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Biological systems have a great number of visual motion detection neurons, some of which can preferentially react to specifc visual
regions. Nevertheless, little work has been performed about how they can be used to develop neural network models for omni-
directional collision detection. Hereby, an artifcial fy visual brain neural network with presynaptic and postsynaptic subnetworks,
for the frst time, is developed to detect the changes of visual motion in panoramic scenes. Herein, the presynaptic subnetwork, which
originates from the preferential response characteristics of fve fy visual neurons, responds to all themoving objects in the panoramic
feld; the postsynaptic network, which is based on the properties of the angle and height detection neurons in the fy’s brain system,
collects the excitatory intensities of the visual neurons, and outputs the real-time activities of themain object closest to the panoramic
camera. Hereafter, a computational model is constructed to implement omnidirectional collision detection, relying upon the artifcial
visual brain neural network and three functional neurons. Te theoretical analysis has verifed that the collision detection model’s
computational complexity depends mainly on the image input resolution. Tree experimental conclusions can be clearly drawn: (i)
the motion characteristics of the main object in the panoramic environment can be clearly exhibited in the neural network; (ii) the
collision detection model can not only outperform the compared models but also successfully perform omnidirectional collision
detection; and (iii) it spends 0.24 s or so to execute visual information processing per frame with the resolution of 120× 80.

1. Introduction

As a classic and popular topic, collision detection often
touches upon many of engineering problems, e.g., vehicle
collision [1], navigation [2], and mobile robot [3]. Even
though radars and ultrasonic sensors can monitor whether
a moving object encounters possible dangers, their collision
detection accuracy depends strongly on the quality of the
hardware measurement. Tereby, they necessarily cause
economically expensive costs in engineering applications,
due to the requirement of high-precision collision detection.
Tis motivates researchers to probe into bioinspired, low-
cost, and high-precision collision detection models from the
perspective of artifcial intelligence.

Biological systems cannot only capture visual in-
formation, but also rapidly discover moving objects and

accurately judge if a danger occurs. Particularly, fies, which
possess such merits as high-speed motion, prompt response,
and collision decision-making, can detect spatiotemporal
intensities and avoid imminent collision. Tey may be
viewed as an optical instrument to synthesize visual in-
formation and can perform visual information processing
and decision-making by means of visual brain neurons
[4–9]. Tis is a nice source for constructing artifcial visual
brain models to solve specifc engineering problems.
However, can the intrinsic characteristics of the visual
neurons be employed to construct neurocomputational
models for detecting the behavior changes of the moving
objects in the horizontal, vertical, and equatorial directions?
Can the response characteristics of the visual brain neurons
be jointly employed to construct artifcial visual brain sys-
tems for panoramic collision detection?Tese motivate us to
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explore a new neurocomputational model for omnidirec-
tional collision detection, by means of the visual response
mechanisms of the horizontal, vertical, and equatorial
motion detection neurons in the fy visual system and those
of the central complex and mushroom body in the fy’s brain
system.

Te current work concentrates on exploring bioinspired
computational models which are required to not only detect
changes in panoramic motion but also transmit real-time
collision warning signals. Te main contributions are
summarized as follows:

(i) Based on the preferential response properties of the
fve direction-selective neurons in the fy visual
system, a feedforward presynaptic neural network
with fve subnetworks is originally constructed to
check visual changes in the panoramic scene.
Terein, the response characteristics of the back-
ward and equatorial motion detection neurons are,
for the frst time, borrowed to develop two visual
neural networks, in order to detect visual changes in
the lower half feld of the panoramic scene and on
the horizontal equator. Two new symmetric in-
hibitionmodels are designed to execute the function
of lateral inhibition between the neural nodes. Also,
a motion direction detection region is skillfully
divided into multiple response subregions in terms
of two symmetric parabolic curves.

(ii) Originated from the characteristics of the angle and
height detection neurons and the response mech-
anism of processing visual neural signals in the fy’s
brain system, a postsynaptic network is originally
constructed to characterize the morphological
changes of the main object closest to the panoramic
camera.

(iii) Inspired by the characteristics of the joint percep-
tion and response in the fy visual brain system, the
abovementioned presynaptic and postsynaptic
neural networks are combined to construct a fy
visual brain joint neural network (FVBJNN).
Tereafter, inspired by spike-transmitting mecha-
nisms in the brain system, a FVBJNN-based fy
visual brain joint omnidirectional collision de-
tection (FVBJOCD) model, for the frst time, is
constructed to implement omnidirectional collision
early warning in the panoramic scene.

To our best knowledge, no work has been conducted to
discuss the omnidirectional collision detection in terms of
bio-inspired collision detection models. FVBJNN as an ar-
tifcial visual brain neural network difers from any reported
computational model and especially our models, i.e., AFVNN
and AFVJPNN [8, 9], due to their biological inspirations and
diferent problems to be solved. Te two reported models can
only catch the change of visual movement in the case where
one or more objects move on the upper half of the plane of the
panoramic feld, but so does FVBJNN in the panoramic feld,
and particularly can detect the change of an object's equatorial

motion. On the other hand, FVBJNN difers difers from our
previous model (RMPNN) [10] and those (LGMDs) de-
veloped by Yue’s group [11, 12], since the two models
originate from locust visual neurophysiologic discoveries.

Te rest of the paper is organized as follows. Section 2
gives some reviews on related work. Section 3 presents some
fy neurophysiologic fndings, by which an artifcial visual
brain model is drawn to display the fy’s visual response
characteristics. FVBJNN is designed in Section 4, which
involves its architecture and neural layer design. Section 5
develops the model of the FVBJOCD mentioned above and
formulates the related algorithm. Te experiments are ex-
haustively performed in Section 6. Some conclusions are
drawn in Section 7.

2. Survey on Related Work

2.1. Fly’s Visual Neuron. Since two neurophysiologists,
Bishop and Keehn [13], discovered motion detection neu-
rons in the fy visual system, electro- and neurophysiologists
[14–18] have comprehensively probed into the relation
between visual neurons and acquired multiple directional
detection neurons capable of detecting the direction of visual
movement. Particularly, two specifc neurons of T4 and T5
have been verifed to be able to detect the excitatory or
inhibitory activities of direction-selective neurons in the four
cardinal directions [5]. Tey can respond to visual move-
ments by the ON and OFF channels as in the lamina layer
when an object moves with strong or weak brightness in the
feld of view. Besides, there exists a wide-feld neuron which
can send feedback signals to the lamina layer and dynam-
ically adjust visual information processing [19]. Keles and
Frye [20]claimed that the neuron LC11 could specifcally
react to the dynamic small objects in a dynamic and pan-
oramic scene. In the same year, Dickson’s group [21]
revealed that the fy’s lobula columnar neurons could
preferentially react to the visual stimuli of the imminent
looming object. Such two fndings indicated that the fy’s
brain neural system could receive and process the changes of
visual nerve signals by means of visual neurons’ motion
detection activities [5, 22–24]. Furthermore, Takemura et al.
[25] constructed a connectome circuit model and proved
that the connection of motion-sensitive neurons was con-
sistent with the neurons’ preference direction. Subsequently,
Shinomiya et al. [26, 27] studied and simulated the prop-
erties of edge motion detection of several functional neurons
in terms of six elementary motion detectors. Recently,
a computational model, discovered by Tanaka and Clark [28]
was developed to quickly decide whether the fy encountered
a small object. Tis can provide us key insights into ex-
ploring neurocomputational models.

2.2. Fly’s Brain Behavior. Te fy brain system can provide
neuroscientists with abundant insights to discuss its be-
havior characteristics, due to the abilities of learning,
memory, and prompt decision-making [29–31]. Terein, the
central complex (CX) and mushroom body (MB) in the
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central nervous system include crucial units such as the
protocerebral bridge (PB) and fan-shaped body (FB). [32].
After Kohl et al. [33] pointed out that the fy brain’s con-
nectomic discipline should aim to discover the complete
wiring diagram of the brain, several research groups [34–36]
exhaustively carried out the related studies of PB and FB. For
example, Pfeifer and Homberg [36] asserted that CX as the
command center of fight, learning, memory, and autono-
mous attitude control [22] was a functional organization
with the structural array of sixteen slices on the left and
right axes.

To simulate the behavioral attributes of the fy’s brain,
Shih et al. [37] presented a neurocomputational model that
involved the response mechanisms of the premotor center of
the central brain and four sensory modality centers, by
which the brain neural structure was revealed. Lin et al. [38]
reconstructed the circuit of PB and transformed it into
a common three-dimensional framework. Subsequently,
some works [39, 40] validated that MB, as the long-term
memory center of the fy’s olfactory sense, was a crucial
tissue in visual learning and memory. Additionally, Hu et al.
[35] found the nociceptive mechanism in the central brain.
Teir experiments verifed that the central nervous system
played a decisive role in processing nociceptive information
and direct avoidance behavior, particularly the elliptic body
could control its spatial navigation. Although these neu-
rophysiologic achievements are valuable in identifying the
functions of the brain, it remains unclear how the neural
circuits of motor stimulation and decision-making can be
characterized by computational models.

2.3. Artifcial Neurocomputational Model. Te fy’s visual
brain system dominates its motion behavior. By an analog to
the functional mechanisms of its visual information pro-
cessing and decision-making behaviors, some computa-
tional models have been developed to solve engineering
examples such as motion detection, object navigation, object
tracking, as well as collision avoidance.

2.3.1. Motion Detection. Motion detection involves how to
estimate and track the object’s location, gesture, motion
speed, etc. Since Hassenstein and Reichardt [41] constructed
an elementary motion detector (EMD) to check the change
of horizontal visual movement; a series of valuable com-
putational models suitable for navigation and object tracking
have been reported [42–50], inspired by the biovisual in-
formation processing mechanisms of diferent living or-
ganisms such as fies and locust. Especially, the fy visual
system as a valuable organism is a natural inspiration for
detecting the state of moving objects. Öǧmen and Gagné
[42] designed two fy visual neural models to perceive the
motion cues of objects. Afterwards, Eichner et al. [43]
proposed multiple kinds of motion detectors by virtue of the
fy’s optic nerve structure. Shiozaki and Kazama [44] ac-
quired two independent neural processing circuits in the
brain of the fy that could encode multiple clues in the
process of navigation and decision-making. Terein, some
reported neurocomputational models can be used to

estimate the angular and velocity of a moving object [45] and
control the object’s navigation [46]. Missler et al. [47] ini-
tially developed a fy visual neural network which is able to
evaluate the position and speed of a small moving object in
the black or white background. Tereafter, some object
tracking models were reported one after another [48–50].
For example, Sun et al. [48] proposed a computational
model to perform face recognition and object tracking, and
later, claimed that themodel could track any type of object in
the spatiotemporal environment. Also, Aptekar et al. [50]
constructed a fgure-based fy visual tracking model to
predict an object’s motion behavior. Additionally, Yue’s
group [51, 52] designed a visual tracking model which
comprised of a hybrid visual neural network and a tracking
detection scheme in terms of the visual nerve structures of
fies and locusts, and later, an autonomous micro biological
robot was adopted to detect the model’s object tracking
performance.

