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Shared gradients are widely used to protect the private information of training data in distributed machine learning systems.
However, Deep Leakage from Gradients (DLG) research has found that private training data can be recovered from shared
gradients. Te DLG method still has some issues such as the “Exploding Gradient,” low attack success rate, and low fdelity of
recovered data. In this study, a Wasserstein DLG method, named WDLG, is proposed; the theoretical analysis shows that under
the premise that the output layer of the model has a “bias” term, predicting the “label” of the data by whether the “bias” is
“negative” or not is independent of the approximation of the shared gradient, and thus, the label of the data can be recovered with
100% accuracy. In the proposed method, the Wasserstein distance is used to calculate the error loss between the shared gradient
and the virtual gradient, which improves model training stability, solves the “Exploding Gradient” phenomenon, and improves
the fdelity of the recovered data. Moreover, a large learning rate strategy is designed to improvemodel training convergence speed
in-depth. Finally, the WDLG method is validated on datasets from MNIST, Fashion MNIST, SVHN, CIFAR-100, and LFW.
Experiments results show that the proposed WDLGmethod provides more stable updates for virtual data, a higher attack success
rate, faster model convergence, higher image fdelity during recovery, and support for designing large learning rate strategies.

1. Introduction

Shared gradients are common in computationally and time-
intensive task systems. Machine learning (ML) model
training is frequently used in distributed training and col-
laborative learning due to its similar task characteristics. Te
gradients are shared and aggregated across multiple mi-
croprocessors (nodes) for machine learning model training;
each worker node operates in parallel to accelerate ML
model training. Terefore, distributed training methods are
critical for speeding up model training on large-scale
datasets.

In recent years, research using shared gradient methods
has yielded excellent results. McMahan et al. [1] were the
frst to propose the Federated Learning (FL) architecture. FL

builds iterable aggregated models by training distributed
models across multiple data sources with local data, only
exchanging model parameters or intermediate results
models, and thus learning a shared target model. Improved
approaches based on FLmethods [2–9] have carried out a lot
of research work in achieving a balance between data privacy
protection and data sharing computation. Currently, more
researchers are using cryptographic privacy-preserving
methods and diferential privacy-preserving methods to
achieve privacy-preserving security for local gradients in the
federal learning security problem [10, 11]. Meanwhile, for
large-scale ML tasks, other distributed training [12–14] and
collaborative learning [15, 16] methods are widely used.

In distributed ML systems, it is widely assumed that
“shared gradients” do not leak the training dataset. Te
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output of machine learning model decisions frequently
contains a large amount of inference information from
training samples; recent studies have shown that these
outputs are vulnerable to membership inference attacks
[17–21] and gradient reversal attacks [16, 22–25], which
result in leaking training datasets. To the best of our
knowledge, the most dominant Deep Leakage from Gra-
dients (DLG) [24] and Improved DLG (iDLG) [25] are
currently among the most efective gradient-based inverse
attacks. Nevertheless, the DLG method still generates ran-
dom noisy images for training data recovery, and “Exploding
Gradients” is one of the main reasons for the low success rate
of DLG method attacks. In addition, the DLG method has
problems such as slow convergence speed of model training,
low fdelity of recovered data (the original training data can
be recovered; however, the recovered training data still has
random noise in some positions of the image), and an
undesirable design strategy of a large learning rate.

For starters, data label prediction is more accurate and
faster. We theoretically prove that the prediction of data
labels is independent of the recovery of training data to
predict data labels more accurately and improve attack
accuracy, assuming that the activation function is ReLU and
using cross-entropy to calculate the loss value. Our method’s
time complexity is much lower than that of iDLG’s method,
especially when the last hidden layer contains more neurons.
Second, model training is more stable, and convergence
occurs more quickly. Te WDLG method can stabilize
model training and play the role of fast convergence, and the
main reason why the analysis can solve the phenomenon of
“Exploding Gradient” is that the original gradient calculated
by random initialization of model parameters has certain
randomness, and the gradient calculated during training still
has certain randomness. Te superiority of calculating the
distance between two random variables according to the
Wasserstein distance can better stabilize the model training
to better calculate the distance between two random vari-
ables, which is the frst attempt to improve the original DLG
method as far as we know. Tird, large learning rate model
training is more stable; we attempt to provide a large
learning rate design strategy to improve model training
speed and achieve better results; however, the balance be-
tween model training stability and learning rate design must
be fully considered.

