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Copyright © 2023 Jie Zhang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. Te data processing of medical test report has always been one of the important contents in biological information
domain, especially the process of extracting the efective information from the report so as to assist doctors with the correct
medical plan. Usual methods neglect the implicit relationship between features. More features are generally not a better choice
because more noise is generated between feature combinations. We propose a practical feature selection strategy RMFS, which
aims to select the optimal combination of features.Materials and Methods. Based on the above situation, in this paper, 64 features
are extracted from a real medical test report dataset for stroke and feature selection is defned as a reinforcement learning problem
to optimize the feature combination by minimizing regret. We select three current mainstream feature selection methods and
conduct comparative experiments. Results. We processed and completed a dataset derived from real medical test reports of stroke.
We redefne the feature selection problem as a reinforcement learning problem and propose an optimization strategy based on
regret minimization and train weight parameters in a DQN network. Experimental results demonstrate that our method can
identify feature combinations with higher prediction accuracy.Discussion. RMFS shows a strong robustness to the randomness of
the environment and has high computational efciency and accuracy. Compared with the previous feature selection methods, our
method yields superior results. Conclusion. Te experimental results demonstrate that our method can obtain a more accurate
prediction rate under the same feature scale and we can achieve baseline performance with fewer features.

1. Introduction

Cerebral stroke is known as apoplexia or cerebral vascular
accident (CVA). It is an acute cerebrovascular disease, in-
cluding ischemic stroke and hemorrhagic stroke, which is
caused by a sudden rupture of a blood vessel in the brain or
a blockage of a blood vessel that prevents blood from fowing
to the brain and results in brain tissue damage.Te incidence
of ischemic stroke is higher than that of hemorrhagic stroke,
accounting for 60% to 70% of all strokes. According to the
newly published Global Burden of Disease Study data, the
number of stroke patients worldwide is estimated to exceed
100 million. In China, for example, the prevalence of stroke
has shown a rapid growth trend from 1.89% since 2012, with
an annual growth rate of more than 7%, according to the
National Cerebrovascular Disease Data Platform. Data from

the Global Burden of Disease Study show that stroke is one
of the leading causes of death and disability among adults in
China [1]. China is the largest developing country, with
a population of about one-ffth of the world’s total, and the
number of current stroke patients ranks frst in the world. As
one of the important components of stroke, more than 20
million people around the world have the potential risk of
cerebral stroke, so how to predict the incidence of stroke has
become a daunting task. A medical examination report
(MER) includes the patient’s personal data in a medical
institution as well as examination data, such as identifcation
information, drug allergy history, and medical history. MER
not only raises efciency for doctors and healthcare pro-
fessionals but also provides a valuable source of data for
researchers. Te current situation of the prediction of po-
tential risk of stroke involves the use of various clinical risk
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prediction models [2], such as the Framingham Stroke Risk
Profle and the CHA2DS2-VASc Score [3], which take into
account various risk factors such as age, gender, blood
pressure, diabetes, smoking, and previous history of stroke
or heart disease [4]. Tese models are used by healthcare
professionals to identify individuals who may be at a high
risk of experiencing a stroke and to guide preventative in-
terventions such as lifestyle modifcations or medication.
However, there are several existing problems with the
current methods of predicting stroke risk. One major issue is
that these models may not be accurate enough in certain
populations, such as younger individuals or those from
diferent ethnic backgrounds. Additionally, there may be
other risk factors that are not yet included in these models,
such as genetic factors or lifestyle factors that are difcult to
measure. Another issue is that even when high-risk in-
dividuals are identifed, there may be barriers to accessing
preventative interventions, such as lack of resources or
inadequate healthcare infrastructure.