2.3.2. Local-Regional Collision Detection. As another chal-
lenging topic in computer vision, collision detection involves
how to probe into bio-visual models which is able to perceive
imminent objects and transmit collision early warning
signals in real time. Terein, visual neurophysiologic fnd-
ings have validated that the fy will be in an excitatory state
and output high excitatory activities if an object approaches
it. Tis can provide us with enough inspirations for ex-
ploring collision detection-related neurocomputational
models. Herein, some groups have constructed several bio-
inspired models in terms of visual information processing
mechanisms of living organisms. Yue’s group [11, 12, 53–56]
proposed multiple kinds of locust visual neural networks,
based on the properties of direction-sensitive neurons in the
locust vision system. Particularly, Fu et al. [12] suggested two
artifcial locust visual neural networks in terms of the locust
visual nerve mechanism and small object detectors. Addi-
tionally, inspired by visual information processing mecha-
nisms of other insects such as hippocamp, pigeon, and frog,
several collision detection models were reported [57, 58] as
well. For example, the looming-sensitive neurons in the
pigeon’s brain could be used to construct collision detection
models. Moreover, our group [8, 9] intensively discussed the
topic of collision detection and acquired two computational
models suitable for detecting the motion characteristics of
the moving objects in the wide or narrow visual scene,
relying upon the typical response mechanisms of the fy
visual system.

2.3.3. Omnidirectional Collision Detection. Usually,
achieved by panoramic cameras, mobile robots, or multi-
camera systems [59], panoramic collision detection touches
upon how to capture the visual clues in panoramic scenes
and detect possible hazards around fxed or moving objects.
Some initial works have involved omnidirectional position
estimation and object tracking [60–63]. For example, Shi-
mizuhira et al. [60] constructed an artifcial vision system to
estimate the objects’ location by an autonomous mobile
robot with three cameras; Hirabayashi et al. [61] suggested
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an omnidirectional detection system, relying upon the
combination of image division and multiple object detection
methods; and Taheri et al. [62] reviewed the progress of
omnidirectional wheel detection and also put forward some
challenging topics on robotic navigation. To our best
knowledge, there has been no bio-inspired omnidirectional
collision detection model or system.Terefore, related to the
factors of cost, efectiveness, and efciency, it is desired to
construct omnidirectional collision detection models which
can detect the behavior changes of moving objects and avoid
possible collision.

3. Simplified Fly Visual Brain Model

Te fy visual system comprises two striking compound eyes,
each with ommatidia arranged hexagonally. Each omma-
tidium, which includes eight photoreceptors (R1-R8)
[32, 37, 64], consists of photoreceptors. Te main role of the
visual system consists in capturing visual signals and hier-
archically performing visual information processing
through fve neural layers: photoreceptor, retina, lamina,
medulla, and lobula plate [36, 65].

Te photoreceptor layer receives external visual signals
and perceives the change of visual movement. Also, it
transforms visual optical fow into neural signals and
transmits them to the retina layer.

Te retina layer consists of ommatidia, each of which as
an optic apparatus not only continually receives neural
signals at the corresponding photoreceptor in the photo-
receptor layer but also checks if there exist visual move-
ments. Also, it needs to implement fgure-ground
discrimination and depolarization. Tis implicates that
retina nodes can carry out noise elimination and object
extraction. However, each ommatidium is required to de-
liver its membrane potential or activity to the counterpart in
the next layer after depolarization processing [4, 66].

Te lamina layer, a crucial optic fow processing layer
with lamina units, not only receives the ommatidia’s neural
signals in the retina layer and synthesizes them into excit-
atory or inhibitory activities by projection, but also executes
lateral inhibition between the neural nodes. Precisely, it is
mainly composed of cartridge (cart) and on-of (oo) nodes
[47]. Each cart node takes on neural signal synthesis and
outputs an excitatory or inhibitory activity at each moment
by signal projection. Nevertheless, each oo node performs
lateral inhibition based on its adjacent nodes, while
extracting visual signals by means of ON and OFF pathways.

Te medulla layer, which consists of m nodes, is a local
motion direction detection layer. It generates the local
motion-directional activities of the nodes through a classical
correlative detector. Subsequently, these nodes produce local
directional activities and output them to the lobula plate.

Te lobula neurons in the lobula platelayer preferentially
collect the local activities produced by the medulla layer, and
later, output its own activities to measure the global direction
changes of one or more objects. Herein, it is pointed out that
the lobula platelayer (LP) comprises about 60 neurons, among
which the lobula plate tangential cells (LPTCs), e.g., H1, H3,
V1, V2, and EH, are used to extract visual information from

the optic fow [17, 67]. H1 preferentially react to ipsilateral
forward motion in the horizontal direction, but inhibits re-
verse motion. H3 can only respond to ipsilateral backward
motion. Besides, V1 is a spike detection neuron capable of
selectively responding to ipsilaterally downward movements
in the vertical direction. Conversely, V2 as a spike-
transmitting neuron can only react to ipsilateral upward
motion specifcally. Additionally, EH, an equatorial motion
detection neuron, makes a binocular response to equatorial
motion. Subsequently, each motion-sensitive neuron, to-
gether with the abovementioned four visual neural layers,
forms a visual information processing circuit.

However, the fy’s brain, which includes three main
functional parts: forebrain, central brain, and tritocerebrum,
can exhibit a series of complex motion behaviors, e.g., col-
lision detection and learning. Especially, based on the in-
troduction on the fy’s brain behavior in Section 2.2, the
forebrain as the largest component of the fy’s brain includes
MB and CX. Meanwhile, PB and FB as high-level activity
areas control the whole behavior of the fy and regulate its
information integration, learning, memory, movement con-
trol, etc. [35, 68, 69]. Terein, PB includes sixteen neural
nodes evenly distributed on a sine-like curve, based on the
neurophysiologic fndings. Once PB and FB receive excitatory
activities produced by visual neurons, they will evaluate
whether there is a danger. If yes, they will make a decision to
avoid possible collision jointly.Te angle and height detection
neurons F1 and F5 in the frst and ffth layers of FB are
responsible for learning and memorizing the morphological
angle and vertical height of some moving object, respectively.

Summarily, the process of the fy’s visual brain in-
formation processing includes two stages. One is to generate
the excitatory activities of visual neurons based on the visual
information processing mechanism, the other is to decide
whether to avoid the current obstacles after integrating the
acquired activities into the brain’s nerve system. Te sim-
plifed visual brain information processing mechanism can
be formulated by Figure 1.

4. Fly Visual Brain Joint Neural Network

Tis section frstly elaborates the medulla layer’s regional
division scheme. Secondly, related to one such scheme, the
architecture of the neural network (FVBJNN) is formulated
in Section 4.2. Finally, its neural layers are designed in
Sections 4.3 and 4.4, based on an analogy to the functional
properties of the above neural layers.

4.1.Medulla RegionDivision. As mentioned in Section 3, H1
and H3 preferentially respond to local motion activities
produced by medulla nodes in the left-to-right (LR) and
right-to-left (RL) subregions as in Figure 2, respectively,
while V1 and V2 do so orderly in the up-to-down (UD) and
back-to-forward (BF) subregions. Also, EH only prefers to
respond to local motion-directional activities generated by
the medulla nodes on the equatorial trajectory. Tese show
that H1, H3, V1, and V2, orderly named LRN, RLN, UDN,
and BFN, can only react to visual movements in their
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preferential regions, and meanwhile EH called EHN only
pays close attention to the changes of visual motion on the
equatorial trajectory. Based on such an inspiration, the
medulla layer with M×N nodes, represented by a rectangle
in Figure 2 is divided into four subregions (regions k,
1≤ k≤ 4) in terms of two symmetrical parabolic curves. Te
upward parabolic curve passes through three coordinate
vertices of (M/2, N/2), (M, 0), and (M, N), while the

downward one goes through (M/2, N/2), (0, 0), and (0, N).
LRN and RLN respond to the nodes’ activities in Regions 3
and 1, respectively, whereas so do UDN and BFN in Regions
2 and 4 in turn. In addition, a horizontal elliptic curve with
the center (M/2, N/2) as well as the long axis a and the short
axis b are chosen to approximately formulate the equatorial
curve. Te equatorial region, i.e., Region 5, is divided into
four subregions, since EHN is required to detect visual
motion changes on the equator.