Our proposed WDLG method has been validated on
MNIST [26], Fashion MNIST [27], SVHN [28], CIFAR-100
[29], and LFW [30] datasets. Te experiments demonstrate
the benefts of the WDLG method for more stable virtual
data updates for model training, higher attack success rates,
faster model convergence, and support for large learning rate
design strategies. Tis paper’s main contributions are as
follows:

(i) We assume that the output layer employs a biased
ReLU activation function and that the model em-
ploys cross-entropy loss. Based on a diferentiable
model, the WDLG method diferentiates the bias
term and theoretically demonstrates that the pre-
diction of label data is only related to the bias of the

output layer, independent of the recovery of the
training data. As a result, the true labels are
extracted with 100% accuracy from the shared
gradients, allowing for more accurate data
extraction.

(ii) Wasserstein distance is used to calculate the gra-
dient loss, and a new loss function is selected to
solve the stability of the model training. Te model
training converges faster and solves the “Exploding
Gradient” phenomenon.

(iii) Trough experiments, we analyze the relationship
between the stability of model training and the f-
delity of recovered data with diferent learning rates
and conclude that the WDLG method can support
large learning rate design strategies.

Te rest of this paper is organized as follows: Section 2
describes the related work in detail. Section 3 presents our
method, which includes the extremely important prediction
proofs for training data labels, the choice of the loss function,
and the approximation of the Wasserstein distance calcu-
lation. Section 4 gives three valid comparison experiments,
which are the comparison of prediction accuracy of training
data labels, the comparison of training model stability and
convergence speed, and the comparison of large learning
rate training. Finally, Section 6 concludes the paper.

2. Related Works

Many studies have been conducted to improve the scalability
of distributed training of ML models during distributed
training of ML models. Sharing data gradients is a common
practice in existing distributed ML systems, and multiple
parties’ data are jointly trained using the shared gradient
information. Because of stochastic gradient descent’s stable
scalability, the algorithm [31–34] and framework [35–37]
have essentially adopted synchronized stochastic gradient
descent as the dominant method for parameter updating.
However, both centralized [38–40] and decentralized
[34, 41] training methods have the potential technical se-
curity risk of data and model parameters being compro-
mised during training and application. One of the most
common attacks for model leakage is the model reversal
attack, in which the attacker extracts information about the
training data from the model prediction results. Model
reversal attacks are classifed into two types based on the
diferent model output information possessed by attackers:
model output-based data leakage and gradient update-based
data leakage.

2.1. Model Output-Based Data Leakage. Te output of ma-
chine learning model decisions frequently contains many
inferences about the training data, and recent studies have
shown that these outputs can be used to steal information
about the original training data. Fredrikson et al. [17]
proposed a confdence-based model reversal attack method
and achieved better attack results on the model [42–44]. It
demonstrated that confdence could be used as a measure to
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recover training data and learn sensitive private information
about individuals for adversarial access to ML models. Te
membership inference attack was frst proposed by Shokri et al.
[18]; the basic principle of the attack is to statistically analyze the
discrepancy between the prediction results of ML models on
training and nontraining data; the attacker can implement the
membership inference attack if he can capture this discrepancy.
On this basis, the equivalent attack efect of Shokri’s proposed
method is achieved by ftting the membership inference attack
[45] and membership inference attack in the black box scenario
[46].Te literature [6, 47] investigated themembership inference
attack in white-box scenarios and successfully built more robust
attacks by exploiting the diference in model gradients between
training and nontraining data, resulting in better attack results.
Song et al. [48] discovered that adding adversarial training
during the training ofMLmodels increases the risk of themodel
leaking members’ private information through an in-depth
study of membership inference attacks. By using generative
adversarial networks [49] to learn the statistics of real data
distributions, Hayes et al. [19] completed the construction of
membership inference attacks. Furthermore, Salem et al. [20]
improved themembership inference attack by extending it to the
domain of online learning.

