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Landslide susceptibility prediction is critical in open pit mines and geotechnical felds. Prediction accuracy is very essential to
reduce the risk of slope instability. Traditional statistical learning methods have been widely used in early warning systems, but
they cannot thoroughly explore the coupling efect among related factors, which often results in low prediction accuracy. Tis
paper establishes an ensemble learning prediction model optimized by a genetic algorithm (GA) to determine landslide sus-
ceptibility more quickly and efciently. Te model is based on 290 sets of slope cases containing height (H), slope angle (α), unit
weight (c), cohesion (c), friction angle (φ), and pore water pressure (ru). Two common algorithms are incorporated into the
ensemble learning model: Xgboost and gradient boosting decision tree (GBDT). Te area under the curve (AUC) of GA-GBDT
and GA-Xgboost were found to be 0.928 and 0.933, respectively, both of which could predict landslide susceptibility better.
Compared with multiple logistic regression and other machine learning algorithms, both GA-GBDT and GA-Xgboost models
perform better in terms of accuracy and applicability. Te study results demonstrate that the developed optimized machine
learning model can accurately predict landslide susceptibility and that the parameters should be optimized on a case-by-case basis
to achieve more accurate results after building a suitable machinemodel.Te optimizationmodel proposed in this paper can be an
efective new method for the intelligent prediction of landslide susceptibility.

1. Introduction

Instability can form on slopes during the construction of mines,
water conservancy actions, and construction projects, which can
have substantial catastrophic consequences [1, 2]. However,
there are few efective and accurate tools for prediction and
prevention [3, 4]. Accurate prediction of landslide susceptibility
provides a basis for the safe operation of projects and helps to
determine the stability state of slopes, prevent risk hazards and
provide safety management solutions. Terefore, constructing
a reliable and efcient landslide susceptibility predictionmodel is
of great theoretical and practical signifcance.

Te current research broadly classifes landslide suscepti-
bility prediction models into two categories: traditional and
machine learning. Traditional models mainly include analytical
methods [5, 6], numerical simulations [7, 8], and others. Tese
evaluate landslide susceptibility based on the corresponding
mechanical theories (ex., elastoplasticity theory and viscoelastic
theory). However, the above methods have several limitations.
Te limit equilibrium method is convenient and straightfor-
ward. However, the theoretical basis is imperfect and requires
the assumption of a slip surface, which does not refect the
actual stress conditions of the slip surface, resulting in reduced
accuracy because of the simplifed assumptions [9]. Numerical
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methods are usually time-consuming, and their accuracy de-
pends heavily on assessing the geotechnical and physical pa-
rameters [10, 11]. As a nonlinear, dynamic, and complex open-
loop system, slopes have many of risk factors that are difcult
to assess. Tis leads to applying traditional models with sig-
nifcant limitations to achieve the desired prediction accuracy
and efectiveness.

Conventional landslide susceptibility analysis methods
are complex, iterative, and overload the computational
system [12]. Tis has inspired researchers to look for al-
ternative methods for calculating landslide susceptibility.
Soft computing techniques can solve highly complex,
nonlinear, multivariate problems [13]. Machine learning
algorithms such as neural networks and support vector
machines have also been used to solve landslide suscepti-
bility problems [14, 15]. Te increased use of machine
learning algorithms has promoted the crossover, integration,
and development of such tools with slope engineering
problems, providing new ideas and methods for landslide
susceptibility prediction problems [16]. Qi and Tang [17]
proposed and compared six integrated artifcial intelligence
(AI) methods for landslide susceptibility prediction based on
metaheuristics and machine learning algorithms and
demonstrated that integrated AI methods have great po-
tential in predicting landslide susceptibility. Tien Bui et al.
[18] employedmachine learning-based techniques to predict
the safety factor of slope failures, showing that the multilayer
perceptron (MLP) outperformed other machine learning-
based models. Chang et al. [19] investigated the performance
of eight commonly used machine learning models for
predicting slope safety coefcients. Parameter optimization
and cross-validation combined historical slope data to es-
tablish a machine learning-based slope safety coefcient
prediction system. Lin et al. [20] developed a machine
learning (ML) model for landslide susceptibility evaluation
and found that the performance and reliability of nonlinear
regression methods were slightly better than linear re-
gression methods. Huang et al. [21] used 369 recorded
landslides and 13 associated conditional factors to study
landslide areas. Tey compared analytic hierarchy process
(AHP), general linear model (GLM), information value (IV),
binary logistic regression (BLR), multilayer perceptron
(MLP), BPNN, support vector machine (SVM), and C5.0
decision tree (C5.0DT) models for prediction. It is found
that machine learning models are more suitable for landslide
susceptibility prediction than the other two types of heuristic
and general statistical models. Machine learning (ML)
models based on remote sensing (RS) imagery and geo-
graphic information systems (GIS) have been widely and
efectively implemented for landslide susceptibility pre-
diction. Chang et al. [22] compare the landslide suscepti-
bility prediction performance of these supervised machine
learning (SML) and unsupervised machine learning (USML)
models to further explore their strengths and weaknesses.
Tey were able to achieve more accurate and reliable pre-
diction results. In summary, machine learning algorithms
have become a hot research topic in data mining and
classifcation prediction in landslide susceptibility, but dif-
ferent prediction algorithms have their limitations [23, 24].