4.2. Te Topological Architecture on FVBJNN. Related to
Figures 1 and 2, FVBJNN, schematically illustrated by Figure 3
below consists of presynaptic and postsynaptic networks. Te
presynaptic neural network, which is based on the mechanism
of visual response and the preferential response characteristics
of the aforementioned visual neurons (LRN, RLN, UDN, and
BFN), comprises fve fy visual neural networks (FVNNs) with
equal importance, i.e., LR-, RL-, UD-, BF-, and EH-FVNNs.
Te former four networks, LR-, RL-, UD-, and BF-FVNNs, are
orderly employed to detect the changes of LR, RL, UD, and BF
visual motion in the panoramic feld, but so does the latter one
(BF-FVNN) on the horizontal equatorial trajectory.Tey share
three sequentially connected visual information processing
layers (photoreceptor (P), retina (R), and lamina (L)), but
include diferent neurons and response subregions as in the
medulla layer (M-layer), namely, LR-, RL-, UD-, BF-, and EH-
FVNNs orderly include subregions 3, 1, 2, and 4 and the
equatorial curve that are consistent with those in Figure 2 and
also involve in the neurons of LRN, RLN, UDN, BFN, and
EHN, respectively. LR- and RL-FVNNs are designed to orderly
measure visual motion changes in the left and right visual
regions as in the panoramic scene. UD- and BF-FVNNs detect
visual motion changes in the upper and backward visual
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Figure 1: Illustrative diagram on the fy’s information transmission. Herein, once a visual scene is captured in the panoramic feld, the fy
visual system executes information processing through fve visual neural layers, in which each neuron (e.g., H1, H3, V1, V2, or EH) only
reacts to its preferential region in the medulla layer, while extracting visual characteristics in its preferential sub region. Subsequently, the
extracted visual characteristics are transmitted to the central complex in the brain neural system and then sent to the functional neurons
after symmetric cross-transmission processing, e.g., neurons F1 and F5 in the sectoral body. After that, some brain neurons interact with
each other and detect possible dangers.
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abolic curves. Furthermore, an elliptic curve is approximately
regarded as an equatorial one, after which the elliptic region is
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regions, respectively. EH-FVNN is specifcally responsible
for detecting the change of visual movement on the equa-
torial curve, relying upon the related equatorial region. On
the other hand, the postsynaptic neural network consists of
two neural layers PB and FB as well as two neurons F1 and
F5. Te PB-layer comprises sixteen nodes (PBi, 1≤ i≤ 16)
which receive the excitatory activities of the visual neurons
in the presynaptic neural network and transform them into
spike signals. Te FB-layer includes eight nodes (FBi,
1≤ i≤ 8), each of which collects the outputs of the two
symmetrically arranged PB nodes and changes them into
pulse signals through a spike-transmitting mechanism. Fi-
nally, the neurons of F1 and F5 gather the outputs of the
nodes in the FB-layer and output the morphological angle
and vertical height of the main moving object closest to the
panoramic camera.

4.3. Presynaptic Neural Network. Recall that the presynaptic
neural network consists of LR-, RL-, UD-, BF-, and EH-
FVNNs in Figure 3(a). Herein, we take BF- and EH-FVNNs
for example to explicitly formulate their design inspirations.
Teir schematics are given in Figure 4.

4.3.1. BF-FVNN. Te subnetwork incorporates an output
neuron (BFN), three neural layers (P-, R- and L-layers), and
the medulla subregion in Figure 3(a) that corresponds to the
region 4 in Figure 2, among which the P-layer is the same as
that in our previous work [5]. Te detailed designs are
summarized below.

(1) P-Layer. Tis layer captures the illuminance intensity or
grayscale at each pixel point in the current grayscale frame,
while fltering out additional noise signals, in order to extract
one or more moving object (s) in the panoramic scene.
Precisely, let the layer include M×N photoreceptors dis-
played in a matrix form; Jf (i, j) stands for the luminance
intensity at the pixel (i, j) in the frame fwith sizeM×N. Each
photoreceptor coincides with a matched pixel point in the
frame. Te ViBe method [69] is used to create a foreground
image of Gf with size M×N in terms of Jf, by which the
output of the photoreceptor (i, j),Hf (i, j), is computed by the
following equation:

Hf(i, j) �
Gf(i, j), if Gf(i, j) � Jf(i, j),

0, else,
􏼨 (1)

with 1≤ i≤M and 1≤ j≤N. Equation (1) shows that those
valuable visual signals in Jf are extracted to refect the be-
havior changes of some moving objects.

(2) R-Layer.Te layer comprisesM×N retina nodes with the
same structure as that in the P-layer. Each node (i, j) captures
the neural signal Hf (i, j) at frame f and processes it by
a smoothening signal processing mechanism, namely,

Pf(i, j) � Hf(i, j) + 􏽘

nst

l�1
vlHf−l(i, j), 1≤ i≤M, 1≤ j≤N.

(2)

with maximal time step nst, where vl as a persistence co-
efcient is decided by the standard sigmoid function, i.e.,
vl � Sig(l). Equation (2) emerges that, once one or more
objects are present in the panoramic scene, some retina
nodes will stay excited for a short time, based on the his-
torical visual signals.

(3) L-Layer. Te layer includes two sequentially connected
visual neural layers, i.e., the cartridge (cart) and on-of (oo)
ones, each of which hasM×N nodes with the same structure
as that in the R-layer and performs signal projection, fl-
tering, or shunting inhibition. In the cart layer, each cart
node (i, j) receives neural signals at the retina nodes around
the counterpart in the R-layer and synthesizes them to
output an activity of Rf (i, j) in terms of signal projection.
Based on one such information processing mechanism, the
conventional Gaussian flter is used to produce the activity of
the node (i, j), namely,

Rf(i, j) � 􏽘
0≤k,l≤2

Pf(i + k − 1, j + l − 1)wkl, (3)

with 1≤ i≤M, 1≤ j≤N, where wkl denotes the element at
the position (k, l) in the convolution kernel matrix W given
by the following equation:

W �
1
16

1 2 1

2 4 2

1 2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Tereafter, since the node (i, j) needs to depolarize the
low activity outputted by its counterpart in the R-layer,
a frst-order low-pass flter is adopted to output its activity,
namely,

dCt(i, j)

dt
�
1
τ

Rt(i, j) − Ct(i, j)􏼂 􏼃, (5)

with positive speed attenuation factor τ.
Besides, each oo node (i, j) in the oo layer transforms the

activity of the counterpart in the cart layer into an oo signal
of Ot (i, j) by means of the shunting inhibition mechanism
[6], as follows:

dOt(i, j)

dt
� −AOt(i, j) + B − Ot(i, j)( 􏼁

× Ct(i, j) − g Ct(i, j)( 􏼁( 􏼁,

(6)

with positive decay factor A and excitation amplitude B,
where g (.) is the one-frame time-delay function. Equation (5)
shows that, ifOt (i, j) becomes large with time t, the oo node (i,
j) will stay excited and encounter inhibition conversely, which
can characterize the node’s response behaviors.

(4) M-Layer. Te layer, which comprises of M×N medulla
nodes with the same structure as that in the oo layer,
preferentially pays close attention to the changes of local
motion of the medulla nodes in the backward subregion
(Region 4) as in Figure 2. Each node in the region receives
two activities of excitation and inhibition outputted by the
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counterpart in the oo layer and later generates an activity to
evaluate its state by the elementary motion detector (EMD)
in Figure 5(a) and the lateral inhibition mechanism.

Precisely, each node (i, j) inhibits the fve lower nodes in its
3× 3 neighborhood as in Figure 5(b), and outputs an ex-
citatory activity by the following equation:

E
BF
f (i, j) � of(i, j) − w

1
5

􏽘
0≤k,l≤2

of(i + k, j + l)g of(i + k, j + l)􏼐 􏼑, (7)

with k≠ 2, (k, l)≠ (1, 1), 1≤ i≤M/2, and nBF
l (i)≤ j≤ nBF

r (i),

where nBF
l (i) and nBF

r (i) are the column numbers of the left
most and right most medulla nodes in the ith row as in
region 4, respectively; w is a local inhibition weight of the

node’s signal strength in the nonpreferred direction. On the
other hand, the node (i, j) is inhibited by the fve lower nodes
in its 3× 3 neighborhood as in Figure 5(b) and outputs an
inhibitory activity by the following equation:

I
BF
f (i, j) � w of(i, j) −

1
5

􏽘
0≤k,l≤2

of(i − k, j + l)g of(i − k, j + l)􏼐 􏼑⎛⎝ ⎞⎠, (8)
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P

R
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LPEHNLRN UDN RLNBFN

(a)
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FB

PBP1 P8
P16

F1

FB1 FB8

F5

LRN BFN RLN

P9

EHNUDN

(b)

Figure 3: Schematic illustration of the FVBJNN’s architecture. FVBJNN comprises of the presynaptic and postsynaptic neural networks. (a)
Presynaptic neural network is acquired by simply simulating the neural mechanism of visual response in Figure 1, but (b) postsynaptic
neural network originates from the fy’s brain response mechanism. In the schematic diagram (a), the symbols of P, R, L, M, and LP are the
abbreviations of photoreceptor, retina, lamina, medulla, and lobula plate, respectively. Te L-layer is formed of two sublayers, i.e., cartridge
(cart) node and on-of (oo) node sublayers. It is highlighted that the M-layer is completely consistent with that in Figure 2. Once a grayscale
frame is inputted in to the P-layer, it is processed by the fve neural layers hierarchically. Afterwards, LRN, RLN, UDN, BFN, and EHN
independently generate motion-directional activities and transmit such activities to the PB-layer. Te FB-layer receives the excitatory
activities generated by the PB-layer and later implements a symmetric cross-transfer mechanism. Finally, the excitatory activities produced
by the FB-layer are simultaneously transmitted to F1 and F5, by which some important neural clues are extracted to detect omnidirectional
collision. (a) Presynaptic neural network. (b) Postsynaptic neural network.
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with k≠ 0, (k, l)≠ (1, 1). Accordingly, the node produces an
activity by the following equation:

M
BF
f (i, j) � abs (E

BF
f (i, j) − I

BF
f (i, j)􏼐 􏼑. (9)

If MBF
f (i, j)> 0, the node is in an excitatory state, and

especially if MBF
f (i, j) is large, there exists at least one object

to move toward the center point (camera or robot) along the
back-to-up direction.

(5) Neuron BFN.Te neuron collects the activities of medulla
nodes only in Region 4, and subsequently produces a con-
verged activity by the following equation:

S
BF
f � 2 × Sig

SumBF
f

m
BF

⎛⎝ ⎞⎠ − 1, (10)

where

oo

P

R

Field of view

cart

L

M

BFN

Region 4

(a)

oo

P

R

Field of view

cart

L

M

EHN

Equator

Region 5

(b)

Figure 4: Te schematic diagrams of the illustrative neural networks. (a) Te schematic of BF-FVNN. (b) Te schematic of EH-FVNN.