2.2. Gradient Update-Based Data Leakage. Te gradients
continuously generated by machine learning models during
training still imply rich privacy information about the
training dataset. Melis et al. [16] used user-updated model
parameters as features for training attack model inputs for
inferring relevant attributes of other user datasets. Te lit-
erature [7, 50, 51] employs generative adversarial networks
to generate methods for recovering training data from other
users, and Mahendran et al. [22] investigate gradient in-
version information maximization to synthesize real data
from training networks, but both rely on a priori in-
formation from auxiliary datasets. Mordvintsev et al. [23]
use only the gradients in the input to enable the separation of
noise and image, making it difcult to obtain higher-fdelity
information on large datasets. Geiping et al. [8] were the frst
to push decision boundaries to ImageNet-level gradient
inversion, but there is an issue with an unpredictable gra-
dient averaging emergence. To the best of our knowledge,
the most popular Deep Leakage from Gradients (DLG) [24]
and Improved Deep Leakage from Gradients (iDLG) [25]
methods are currently among the most efective methods for
attacking gradient-based data leakage methods. Te method
generates virtual data with the same size as the training
samples and labels at random and then uses the virtual data
as the model input and error direction propagation to
calculate the virtual gradient. Te virtual data are learned
using an optimization algorithm in such a way that the
gradient obtained by backpropagation on the common
model is similar to the real gradient, and the training data
and labels are obtained after several rounds of iterative
optimization. At the moment, this is one of the hottest topics
in the study of variants of DLG-based methods [9, 52–54].

Although the DLG method has produced good attack
results, its attack capability is limited, and the attack

succeeds only when the predicted label is correct, and the
model converges slowly; if the predicted label fails, the attack
never converges, resulting in the DLG method’s low accu-
racy. Te improved iDLG, on the other hand, theoretically
proves that data label prediction is independent of training
data recovery under the condition that the activation
function is a ReLU activation function or a sigmoid function
and the loss value is calculated by cross-entropy, allowing
the iDLG method to always attack successfully and thus
recover the training data with high fdelity. Although the
iDLG method produces good experimental results, the
“Exploding Gradient” phenomenon occurs when training
the model, resulting in slow model convergence and an
undesirable large learning rate design strategy.

We analyze the causes of the more unstable training
process of the DLG method and the improved iDLG
method; the least squares method to calculate loss values
typically sufers from the uncertainty of the gradient cal-
culated by randomly initializing the weights. Tere may be
multiple identical possible outcomes for the same pseudo-
data input during iterative training of the model, and in
these cases, the least-squares loss function aims for fuzzy
prediction. When viewed through the lens of stochasticity,
the original gradients computed by randomly initializing the
model parameters sufer from a certain degree of ran-
domness, as do the gradients of the parameters generated
during the training process. Tis results in inefcient DLG
method attacks, a lack of stability in model training, the
“Exploding Gradient” in training data recovery, and un-
desirable design strategies for high learning rates.

3. WDLG Method

We give the structure of the WDLG method, as shown in
Figure 1. Among the key problems, we need to solve is the
prediction of the data labels and the construction based on
the Wasserstein distance loss value calculation, which leads
to the recovery of the training data. Terefore, we frst
describe the proof process of data label prediction, followed
by the selection of the Wasserstein distance-based loss
function, and fnally the approximate solution of the
Wasserstein distance.

3.1. Data Label Prediction. Tere is some randomness in the
DLG method for the label recovery. In the iDLG method
[25], it is found that shared gradients can leak the true labels,
and for the labels encoded by unique heat, it is proposed that
any diferentiable model trained based on cross-entropy loss
can extract the true labels efectively. Based on the iDLG
approach, we give a more concise method for true label
recovery. For the classifcation scenario, where the neural
network model is usually trained using the cross-entropy
loss of the unique heat-encoded true labels, it is defned as
follows:

Loss(x, c) � −log
e

yc

􏽐
C
k e

yk
􏼠 􏼡 � −yc + log 􏽘

C

k

e
yk⎛⎝ ⎞⎠, (1)
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where x denotes the training sample, C denotes the total
number of classifcation categories, and yc denotes the
confdence that the training sample x is predicted to be the c-
th class.