To address these problems, further research is needed
to develop more accurate and comprehensive risk pre-
diction models and to better understand the underlying
mechanisms of stroke risk. A crucial question in our re-
search is how to improve predictive performance by
learning the features of patients and diseases so as to
perform a better risk control and treatment for the disease
[5]. Deep reinforcement learning has some research on
this issue, such as attention-based mechanisms [1], but
there are still some challenges in efectively utilizing data
and model interpretation:

(1) Neglected edge information
Due to the numerous examinations in the medical
domain, the data sources for predicting a single
disease are relatively complex. Only key data are
selected as the benchmark for model learning be-
cause the sampling probability of edge information
in the traditional defnition is low and even the edge
information might be abandoned during model
learning. Te approach that uses a graph structure to
classify diseases on diferent levels into diferent
types of graphs is adopted, but it ignores the help of
information such as complications for future di-
agnosis prediction.

(2) Optimal solution of sequential decision-making
In traditional reinforcement learning, sequential
decision-making has always been one of the sig-
nifcant research problems. On how to infuence the
future reward by changing the current strategy, the
paper [6] selects continuous partially observable
Markov decision processes (POMDP) scenarios and
uses approximate solution to infer the potential state,
but it neglects the relationship between the solution
of the optimal decision sequence and the environ-
mental information.

(3) Lack of model generalization
Due to the lack of data, the data sources of diferent
hospitals lead to the mismatch between data features

and distribution. Terefore, it may be difcult to
learn an accurate model using the data of one
hospital and the feature selection of the data is re-
quired to select the common data with high im-
portance as the reference index. Many models do not
make full use of data, which leads to the un-
satisfactory result by lack of generalization.

In view of the abovementioned points, we can conclude
that in the current medical environment, reinforcement
learning still has some problems in disease prediction. How
to choose the optimal combination of features as the input to
calculate the optimal decision-making is the problem that
this paper studies. Based on it, we will introduce the concept
of regret value [7], rank features byminimizing regret values,
and learn the optimal combination of features with DQN.
Tis paper has the following major contributions:

(i) We redefne feature selection as a reinforcement
learning problem, propose an optimization strategy
based on regret minimization, and train the weight
parameters in DQN network.

(ii) We process and complete a data set about stroke,
which is derived from the real medical test report of
stroke, and the experimental work in this paper is
also completed based on this data set. Te process is
shown in Figure 1.

(iii) We selected three mainstream feature selection
methods for comparison in the experiment, and the
experimental results demonstrate that our method
can fnd feature combinations with a more accurate
prediction rate.

2. Related Work

Recent work [8, 9] suggests that reinforcement learning has
a wide range of applications in medical information pro-
cessing [10]. By selecting features from medical test reports,
extracting feature combinations and learning strategies are
two important tasks in this process for diferent prediction
task scenarios. For brevity, we discuss only the medical
reinforcement learning literature relevant to our work [11].
Tis can be roughly divided into three categories.

Feature selection can efectively prepare high-
dimensional data for various learning tasks such as classi-
fcation, clustering, and anomaly detection. In healthcare
[12], we need to capture patient heterogeneity for person-
alized predictive modeling, which can be characterized by
a subset of instance-specifc features. Reference [13] pro-
posed a novel unsupervised personalized feature selection
(UPFS) framework to fnd shared features of all instances
and unique features of individual instances. Feature selec-
tion can be applied to case diagnosis, and the authors in [14]
explored a nonnegative generalized fusion lasso model for
stable feature selection in the diagnosis of Alzheimer’s
disease. As technology advances, artifcial intelligence (AI)
models become critical in the medical domain, and the
ability to interpret predictions to clinical end users is es-
sential to harness the power of artifcial intelligence models
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for clinical decision support. Extracted more information
from the predictor through an Information Calibration
method [15] and used an adversarial-based technique to
calibrate the information extracted by the two models.

Feature sources in medical scenes are usually multi-
modal data of text or images. For medical images [16, 17],
feature attribution maps or heat maps are the most common
form of interpretation. Te Mode-Specifc Feature Impor-
tance (MSFI) index [18] encodes clinical requirements for
prioritizing and localizing specifc features within treatment
modalities. Te study demonstrated that the results pro-
duced by MSFI satisfy clinicians’ needs for multimodal
interpretation. Te authors in [19] described the application
of deep learning to multimodal medical imaging analysis.