Landslide susceptibility evaluation research focuses on
high prediction accuracy, which requires algorithms to
continuously fnd newer and more robust algorithms to
build landslide susceptibility evaluation models for better
prediction results [25]. Terefore, it is necessary to fnd
intelligent algorithms with high accuracy and better appli-
cability. Integrated learning can train multiple algorithms,
resulting in complementary advantages and better landslide
susceptibility prediction results than a single algorithm. Both
gradient boosting decision tree (GBDT) and eXtreme gra-
dient boosting (Xgboost) are classifed as ensemble learning,
which is an excellent engineering implementation and op-
timization improvement of random forest (RF).Te purpose
of integrated learning is to improve a single learner’s gen-
eralization ability and robustness by combining the pre-
diction results of multiple base learners. Achour and
Pourghasemi [26] found that the RF model achieved the
highest prediction accuracy by comparing RF, support
vector machine (SVM), and boosted regression tree (BRT) to
assess the susceptibility of landslides near roads. Pham et al.
[27] used 16 landslide condition factors to predict landslide
susceptibility, which was found to be more accurate with RF
prediction capability after comparing traditional models
with machine learning. Achour et al. [28] prepared an in-
ventory map with 12 variables (including geomorphological,
geological, hydrological, and environmental factors) to
predict landslide susceptibility. Te RF and Xgboost models
had the same prediction accuracy (AUC) and better pre-
diction performance. Drid et al. [29] selected and evaluated
eleven gully erosion condition factors to identify the areas
most vulnerable to this hazard, and the results showed that
the Xgboost model had the best predictive performance.
Xgboost and GBDT have been widely used in various sce-
narios and achieved good results, but the single integrated
learning model is afected by its parameters. In this paper, we
explore the problem of algorithm accuracy based on the
prediction of landslide susceptibility optimized by heuristic
algorithms.

Tis study investigates the feasibility of GA-GBDT and
GA-Xgboost algorithms with numerous machine-learning
algorithms for landslide susceptibility prediction. Firstly, the
collected data are described and analyzed.Ten the principle
process of GA-optimized GBDT and Xgboost algorithms
and the accuracy evaluation criteria of prediction models are
introduced. Te performance of diferent prediction models
under the same data is compared and analyzed by calculating
various prediction model evaluation indexes and receiver
operating characteristic curve (ROC) curve quantitative tests
to explore the feasibility of the method in this paper.

2. Data Collection and Description

2.1. Dataset and Predictor Variables. Te database includes
290 cases (156 and 134 for stable slopes and failed slopes,
respectively) derived from the information in Feng et al. [30]
and Zhou et al. [31]. Te database contains the basic geo-
metric slope design parameters, such as slope height (H),
slope angle (β), unit weight (c), cohesion (c), friction angle
(φ), and pore water pressure coefcient (ru). Te external
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trigger considered in this study is the pore water pressure
(ru), defned as the pore water pressure to overburden
pressure (Michalowski, 1995; Kim et al., 1999) [6]. Te six
parameters chosen are strongly correlated with the geometry
and geotechnical properties of the slope and have diferent
degrees of infuence on slope stability.

Slope instability is recorded as 0, and stability is recorded
as 1. Figure 1 shows the violin plots of the six infuencing
factors for each of the 290 historical slope cases under the
failure and stability scenarios. Te advantage of the violin
diagram is that it can be more intuitive to visualize the
distribution of diferent infuencing factors when the slope is
stabilized or damaged. Te violin plot combines a box-line
plot and a density plot to show the data dispersion statistics
for each group and to provide the density of data distri-
bution. Wider violin curves correspond to higher densities
and represent areas of concentrated distribution. Here, the
data are widely distributed. However, the distribution of
variables is asymmetric, and the data distribution of diferent
infuencing factors under stable and unstable conditions is
broad. From basic plots such as Figure 1, it is impossible to
visually distinguish the essential parameters afecting
landslide susceptibility.

2.2. Principal Component Analysis. Principal component
analysis (PCA) was used to further determine the infu-
ence of the six basic characteristics study on landslide
susceptibility. First, PCA investigated the relevant con-
tribution of each factor to landslide susceptibility, sum-
marizing and visualizing the collected landslide
susceptibility data for interpreting its variance-covariance
structure. PCA also assessed the database to ensure
a representative dataset.