yc � f 􏽘
t

j�1
yj + bc

⎛⎝ ⎞⎠, (2)

where t denotes the number of neurons in the penultimate
hidden layer and 􏽐

t
j�1yj denotes the input of the c-th neuron

in the last layer, whose corresponding bias is bc. For the
ReLU activation function, f(x) � max (0, x) and f′(x) � 1.
Te loss gradient for bias bc is
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Since e
f(􏽐

t

j�1yj+bc)/􏽐C
k e

f(􏽐
t

j�1yj+bk) ∈ (0, 1), gi ∈ (−1, 0)

when i � c, otherwise gi ∈ (0, 1).
Terefore, we can get the same conclusion of true label

prediction as in the iDLG method, but we are more efcient
in terms of computational complexity. We only need to
obtain the negative bias term of the last layer of neurons to
obtain the corresponding true labels of the input training
sample x.

3.2. WDLG Loss Function. Te DLG method makes the
virtual gradient approximate the original gradient by opti-
mization, and in theory, the virtual data will also be closer to
the training data. Given the gradient of the original training
data, the training data are obtained by minimizing the
following objective:

x
′∗

, y
′∗

� argmin
x′,y′

∇W′ − ∇W
�����

�����
2

� argmin
x′ ,y′

zLoss F x′, W􏼐 􏼑, y′􏼐 􏼑

zW
− ∇W

���������

���������

2

, (4)

where F(x′, W) is a neural network parameterized by W

with x′ as input. Te ‖∇W′ − ∇W‖2 distance is diferentiable
concerning the training data x′ and the virtual label y′ and
thus can be optimized using a standard gradient-based
approach.

Based on the superior performance of the Wasserstein
distance, we propose the WDLGmethod and recompute the
distance between ‖zLoss(F(x′, W), y′)/zW − ∇W‖2. Our
WDLG method obtains the training data by minimizing the
following objectives:

x
′∗

� argmin
x′

Wd ∇W
′
,∇W􏼒 􏼓 � argmin

x′

Wd

zLoss F x
′
, W􏼒 􏼓, y

′
􏼒 􏼓

zW
,∇W⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠, (5)

where Wd denotes the Wasserstein distance.
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We refer to the DLG [24] method and proposed the
WDLG method in Figure 1, where the color “red” is not the
same. Te specifc process is given as follows:

Step 1: normal participant inputs the training sample x

into the diferentiable deep network model F to obtain
the predicted value Pred and at the same time calculates
the label corresponding to the input sample according
to equation (3), noting that the prediction of the label is
independent of the training process of the whole
network, and our method can recover 100% of the
correct label. We record the gradient ∇W (the original
gradient) of the real sample corresponding to each
parameter.
Step 2: malicious attacker randomly initializes the
virtual data x′, which is sampled from the standard
positive-terrestrial distribution. x′ is used as the input
of the deep network model F to obtain the virtual
gradient ∇W′ corresponding to the virtual data.
Step 3: we calculate the Wasserstein distance between
∇W′ and ∇W to calculate the loss value according to
equation (5) and iteratively update the input virtual
data x′ cyclically until the fdelity index MSE between
x′ and x reaches the preset threshold.

In Algorithm 1, F(x, W) denotes the diferentiable deep
learning model, and the model is parametrically represented
by W. bc′(c′ � 1, 2, · · · , C) denotes the bias of the c′ neuron
in the output layer, and under the assumption of cross-
entropy output, the subscript corresponding to the negative
bias term, i.e., is the class of the sample prediction.

3.3. Wasserstein Distance Calculation. Te Wasserstein
distance measure is widely used in econometrics, machine
learning, and other felds. Te proposal of the WGAN [55]
model, in particular, has reignited a surge in its research and
applications.

