
features (entity name, relation, and attribute) and
then incorporates them with three combination
strategies to consider multiple views of alignment
information [27]

(viii) Dual-AMN. It captures both intragraph and cross-
graph information while minimizing computa-
tional complexity with a method for selecting
challenging negative samples with reduced loss
impact [28]

Note that, there are recent graph embedding methods such
as QGNN [19] and magnet [20]. However, they mostly focus on
single-graph tasks such as node classification and link pre-
diction, and thus, they are not applicable to our setting. We
include their evaluations in subsection 6.3 for reference.

6.1.4. Training Details. Following reference [23], we set the
ratio of the seed alignments for training as 20 %, validation
as 10 %, and test as 70 % for all datasets. To search for the
suitable hyperparameters, we take the listed values as can-
didates: learning rate in {le”*,5¢7%, 1”3, 5¢7%, 1le"%, 5¢”,
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le™!,5¢7 '}, margin y, and y, in {1,2, 5}, matrix balancing
weight S in {0.4,0.5,0.6}, loss balancing weight « in
{10,20, 50}, number of GCN layers in {1,2,3}, and em-
bedding dimension size in {100, 200, 300}. The final selected
hyperparameters are learning rate = 5e 4, y, =5, y, =1,
B = 0.6, a =50, number of GCN layers = 2, and embedding
dimension size for RE module = 100 and for DI module
= 300. In addition, we set the maximum epoch number as
2000 and check the MRR result at every 10 epochs on the
validation set and terminate the training before it hits the
maximum epoch when MRR starts to decrease in succession.
Table 4 summarizes the hyperparameters.

6.1.5. Implementation. We leveraged the PyTorch library
along with Python 3.6 to implement and run our model. To
execute the experiments in a fair manner, we ran the ex-
periment over 100 times for each technique. Experiments
were conducted on an AMD Ryzen Threadripper 3.8 GHz
system with 64 GB RAM and four GTX Titan X graphic
cards. We used random initializations.

6.2. End-to-End Comparison. We conduct an end-to-end
comparison between ComplexGCN and selected state-of-
the-art baseline techniques on real-world monolingual and
multilingual KG datasets.

6.2.1. Monolingual Entity Alignment. The objective of the
monolingual entity alignment task is to find out matching
entities across two different input KGs constructed in the same
language (i.e., English). For the evaluation metrics, we take four
measures into consideration: Hits@1, Hits@10, MR, and MRR.
The alignment technique is regarded as efficient with a higher
Hits@k score and MRR, while a lower MR indicates high
performance. Table 5 provides convincing results for our ex-
periment. As can be seen from Table 5, our model consistently
outperforms all other baseline techniques on four monolingual
datasets. Specifically, ComplexGCN achieves up to 97.5% on
Hits@1, 99.4% on Hits@10, and 0.983 on MRR.

From the experiment result, we can rationalize the ef-
fectiveness of two main properties of our model: (1) the
Hits@1 and MRR of the result of the Dual-AMN, RDGCN,
and GCN-Align demonstrate that incorporating multi-
perspective relation information assists the performance
gain. From this, it can be found that our rotation-based
composition operator in the DI module makes our model
efficient. (2) The large gap in accuracy between MTransE and
ComplexGCN is observed in all scenarios, which implies
that our DI module takes an important role in alignment
performance improvement.

Following ComplexGCN, both BootEA and RDGCN
and Dual-AMN have the highest results among the baseline
techniques, while MTransE obtained the lowest output
among all the other baseline techniques. This indicates that
more complicated architecture often achieves better per-
formance than solely relying on the translation constraint
method. Moreover, GNN-based techniques such as GCN-
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Align, RDGCN, AliNet, and Dual-AMN consistently
exhibited promising results which indicate the significance
of GNNs on the KG alignment task.