Δt

a b

(a)

Object

Back-to-forward 

(1, 1)(1, 0) (1, 2)

(0, 1)(0, 0) (0, 2)

(2, 1)(2, 0) (2, 2)

(b)

Figure 5: Schematic illustration on EMD and lateral inhibition. (a) A unidirectional motion detector which detects the direction of a single
moving object. (b) Te schematic of the lateral inhibition mechanism; when an object moves along the direction from bottom to top, the
central node (1, 1) is activated by the fve nodes in the lower half-plane but inhibited by the fve nodes in the upper half-planer. (a)EMD [41].
(b) Lateral inhibition between nodes.
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SumBF
f � 􏽘

M/2

i�1
􏽘

nBFr (i)

j�nBF
l

(i)

abs M
BF
f (i, j)􏼐 􏼑, (11)

and mBFdenotes the number of the medulla nodes in region
4 as in Figure 2. If SBFf is large, an object will move toward the
center point (M/2, N/2) along the back-to-up direction.
Conversely, an object will deviate from the point gradually
even when there is no moving object in the region.

4.3.2. EH-FVNN. Te network detects the changes of visual
motion on the equatorial curve around a fxed point, which
involves three points: (i) judging whether there exists
a moving object on the curve; (ii) if yes, it will detect whether
the object moves clockwise (cw) or counterclockwise (ccw);

and (iii) it computes the output activity if an object makes an
either cw or ccw movement.

As related to Figure 2, the equatorial region, surrounded
by the elliptic curve is uniformly divided into four sub-
regions Ai with 1≤ i≤ 4 by means of the center point (M/2,
N/2) and both horizontal and vertical axes. A1 and A4 are the
right-upward and right-downward subregions with sector
angles 90° in turn, whereas A2 and A3 denote the left-upward
and left-downward ones, respectively. Similar to BF-FVNN,
EH-FVNN also sequentially executes the P-, R-, and L-
layers. Hereafter, each medulla node (i, j) within the
equatorial region captures the activities of oo nodes around
the counterpart in the oo layer, and then outputs an ex-
citatory or inhibitory activity. Precisely, each node (i, j) inA1
produces an excitatory activity by the following equation:

E
A1
f (i, j) � of(i, j) −

1
3

w 􏽘
0≤k,l≤2

of(i − k, j − l)g of(i − k, j − l)􏼐 􏼑, (12)

with k, l≠ 2 and (k, l)≠ (1. 1). Also, it generates an inhibitory
activity by the following equation:

I
A1
f (i, j) � w of(i, j) −

1
3

􏽘
0≤k,l≤2

of(i + k, j + l)g of(i + k, j + l)􏼐 􏼑⎛⎝ ⎞⎠, (13)

with k, l≠ 0, (k, l)≠ (1, 1), M/2≤ i≤M, and N/2≤ j≤ n
A1
r (i).

Herein, n
A1
r (i) denotes the column number of the rightmost

medulla node in the ith row as in A1. Accordingly, the node
(i, j) elicits an excitatory or inhibition activity by the fol-
lowing equation:

M
A1
f (i, j) � E

A1
f (i, j) − I

A1
f (i, j). (14)

Furthermore, all the nodes in the region A1 generate
a gathered activity by the following equation:

EHA1
f � 2 Sig

SumA1
f

m
A1

⎛⎝ ⎞⎠ − 0.5⎛⎝ ⎞⎠, (15)

where mA1 denotes the number of nodes in A1 and

SumA1
f � 􏽘

M

i�M/2
􏽘

n
A1
r (i)

j�N/2
abs M

A1
f (i, j)􏼒 􏼓. (16)

Similarly, the nodes in the ith region Ai can also create
a converged activity of EHAi

f with 2≤ i≤ 4.Tis way, when an
object moves on the fxed equatorial curve, the maximum of
the four activities EHAi

f with 1≤ i≤ 4, i.e., cf, is taken to
measure the motion changes of the object on the curve,
which is given by the following equation:

cf � max EHAi

f , 1≤ i≤ 4􏼚 􏼛. (17)

It is highlighted that, in the case where there is no
moving object in the equatorial region, if an object makes an
equatorial movement on the equatorial curve, the synthe-
sized excitatory intensity at each medulla node on the curve
will keep almost identical at each frame. Terefore, an index
If can be used to identify whether an object makes an
equatorial movement, defned by the following equation:

If �
1, if σf < maxs ,

0, else,
􏼨 (18)

where maxs is the submaximum in the set of

EHAi

f , 1≤ i≤ 4􏼚 􏼛 and σf is the standard deviation of

ck􏼈 􏼉
f

k�f−nst
. Again, an equatorial motion trajectory can be

formulated approximately by a sine or cosine-like curve.
Tereby, the movement trajectory of an object near the
equatorial curve can be represented approximatively by
either df � cf sinf or ef � cf cosf. Hence, a ccw identif-
cation index is designed to judge whether an object makes
a ccw movement, which is given by the following equation:

I
ccw
f �

1, if If � 1􏼐 􏼑Λ σnst

f < σth􏼒 􏼓,

0, else,

⎧⎪⎨

⎪⎩
(19)
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where σnst
f and ∧ are the standard deviation of dk􏼈 􏼉

f

k�f−nst
and

the AND logical operation, respectively. Similarly, a cw
identifcation index can be used to check if an object makes
a cw movement, designed by the following equation:

I
cw
f �

1, if If � 1􏼐 􏼑Λ σe
f < σth􏼐 􏼑,

0, else,

⎧⎨

⎩ (20)

where σe
f is the standard deviation of ek􏼈 􏼉

f

k�f−nst
.

In terms of the abovementioned model designs in
(11)–(18), EHN can not only perceive the excitatory intensity
of the moving object on the equatorial trajectory at each
frame, but also identify whether the object moves coun-
terclockwise or clockwise. Accordingly, the output of EHN
at frame f can be defned by the following equation:

S
EH
f �

df, if I
ccw
f � 1,

ef, elseif I
cw
f � 1,

0, else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

4.3.3. LR-, RL-, and UD-FVNNs. Each of the three networks
also includes three shared neural layers (P, R, and L), one
specifc medulla subregion, and one output neuron. Teir
neural layers are completely the same as those in BF-FVNN.
Besides, their neurons only respond to respective prefer-
ential sub regions in the medulla layer.

(1) UD-FVNN:Temedulla subregion only includes the
nodes in region 2 as in Figure 2. Te activity of each
node (i, j) at frame f, i.e., MUD

f (i, j), is computed by
replacing “BF” with “UD” in equations (6)–(8) as in
the BF-FVNN.Terein, the notations of i and j range
from M/2 to M and from nUD

l (i) to nUD
r (i) re-

spectively, in which nUD
l (i) and nUD

r (i) denote in-
dividually the column numbers of the leftmost and
rightmost nodes in the ith row as in region 2. Ad-
ditionally, the output of the UDN can be acquired by
equation (9) after “BF”is displaced by “UD.”

(2) LR- and RL-FVNNs: Te LR-FVNN’s medulla
subregion only includes the nodes in region 3 as in
Figure 2, in which the activity of the node (i, j),
MLR

f (i, j), can be computed by replacing “BF” with
“LR” in equations (6)–(8); i and j range from 1 toN/2
and from nLR

l (j) to nLR
r (j), respectively. Te RL-

network’s medulla subregion only involves in the
nodes in region 1 as in Figure 2. Herein, the activity
of each node (i, j), MRL

f (i, j), can be acquired
similarly, where j changes from N/2 toN and so does
i from nRLl (j) to nRL

r (j). Notice that nLR
l (j) and

nLR
r (j) denote the row numbers of the upmost and

downmost medulla nodes in the jth column as in
region 3, and so do nRL

l (j) and nRL
r (j) in region 1.

Additionally, the outputs of LRN and RLN are
similarly computed by equation (9) after replacing
“BF” with “LR” and “RL,” respectively.

4.4. PostsynapticNeuralNetwork. Related to Figure 3(b), the
network consists of the PB- and FB-layers as well as the
neurons of F1 and F5. Te former layer, i.e., PB-layer,
comprises sixteen neural nodes which receive and process
the excitatory activities outputted by the neurons in the
presynaptic neural network. Te latter one, i.e., FB-layer, is
composed of eight nodes, each of which collects the outputs
of the two symmetrically arranged PB nodes and process
them through a spike-transmitting mechanism. F1 and F5
collect the outputs of all the nodes in the FB-layer simul-
taneously and later generate their activities to measure the
changes of the visual angle and height of the main object.

4.4.1. PB-Layer. As mentioned in Section 3, the sixteen
nodes (PBi, 1≤ i≤ 16) in the PB-layer are uniformly arranged
on a sine-like curve segment neurophysiologically. Herein,
the outputs of LRN, UDN, EHN, BFN, and RLN are received
by all the neural nodes in the sets of {PB1, PB2, PB3}, {PB4,
PB5, PB6}, {PB7, PB8, PB15, PB16}, {PB12, PB13, PB14}, and
{PB9, PB10, PB11}, respectively. For example, the output of
LRN is collected by each node in set {PB1, PB2, PB3} si-
multaneously. Tereafter, a constraint information trans-
mission mechanism is used to ensure that each node PBi
outputs an excitatory activity or remains unresponsive by
the following equation:

PBf(i) �
Sf(i), if Sf(i)> 0,

0, else,
􏼨 (22)

with 1≤ i≤ 16, where Sf(i) represents the input of PBi at
frame f.

4.4.2. FB-Layer. Te nodes (FBi, 1≤ i≤ 8) in the layer are
distributed on the horizontal line. A symmetrical cross-
connection transmission mechanism is employed to en-
sure that each node acquires the outputs of the two sym-
metrical nodes in the PB-layer, namely, the ith node receives
the outputs of PBi and PB17− i with 1≤ i≤ 8. Subsequently,
a specifc weighted linear combination transmission
mechanism is used to generate the node’s activity by the
following equation:

FBf(i) � μPBf(i) +(1 − μ)PBf(17 − i), (23)

where μ is a weight coefcient taking 0.1 if i� 1, 2, 5 or 6, and
0.9 otherwise.