Reinforcement learning can be used to analyze medical
imaging reports and improve accuracy [20], where diferent
modalities of image information have their own charac-
teristics and diferences in contrast and resolution due to
diferent imaging principles. Integrated reinforcement
learning with MR image manipulation can reconstruct
damaged images [21]. Reference [8] proposed and optimized
the Stochastic Planner-Actor-Critic (SPAC) method for
medical image alignment. Nonindependent and homoge-
neously distributed (non-iid) data in medical images remain
a prominent challenge in real practice. Reference [22]
proposed a framework, HarmoFL, where perturbations
helped global models converge to optimal solutions by
aggregating multiple locally fat optimal solutions without
additional communication costs [23]. Low resource medical
dialogue generation [24] used the general knowledge graph
to characterize the relationship between previous symptoms
of the disease. Model-based reinforcement learning can be
applied to biological sequence settings, such as DyNA-PPO.
A model-based PPO variant was proposed in the paper [25],
Model-based Reinforcement Learning for Biological Se-
quence Design, which had a good performance in biological
sequence setting. Of-policy evaluation in reinforcement
learning provides the feasibility for using observational data

to improve the future medical and educational felds.
Gottesman et al. [26] introduced a method as a hybrid
artifcial intelligence system, enabling human experts to
analyze the accuracy of policy evaluation.

In summary, feature selection is an important technique
for preparing high-dimensional data in healthcare for var-
ious learning tasks. Personalized predictive modeling re-
quires the capture of patient heterogeneity using a subset of
instance-specifc features. Interpretation of predictions to
clinical end-users is essential for clinical decision support.
Multimodal data of text or images is common in medical
scenes, and deep learning techniques can be applied to
analyze them. Reinforcement learning can be used to im-
prove accuracy in medical imaging analysis, considering the
diferent modalities of image information. Non-iid data in
medical images remains a challenge, and of-policy evalu-
ation in reinforcement learning [27] provides the feasibility
for using observational data to improve the future of medical
and educational felds.

3. Preliminaries

In this section, we will introduce some preliminary
knowledge for the work in this paper.

3.1. Markov Decision Process (MDP). Let us assume a stan-
dard reinforcement learning scenario, where the purpose is
to learn a policy that maximizes the expected cumulative
discount reward in a Markov decision process [28], which is
defned by a tuple (S, A, P, R, c). S denotes state, and A

represents a set of actions. π is the strategy for the state
transition, and P: S × A × S⟶ R is the reward gained
during the state transition, where R is the function of reward.
c ∈ (0, 1) is the discount factor. P represents the probability
of taking action a in a certain state S to transfer to the next
state S′, denoted as Pa

s′ � P[St+1 � S′|St � S, At � a], where a

is the selected policy action in the current state transition.
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Figure 1: Process of feature selection. Diferent subsets of features are continuously selected from initial dataset for performance evaluation
and then the contribution of each subset to model is calculated based on performance diferences, which is used as a reference indicator for
feature selection.
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Te experience replay bufer is used in the of-policy
agent, which is denoted as B. At each time step t, the
agent interacts with the environment and sores
(St, at, rt, St+1) into B [29] and B is defned as Bi at a certain
position i. Next, the agent uses Bi obtained from bufer
sampling to update for each step during training. Based on
the described above, the of-line replay policy learning
problem is redefned as follows.

Let the task T, of-policy agent Λ, and experience replay
bufer B. Te goal is to learn the replay policy φ as each
training step batch of transitions Bi from B to train agent Λ,
which is to learn a mapping ϕ in order to train the agent to
obtain better performance on task B⟶ Bi.

3.2. Deep Q-Networks (DQN). We consider the standard
reinforcement learning paradigm, including an agent
interacting with the environment, and for the conve-
nience of introduction, we assume that the environment
is fully observable. Deep Q-Network [30] is a model-free
RL algorithm applied in discrete action spaces. Keeping
a neural network Q in DQN approximates Q∗. πQ(s) �

argmaxa∈AQ(s, a) represents the greedy strategy w.r.t. Q.
A is a random behavior with probability ε (uniformly
sampled from A) that has probability 1 − ε of the action
πQ(s).