6.2.2. Multilingual Entity Alignment. In practice, there often
exists a huge knowledge gap between different language-
version KGs. It is crucial to discover equivalent entities
between KGs in different languages; however, such a task
requires a more sophisticated approach to address. The same
alignment metrics are adopted to estimate the performance
of the techniques on multilingual datasets for the mono-
lingual test. From Table 6, the results that are similar to the
experiment on monolingual datasets can be observed.
Different from the monolingual test, Dual-AMN,
RDGCN, and MultiKE were the runner-up techniques
among the baselines in most of the scenarios. It can be
assumed that the algorithms that involve various pieces of
information about KG are more suitable for multilingual
settings. In addition, the margin between the Hits@1 results
of our model and the runner-up technique was larger than
those in a monolingual environment. Such a large margin of
up to 12.9% on Hits@1 demonstrates that our model per-
forms better on multilingual datasets, which validates the
robustness of the relation-aware method as well as the power
of the architecture of our model on multilingual datasets.

6.2.3. Running Time. Time complexity is one of the im-
portant metrics that evaluate the performance of the models
since the shorter the running time, the more practical they
are at the application level. As depicted in Figure 4, the
running time of our model is quite competent in the D-Y-
V2,D-Y-V1,D-W-V2, and D-W-V1 datasets (BootEA is the
slowest method). However, our model is much slower in
EN-FR-V2, EN-FR-V1, EN-DE-V2, EN-DE-V1, DBP-V2,
and DBP-V1 datasets. This could be explained by the fact
that two different languages have inherently different se-
mantics that could not be aligned perfectly, whereas our
rotation-based embedding tries to find the perfect entity
calibration, which leads to slow convergence.

There are possible improvements to reduce run time
such as simplifying tensor products with circular correlation
operation [29] and NeuralLP [30]. However, these methods
are often applied to more than one million entities, which is
out of the scope of our datasets. Thus, they will be considered
as our orthogonal future work.

6.3. Ablation Test. To analyse the effectiveness of each
module in our model, we conduct the ablation study on the
V1 and V2 D-W-15K datasets. We compare the results of
our model and three variants as follows:

(i) Var-1. In this variant, we discard the DI module and
only keep the SE module, in order to evaluate the
impact of the DI module

(ii) Var-2.In this variant, we discard the SE module and
only keep the DI module to see the impact of the SE
module
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TaBLE 4: Hyperparameter configuration.
Max epoch 2000
eval_freq 10
Learning rate le™* 5e* le™3 5¢3 le™2 5¢2 le ! 5¢!
emb_dim 100 200 100
Margin y 1 2 5
GNN layer 1 2 3
Negative sample 10 20 50
Balancing weight « 10 20 50
Balancing weight f3 0.4 0.5 0.6
TaBLE 5: Experiment results on monolingual datasets.
Datasets Metric  MTransE JAPE GCN-Align BootEA RDGCN AliNet MultiKE Dual-AMN ComplexGCN
Hits@1 0.258 0.251 0.362 0.574 0.517 0.472 0.410 0.628 0.683
D-W-15K-V1 Hits@10 0.543 0.544 0.647 0.794 0.717 0.704 0.582 0.816 0.863
MR 331.2 243.6 765.3 286.5 508.5 575.8 275.6 267.4 93.9
MRR 0.354 0.349 0.463 0.648 0.582 0.553 0.466 0.673 0.749
Hits@1 0.272 0.263 0.507 0.823 0.621 0.741 0.497 0.794 0.802
D-W-15K-V2 Hits@10 0.585 0.581 0.819 0.950 0.807 0.926 0.726 0.953 0.960
MR 146.1 99.1 146.1 18.5 229.1 72.4 38.7 9.6 6.9
MRR 0.374 0.369 0.611 0.865 0.682 0.806 0.571 0.833 0.858
Hits@1 0.464 0.472 0.464 0.737 0.930 0.571 0.903 0.861 0.975
D-Y-15K-V1 Hits@10 0.732 0.744 0.663 0.874 0.971 0.725 0.951 0.964 0.994
MR 245.6 211.3 1113.5 365.1 17.9 532.7 19.6 18.1 4.7
MRR 0.557 0.567 0.537 0.788 0.949 0.631 0.923 0.895 0.983
Hits@1 0.444 0.945 0.875 0.959 0.936 0.951 0.857 0.887 0.970
D-Y-15K-V2 Hits@10 0.705 0.626 0.964 0.991 0.973 0.992 0.925 0.979 0.994
MR 85.1 82.4 47.2 4.9 13.9 6.1 10.1 52 1.4
MRR 0.534 0.441 0.906 0.966 0.950 0.967 0.881 0.921 0.979

The results with italics denote runner-ups. Bold values mean best performance.