3.3.1. Wasserstein Distance Defnition. Let Π(P, Q) be the
set of all possible joint probability distributions of the
combination of two probability distributions P(x) and Q(y),
and for any joint probability distribution c(x, y), the

distance d(x, y) of the sample (x, y) ∼ c distribution is
defned as follows:

W(P, Q) � inf
c∼Π(P,Q)

Bc(x, y)d(x, y),

� inf
c∼Π(P,Q)

E(x,y)∼c[d(x, y)],
(6)

where d(x, y) is a cost function. For each possible joint
distribution c, samples x and y can be obtained by sampling
(x, y) ∼ c from it and calculating the cost d(x, y) between
the pair, so the expectation E(x,y)∼c[d(x, y)] of the sample
pair cost under this joint distribution c can be calculated.
Te lower bound that can be taken on this expectation in all
possible joint distributions is the Wasserstein distance.
However, it is intuitive to interpret E(x,y)∼c[d(x, y)] as the
consumption required to move the P distribution to the Q

distribution under this path planning of c. Terefore, the
Wasserstein distance is the minimum consumption under
optimal path planning. Terefore, the optimal transmission
Sinkhorn algorithm [56] is used to approximate the Was-
serstein distance. Regularization encourages transmission
using mostly small trafc paths while penalizing sparse
paths. Terefore, introducing entropy regularization can
limit the complexity of the solution of the optimal trans-
mission problem, which leads to an approximate solution of
the optimal transmission problem. To obtain the Sinkhorn
algorithm, the solution of the regularized Kantorovich
problem can be written in the following form:

P(i,j) � uiKi,jvj,∀(i, j) ∈ [n] ×[m], (7)

where Ci,j denotes the cost of transferring a unit mass from
ai to bj and (i, j) denotes the matrix subscript in the cost
matrix C. P � diag(u)Kdiag(v), (u, v) ∈ Rn

+ × Rm
+ , and

Ki,j � e− Ci,j/ε. ε is the regularization factor whose magnitude
determines the strength of the regularization efect. Te
vectors u and v are the variables to be required by Sinkhorn’s
algorithm to join the mass conservation condition for op-
timal transmission.

a � u⊙Kv and b � v ⊙ KTv􏼐 􏼑, (8)

Diferentiable Model
F (x,W)

Normal Participant

Diferentiable Model
F (x', W)

Malicious Attacker
Try to match

∂𝔻w/∂X ∂𝔻w/∂B𝔻w=Wd (∇W', ∇W)

Pred

Predʹ

∇W

∇W'

Loss

Lossʹ

One_Hot = [0, ..., 1, 0]

label = min (∂𝔻w/∂B)

Figure 1: Overview of ourWDLG algorithm. Normal participant inputs training sample x to obtain the original gradient∇W, andmalicious
attacker randomly initializes the virtual data x′ to obtain the virtual gradient ∇W′ and minimizes the Wasserstein distance between the
original gradient ∇W and the virtual gradient ∇W′. When the iterative optimization is completed, the virtual data x′ randomly initialized by
a malicious attacker converges to x with a preset threshold, thereby obtaining the training sample x from the normal participant.
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where ⊙ is the Hadamard product of the vector. Terefore,
we can solve for u and v iteratively. u is updated at each step,
then v is updated, and fnally, the iterations converge and
both sides of the equation are satisfed simultaneously, and
we get the following iterative equation:

ut+1
�

a

Kvt, v
t+1

�
b

KTut+1 . (9)

In algorithm 2, we give an approximate solution algo-
rithm WDCA for Wd.

4. Experiments

In purpose to give comparative experiments with fairness,
we choose PyTorch [57] as the experimental platform and
give the same network model and hyperparameter settings
uniformly except for diferent algorithms. In Algorithm 1,
batch size � 1, regularization factor ε � 0.01, maximum
number of iterations max iter � 100, and error threshold
errthresh � 0.1 are given. We perform comparative valida-
tion and analysis of DLG, iDLG, and WDLG methods on
MNIST, Fashion MNIST, CIFAR-100, SVHN, and LFW
public datasets for accuracy of data label prediction, stability

and convergence speed of virtual data training to recover
data fdelity (MSE indicator), and large learning rate design
strategies.