4.4.3. Neuron F1. As an angle detector, F1, which can make
a strong response to the main object, detects the change of
the visual angle (θ) of the object. It collects the activities
outputted by the eight nodes in the FB-layer, and then
executes a spike mechanism to evaluate whether it is in an
excitatory state. More precisely, let f0 stand for the frst frame
number in which the moving object is captured by the
camera, and fmax represents the maximal time step which the
danger occurs. Usually, f0 and fmax are two fxed numbers
defned by the user, in which their diference denotes the
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version of visibility. Subsequently, F1 frstly flters out the
low activities by the following equation:

Gf � max FBf(i), 1≤ i≤ 8􏽮 􏽯 × sin θf􏼐 􏼑, (24)

where the visual angle at frame f is estimated by the following
equation:

θf �

π
6

×
kf

f0
, if kf <fo,

π
2

×
kf − fo

fmax
, else,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

with kf � f mod (f0 + fmax). Herein, equation (25) shows that
if kf approaches either f0 or f0 + fmax, θf will be equal to 30° or
90° approximately. Tis indicates that, once some moving
object appears in the visual feld or enters a given danger
zone, F1 will become excitatory. Tus, equations (24) and
(25) are exploited to characterize part of the neuron’s
properties appropriately. Ten, a spike mechanism is chosen
to detect whether there exists a spike, which is given by the
following equation:

S
F1 spike
f �

1, if Gf > 0,

0, else.
􏼨 (26)

Hence, F1 outputs an excitatory activity by the following
equation:

V
F1
f �

P
F1
f , if 􏽘

nst−1

i�0
S

F1 spike
f−i ≥ nst,

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

where PF1
f is defned by the following equation:

P
F1
f �

1
nst

􏽘

nst−1

i�0
S

F1 spike

f−i , if S
F1 spike

f � 0,

Gf, else.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

4.4.4. Neuron F5. In the panoramic scene, the height from
the camera to the ground and the minimum danger distance
between the camera and the main object directly determine
whether a collision alarm will be transmitted. Terefore, F5
as a height detection neuron is adopted to detect the visual
height of the object. Herein, it collects the activities gen-
erated by the eight nodes in the FB-layer, and then generates
an excitatory intensity by the following equation:

gf � max FBf(i), 1≤ i≤ 8􏽮 􏽯 ×
h

l
, (29)

where h and l, usually given by user, denote the visually
maximal vertical height and horizontal distance (i.e., the
distance between frames f0 and f0 + fmax), respectively. Ac-
cordingly, a spikemechanism is designed to identify whether

F5 generates a spike at frame f, which is given by the fol-
lowing equation:

S
F5 spike
f �

1, if gf > 0,

0, else.
􏼨 (30)

Such a mechanism guides F5 to output an activity by the
following equation:

V
F5
f � P

F5
f , if 􏽘

nst−1

i�0
S

F5 spike
f−i ≥ nst,

0, else,

⎧⎪⎪⎨

⎪⎪⎩
(31)

where PF5
f is given by the following equation:

P
F5
f �

nst 􏽙

nst−1

i�0
gf−i, if gf � 0,

gf, else.

⎧⎪⎪⎨

⎪⎪⎩
(32)

5. Fly Visual Brain Omnidirectional
Collision Detection

Tis section frst displays a so-called FVBJNN-based om-
nidirectional collision detection model.

FVBJOCD is given in Section 5.1. Second, the model’s
algorithm formulation and computational complexity are
given in Section 5.2.

FVBJOCD as a collision detection model, schematically
illustrated by Figure 6 which is exploited to measure changes
in the panoramic scene and transmit collision alarms. Once
multiple objects move in the scene (e.g., Figure 6(a)), the
model is required to promptly take one of the objects as the
main object closest to the panoramic camera and decide
whether an alarm is transmitted through an early warning
scheme. Specifcally, related to Figure 6(b), FVBJOCD is
formed of FVBJNN and three functional neurons, i.e.,
feedforward inhibition (FFI), synthetic spike inhibition
(SSI), and collision detection (CD). Terein, FVBJNN
captures successive visual signals and outputs the activities
of F1 and F5. FFI prevents FVBJOCD from transmitting
false collision signals in the case where an object suddenly
oscillates in the panoramic feld. SSI, along with FFI, gen-
erates possible spike signals, after which CD decides whether
a danger happens.

5.1. Omnidirectional Collision Detection

5.1.1. Neuron FFI. Recall that Jf(i, j) represents the lumi-
nance intensity of photoreceptor (i, j) at frame f. Herein,
a conventional high-pass flter with time constant τ is used to
eliminate visual noise signals at each photoreceptor in the P-
layer as in FVBJNN by the following equation:

dFt(i, j)

dt
� Jt(i, j) −

1
τ

Ft(i, j), 1≤ i≤M, 1≤ j≤N, (33)

where Ft(i, j) is employed to smoothen the luminance in-
tensity at time t captured by photoreceptor (i, j) in the P-
layer. Afterwards, all the nodes in the P-layer generated
a gathered activity by the following equation:
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S
FFI
f � 2 Sig SumFFI

f􏼐 􏼑 − 0.5􏼐 􏼑, (34)

where

SumFFI
f � FFIf + 􏽘

nst−1

l�0
vl × FFIf−l, (35)

and

FFIf �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
abs Ff(i, j)􏼐 􏼑. (36)

Finally, a spike inhibition model is developed to check if
FFI delivers a spiking signal by the following equation:

S
FFI spike

f �
1, if S

FFI
f ≤TPF,

0, else,

⎧⎨

⎩ (37)

where TPF is a dynamic threshold [53], i.e., TPF � T0 + aF ×

Ff with positive T0 and kF.

5.1.2. Neuron SSI. To characterize the changes of motion in
the panoramic scene, SSI synthesizes the activities of F1 and
F5 as in FVBJNN.When an object moves near the equatorial
trajectory in Figure 2, SSI produces a synthesized activity by
the following equation:

S
Eq

f �

ρ V
F1
f + V

F5
f􏼐 􏼑sin(f), if I

ccw
f � 1,

ρ V
F1
f + V

F5
f􏼐 􏼑cos(f), elseif I

cw
f � 1,

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

with adjustable intensity parameter ρ. Conversely, when an
object makes an on-equatorial movement, a converged
activity, generated by the SSI is computed by the following
equation:

S
Rad
f �

ρ V
F1
f + V

F5
f􏼐 􏼑, if V

F1
f > 0􏼐 􏼑∧ V

F5
f > 0􏼐 􏼑,

ρ V
F1
f × V

F5
f􏼐 􏼑, else.

⎧⎪⎨

⎪⎩
(39)

Summarily, in terms of the index of If as in equation (18),
SSI generates an activity by the following equation:

V
SSI
f �

S
Eq
f , if If � 1,

S
Rad
f , else.

⎧⎪⎨

⎪⎩
(40)

Hence, a spike detection model is used to judge whether
a spike inside SSI will be delivered by the following equation:

S
SSI spike
f �

1, if V
SSI
f ≥Tf,

0, else,

⎧⎨

⎩ (41)

where Tf is decided by one dynamic threshold scheme [8].

5.1.3. Neuron CD. To judge whether the panoramic feld
includes a possible danger in terms of the activities and spike
signals produced by FFI and SSI, CD as an alarm-
transmitting neuron determines whether to transmit a col-
lision alarm. Precisely, it frst creates a responsive activity by
the following equation:

CD

Visual field

SSI

FVBJNN

360°panoramic visual environment 

Decision making 

Omnidirectional 
collision detection

Synthesized spike 
inhibition

Feedforward 
Spike response

F1 F5

FFI

Angle and height 
activity

Visual information 
processing 

Alarm? 

Panoramic 
visual input 

1080 p

a

b

X

Y

Left Right

Backward

Forward

Rotation

Panoramic camera/Lens
Equatorial trajectory

Fly Camera

(a) (b)

Figure 6: FVBJNN’s collision contour and decision-making model. (a) Omnidirectional contour structure. (b) Schematic diagram on
collision detection.
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V
CD
f �

V
FFI
f , if 􏽘

nst−1

l�0
S
FFI spike
f−l ≥ nst

⎛⎝ ⎞⎠∨ 􏽘

nst−1

l�0
S
SSI spike
f−l < nst

⎛⎝ ⎞⎠,

V
SSI
f , else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)

where ∨ denotes the OR logical operation. Ten, a spike
detection scheme is constructed to check if CD disseminates
an alarm, defned by the following equation:

AlarmCD
f �

1, if 􏽘

nst−1

l�0
S
SSI
f−l ≥ nst

⎛⎝ ⎞⎠∨ S
Eq
f

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥Tf􏼒 􏼓.

0, else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(43)

5.2. Algorithm Formulation and Computational Complexity.
Based on the model design of FVBJOCD, the algorithm
formulation is given in Algorithm 1 below.

Te FVBJOCD’s computational cost is mainly de-
termined by steps 1-5.Within a run period, the ViBemethod
in step 1 is used to extract the current foreground imageGf in
the P-layer, which needs to operate M1 times with
M1 � 2MN. Furthermore, since each of the fve subnetworks
in Section 4.3 is required to enforce M2 arithmetic opera-
tions with M2 � (43 + 2nc) MN+ 7, step 2 computes 5 M2
times; step 3 needs M3 operations with M3 � 6nc+ 8; step 4
executes M4 operations to check if a spike happens with
M4 � 2MN+ 4. However in order that FVBJOCD can
transmit early warning signals, step 5 computes the value of
Tf in equation (40) with at most 2n2c times, and also im-
plements M5 times with M5 � 2n2c + 4. Summarily,
FVBJOCD runs at most M6 times for a given input frame.
Herein, M6 is computed by the following equation:

M6 � 217 + 10nc( 􏼁MN + 4n
2
c + 6nc + 51. (44)

Since nc takes a small value, Te FVBJOCD’s complexity
in the worst case is decided by O (217MN).

6. Experimental Study

To check if FVBJOCD can implement omnidirectional
collision detection, the FVBJOCD’s parameters setting is
given in Section 6.1. Section 6.2 discusses whether the fve
subneural networks in the presynaptic neural network as in
Section 4.3 can emerge their preferential response perfor-
mances in terms of seven kinds of real or virtual video
sequences. Subsequently, the performance test of the post-
synaptic neural network in Section 4.4 is examined in
Section 6.3 based on three real video sequences. Further-
more, FVBJOCD is compared with fve neurocomputational
models (AFVNN (2015) [8], RMPNN (2017) [10], LGMD1
(2018) [55], FVSCDM (2021) [9], and MLG1 (2022) [70])
with the aspect of collision detection performance in Section
6.4. Te experimental analyses on the FVBJOCD’s efciency
and sensitivity are executed in Section 6.5. Finally, an ex-
perimental summary is displayed in Section 6.6.