(iii) Var-3. In this variant, we replace the DI module
with vanilla GCN to validate the effectiveness of our
relation-aware DI module

(iv) Var-4. In this variant, we use a single weight matrix
instead of three as in equation (10). This is actually
a better version of QGNN [19] that leverages the
design of our DI module

(v) Var-5. In this variant, we replace the DI module
with a magnet [20] to validate the effectiveness of
our relation-aware DI module.

As it is demonstrated in Table 7, the original version of
our model outperforms other variants. More precisely, the
margin of at least 45% on Hits@1 is observed between Var-1
and the original ComplexGCN which indicates that our DI
module significantly contributes to performance improve-
ment. Second, another variant Var-2 also shows lower ac-
curacy which justifies that it is an effective approach to take
both SE and DI modules into consideration. This shows that
both semantic and neighborhood information is worth
incorporating to enhance the quality of the alignment-
powered embeddings. Third, the comparison between
Var-3 and our model proves the comparative superiority of
our newly proposed GCN architecture compared to vanilla
GCN. According to the results, our GCN framework ranks
the truly aligned entities higher than vanilla GCN overall
which can evidence that our proposal works better on the

entire entities evenly. We assume that this is because of the
capability to capture various types of relation patterns. In
other words, our model can generate more accurate em-
beddings for the entities that are connected with specific
relation patterns along with general relations. Fourth, the
variant Var-4 is close to our performance by being the
runner-up in some cases. This is reasonable as it is almost
equivalent to QGNN. However, it does not separate the
weight matrix to capture the direction information and self-
loop information, thus losing some contexts for the graph
alignment setting. Finally, the variant Var-5 is worse than
our original ComplexGCN, even though it leverages a recent
graph embedding process for complex spaces. It could be
explained by the fact that it was originally designed for node
classification and link prediction only.

6.4. Supervision Level Study. The ability to achieve high
performance with a small amount of prealigned entities is
a crucial challenge for KG alignment techniques. We trained
our model and the other baseline techniques with different
ratios of training data to see their degree of performance
degradation depending on the amount of the seed align-
ment. From Figure 5, our model maintains the highest result
or the same level of accuracy with all the baselines even
under the condition where at least 3% of seed alignments are
given. Other datasets are omitted for brevity’s sake because
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TABLE 6: Experiment results on multilingual datasets.

Datasets Metric  MTransE JAPE GCN-Align BootEA RDGCN AliNet MultiKE Dual-AMN ComplexGCN
Hits@1 0247  0.261 0.336 0.508 0.754 0.388 0.747 0.727 0.883
Hits@10  0.563  0.595 0.681 0.793 0.881 0.829 0.843 0.940 0.976
EN-FR-15K-V1 MR 251.7 175.4 562.1 227.6 156.1 483.2 97.8 68.1 13.3
MRR 0352 0.372 0.451 0.600 0.801 0.485 0.781 0.802 0.915
Hits@1 0241 0292 0.415 0.660 0.847 0.581 0.864 0.842 0.968
Hits@10 0240  0.623 0.796 0.904 0.934 0.878 0.923 0.855 0.996
EN-FR-15K-V2 MR 206.2 89.1 131.5 131.5 61.7 94.0 12.4 74.9 1.9
MRR 0.337  0.401 0.541 0.741 0.880 0.692 0.884 0.910 0.980
Hits@1 0.308  0.289 0.479 0.676 0.830 0.610 0.757 0.841 0.933
Hits@10  0.611  0.609 0.754 0.863 0.914 0.831 0.826 0.896 0.984
EN-DE-ISK-VL 5y p 2241 1405 3523 1254 673 2165 916 72.8 12.8
MRR 0.410  0.395 0.572 0.741 0.856 0.682 0.781 0.897 0.952
Hits@1 0.194  0.168 0.533 0.835 0.834 0.815 0.754 0.853 0.949
Hits@10  0.432  0.417 0.781 0.935 0.936  0.930 0.834 0.898 0.990
EN-DE-I5K-V2yip 1934 1399 1081 16.1 748 713 451 213 37
MRR 0274 0250 0.619 0.867 0.861 0.856 0.784 0.905 0.965
Hits@1 0.275  0.357 0.408 0.592 0.796 0.501 0.725 0.855 0.908
DBP15K.V1 Hits@10  0.578  0.602 0.718 0.828 0.894 0.803 0.834 0.971 0.980
MR 2357  156.3 433.8 176.2 115.1 354.9 943 67.4 13.2
MRR 0.381  0.384 0.512 0.671 0.829 0.584 0.762 0.898 0.934
Hits@1 0245  0.329 0.415 0.657 0.876 0.696 0.783 0.897 0.959
DBP-15K.V2 Hits@10  0.576  0.675 0.774 0.871 0.952 0.904 0.942 0.980 0.993
MR 217.5 137.6 115.9 53.7 75.6 85.2 25.8 115 2.8
MRR 0366  0.445 0.532 0.734 0.907 0.774 0.846 0.929 0.973