As shown in Figure 2, slope height has the highest
contribution to PC1 at 41.983%, and pore water pressure has
the lowest contribution to PC1 at 5.992%. PCA allows for the
visualization of the classifcation function of the slope
dataset in a two-dimensional plane. Tere are overlapping
domains between the two types of landslide susceptibility
from the two-dimensional space. In addition, some in-
dicators with signifcant skewness can impact the prediction
model. According to the PCA results (shown in Figure 2(a)),
the components of the frst and second dimensions are
visualized (Figure 2(b)). Te data distribution areas for the
two types of slope states on the frst two components are
relatively close with overlapping areas.

A comprehensive analysis of the statistical characteristics
of the six infuencing factors of the slopes shows that each
characteristic presents a diferent distribution, and the span
and density of the values are relatively large. Tis indicates
that the database contains slopes of diferent heights, slope
angles, lithologies, and types. Table 1 shows the variability of
the efect of diferent infuencing factors on slope stability.
By using completely diferent types of slopes and using their
common characteristics for slope instability prediction, the
powerful ability of machine learning algorithms to handle
nonlinear data can be better refected.

3. Methodology

3.1. Ensemble Learning Algorithm. Te ensemble learning
algorithm, commonly known as GBDT or Xgboost, is
implemented by changing the data distribution to determine
the weights of each sample based on whether a sample is
correctly classifed in each training set and the accuracy of
the last overall classifcation. Te new dataset with modifed
weights is sent to the lower classifer for training. Te
classifers obtained from each training are fnally combined
as the fnal decision classifer.

3.2. GBDT Model. GBDT is one of the boosting integrated
learning algorithms, often used for classifcation and re-
gression problems. Rather than simply adjusting the weights
of weak learners, GBDT reduces the residuals after each
computation by building a new model in the direction of
gradient descent of the residuals [32]. Te GBDT model
inherits the advantages of statistical models and artifcial
intelligence methods, using the advantage of calculating the
relative importance between variables while identifying
complex nonlinear relationships [33]. Because of the com-
plex nonlinear relationship of a slope system, this paper
selected GBDT as the core model to study the landslide
susceptibility judgment problem. Te steps of the GBDT
training model are as follows:

Step 1: Initialize the model function with the side slope
training set and loss function:
Each ith record of the training slope dataset is of the
form yi, x

→
i , where (y, x

→
) are known and

x
→

� x1, x2, x3, · · · , xn  refer to the slope features (e.g.,
unite weight, slope height, etc.). Te aim is to predict
the value of y (landslide susceptibility) based on x

→.
Hence, a mapping F∗ ( x

→
): x

→ needs to be identifed
such that the expected value of the loss function
ϑ(y, F( x

→
)) is minimized as given in the following

equation:

F∗ ( x
→

) � argmin
F( x

→
)

E
y,x
→ϑ(y, F( x

→
)).

(1)

Te F( x
→

) is expanded as F( x
→

) � 
M
m�0βmτ( x

→
; am).

τ( x
→

, a
→

) is a base learner with its parameters given by
a
→

� a1, a2, · · · . Every iteration attempts to fnd
a better ft for the expansion coefcients βm 

M

0 and the
parameters of the base function am 

M

0 to achieve
a better prediction. In the beginning, the training is
initialized by guessing F0( x

→
).

Step 2: For m � 1, 2, · · · , M, M regression trees are
generated iteratively:

βm, a
→

m(  � argmin
β, a

→


N

i�1
ϑ yi, Fm−1 x

→
i(  + βτ x

→
i; a

→
( ( ,

Fm( x
→
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→

) + βmτ x
→

, a
→
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(2)
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Figure 1: Violin diagram of data distribution of infuencing factors.
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Te loss function ϑ(y, F( x
→

)) is assumed to be dif-
ferentiable and the function τ( x

→
, a
→

) is ft by mini-
mizing the k-class multinomial negative log-likelihood.
Te predicted value of output for x

→
i at the mth iter-

ation is given in the following equation:

yim � −
zϑ yi, F x

→
i( ( 

zF x
→

i( 
 

F( x
→

)�Fm−1( x
→

)

. (3)

Te optimally ft τ( x
→

; a
→

m) is used to fnd the optimal
value of coefcient βm

βm � argmin
β



N

i�1
ϑ yi, Fm−1 x

→
i(  + βτ x

→
i; a

→
m( ( . (4)

Te base learner τ( x
→

; a
→

) is a decision tree where, in
each iteration m, the tree segments the input slope
feature x

→ space into Z-disjoint regions Rzm 
Z
z�1 and

predicts a separate constant value in each one as de-
scribed in the following equation:

τ x
→

; Rzm 
Z
1  � 

Z

z�1
yzm1 x

→∈ Rzm( , (5)

y
...

zm is the majority class predicted in each region Rzm,
i.e., the majority of the points in the Rzm region are
predicted to belong to this class. It can also be con-
sidered as the class with the highest probability to be
predicted in that region, i.e., y

...

zm � argmaxyzm
pm,yzm

. In
decision trees, the parameters are the features/attri-
butes/variables being split at node and the specifc value
at which the chosen variable is split. Tese two pa-
rameters defne the region Rzm 

Z
1 of the partitions at

the mth iteration.
Step 3: Generate the GBDT:

Table 1: Variance explanation rate table.