During training, we generate episodes by using an
approximation of the current action value function Q of
the ε − greedy policy. Te transition tuples (st, at, rt, st+1)

encountered during training are stored in the replay
bufer.Te generation of new episodes is interspersed with
neural network training. Te network is trained using
small batch gradient descent on loss L so that the ap-
proximate Q function satisfes the Bellman equation:
L � E(Q(st, at) − yt)

2, where yt � rt + maxa′∈A Q(s, a′)
and the tuple (st, at, rt, st+1) is sampled from the replay
bufer.

Te targets yt are usually computed using a separate
target network in order to make the optimization process
more stable and the target network takes a slower rate
change than the main network. It is common to regularly
set the weight of the target network to weights of the main
network (e.g., [30]) or to use the Polyak and Juditsky
averaged [31] version of the main network [32].

3.3. Regret Minimization. Regret value is an important tool
for computer to solve approximate Nash equilibrium [33].
Te most widely used method in extended game is to
minimize the regret value as much as possible to solve an
approximate Nash equilibrium [34]. Based on the concept of
MDP, it is formally defned as follows:

R
T
(s) � 􏽐ts(t)v

t
− 􏽐tσ

t
v

t
,

R
T
S � maxs∈S R

T
(s).

(1)

Here, we specify the action sequence in MDP as h.
Suppose that player i replaces the actual policy σ with policy
s, and the part of revenue generated by the new policy s over
the original policy is the value of regret value. In particular,

reward v in the regret value can be any mapping from the
legal action set A to the real number R. Te regret value can
be minimized as long as the total cumulative regret value is
sublinear. When the regret values of all actions are suf-
ciently small, we can consider that our policy is close
enough to the Nash equilibrium to solve the problem. Here,
we present the procedure of how to update the policy using
regret values. When policy σ is adopted, the virtual value of
the corresponding action sequence h is calculated as
follows:

v
i
(σ, h) � 􏽘

z∈Z
π
σ

−i
(h)π

σ
(h, z) u

i
(z). (2)

We frst calculate the probability value of the other
players in producing the action sequence h, multiply the
probability of entering the ending situation z from the action
sequence h under this policy, and fnally multiply the
probability of player i in the ending situation z. After
completing the iteration of the fnal situation, we add up the
products. Terefore, when taking action a, the virtual regret
value obtained by player i is r(h, a) � vi(σI⟶a, h) − vi(σ, h)

and the regret value of information set I corresponding to
action sequence h is r(I, a) � 􏽐 r(h, a). Te regret value of
player i, when taking action a in round T is
RegretTt (I, a) � 􏽐

T
t�1r

t
i(I, a). Similarly, the negative regret

value is not considered and is denoted as
RegretT,+

t (I, a) � max(RT
i (I, a), 0). In (T + 1) round, the

probability of player i choosing action a is calculated as
follows:

σ
i

T+1
(I, a) �

RegretT,+
i (I, a)

􏽐a∈A(I)Regret
T,+
i (I, a)

,

if 􏽘
a∈A(I)

RegretT,+
i (I, a)> 0,

1
|A(I)|

otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

i chooses the next behavior according to the regret value, and
if the regret value is negative, one behavior is randomly
selected for the game.