The results with italics denote runner-ups.
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TaBLE 7: Ablation test on D-W-15K-V1 and V2.
Datasets Metric Var-1 Var-2 Var-3 Var-4 (QGNN) Var-4 (Magnet) ComplexGCN
Hits@1 0.229 0.615 0.679 0.680 0.638 0.683
Hits@10 0.468 0.791 0.862 0.859 0.826 0.863
D-W-15K-V1 MR 584.9 174.5 106.9 101.4 104.3 93.9
MRR 0.310 0.678 0.746 0.746 0.733 0.749
Hits@1 0.296 0.718 0.762 0.771 0.722 0.802
Hits@10 0.662 0.893 0.954 0.947 0.932 0.960
D-W-15K-V2 MR 60.7 75.2 11.1 9.2 17.4 6.9
MRR 0.417 0.780 0.825 0.817 0.712 0.858

The results with italics denote runner-ups.

they show similar trends. This result demonstrates that our
model can even preserve its performance in real-world
practice where labeled data are hard to be accumulated.

7. Related Works

7.1. Embedding-Based KG Completion. In the past few years,
extensive embeddings have been performed to handle the
incompleteness problem of KGs. The major idea in this field is
to effectively encode embeddings of resources of a single KG
by capturing the plausibility of the relation triples in KGs so
that the knowledge semantics can be expressed in Euclidean
space. The generated embeddings are then leveraged to fill out
the missing links (link prediction) or to find out which class of
unlabeled entities should belong to (node classification). The
most renowned approaches [31, 32] are based on the
translation assumption which was first proposed by TransE
[9]: head_entity + relation = tail_entity. The parameters are
trained by inducing the score of positive triples to have lower
values than those of the negative ones. Despite its simplicity
and effectiveness, there remain several problems: (1) it fails to
address the cyclic structure and (2) different embeddings are
encoded for the same relation when it is symmetry. To
mitigate these problems, vector representations where each
entry is a complex number have emerged in the field [16, 17].
Unlike vectors of real numbers, complex vectors can harness
the intuition behind Euler’s formula e = cos(6) + i sin (6)
where e’ is a value at which the length of 1 bar is rotated from
the real axis by 6 radians. Taking advantage of this property,
RotatE [16] constrains every relation embedding to have
modulus 1 so that the relation embeddings can be deemed as
rotation from head entity to tail entity. By bringing the ro-
tation concept, all three relation patterns as well as cyclic
structures can be easily captured.

7.2. Conventional KG Entity Alignment Methods. As afore-
mentioned, before the era of representation learning of KGs
started, text-based EA approaches were frequently adopted in
many domains to enrich KGs with newly aligned entities in
different KGs. Text-based EA approaches provide straight-
forward intuition to align entities in distinctive KGs under
the assumption that equivalent entities have the same literal
information such as entity name. The primary EA method
appeared as the problem suited for relational data, mainly
relying on the rich textual information (e.g., entity de-
scription) of entities in data. Most representative traditional

methods such as PARIS [33], RIMOM-IM [34], and LogMap
[35] are tailored for finding matching between entities
(instances) or even for relations (also known as schema) and
classes as well. To detect alignments, text-based approaches
for KGs exclusively employ attribute triples as their input
where the source entity is connected to a textual value by an
attribute type. In the case of cross-lingual KG matching, the
use of machine translation (e.g., Google translate) is im-
perative to convert non-English-version KG into English for
making them easily comparable. It is noteworthy that such
conventional approaches are subject to a lack of a sufficient
amount of textual information on entities in real-world KGs
leading to requiring novel methods to take account into
more conducive information for alignment tasks.