No
Feature root and load factor

Feature root Explanation of
variance (%) Accumulation (%) Name Principal components

1
Principal components

2
1 2.519 41.983 41.983 Slope height 0.590 −0.093
2 1.052 17.534 59.517 Slope angle 0.737 0.224
3 0.831 13.842 73.359 Unit weight 0.804 −0.153
4 0.728 12.139 85.498 Cohesion 0.638 −0.201
5 0.511 8.509 94.008 Friction angle 0.757 0.231
6 0.360 5.992 100.000 Pore water pressure −0.036 0.936
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Figure 2: PCA distribution of landslide susceptibility data. (a) PCA distribution chart. (b) Factor contribution chart.
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Because the decision tree produces a constant value y
...

zm

within each region Rzm, the expansion coefcients and
base learner function’s value can be reduced to the
following equation:

ωzm � argmin
ω



x
→

i∈Rzm

ϑ yi, Fm−1 x
→

i(  + ω( .
(6)

Te current approximation Fm−1( x
→

) is updated in each
region as depicted in the following equation:

Fm( x
→

) � Fm−1( x
→

) + t · ωzm1 x
→∈ Rzm( . (7)

Te shrinkage parameter 0< t≤ 1 controls the learning
rate of the procedure [32, 34].

3.3. Xgboost Model. Xgboost is widely used in major
machine-learning puzzle tasks and is ftting for landslide
susceptibility prediction. Chen and Guestrin [35] added
a regularization term to the loss function on Xgboost to
control the complexity of the trees and prevent overftting.
Te regularization term is represented as follows:

yi � 
K

K�1
fi Xi( , fk ∈ F, (8)

where xi is the ith sample data of input; yi is the model
prediction value of the ith sample; K is the number of trees;
F is the set space of trees; and fk is a function in set space F.

L(φ) � 
i

l yi, y
(t−1)
i  + 

k

Ω fk( . (9)

Te objective function in the formula consists of two parts.
Te frst calculates the error between the predicted value yi and
the true value yi. Te second is the regularization term, which
represents the sum of the complexity of each tree:

Ω(f) � cT +
1
2
λ‖ω‖

2
� cT +

1
2
λ

T

j�1
ω2

j ,

L
(t)

� 
n

i�1
l yi, y

(t−1)
i + fi Xi(   +Ω ft( .

(10)

For the tth round loss function L(φ) � il (yi, y
(t−1)
i )

+kΩ(fk), a second-order Taylor function is taken at the
point y(t− 1) and the loss function can be calculated for the
accumulation of every leaf node as follows:

L
(t)

� 

T

j�1

i∈Ij

gi
⎛⎜⎝ ⎞⎟⎠ωj +

1
2


i∈Ij

hi + λ⎛⎜⎝ ⎞⎟⎠ω2
j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

gi � z
y

(t−1) l yi, y
(t−1)
i ,

hi � z
2
y

(t−1) l yi, y
(t−1)
i ,

Ij � i | q Xi(  � j ,

(11)

where Ij represents the samples in leaf node j.

3.4. Hyperparameter Tuning. Classical machine learning
prediction algorithms are more sensitive to hyper-
parameters, which are crucial for building high-accuracy
prediction models for landslide susceptibility. To fnd the
optimal hyperparameters, particle swarm optimization [36],
genetic algorithm (GA) [37], artifcial bee colony ABC [24],
grid search [38], and frefy algorithm (FA) [39] have been
adopted, amongst others. GBDT and Xgboost have many
parameters that are tedious to adjust. Furthermore, each
parameter can signifcantly impact the algorithm’s pre-
diction performance and needs to be optimized for tuning
parameters. Based on GBDT and Xgboost integrated with
multiple decision trees, the global search ability and fexi-
bility of GA are used to compensate for the defects of the
GBDTand Xgboost model, including the abundant tuning of
parameters, slow convergence, and easily falling into local
optimum.

3.5.GAFeatureSelection. GA is a class of randomized search
algorithms that draws on natural selection and natural ge-
netic mechanisms in the biological world [40]. After each
iteration, the termination criterion is checked to see if
convergence has been reached or if the maximum number of
iterations allowed has been completed. Convergence occurs
when all chromosomes in the population have reached the
same ftness level. Tis indicates that an optimal set of
characteristics has been determined, and the process can be
terminated. However, because this conditionmay not always
be satisfed, a limit is placed on the number of iterations (the
maximum number of iterations� 50). Tus, the algorithm is
ended if convergence is achieved before the completion of 50
iterations. Otherwise, the maximum number of generations
is executed. If neither of these termination criteria is met, the
next chromosome population is generated from the previous
population by applying tournament selection, mutation, and
crossover operations. Figure 3 shows the principle and
optimization fowchart of the GA.