4. Optimal Feature Selection Strategy via
Regret Minimization

We propose a deep reinforcement learning feature se-
lection algorithm based on the minimum regret value as
Regret Minimization Feature Selection (RMFS) to learn
the optimal feature combination. RMFS captures the data
dependencies between features, enhances features
through reward changes between action sequences, and
updates bufer by minimizing regret to improve policy
learning, as shown in Figure 2. Teoretically, the ideal
sampling policy is to sample to the transition with higher
value. Terefore, methods such as uniform sampling as
well as priority sampling are derived. In general, the policy
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is uniform sampling, which neglects the signifcance of
experience. Te regret minimization framework proposed
in this paper increases the probability of reward samples
being sampled because we believe that targeted optimi-
zation for transition with small immediate reward is es-
sential to improve the performance of the policy. We
recommend using the immediate rewards in transition as
a reasonable proxy so that the state can be sampled fre-
quently and updating action in transition to improve the
immediate rewards. Te of-policy algorithm uses deep
neural networks as value function approximators and
stores past experience in bufer B to calculate updated
gradients. We assume that Bi is a transition in Bufer B and
defne a reward priority instant reward function φ as
sampling policy. Te smaller the value of φ, the higher the
probability of being replay.

In common supervised learning, the training data are
assumed to be independent and identically distributed
and one or several data will be randomly sampled from
the training data for gradient descent every time the
neural network is trained. As learning continues, each
transition will be used several times. Based on the original
Q-learning, a replay bufer is maintained and some data
are randomly sampled from the replay bufer to train the
Q-network, which can play the following roles: the
samples meet the independence assumption. Te data
obtained by interactively sampling in MDP do not satisfy
the independence assumption by itself since st is related
to st−1. Te nonindependently distributed data have
a great infuence on the training of neural network, which
will adapt the neural network to the latest data. ER can
break the sample correlation, make it meet the in-
dependence assumption, and improve sample efciency.
In the deep Q-network (DQN) algorithm [30], a deep
neural network is used to approximate the optimal value
function:

Q
∗
(s, a) � max

π
Q

π
(s, a), (4)

after experiencing a state s and taking an action a. Deep Q
network Q(s, a; θ) is parameterized by deep neural network,
where θ is a parameter. During training, the DQN agent
stores its experience et � (st, at, rt, st+1) into the replay
buferD � e1, e2, · · ·􏼈 􏼉 at each time step t, which deposits the
last million transitions. When implementing the update, by
minimizing the loss, small batches of experiences
(s, a, r, s′) ∼ D are sampled uniformly from the replay
bufer to optimize the deep Q-network with stochastic
gradient descent:

L(θ) � E(s,a,r,s′)∼U(D) y − Q(s, a; θ)
2

􏽨 􏽩, (5)

where y � r + cmaxa′Q(s′, a′; θ− ) represents the boot-
strapping target, θ− denotes the parameters of the target
network Q− (s, a; θ− ), and Q(s, a; θ) is a periodic copy of
the deep Q-network. Due to the advantages of combining
the deep RL algorithm with the empirical replay algo-
rithm, DQN and its variants [35] demonstrate exceptional

performance on our dataset. Te specifc algorithm is as
follows Algorithm 1.

5. Experiment

5.1. Experimental Setting and Baseline. In this section, our
study was based on data from hospital’s Brain Infarction
Screening Program for high-risk populations. Te data
mainly include demographic information, medical his-
tory information, personal history, family history in-
formation, and blood index information. In order to
better analyze the risk factors of stroke, we fully consider
three aspects in the data stage preprocessing: (1) how to
fll in the missing data; (2) how to deal with categorical
features; (3) how to deal with continuous features. Af-
terwards, we obtained 64 features in each sample of 6527
patients. Te three aspects of data preprocessing are
described in detail as follows:

(i) Filling in missing data: Because our study was based
on regular follow-up of community residents, res-
idents could drop out or be lost to follow-up,
resulting in data loss. In the original data set, most
attribute values are greater than or equal to “0,” and
we can uniformly fll the missing values with “−1,”
whichmakes it more accessible to distinguishing the
missing values from the normal values.

(ii) Classifcation feature processing: We adopted one-
hot coding for classifcation features (without the
diference between the correlation feature value and
its actual meaning, such as PayStyle and Job) to
obtain the efect of diferent attributes of stroke,
which can make the data distribution more sparse
and expand the feature space.

(iii) Continuous feature processing: In order to simplify
the model and reduce the risk of model overftting,
some continuous features such as age and height are
discretized. We map features from diferent in-
tervals to diferent buckets.