7.3. Embedding-Based KG Entity Alignment. Unlike con-
ventional KG alignment methods, embedding-based KG
alignment approaches have shown to be beneficial at
leveraging multifaceted information and simplifying the
inference process to compute matchable probability between
every entity in source and target KGs. The core idea is to
embed entities or relations into continuous vector space and
measure the similarity between each vector point, so-called
embedding, by measuring the distance between them with
a given particular distance metric. Embedding-based KG
alignment approaches can be categorized into two main
groups: translation-based models and neighborhood-
integration models. Translation-based models [6, 7] follow
the concept of TransE [9] to conserve the knowledge logic of
the input triples. Over the last few years, the interest in graph
neural networks (GNN) has exponentially grown due to
their capability of integrating neighborhood information.
An entity can be expressed with the consolidations of its
neighboring nodes since entities do not have any meaning
without connection to other nodes while it can be defined
with its connections to its neighbors. Neighborhood-
integration models [13, 14, 26, 36-41] utilize GNN
methods (e.g., recurrent GNN [42], graph convolutional
network (GCN) [11], and graph attention network [12]) to
incorporate neighborhood structure to infer alignment
likelihood following the assumption that the equivalent
entities in KGs tend to have similar neighborhood structure.

7.4. Embeddings in Complex Space. In recent literature, re-
searchers have discovered that the entities encoded in
complex or even hypercomplex spaces can have much
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FIGURE 5: Alignment performance on the D-W-15K-V1 dataset with different supervision levels.

expressiveness in comparison with the embeddings repre-
sented with only real values. Formally, the pointwise rep-
resentation of entities in complex space consists of
a complex number which holds the form of a + bi where a
and b are real values and i denotes the imaginary unit. Each
element in a complex vector follows the aforementioned
form which allows the embeddings to have denser repre-
sentation, hence enabling a variety of computations to
operate such as rotation and conjugate [16-18]. Due to such
properties, complex embedding learning methods have
shown their promising performance which opens much
potential to be further developed. ComplEx [17] is the first
model to successfully capture symmetric and antisymmetric
relation patterns. RotatE [16] further proposes a rotation-
based score function to model additional composition
patterns. There has been an effort to build a generalized
GNN model in quaternion space, the so-called QGNN [19],
by employing the Hamilton product in the GNN model.
Similar to our effort is magnet [20], which introduces
complex spaces for GNNs. However, magnet only focuses on
node classification and link prediction; thus, it lacks im-
portant information for knowledge graph alignment. To the
best of our knowledge, this is a pioneering paper in handling
complex embeddings for graph alignment, especially
knowledge graphs. Our novelty is a careful combination of
a rotation-based embedding augmentation, a new loss
function, and a new parametrization for weight matrices.

8. Conclusion and Future Works

This paper proposed a novel framework, namely, Com-
plexGCN that generates complex embeddings via rotation
constraint and the advanced GNN module that performs in
complex spaces. The model combines RE and DI modules to
complement each other and guarantees the semantic and
relation information-preserving embeddings which lead to
more accurate alignment results. To this end, ComplexGCN
first learns the semantic-aware complex node representa-
tions by constraining the triples with rotation assumption.
Then, the model incorporates the multiperspective of re-
lation information through the rotation composition op-
erator and gains the expressiveness of the embeddings with

Hadamard product-inspired GNN architecture. Extensive
experiments conducted on various datasets demonstrate the
superiority of our model against the state-of-the-art baseline
techniques and the comparison between the variants of our
model justifies the design of our model. For future work, we
plan to incorporate multimodal data and attribute triple
information to further enhance the expressiveness of
alignment-oriented embeddings.

Data Availability

The experiments were performed on public datasets (see
Section 6.1.1).
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