4.1.Comparisonof theAccuracyofPredictedLabels. TeDLG
method that uses the least squares method to calculate the
gradient loss values for data label recovery is initialized with
a randomization method for iterative learning, and there is
certain randomness in its ability to recover data labels, which
makes the attack efciency (accuracy of label prediction) not
high. In contrast, the iDLG method theoretically demon-
strates that under the condition of using the ReLU activation
function as well as cross-entropy to calculate the loss value,
the label prediction is independent of the network iterative
training and the training labels can be fully recovered.

In our WDLG method, it is assumed that the last hidden
layer of the deep network model has N neurons and the
training dataset has C categories. According to the basic
premise assumption of the iDLG method, it is further as-
sumed that the i-th neuron of the output layer has bias bi. We
can still prove theoretically that the recovery of data labels is
independent of the iterative training process of the network
and refer to the proof of (equation (3)) for details. Tis

Input: ∇W: real gradient generated by real training sample x. Epochs: maximum number of iterations. η: learning rate.
(1) c′←min b1, b2, · · · , bC􏼈 􏼉≤ 0//Get the subscript c′ of the last layer of negative bias
(2) cpred← One_Hot (c′)//Convert c′ to One_Hot code
(3) x′←N(0, 1)//Initialize virtual data with the same dimensions as x

(4) for i←1 to N do
(5) ∇W′←zLoss(F(x′,W), cpred)/zW//Calculating virtual gradients
(6) LossWd

←WDCA(∇W′,∇W)//WDCA is Algorithm 2
(7) x′←x′ − η∇x′LossWd

(8) end for
Output: x′

ALGORITHM 1: WDLG Algorithm.

Input: input original gradient original grad, virtual gradient dummy grad.
(1) Initialization u0, v0

(2) C←cost matrix (original grad, dummy grad)//Calculate the cost matrix C

(3) K←e− C/ε

(4) a←u0 ⊙Kv0

(5) b←v0 ⊙ (KTu0)

(6) for i←0 to max iter do
(7) ut+1←(a/Kvt) + ut

(8) vt+1←(b/KTut+1) + vt

(9) If sum(abs(ut+1 − ut))≤ err−thresh, then
(10) u∗←ut+1

(11) v∗←vt+1

(12) break
(13) end if
(14) end for
(15) Wd←D(C, u∗, v∗)//D obtains an approximation of the Wasserstein distance Wd

Output: Wd

ALGORITHM 2: Wasserstein distance calculation algorithm (WDCA).
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allows the WDLG method to always attack successfully and
thus recover the training data with high fdelity. In Table 1,
we give a comparison of the accuracy of DLG, iDLG, and
WDLG in predicting the true labels. Both WDLG and iDLG
methods have a 100% success rate in predicting the data
labels, while DLG often makes errors in predicting the true
labels. However, for the computational time complexity of
prediction of data labels, the computation step iDLG_Num
of the iDLG method is much higher than that of our WDLG
method, especially when the numberN of neurons in the last
hidden layer is very large; the advantage of our method is
more signifcant.

In general, C≪N. Te number of computational steps
for the iDLG method to recover the labels is N × C, while
our method requires only C computational steps. Terefore,
it can be theoretically demonstrated that the computational
time complexity of the WDLG method on the task of re-
covering labels is only 1/N that of the iDLG method, which
is signifcant from the computational analysis, as shown in
Table 1 for detailed comparison. Our proposed data label
recovery method assumes a stronger conditional general-
ization capability.

4.2. Comparison of the Stability and Convergence Speed of
Model Training. Te training process of the DLG method is
less stable, and the loss value is often very large in the initial
iteration step, which makes the whole iterative computation
process difcult to converge.Te improved iDLGmethod uses
the cross-computed loss function and also uses the least squares
method to calculate the gradient loss value, which still sufers
from the difculty of convergence of the loss value. Analyzing
the main reason, the least squares method to calculate the loss
values usually sufers from the uncertainty of the gradient
calculated by random initialization weights. When iteratively
training the model, there may be various equally possible
results for the same random data input. In all these cases, the
least squares loss function aims to accommodate the un-
certainty in the prediction by fuzzy prediction, or simply, by
taking the average of the possible outputs. Tis is because the
average of all possible outcomes will lead to overall minimi-
zation of the parameter space of the inputs during training.