In order to make a fair comparison and prove the ef-
fectiveness of our algorithm, we use the following common
feature selection methods as comparison:

(i) Chi-square test: It uses the idea of commonly used
hypothesis testing in probability theory and
mathematical statistics and aims to measure the
correlation between two variables.

(ii) F-test: It is a hypothesis test method based on F-
distribution; that is, it is applied to capture the linear
relationship between each feature and label.

(iii) Mutual information: A variable that measures the
relationship between two random numbers sampled
at the same time.

We use DQN to explore feature selection. In DQN, the
bufer size of the experience pool is set to ten thousand and
each batch size is set to 16. Te network structure of DQN is
an MLP network with a hidden layer [256, 256], and the
update frequency of target net is once every 100 training
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times, for a total of 1000 epochs. In the experiment, the
learning rate of DQN network was set as 0.01 and 0.001, and
the reward discount factor was set as 0.9 and 0.99, re-
spectively, for network training. Te parameters of chi-
square test, F-test, and mutual information are set the
same as DQN.

5.2. Performance Comparison and Efect of Parameters. In
Figure 3, the abscissa represents the number of selected
features and the ordinate represents the accuracy of using
the selected features on the test set. From the experimental
results, our DQN method had achieved better results than
the other three methods although we adjusted the vector and
a reward in DQN discount factor, the fnal selected feature
on the test set arrived the highest accuracy than the other
three methods, and in most cases, the accuracy is the same,
but our approach requires a smaller number of features. In
Figure 4, we also provide the performance comparison of
these algorithms in terms of F1 score, precision, and recall

metrics. It can be observed that due to the complexity of the
F1 method, it exhibits signifcantly higher computational
resource consumption compared to other methods, which
may result in certain performance advantages. However, this
does not align with practical requirements. In contrast, our
method achieves a more balanced trade-of between per-
formance and resource consumption.

It can be observed from Table 1, and achieved a higher
accuracy of ourmethod in both the number of features is less
than the other three methods, including vector in 0.01,
reward the discount factor for 0.9 DQN method selected
nearly half, less number of features can be shown using DQN
feature selection achieved very good result. At the same time,
it can also be found that in this experiment, the smaller the
learning rate, the higher the fnal accuracy, indicating that
the DQN network fully and stably learned better experience.
However, the smaller the reward discount factor, the DQN
network will pay more attention to the current reward, and
the number of features selected will be smaller, but the
highest possible accuracy rate will be lower.

...

...
...

(a) Implicit Relationship between
the Feature Distributions

(b) Feature Filter (c) Feature Combination

Figure 2: Mainly composed of three parts: (a) can be observed that there are implicit correlations between features. By fltering and sorting
the features of (b), the ordered feature expression in (c) can be obtained according to the importance and other indicators.

(1) Initialize feature (f1, f2, . . . ,fn) as F.
(2) Calculate the accuracy of a single feature.
(3) Initialize replay memory D to capacity N.
(4) Initialize action-value function Q with random weights.
(5) for episode� 1, M do
(6) Initialize sequence s1 � F and processed sequenced ∅1 � ∅(s1).
(7) for t � 1, T do
(8) Select a feature f into Ft as action at.
(9) Execute action at in prediction pt and reward rt.
(10) Set st+1 � st, at, xt+1 and ∅t+1 � ∅(st+1).
(11) Store transition (st, at, rt, st+1) in D.
(12) Sample random minibatch of transitions
(13) (∅j, aj, rj,∅j+1) in D.
(14) end for
(15) end for

ALGORITHM 1: Regret minimization experience replay with DQN.
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Figure 3: Accuracy of performance characteristics of diferent methods. (a–d) show the accuracy comparison between DQN and chi-square
test, F test, and mutual information methods with diferent feature parameters modifed, respectively.
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Figure 4: Continued.
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Figure 4: Performance of diferent algorithms in terms of F1 score, precision, and recall. Te x-axis represents the number of selected
features, while the y-axis represents the metrics. From top to bottom, the frst row represents the performance results of four algorithms
under diferent metrics when the parameter settings are λ� 0.001 and c � 0.9; the second row represents the performance results when the
parameter settings are λ� 0.01 and c � 0.9; the third row represents the performance results when the parameter settings are λ� 0.001 and
c � 0.99; and the fourth row represents the performance results when the parameter settings are λ� 0.01 and c � 0.99.