3.6. EvaluationCriterion. Tis work evaluated the predictive
performance of classifcation algorithms for landslide data
using the area under the operating characteristic curve
(AUC). Te receiver operating characteristic curve (ROC)
curve plots the relationship between sensitivity and speci-
fcity. It evaluates the performance of diferent classifers.
Te ROC [31] is a two-dimensional plot of the false positive
rate (FPR) (1-specifcity) versus the true positive rate (TPR
or sensitivity) on the horizontal and vertical axes. It is
a quantitative metric based on which to assess the model’s
overall performance.Te AUC represents the area under the
ROC curve and is mainly used to measure the model’s
generalization performance, namely, the good or bad clas-
sifcation efect. It can quantitatively compare good or bad
models. Diferent AUC values refect diferent classifcation
efects [41, 42]: 0.900–1.00 represents outstanding perfor-
mance, 0.800–0.900 represents good performance, and
0.700–0.800 represents average performance. Te de-
structive consequences of slope instability are more serious,
so accuracy recall � TP/(TP + FN) is introduced to evaluate
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the model performance. When slope instability actually
occurs, the model prediction is not wrong. Such a classifer is
optimal, and the classifer’s recall must be as high as possible
under the premise of a certain correct rate.

4. Results

4.1.ComparisonofModelPerformanceafterGAOptimization.
Height (H), cohesion (c), slope angle (β), unit weight (c),
friction angle (φ), and pore water pressure (ru) [10] are the
input parameters of the GBDTmodel, and the slope stability
state (failure/stability) is the output. In this paper, 80% of the
290-group database was used as training data to train the
model, and the remaining 20% was used as test data to verify
the model’s accuracy. AUC and recall were used to evaluate
the accuracy of the prediction model. Te computation time
was calculated to be 95.5s for GA-GBDT and 94.6s for GA-
Xgboost. Another calculation shows that the CPU utilization
is 3.1%, with 55.3% of memory used and 44.7% of memory
available. Te diferent parameters of diferent models lead to
diferences in model complexity, training efects, and results
during the training process. Figures 4 and 5 illustrate the
signifcant diferences in the performance of Xgboost and
GBDT with diferent hyperparameters, respectively. Te
diferent nodes in the fgure represent the model prediction
accuracy under the four parameters. Te diferent parameters
have diferent degrees of infuence, which together determine
the prediction performance of the model. Table 2 shows the
hyperparameter search space table for GBDT and Xgboost.
Table 3 shows the optimal values of the parameters after
optimization by the GA algorithm. Te n _ estimator is

a numerical parameter with a default value of 100, which
specifes the number of weak classifers. Te max depth is
numeric with a default value of 3, which is a parameter related
to pruning. Te learning rate is numeric, with a default value
of 0.1, and is commonly used to specify a learning rate. Te
random state is a random seed that controls randommode as
a parameter in any random class or function.

`Table 4 shows the number of accurate predictions and
recalls of diferentmodels for predicting landslide susceptibility
and instability conditions. Figure 6 shows the AUC line graphs
of diferent models before and after optimization. After
comparison, before the optimization of the GA algorithm, both
the GBDT and Xgboost algorithms have the same accuracy of
93% and recall of 85.2%, but after the optimization, both the
model performance and accuracy improved. Overall,
GA-GBDT has better accuracy and model performance.

4.2. Multivariate Statistical Logistic Regression Prediction
Model. Multiple logistic regression is simpler and more
convenient for analyzing multifactor models, and it can
accurately measure the degree of correlation and ft between
each factor [43]. Te landslide data are dichotomous, so
binary logistic regression was used to further investigate the
efect of six factors on the slope. First, the overall validity of
the model was analyzed. Table 5 shows that the original
hypothesis is that the quality of the model is the same in both
cases, whether the independent variables (slope height, slope
angle, unit weight, cohesion, friction angle, and pore water
pressure) are inputs or not. Te p value is less than 0.05,
which indicates that the original hypothesis is rejected, i.e.,
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Figure 3: Flowchart of GA-GBDT and GA-Xgboost slope prediction model.
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the independent variables are valid for this model con-
struction and the model construction is meaningful.

Slope height, slope angle, unit weight, cohesion, friction
angle, and pore water pressure were used as independent
variables, while stability was a dependent variable for binary

logit regression analysis. Table 6 shows that slope height,
slope angle, unit weight, cohesion, friction angle, and pore
water pressure can explain the 0.22 variation in stability. Te
ftted model equation is

ln
p

1 − p
  � −5.738 + 0.002H − 0.045β+ 0.202c + 0.002c + 0.086φ+ 0.370ru, (12)

where p represents the probability that stability is 1 and 1 −

p represents the probability that stability is 0. Based on the
results of multiple logistic regression, the AUC and recall are

0.824 and 77.8%, respectively, which have lower accuracy
and performance compared with GA-GBDT and GA-
Xgboost.
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Figure 4: Performance of the Xgboost model with the diferent hyperparameters.
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Furthermore, the regression coefcient value of the slope
height is 0.002, but it does not show signifcance
(z� 1.448, p � 0.148> 0.05), implying that slope height has

less efect on the stability. Te regression coefcient value of
the slope angle is −0.045 and shows a 0.01 level of signif-
cance (z� −2.607, p � 0.009< 0.01), indicating that the
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Figure 5: Performance of the GBDT model with the diferent hyperparameters.