For the comparison of model training stability and model
convergence speed experiments, we experimentally validate the
DLG, iDLG, and WDLG methods on simple datasets with
a single feature, MNIST, Fashion MNIST, and datasets with
complex features, SVHN, CIFAR-100, and LFW. In Figure 2,
the visualization of depth leakage on MNIST and Fashion
MNIST (from top to bottom) images is shown separately; the
frst image is the original training image, and from left to right
are the recovered views of training data on the same number of
iterations for DLG, iDLG, and WDLG methods, respectively.
On the images with clear training images and single features,
there is not much diference in the number of iterations be-
tween DLG and iDLG methods to achieve the same image
fdelity quality, while our method WDLG only requires fewer
iterations, and the model converges faster. With the same
number of iterations, our method recovers more realistic
training data with higher fdelity.

To compare the comparison on feature-complex data-
sets, in Figure 3, the visualization of depth leakage on SVHN,
CIFAR-100, and LFW (top-to-bottom) images is shown
separately, with the frst image being the original training
image, and from left to right, the recovered data views of the
DLG, iDLG, and WDLG methods on the same number of
iterations, respectively, are given. On the training image with
insufcient sharpness and feature-rich images, the number
of iterations required by the DLG, iDLG, and WDLG
methods increases substantially to achieve the same image
fdelity quality. However, our method requires fewer iter-
ations, and the model training still maintains a signifcant
advantage in terms of convergence speed.

In particular, we note that the loss values and fdelity
during training are carried out as follows to compare the
experimental results better; the output loss values and f-
delity are taken logarithmically and then shifted up, and such
operation does not change the nature of the function. Te
purpose is to make a better comparison in detail on the same
graph. Finally, schematic diagrams of the relationship be-
tween loss value and the number of iterations, fdelity and
number of iterations, and fdelity and loss value on complex
feature datasets are given, respectively. In Figure 4, the
relationship between loss value and fdelity versus the
number of iterations for DLG, iDLG, and WDLG methods
on three datasets, SVHN, CIFAR-100, and LFW, is given. In
the (a), (b), and (c) plots, our WDLG method has the
smallest loss value and better convergence than the other
two methods on the same iteration steps. In the (d), (e), and
(f) plots, our WDLG method has the smallest MSE and
higher fdelity of recovered data on the same iteration steps.
In the (g), (h), and (i) plots, to achieve the same image f-
delity and loss values, the DLG method requires the most
iteration steps, the iDLG method is the second, and our
WDLG method requires the least iteration steps. Te pro-
posed WDLG method consistently outperforms the DLG
and iDLG methods in recovering data and has signifcant
advantages in all three tasks. In the plot of (f ), the advantage
of WDLG is signifcant on the difcult task of LFW, with
MSE close to 0 and higher fdelity of recovered data.

Trough the abovementioned analysis, to solve the
problems existing in the least squares method to calculate
the loss value, the proposedWasserstein distance to calculate
the loss value plays a relatively good and stable training efect
in the training process, and the main reason for its success,
analyzed from the perspective of randomness, the original
gradient ∇W calculated by randomly initializing the model
parameters also has a certain degree of randomness, and the
parameter gradient generated in the training process ∇W′
also has some randomness. Te aim is to better calculate the
distance between two random variables. Tis is because the
KL-divergence does not satisfy the symmetry of the distance
defnition, and the JS-divergence always keeps the distance
as log 2 when the two distributions do not overlap at all,
leading to difculties in providing an efective gradient
calculation during the model training process. Te key to
solving the problem lies in using the Wasserstein distance to
measure the distance between two distributions, and the
WGAN [55] theoretically demonstrates that theWasserstein
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distance can refect the distance between two distributions
and provide an efective gradient calculation even if they do
not have any overlap. Terefore, our proposed WDLG
method can better assign singular values to other random
components when singular values appear in the iterative
gradient calculation ∇W′ and thus will be more stable for
model training.

4.3. Comparison of Large Learning Rate Training. To analyze
our WDLG method supporting large learning rate strategy
design in detail, we test and validate the loss value vs. the
number of iterations and fdelity vs. the number of iteration
curves at diferent learning rates only on the complex
dataset LFW.