6.1. Environmental Parameters Setting. Te whole experi-
ments are executed on the Windows 10 system with i7CPU/
3.60GHz and RAM/16G. Source codes are written in Visual
Studio 2013 with Open CV3.4.0. Te videos are shot by
a Sony HDR-CX700 and Canon HF-R86/806 or generated
by computer. Each video sequence is recorded at a frame rate
of 50 fps or 25 fps and separated into 8 bit grayscale images.
Related to the works [5–7, 44, 50, 52], the parameters setting
is defned in Table 1.

6.2. Performance Test on the Presynaptic Neural Network

6.2.1. Panoramic Radial and Equatorial Motion Detection.
Tree video sequences in Figure 7 are taken to examine if the
fve subnetworks (LR-, RL-, UD-, BF-, and EH-FVNNs) in
FVBJNN can respond to visual changes in their preferred
regions.

After the three series of frames in Figure 7 are inputted
to the presynaptic neural network in FVBJNN, the sub-
networks output own response curves given in Figure 8.
Figures 7(a) and 8(a) indicate that LR-, RL-, UD-, and BF-
FVNNs present unique performance characteristics. Tey
are all activated at frame 50 or so, and generate diferent or
similar response curves able to characterize their response
performances. Herein, LR- and RL- FVNNs emerge two
similar response curves after the video 1 is inputted. More
precisely, they output own increasing excitatory in-
tensities within frames 50 and 376 or so, but reduce their
activities after frame 376, for which the two footballs
synchronously approach the visual center in regions 3 and
1 before 363 and later stay at the visual center. On the
other hand, UD- and BF-FVNNs are more and more
excitatory from frame 50 to frame 545 or so, but maintain
an inhibited state after frame 545 or so. Teir output
curves implicate that the upper and lower footballs syn-
chronously move toward the visual center in regions 2 and
4 before frame 545 and keep static after frame 545, which
coincides with the real movement status of the footballs. It
is highlighted that, since the left and right footballs ap-
proach the visual center faster than the upper and lower
ones, the two response curves, created by LR- and RL-
FVNNs ascend the own peaks faster than those generated
by UD- and BF-FVNNs. Tese correspond with the be-
havioral changes of radial movements of the four footballs
in Figure 7(a), and thus the four subnetworks can be
exploited to formulate the intrinsically preferential re-
sponse characteristics of the related neurons in radial
movement scenes.

As associated to Figure 7(b), Figures 7(c) and 8(a) clearly
emphasize that, when a football makes a ccw or cw equa-
torial movement by Figures 7(b) or 7(c), EH-FVNN can
always identify the movement pattern and direction of
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Input: Grayscale frame If;
Output: SLR

f , SRL
f , SUD

f , SBF
f , SEH

f , Tf, and VCD
f ;

Step 1: Create foreground image Gf at frame f by equation (2);
Step2: Generate BF-FVNN’s excitatory activity and output SBF

f by equation (10); likewise, compute SLR
f ,SRL

f , SUD
f , and SEH

f for LR-, RL-
, UD- and EH-FVNNs, respectively;
Step 3: Compute SSI’s excitatory intensity S

Eq

f , SRad
f , and VSSI

f by equations (36)–(38);
Step 4: Utilize equation (37) to detect if a spike occurs inside FFI;
Step 5: Check if a collision warning signal occurs by equation (43);
Step 6: Stop collision detection if no requirement is satisfed, and return to step 2 otherwise.

ALGORITHM 1: Omnidirectional collision detection algorithm on FVBJOCD

Table 1: Parameters setting on FVNN and FVBJOCD.

Parameter name Value Parameter name Value
Decay factor A 5 Excitation amplitude B 10
Speed attenuation τ 0.02 Elliptic half axis a (b) 2(1)
Spike threshold nst 6 Intensity parameter ρ 0.1∼0.9
Resolution M×N 120× 80 Local inhibition weight w 10−3∼0.1
Te rate of h/l 0.4∼0.6 — —

(a) Video 1 (b) Video 2: ccw (c) Video 3: cw
150 300 450 600 125 975 10275 125 1025975575

Figure 7: Illustrative panoramic frames. Each video is expressed only by four frames; the frame number is mentioned under each image. (a)
Involves in 600 frames used to examine whether LR-, RL-, UD-, and BF-FVNNs can react to visual movements in their preferred regions.
Based on the regional division of the panoramic visual region similar to that in Figure 2, the up-to-down and down-to-up black footballs in
regions 2 and 4 approach the camera within frames 50 and frame 360 individually, while so do the left-to-right and right-to-left footballs in
regions 3 and 1 within frames 50 and 540, respectively; (b) and (c) include 1025 frames, where two identical footballs make a ccw movement
in video 2 and a cwmovement in video 3 along the same equatorial curve with the center of origin, respectively; the two videos are chosen to
detect if EH-FVNN can recognize the patterns of ccw and cw motion of the identical footballs and detect the related changes of visual
motion. (a) Video 1. (b) Video 2: ccw. (c) Video 3: cw.
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Figure 8: Subnetworks’ response curves based on the matched visual scenes in Figure 7; mf stands for the activity of each subnetwork at
frame (f). (a) Response curves on UD-, BF-, LR-, and RL-FVNNs. (b) Response curves on EH-FVNN. (a) Video 1. (b) Videos 2 and 3.
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a moving object on the equatorial trajectory and accordingly
generate a sine- or cosine-like response curve. In the case
where the football makes cw movements, the cosine-like
response curve acquired by EH-FVNN can almost period-
ically reach the peaks at frames 56, 364 and 722, and 1050,
and falls down the feet at frames 187, 543, and 902. On the
other hand, when it scrolls along the equatorial curve
counterclockwise, the acquired sine-like response curve can
almost periodically ascend the peaks at frames 98, 452, and
810, and get into the valley bottoms at frames 275, 632, and
988. Terefore, EH-FVNN can not only recognize the
pattern of cw or ccw movement, but also rationally describe
the change of equatorial movement. Herein, it is emphasized
that EH-FVNN does not occur the phenomenon of time-
delayed response for the cw equatorial movement by
comparison against the cw movement, as the patterns of the
cw and ccw movements are defned by the cosine and sine
curves as in Section 4.3.2, respectively, i.e., ef � cf

cosf anddf � cf sinf. Tis indicates that EH-FVNN can
preferentially respond to the pattern of equatorial
movement.

6.2.2. Panoramic Compound Movement Detection.
Related to Figure 9(a), Figure 10(a) illustrates that, once the
football moves along the S-shaped curve in the panoramic
scene, the subnetworks generate excitatory curve segments
in their preferred visual regions. We take UD-FVNN for
example to analyze the intrinsic properties of LR-, RL-, UD-,
and BF-FVNNs. It is activated at frame 48, after which its
excitatory intensity enlarges increasingly and reach the
maximum at frame 316 in that the football moves along the
left-to-rightS-shaped curve to pass through the upper visual
subregion (region 2) within frames 48 and 316. Sub-
sequently, since the football leaves region 2 and moves along
the S-shaped curve in the right and lower subregions (re-
gions 1 and 4) within frames 316 and 963, UD-FVNN does
not make any response. Finally, it generates an increasing
excitation curve segment within frames 963 and 1050, as the
football to appear in the left visual region (Region 2) once
again. Tese verifes that the model design in Section 4.3 is
rational, namely, UD-FVNN is required to only respond to
the changes of visual motion in region 2. Herein, it is
highlighted that, both LR- and UD-FVNNs increasingly
excite within frames 49 and 130, since the football rolls
simultaneously in the common part of the upper and left
regions 2 and 3.

Furthermore, it can be seen from Figures 9(b1) and 10(b)
that, if a football makes irregular movements and goes
through regions 1–4 and the equator-like curve, the fve
subnetworks can output period-like activity curve segments.
For example, within frames 1 and 141, UD-, LR-, and
EH-FVNN keep excitatory or inhibitory, but BF-FVNN has
no any response to the movements of the football. Once the
football makes periodic-like circle movements, the activity
curves, outputted by the neural networks change almost
periodically within 142 and 956. Especially, each of them can
only yield excitatory or inhibitory activities in their preferred
regions in the panoramic scene.

6.2.3. Real Panoramic Movement Detection. Based on the
scene setting in Figure 6(a), four real video sequences are
taken synchronously by four identical cameras on the same
bracket at an intersection of our campus, of which each
sequence only pays close attention to the visual movements
on the upper, lower, left, or right visual scene. Hereafter, they
are synthesized to form a panoramic scene in Figure 11(a)
with a total of 750 frames. In the synthesized panoramic
scene, one truck and three cars slowly move simultaneously
toward the respective cameras at the intersection from top to
bottom, from bottom to top, from left to right, and from
right to left, respectively, which causes a collision hazard.

Figure 11(b) indicates that EH-FVNN has no response to
the panoramic scene due to no equatorial movement. When
the vehicles in regions 1–4 approach the camera gradually,
all the subnetworks except EH-FVNN become excitatory
within frames 42 and 445 or so, and later, their excitation
curves rise with time gradually, which coincides with the
changes of visual motion in the panoramic scene. Herein,
compared with UD- or BF-FVNN, each of LR-and RL-
FVNNs can produce relatively high activities within
frames 450 and 750, since the two cars in the left and right
directions approach the cameras at a faster speed. Tereby,
FVBJNN can detect the changes of motion in the
panoramic scene.

Summarily, Figures 7, 10, and 11(b) can conclude that
each of the fve subnetworks only reacts to its preferred
subregion in the panoramic scene and also produce a re-
sponse curve to rationally evaluate the movement changes of
one or more moving objects. Tis shows that FVBJNN can
detect visual movement changes in any panoramic scene by
means of the subnetworks.

6.3. Performance Test on the Postsynaptic Neural Network.
Recall that the neurons F1 and F5 are used to detect the
changes of the visual height and angle of the main object
between the panoramic camera and the object, respectively.
When a car approaches the camera gradually, the post-
synaptic neural network is desired to produce a series of
large visual angles and heights, in order to measure the
degree of which the main object approaches the camera. As
related to Figures 12 and 13, when h� 0, the two neurons
keep weakly excitatory, while their response curves descend
after frame 1430. If h is large, e.g., h� 140, their excitations
cannot rationally describe the behavioral changes of the car.
Nevertheless, if h� 50, the neurons can output proper ex-
citatory intensity curves within frames 1050 and 1500. It is
highlighted that their response behaviors are highly con-
sistent with time and can be therefore used to formulate the
change of the contour of visual movement. Totally, the
experiment implies that a rational camera height can help
FVBJNN enhance the performance of motion detection.