Table 2: Hyperparametric search of spatial tables.

Algorithm N_estimators Learning_rate Max_depth Random_state
GA-Xgboost (10, 1000) (0.001, 1) (1, 100) (1, 100)
GA-GBDT (10, 1000) (0.001, 1) (1, 100) (1, 100)

Table 3: Optimized parameters in GA-Xgboost and GA-GBDT models.

Algorithm N_estimators Learning_rate Max_depth Random_state
GA-Xgboost 1000 0.89 90 64
GA-GBDT 404 0.59 8 82

International Journal of Intelligent Systems 9



slope angle can signifcantly negatively infuence stability.
Te regression coefcient value of unit weight was 0.202 and
shows signifcance at 0.01 level (z� 3.849,p≤ 0.01), which
indicates that the unit weight will signifcantly positively

infuences stability. Furthermore, the dominance ratio (OR
value) is 1.224, indicating stability increases 1.224x when the
unit weight increases by one.Te regression coefcient value
of cohesion is 0.002, but it does not show signifcance

Table 4: Confusion matrix and recall before and after optimization of GBDT and Xgboost.

Model True positive (TP) True negative (TN) Number of predictions Recall (%)
Xgboost 23 40 58 85.2
GBDT 23 30 58 85.2
GA-Xgboost 24 30 58 88.9
GA-GBDT 26 28 58 96.3
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Figure 6: ROC curves before and after optimization of GBDT and Xgboost. (a) Xgboost ROC. (b) GBDT ROC. (c) GA-Xgboost ROC.
(d) GA-GBDT ROC.
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(z� 0.529,p� 0.597> 0.05), implying that cohesion has little
infuence on stability. Te regression coefcient value of the
friction angle is 0.086 and shows a signifcance at 0.01 level
(z� 3.806,p≤ 0.01), implying that the friction angle sig-
nifcantly infuences stability. Te dominance ratio (OR
value) is 1.090, implying that stability increases by 1.090x
when the friction angle increases by one unit. Te regression
coefcient value of the pore water pressure is 0.370, but it
does not show signifcance (z� 0.444,p� 0.657> 0.05),
implying that the pore water ratio does not have a signifcant
infuence on stability (z� 0.444,p� 0.657> 0.05).

Overall, according to the results in Table 7, unit weight
and friction angle signifcantly positively afect stability. Te
slope angle has a negative efect on stability. However, slope
height, cohesion, and pore water ratio have less infuence on
slope stability.

4.3. Comparison of Statistical-Based Models with Multiple
Machine Learning Algorithm Models. To compare the per-
formance of diferent classifcation algorithms, SVM, logistic
regression (LR), GBDT, K-nearest neighbor (KNN), RF,
XGboost, Naive Bayes model (GaussianNB), GA-Xgboost,
and GA-GBDT methods were used for landslide suscepti-
bility prediction. Te prediction results of the models are
shown in Figure 7. Te AUC of SVM is 0.746, LR is 0.824,
GBDT is 0.894, KNN is 0.817, RF is 0.894, Xgboost is 0.910,
GaussianNB is 0.824, GA-Xgboost is 0.928, and GA-GBDTis
0.933. Table 8 shows the recall of SVM, LR, KNN, RF, and
GaussianNB. It is worth noting that the AUC determines
classifer performance, with 1.0 representing an ideal per-
formance. Te ROC curve of the GA optimization model is
closer to the left and upper axes than the other models. Te
AUC value of GA-GBDT is highest at 0.933, slightly higher
than RF and GA-Xgboost, and signifcantly higher than
SVM, LR, GaussianNB, GBDT, and Xgboost.

Figure 8 is the radar chart of AUC and recall distri-
bution, which visually shows the prediction efects of dif-
ferent algorithmmodels.Te ensemble learning algorithm is
more suitable for landslide susceptibility prediction than the

other algorithms, while the prediction performance of SVM
is the lowest. Using GA to optimize Xgboost and GBDT
signifcantly improves the AUC curve compared with the
original model, indicating that the algorithm accuracy
strongly correlates with the parameters. However, the
GA-GBDT model has the best model accuracy and per-
formance. Te test results also show that the GA-GBDT
model is more suitable for predicting landslide susceptibility.