In (a) of Figure 5, the loss value decreases with increasing
the learning rate, achieving a surprising efect. However, we
should pay more attention to the existence of an infection
point in the loss function curve for lr � 0.01 and lr � 0.1 at
iterations< 20, which causes an abrupt change in the slope of

the curve and is one of the reasons for the difculty in the
convergence of the model training, corresponding to the
difculty in the convergence of the recovered data fdelity
(MSE) at a fnite number of iterations in (b). However, for
the cases of lr � 0.5 and lr � 1, especially at lr � 1, the rate of
decline of the loss function curve is quite stable throughout
the training process, and there is no case of singularity, and
the corresponding MSE curve decreases steadily, and the
fdelity continues to increase. Terefore, we have reasons to
believe that our WDLGmethod can support a large learning
strategy design.

In the course of our experiments, we also tried to provide
larger learning rates to the DLG and iDLGmethods, but they
failed frequently to recover the fdelity of the data. To analyze
the reason, the optimization path direction is dominated by
the gradient in the direction of the singular value when the
gradient ∇W′ of the iterative computation appears singular,
resulting in the optimization path deviating from the feasible
solution path. Terefore, the learning rate of DLG and iDLG

Table 1: Comparison of DLG, iDLG, and WDLG prediction labels and prediction complexity.

Datasets DLG iDLG iDLG_Num WDLG (%) WDLG_Num
MNIST 89.9% 100.0% N × C 100.0 C

Fashion MNIST × × N × C 100.0 C

SVHN × × N × C 100.0 C

CIFAR-100 83.3% 100.0% N × C 100.0 C

LFW 79.1% 100.0% N × C 100.0 C

Te accuracy of DLG [24], iDLG [25], and WDLG in predicting data labels. Note that iDLG and WDLG always predict the correct labels, while DLG often
makes errors in predicting the true labels.
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Figure 2: Comparison of the stability of model training on a dataset with a single feature.
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Figure 3: Comparison of stability of model training on datasets with complex features.
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methods is set too large to cause the network to fail to
converge or to hover around the feasible solution, thus
neglecting the location of the feasible solution.

In our WDLG method, the iterative generation of the
singular gradient ∇W′ assigned to other random compo-
nents of the distance calculation is still the main reason why
we can set a larger learning rate successfully. We still try to
provide a larger learning rate during the training of the

network, and Figure 5 shows our experimental results. In (a),
it is clear that the loss value decreases faster with increasing
the learning rate on the same iteration step, while MSE,
which portrays the fdelity metric, also shows a signifcant
decrease in (b), so we have reasons to believe that ourWDLG
method for learning rate generalization ability is stronger.
Although the larger the learning rate, the faster the model
training reaches the optimal value, the learning rate
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Figure 4: Te relationship between loss values and fdelity versus the number of iterations for DLG, iDLG, and WDLG methods on three
datasets, SVHN, CIFAR-100, and LFW.
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Figure 5: Variation of loss value and fdelity curves by changing the learning rate lr strategy on the LFW dataset.
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increases to a certain threshold, and the whole network no
longer converges. Terefore, in our approach, the design of
a large learning rate strategy is encouraged and the stability
of model training should be considered more.

5. Conclusion

In this paper, a WDLG method is proposed, and the the-
oretical analysis shows that the prediction of data labels is
independent of the learning process of the virtual data used,
and the labels of the data can be recovered accurately. In the
proposed method, the Wasserstein distance is used to cal-
culate the error loss between the shared gradient and the
virtual gradient, which solves the stable model training and
“Exploding Gradient” phenomena and improves the fdelity
of the recovered data. Meanwhile, it is experimentally
demonstrated that our method fully supports large learning
rate strategies and therefore improves the convergence speed
of model training.

Based on this research, we will consider extending the
WDLG method to deeper network models and more
complex training datasets in the future. Meanwhile, a more
secure machine learning algorithm based on diferential
privacy is proposed based on the attack capability of the
WDLG method. Te purpose is to allow researchers to
reacquaint themselves with the hidden potential security
issues in distributed ML, to provide thoughts on security
research for the next generation of AI model training, and to
provide a research idea to solve the confict between AI
applications and security.
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