6.4. Performance Comparison on Collision Detection. To
evaluate the collision detection performance of FVBJOCD,
three real panoramic scenes, which involve horizontal,
vertical, equatorial and omnidirectional collision detection,
are taken to check if the model, together with the six
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compared models (AFVNN, LGMD1, RMPNN, FVSCDM,
MLG1, and FVBJOCD), can successfully execute panoramic
collision detection in terms of one dynamical threshold
scheme (i.e., Tf ) mentioned in equation (39). It is illustrated
that among the six compared models, AFVNN can only
receive the image frames with size 128×128 per frame, due
to the inherent structure.

6.4.1. Horizontal or Vertical Collision Detection.
Figure 14 displays two panoramic scenes, each of which
formulates the state of two cars approaching the camera in
the horizontal or vertical directions. In Figure 14(a), the left
and right white cars approach the camera at their own

speeds, in which the right car approaches the camera at
a faster speed. In such a case, the collision region is the pixel
interval of [690, 710]. In Figure 14(b), the up-to-down blue
car approaches the camera at a constant speed. Te down-
to-up white car, however, does so at a fast speed, and hence,
leads to a collision region of [695, 705].

Figures 14(a) and 15(a) verify that, when the two cars
gradually approach the camera at respective speeds in the
horizontal direction, the compared models (AFVNN,
LGMD1, RMPNN, MLG1, and FVSCDM) exhibit diferent
collision detection performances. Based on their design
principles, AFVNN and LGMD1 can only acquire relatively
weak excitatory intensities with time, since they can capture
those visual movements in the visual regions with a visual

(a1) Video1: S-type movement. (a2) Movement trajectory based on (a1).

800 1000 1200 1300 
(b1) Video2: Compound movement. (b2) Movement trajectory based on (b1).

100 200 400 600

700 825 950 1050

75 325 450 575

Figure 9: Two sequence frames (a1) and (b1) as well as the related movement trajectories are picked up to check if the fve sub networks can
react to nonradial and nonequatorial motion. In (a2), a football starts at the upper left point near the ground, and then rolls along a S-shaped
curve. Related to the regional division of a panoramic visual scene such as that in Figure 2, the football passes through four subregions
(regions 1–4) and one equator-like trajectory. Finally, it moves toward the central point (O). However, in (b2), the football starts from the
up-front point A and then goes to the point of reely. Subsequently, it radially vanishes from the feld of view along the vertical-down line.
(a1) Video 1: S-type movement. (a2) Movement trajectory based on (a1). (b1) Video2: Compound movement. (b2) Movement trajectory
based on (b1).
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Figure 10: Te subneural networks’ response curves related to the matched visual scenes in Figure 9. (a) Video 1. (b) Video 2.
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angle of 60° or 120° on the upper half plane. RMPNN cannot
obtain any excitatory intensity at each frame because the
panoramic scene does not involve in rotational motion.
MLG1, as a looming spatial localization neural network, can
detect the spatial position changes of moving objects.

Compared with AFVNN and LGMD1, it can only output
a weak excitatory intensity at each moment, since its design
inspiration requires its excitatory intensity at each moment
to be decided by visual stimuli within a narrow subregion
with a visual angle of 22.5°. FVSCDM behaves best among
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Figure 11: Panoramic video scene and excitation intensity response curves: (a) eight illustrative example frames of a synthesized panoramic
video sequence and (b) the neural response curves acquired by the four subnetworks.

(a) Video2:Vertical height 0 cm.
1000 1300 1400 1500

(b) Video3:Vertical height 50 cm.
1000 1300 1400 1500

(c) Video4:Vertical height 140 cm
1000 1300 1400 1500

Figure 12: Tree illustrative video frame sequences on radial movement. Te version of vertical height denotes the distance between the
camera and the ground. Te frame sequences are selected to detect how the camera’s height infuences the outputs of F1 and F5. Herein,
when the camera’s height is 50 or 140 cm, a car drives toward the camera at a slow speed from frame 1 to frame 1400 and later approaches the
camera at a fast speed from frame 1401 to frame 1500. Also, the car approaches the camera at a slow speed from frame 1360 to frame 1500
when the camera’s height is 0 cm. It is emphasized that despite the same visual scene, the three image sequences indicate that the car’s
contour changes with the camera’s height. In other words, the higher the height of the camera, the smaller the car’s contour. (a) Video 2:
vertical height 0 cm. (b) Video 3: vertical height 50 cm. (c) Video 4: vertical height 140 cm.
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Figure 13: FVBJNN’s response curves related to the matched visual scenes in Figure 12. (a) Response curves of neuron F1. (b) Response
curves of neuron F5.
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the compared models, as it can perceive changes in visual
motion as in the whole upper half-plane and can execute
edge detection as well. On the other hand, compared with
each of the above fve chosen models, FVBJOCD can
produce a relatively high excitatory intensity at each
frame after frame 500, since it can capture the complete
visual movement information of the cars. Furthermore, it
outperforms the compared models regarding the efect of
collision detection. Te threshold curve hints that it can
accurately transmit collision early warning signals after
frame 697. AFVNN, LGMD1, MLG1, and FVSCDM can
only generate narrow and time-delayed collision regions
[717, 737], [730, 750], [733, 750], and [727, 747],
respectively.

Figure 15(b) demonstrates that, when the two cars move
toward the camera along the direction from top to bottom
and from bottom to top, respectively, the models can
produce their excitatory curves based on Figure 14(b). In
such a case, RMPNN has no response due to no rotational
movement. LGMD1 and FVSCDM, which can only respond
to the motion information of the up-to-bottom car on the
upper-half plane, generate similar and increasing excitatory
intensity curves and transmit collision early warning signals
after frame 710 or so. Additionally, the excitatory curve of
FVBJOCD is decided by the motion changes of the down-
to-up car and exceeds the curves of AFVNN, LGMD1,
MLG1, and FVSCDM, since the car approaches the camera
faster than the up-to-down one. As related to the threshold
curve of Tf, FVBJOCD can rationally touch upon collision

early warning after frame 695, whereas so do LGMD1 and
FVSCDM after at least frame 705, and hence, result in time-
delayed early warning. MLG1 and AFVNN can only trigger
collision warning after frame 720 or so; particularly, AFVNN
can only derive a relatively low excitatory intensity curve and
broadcast late warning signals, since it can only focus on the
motion changes of the up-to-down car in front of the upper
half feld of view with 60°.

6.4.2. Equatorial Collision Detection. Te video sequence in
Figure 16(a) is taken to examine whether FVBJOCD can
trigger equatorial collision. Terein, the girl moves
64.8 seconds clockwise along the elliptic curve with long axis
2m and short axis 1m, and rotates 9 laps along the curve. It
is emphasized that, since AFVNN, LGMD1, and FVSCDM
cannot react to the pattern of equatorial movement, they do
not participate in comparison. Based on the visual scene,
Figure 16(b) presents the threshold curve and the excitatory
curves of FVBJOCD, MLG1, and RMPNN. Herein, MLG1
cannot efectively implement equatorial collision detection,
since its output activities are not consistent with the change
of visual movement on the equatorial curve. Especially, even
though RMPNN can produce a response curve, it cannot
recognize the movement pattern of the girl for which it is
designed to recognize the pattern of circular movement.
Also, it can only transmit a few of early warning signals, and
thus it is difcult to perform collision detection. FVBJOCD,
however, can identify the girl’s equatorial movement in

95 190 380 570 750 95 190 380 570 665665 750
(a) Video 1: Cars’ horizontal movement. (b) Video 2: Cars’ vertical movement.

Figure 14: Illustrative frames of two videos: (a) two cars approach the camera at respective speeds along the left and right directions and (b)
two cars move toward the camera at diferent speeds along the upward and backward directions.
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Figure 15: Collision detection and the comparison of excitatory intensity curves related to Figure 14. Tf is the dynamic threshold curve as in
equation (39). (a) Left and right collision response. (b) Upward and backward collision response.
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terms of EH-FVNN and generates excitatory or inhibitory
curve segments periodically. Also, it triggers collision
warning at frame 156 or so and engenders a collision interval
of [156, 3240].

6.4.3. Omnidirectional Collision Detection. Take
Figure 11(a) for example to examine whether FVBJOCD can
execute omnidirectional collision detection in a panoramic
scene. It is highlighted that, since there does not exist the
pattern of equatorial motion in the scene, RMPNN does not
participate in the comparison. Figure 17 confrms that
FVBJOCD can generate a high excitatory intensity curve
segment which exceeds the threshold curve, since the four
cars approach the camera synchronously at diferent speeds,
especially the left-to-right car approaches the camera at a fast
speed in comparison with the other cars. Te compared
models, however, are activated to produce high activities at
a slow speed and transmit late collision early warning sig-
nals. Herein, FVSCDM can output a relatively high intensity
curve by comparison with AFVNN, MLG1, and LGMD1, as
the left and right edges can be detected. FVBJOCD can make
a strong excitatory response and acquire a rational collision
region of [672, 750] by the left-to-right car. Among the
compared four models, AFVNN, MLG1, and LGMD1 can
send collision early warning signals by their collision regions
[721, 741], [711, 731], and [712, 732], respectively; FVSCDM
performs relatively well in the collision region [705, 725],
since it can output a high excitatory intensity than each of
the other three models at each frame f after frame 610 or so.
Additionally, FVBJOCD can accurately transmit early
warning signals, whereas the four comparedmodels can only
send late collision early warning signals in that they cannot
detect any visual motion change on the visual lower half-
plane in the panoramic environment.