Diferent modeling approaches can lead to diferent
results. An evaluation of the predictive performance of
numerous machine learning models shows that most models
are more accurate than the traditional statistical models used
for landslide susceptibility modeling. Machine learning
methods can automatically identify the hidden complex
relationships between valid variables. Te results of this
study are more applicable to the integrated learning algo-
rithm for landslide susceptibility prediction when compared
with the results of recent studies [27–29] and that the ac-
curacy of the model is improved after the optimization of the
heuristic algorithm. Te results of the integrated algorithm
model difer from other studies in diferent country regions
of the world, widely showing excellent landslide suscepti-
bility predictions (AUC> 0.8). It is worth noting that dif-
ferent geological conditions and regional infuences have

Table 5: Likelihood ratio test results of binary logit regression model.

Models −2 times the
log-likelihood value Cardinality df p AIC BIC

Intercept distance 387.648
Final model 300.616 87.032 6 0.001 314.616 340.059

Table 6: Summary of results of binary logit regression analysis.

Items Regression coefcient Standard error z Wald χ2 p OR OR 95% CI
Slope height 0.002 0.001 1.448 2.098 0.148 1.002 0.999 ∼ 1.005
Slope angle −0.045 0.017 −2.607 6.797 0.009 0.956 0.924 ∼ 0.989
Unit weight 0.202 0.053 3.849 14.814 0.001 1.224 1.104 ∼ 1.357
Cohesion 0.002 0.005 0.529 0.279 0.597 1.002 0.994 ∼ 1.011
Friction angle 0.086 0.023 3.806 14.487 0.001 1.090 1.042 ∼ 1.139
Pore water pressure 0.370 0.833 0.444 0.197 0.657 1.448 0.283 ∼ 7.406
Intercept distance −5.738 1.033 −5.557 30.877 0.001 0.003 0.001 ∼ 0.024
Dependent variable: stability. McFadden R2: 0.225. Cox and Snell R2: 0.259. Nagelkerke R2: 0.352.

Table 7: Results of binary logit regression analysis-simplifed
format.

Item Regression coefcient
Slope height 0.002 (1.448)
Slope angle −0.045∗∗ (−2.607)
Unit weight 0.202∗∗ (3.849)
Cohesion 0.002 (0.529)
Friction angle 0.086∗∗ (3.806)
Pore water pressure 0.370 (0.444)
Intercept distance −5.738∗∗ (−5.557)
Likelihood ratio test χ2 (6)� 87.032, p � 0.001
Hosmer–Lemeshow test χ2 (8)� 17.027, p � 0.030
Dependent variable: stability. McFadden R2: 0.225. Cox and Snell R2: 0.259.
Nagelkerke R2: 0.352. ∗p< 0.05 ∗∗p< 0.01 z values in parentheses.
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important efects on the accuracy of the model prediction
results. Terefore, selecting a rich and high-quality landslide
dataset can increase the actual predictive power of
the model.

4.4. Analysis of the Importance of Infuencing Factors. It is
crucial to determine the sensitivity of factors afecting
landslide susceptibility to evaluate the landslide suscepti-
bility and the design of support structures. Te GA-GBDT
algorithm has a good feature identifcation function and can
output the strength of diferent parameters on landslide
susceptibility. Figure 9 shows the importance of the six
infuencing factors ranked by the GA-GBDT model. Tis

study used relative importance scores to investigate the
sensitivity based on the best prediction results (GA-GBDT).
Te method was selected based on the superior performance
during the test setup. Te results of the GA-GBDT feature
selection were displayed to obtain the variable importance
ranking. Figure 7 shows the normalized scores for the im-
portance of the variables. Unit weight (score� 0.4593),
friction angle (score� 0.1245), and cohesion (score� 0.1237)
are the most sensitive factors for landslide susceptibility,
which indicates the importance of the slope material vari-
ables. Terefore, the values of material unit weight, friction
angle, and cohesion in artifcial slopes must be selected
reasonably and accurately based on specifc indoor and feld
tests. Te geological material cohesion and friction angle

Table 8: Confusion matrix and recall for the prediction model based on 290 slope cases.

Model True positive (TP) True negative (TN) Number of predictions Recall (%)
SVM 22 21 58 81.5
LR 21 27 58 77.8
KNN 18 30 58 66.7
RF 23 29 58 85.2
GaussianNB 21 27 58 77.8
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Figure 7: ROC curves of diferent algorithms. (a) LR ROC. (b) SVM ROC. (c) KNN RON. (d) RF ROC. (e) GaussianNB ROC.
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should be increased when assessing a slope for landslide
potential. Te importance scores of slope angle and height
are 0.1161 and 0.1026, respectively, indicating that geometric
variables also afect landslide susceptibility. Optimizing
these two variables in the actual design is a feasible approach
to ensure the stability. Finally, pore water pressure (ru)
(0.0737) has the lowest sensitivity.

5. Discussion

5.1. Variability in Model Performance. For landslide sus-
ceptibility prediction results compared with other
models, the integrated learning models GBDT, RF, and
Xgboost have higher accuracy than statistical models and
some machine learning models such as SVM and
GaussianNB. Te models optimized by the heuristic
algorithm GA had increased prediction accuracy. Pham
et al. [27] strongly recommend implementing the chosen
heuristic along with the machine learning model rather
than directly applying only the machine learning model
or its integrated form.