Table 1: Comparison of optimal performance on diferent methods.

Methods Highest
accuracy rate (%) Feature number

Chi-square test 77.14 57
F test 77.14 57
Mutual information 77.02 64
RMFS (λ� 0.01, c � 0.9) 77.27 30
RMFS (λ� 0.01, c � 0.99) 77.45 34
RMFS (λ� 0.001, c � 0.9) 77.63 46
RMFS (λ� 0.001, c � 0.99) 77.63 47
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Te specifc computation time of diferent models is
infuenced by multiple factors such as the size of the dataset,
the number of features, and their complexity. Taking the chi-
square test method as a reference with its computation time
assumed as 1, the computation time for F Test is approxi-
mately 1.2 to 1.5 times that of the chi-square test, while the
computation time for mutual information is in the range of
1.5 to 2 times.

We fxed the number of selected features and observed
the highest accuracy achieved by diferent methods given the
number of features to be selected. As can be seen from the
table, the accuracy performance of our method is higher
than the other three methods in almost all cases, especially
when the feature number is 30. Tis indicates that our
method can not only select the optimal number and com-
bination of features but also obtain higher accuracy when the
number of features to be selected is fxed.

In our work, we listed the feature combinations se-
lected by each method when the number of features to be
selected was 1, 2, 3, and 5, respectively, and counted the
frequency of each feature to analyze the importance of the
feature in Table 2. Te top fve features, from most to least,
were

(i) AcPayStyle. Tis is the most important feature of
this experiment, showing that stroke patients have
a large proportion of reimbursement from rural
cooperative medical insurance, indicating that the
prevalence, incidence, and mortality of stroke in
rural residents are signifcantly higher than those in
urban residents.

(ii) DfHypertension. It is the second most important
feature afecting the results of the experiment, which
is also in line with the prior knowledge of modern
medicine. According to statistics, 70% to 80% of
stroke patients have high blood pressure, and hy-
pertension can increase the risk of stroke.

(iii) Age_4. Tis is the third most important feature in
the experiment, representing people between the
ages of 40 and 50. It is also found in the summary of
stroke data in China that the population with stroke
tends to be younger in the past 40 years, and the
experimental results also refect this fact to a certain
extent.

(iv) AcJob. One of the important features afecting the
results of the experiment has been shown that if
people engage in high-intensity mental work for
a long time, they have a signifcantly higher in-
cidence of high blood pressure, which is an im-
portant risk factor for stroke, than the average
manual worker.

(v) DfSportsLack. It also plays a certain role in infu-
encing the results of the experiment, which is related
to the lifestyle of patients. Chronic lack of move-
ment will cause fat and cholesterol to stick to the

vessel wall, which in turn narrows the walls, leading
to slower blood fow, and over time, such blockages
can increase the risk of stroke.

6. Conclusion and Future Work

In this paper, we introduce existing feature selection methods
frst and point out the drawbacks that these methods may
ignore the relationships between features. Based on the re-
quirement of this issue, we analyze the feature selection strategy
from the perspective of minimizing regret and model feature
selection in terms of RL to train the optimal feature combi-
nations by DQN. Based on the theoretical analysis, we propose
a practical feature selection strategy RMFS, which aims to select
the optimal combination of features. RMFS shows a strong
robust to the randomness of the environment and has high
computational efciency and accuracy. Compared with the
previous feature selectionmethods, our method yields superior
results. In future work, we will extend our framework and
attempt to adjust the bufer size in diferent training phases
since our framework is general. In addition, we will investigate
more about the importance and validity of features such as
proxy signals.
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