Summarily, based on the experiments on collision de-
tection, the performance diferences between FVBJOCD and
the compared models can be found in Table 2. Te table
verifes that RMPNN can only recognize the equatorial

movement of the girl and send collision early warning
signals after frame 156. Tereby, after solving the four
panoramic visual scenes, RMPNN can get the lowest success
rate of 25% regarding collision detection. MLG1, LGMD1,
AFVNN, and FVSCDM can transmit their collision alarms
by the left and right moving cars in Car I as well as the upper
and lower cars in Car II and Car III, but fail to recognize the
pattern of equatorial movement in Girl. It is pointed out
that, although the four models can perform collision de-
tection with a success rate of 75%, they easily cause time-
delayed early warning, which can be known by comparing
their collision regions with the real CR intervals in Table 2.
Relatively, FVSCDM behaves well by comparison against
LGMD1, MLG1, and AFVNN, since the collision regions,
acquired by the latter three models more prominently de-
viate from the corresponding real collision regions. Besides,
not only FVBJOCD can accurately recognize the movement
pattern appearing in each of the four panoramic scenes, but
also its collision regions acquired in the scenes are close to
the true collision regions. Terefore, it can promptly and
accurately transmit early warning signals in the panoramic
scenes, and acquire the highest success rate by comparison
with the compared models.

6.5. Sensitivity and Efciency Analysis. Although FVBJNN
includes eight parameters (i.e.,M,N, A, B, τ, a, b, and w), the
former seven parameters are usually fxed or defned by the
user. Again, w is used to control the intensity that each node
is inhibited at any moment by its neighboring nodes in the
M-layer, in which its value is within 0 and 0.01. Terefore,
only the input image resolution M×N dominates the per-
formance of each subneural network in FVBJNN. Fur-
thermore, the omnidirectional collision detection model in
Section 5 includes six parameters (f0, fmax, nst, h, l, and ρ).
Herein, the former fve parameters are defned by the user,
and ρ as an amplitude parameter is exploited to adjust the
excitatory degree of neuron SSI. If it is large, the phe-
nomenon of false early warning will occur, and conversely,
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Figure 16: Equatorial collision detection. (a) cw equatorial movement and (b) cw response and threshold curve.
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FVBJOCD will delay the early warning. Consequently, it is
suggested that ρ take a value within 0.6 and 0.9. Herein, we
take the visual scene in Figure 10(a) for example to examine
how the efciencies of the abovementioned six models
depend on the image input resolution.

Table 3 illustrates that, once the resolution becomes large
increasingly, each model takes much more runtime to im-
plement collision detection. Terefore, the frame’s resolu-
tion directly infuences the models’ efciency. Additionally,
a high-resolution video prompts themodels to generate early
collision warnings, while conversely, delayed warnings may
occur. Tereby, to make a rational trade-of between efect
and efciency, it is suggested thatM andN take values within
110 and 130 and within 75 and 85, respectively.

By comparison against LGMD1, MLG1, and FVSCDM,
FVBJOCD can acquire the highest efciency in each reso-
lution setting, and meanwhile our previous model, i.e.,
FVSCDM, can also implement collision detection with high
efciency. However, LGMD1 and MLG1 need much more
runtime to execute their functional modules, while their
excitatory curves rise slowly and easily which cause late
collision early warning. Additionally, whereas AFVNN and
RMPNN only require less runtime to handle each image
frame, they can only detect changes in visual motion as in the
narrow or on the circle curve, and cannot adapt to the scene

of omnidirectional collision. Tereby, such two models are
clearly inferior to the other aforementioned models.

6.6. Summary. Based on the above twelve virtual or real
video sequences, FVBJNN and FVBJOCD have been ex-
amined with the aspects of response preference, collision
detection performance, and execution efciency, in order to
exhibit their intrinsic characteristics, advantages, disad-
vantages, and applicable scopes. Meanwhile, fve compu-
tational models, i.e., AFVNN, LGMD1, FVSCDM, MLG1,
and RMPNN, are chosen to compare with FVBJOCD. Re-
lated to the above experimental results, some distinctive
diferences between them can be highlighted below:

(i) FVBJNN, which consists of fve subnetworks (LR-,
RL-, UD-, BF-, and EH-FVNNs), is used to detect
the change of omnidirectional movement in the
panoramic scene. Each subnetwork has been veri-
fed to be able to respond to visual movements in the
preferential region of the panoramic scene, even if
one or more moving objects makes complex and
irregular movements. Particularly, EH-FVNN can
well perceive the changes of visual motion on the
equatorial curve. Generally, the vertical height from
the panoramic camera to the ground usually
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Figure 17: Comparison of collision detection performances of the four models based on the panoramic scene in Figure 11(a) and the
threshold curve of Tf.

Table 2: Comparison of experimental results of the six collision detection models.

Fundamental materials Experimental result
Type ToF MP TF CR Model Car I Car II Girl Car III SR (%)
— — — — — LGMD1 CR [730, 750] [707, 727] — [712, 732] 75
Car I 750 HM 702 [697, 750] AFVNN CR [717, 737] [719, 739] — [721, 741] 75
Car II 750 VM 700 [695, 750] FVSCDM CR [727, 747] [702, 722] — [705, 725] 75
Girl 3240 EM 691 [686, 3220] RMPNN CR — — [156, 3240] — 25
Car III 750 OM 677 [672, 750] MLG1 CR [733, 750] [717, 737] [138, 3240] [711, 731] 75
— — — — — FVBJOCD CR [697, 717] [695, 715] [686, 3240] [672, 692] 100
Note: Cars I, II, III, and the girl denote the image frame sequences in Figures 11(a), 14(a), 14(b), and 16(a), respectively. SR stands for the success rate of
collision detection or early collision warning. Some versions are abbreviated, i.e., ToF, total of frames; MP, motion pattern; TF, trigger frame; CR, collision
region; HM, horizontal movement; VM, vertical movement; EM, equatorial movement; OM, omnidirectional movement.
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infuences the performance of movement detection,
and thus a proper camera height is desired to satisfy
the requirement of visual movement detection.

(ii) FVBJOCD, which comprises of FVBJNN and an
omnidirectional collision detection model, is designed
to transmit collision alarms when a hazard occurs
imminently. Te experimental results validate that it
can disseminate collision alarms when one or more
objects radially approach the panoramic camera, es-
pecially when an object moves on the equatorial curve.
Te results in Table 2 have clearly verifed that
FVBJOCD can successfully enforce omnidirectional
collision early warning in panoramic environments,
regardless of the pattern of visual motion. However,
LGMD1, AFVNN, and FVSCDM can only achieve
early warning with the success rate of 75%, since they
are specially designed to satisfy the requirement of
forward but not omnidirectional collision warning.
Even though MLG1 can achieve a 75% success rate in
collision early warning and adapt to the region lo-
calization of spatial motion, it cannot perform om-
nidirectional collision early warning well. RMPNN
can only acquire the success rate of 25% for collision
detection, as it can only detect the change of rotational
movement.

(iii) Te analyses of sensitivity and efciency show that ρ
and M×N are the crucial factors that infuence the
FVBJOCD’s efciency and efect on collision de-
tection. It is recommended that ρ, M, and N take
values in the intervals [0.6, 0.9], [110, 130], and [75,
85], respectively. Te compared models need to
make great improvements in terms of efciency and
efectiveness when confronted with implementing
omnidirectional collision detection.

7. Conclusion

Omnidirectional collision detection has been rarely culti-
vated over recent decades. However, such a topic will be
popular in computer vision, as the visual brain system is
a natural bio-inspiration for developing omnidirectional
collision detection models. Hereby, FVBJNN is constructed
to perceive changes in visual motion as in the panoramic
scene, while a collision detection model (FVBJOCD) is
developed to perform omnidirectional collision detection.
Tree conclusions can be drawn below:

(i) FVBJNN can efectively detect the whole changes of
objects in the panoramic scene, relying upon the fve

subnetworks (LR-, RL-, UD-, BF-, and EH-FVNNs) in
the presynaptic neural network. Te subnetworks can
preferentially respond to specifc motion clues. Also,
in terms of the postsynaptic neural network,
FVBJOCD can output the excitatory intensities of
angle and height detection neurons to rationally
evaluate motion changes in the panoramic scene.
Summarily, FVBJOCD can not only detect the change
of visual movement omnidirectionally, but also
transmit collision alarms with a high success rate.

(ii) As an omnidirectional collision detection model with
the computational complexity of O (217MN),
FVBJOCD can decide which object is approaching the
camera at the fastest speed. Also, it can successfully
transmit collision alarms if a possible danger appears
in the panoramic feld of view, and only take about
0.24 s to process each image frame with size 120× 80.

(iii) AFVNN, LGMD1, and FVSCDM can only perform
collision detection in the upper half feld of view and
cannot detect the changes of motion on the pos-
terior half-plane and the equatorial trajectory.
RMPNN and MLG1 can partially recognize the
pattern of equatorial movement, but cannot pref-
erentially execute collision detection in the pano-
ramic scene. FVBJOCD, however, can execute
omnidirectional collision detection in the pano-
ramic scenes, and can also implement collision early
warning successfully.

Finally, even though FVBJOCD has exhibited some
prominent advantages over the compared models with the
aspect of panoramic collision detection, some issues are kept
open. For example, it is necessary to further study the setting
scheme of the intrinsic parameters so that the model can
automatically adapt to diferent visual scenes. Besides,
whereas the current work has initially touched upon om-
nidirectional collision detection, it keeps open how
FVBJOCD can adapt to panoramic collision avoidance. In
the future, we will investigate a FVBJOCD-based automatic
collision avoidance system able to be transplanted into
FPGA/ARM.
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Table 3: Comparison of average runtime at each frame.

M×N LGMD1 MLG1 FVSCDM AFVNN RMPNN FVBJOCD
Res CR/RT CR/RT CR/RT CR/RT CR/RT CR/RT
100× 60 [723, 743]/0.19 [684, 704]/0.13 [663, 683]/0.11 — —/0.15 [692, 712]//0.11
120× 80 [712, 732]/0.48 [711, 731]/0.32 [697, 717]/0.24 [721, 741]/0.02 —/0.18 [672, 692]/0.24
128×128 [695, 715]/1.43 [721, 741]/0.98 [680, 700]/0.61 [732, 750]/0.17 —/0.32 [656, 676]/0.63
240×160 [683, 703]/7.60 [741, 750]/5.07 [640, 660]//2.91 — —/1.20 [574, 594]//2.73
Note: Res, CR, and RT denote the abbreviations of resolution ratio, collision region, and runtime (second), respectively.
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