It is also essential to discuss the strengths and weaknesses
of the applied models, as diferent models have their
strengths and weaknesses. Usually, model performance
depends on diferent research areas and related infuencing
factors [44]. In this study, GA-Xgboost and GA-GBDT have
higher accuracy than machine learning models (ex., Xgboost
and GaussianNB). GA has the advantages of fast random
search capability and scalability with free attention to
problem domains and is easy to combine with other algo-
rithms, but the potential power of the algorithm’s parallel
mechanism is not fully exploited [45].Tere are several other
drawbacks as well, such as the dependence on ftness
function. Tis is new and current research in GAs [46].

RF is highly tolerant to outliers and noise and can
handle multidimensional data without overftting, yet
many trees may slow down the algorithm and prevent real-
time prediction (Arabameri et al., 2019). KNN only needs
to save training samples and tokens without estimating
parameters and training. However, the categories of the
new samples are biased towards the category with the
dominant number in the training sample when the samples
are unbalanced, which can easily lead to prediction errors
[47]. Te GaussianNB model can achieve high prediction
accuracy in learning data with missing conditions [30]. It
assumes the independence of attributes among data, which
leads to difculties in practical applications and low ef-
ciency of model classifcation when facing more data at-
tributes or stronger correlations among data [48]. Te
Xgboost method supports linear classifer and CART
classifer, which can better prevent overftting and reduce
model complexity despite lacking smoothness [49]. Al-
though SVM is a classical small-sample learning algorithm,
which can reach a high level of learning accuracy with
a small amount of data, its accuracy and computational
speed both decrease when facing multidimensional vari-
ables and large data [50]. Te performance of GBDT is
a step up from RF, so its advantages are also obvious. It is
fexible to handle various data types and has high prediction
accuracy with relatively less tuning time. Because it is
boosting, there is a serial relationship before the base
learner, which makes it challenging to train data in parallel
[51]. Terefore, it is necessary to apply the selected models
to diferent datasets and scenarios of landslide suscepti-
bility problems for training and comparative analysis
concerning the merits and performance of each model.

5.2. Challenges in Landslide Susceptibility Assessment.
With the deepening of research, many researchers have
proposed optimization models with high prediction accu-
racy and strong generalization ability [52]. Tese techniques
have a very strong self-learning ability and can process large
amounts of data efciently and accurately. In addition, these
techniques are mainly used in landslide susceptibility
evaluation to help make decisions on risk reduction [53].
However, there are still some problems and challenges to be
solved in the future. (1) Incomplete consideration of
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infuencing factors when using machine learning techniques
for landslide susceptibility modeling. In most of the current
research focuses on geotechnical properties, slope, height,
and so on. But in fact factors not covered often have sig-
nifcant impacts, such as climate and environmental
changes. (2) Since machine learning is based on data-driven
search for inherent hidden relationships as a way to achieve
the purpose of landslide geohazard prediction interacting
with the natural world. If the prediction process has a better
machine learning model but is not able to obtain higher-
quality data, it will not be able to obtain better prediction
results. (3) Based on the data-driven machine learning
prediction model is difcult to explain the mechanism of
landslide occurrence, the model applicability is poor, which
also afects the accuracy of the model prediction, so how to
improve the interpretability of the machine learning algo-
rithm is also an important research direction in the future.

6. Conclusions

Tis work successfully used GA-GBDT and GA-Xgboost
methods to study landslide susceptibility prediction using
290 historical case records of slope conditions. Te vari-
ability of model performance with diferent parameters was
checked, and GA was used to optimize the four parameters
of Xgboost and GBDT, which are n_estimators learning_
rate max_depth random_state.

GA-GBDT and GA-Xgboost models were compared
with SVM, LR, KNN, RF, GaussianNB, Xgboost, and GBDT
to check the ft. It was found that Xgboost and GBDT op-
timized using GA obtained classifcation models with the
highest AUC of 0.928 and 0.933, respectively. Relative
variable importance analysis showed that the geometric
slope design parameters (unit weight, friction angle, and
cohesion) signifcantly afected landslide susceptibility. Te
results suggest that the GA-GBDT and GA-Xgboost can
explore the nonlinear relationship between landslide sus-
ceptibility and its infuencing factors.

Based on the database of this paper, the results of logistic
regression to study the infuence of diferent variables show
that unit weight and friction angle signifcantly positively
infuences stability, slope angle has a signifcant negative
infuence on stability. However, slope height (m), cohesion,
and pore water pressure have less infuence on stability. Te
intrinsic efects were further explored.

However, although the analysis results are impressive
and encouraging, there are still some outstanding issues.Te
impact of data imbalance on landslide susceptibility pre-
diction will be discussed in future research. Te developed
model can be improved by analyzing more extensive
datasets, and its applicability to other mining and geo-
technical damage problems can be recommended when data
are available.
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