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Collaborative crowdsensing (CCS) requires the recruited team to collaborate closely to complete sensing tasks with high quality of
service (QoS). Te team recruitment of CCS is mainly infuenced by the subjective willingness of participants and the objective
trust evaluation of the sensing platform; that is, the higher the subjective mutual willingness to work together and the objective
mutual trust among participants, the more efciency with which the CCS tasks will be achieved. However, the existing research
lacks comprehensive consideration of mutual willingness and mutual trust among recruited participants.Tis results in poor QoS.
To address this problem, we propose a novel team recruitment method for CCS that jointly considers the willingness and trust to
recruit optimal teams. First, we build a graph convolutional network-based willingness-trust network (GCN-WTN) model for
CCS to obtain mutual willingness and trust among participants more accurately. Second, we propose a willingness and trust-based
team recruitment (WT-TR) method to recruit the optimal teams for CCS. Tis method introduces the consensus and similarity
constraints into the willingness and trust networks to better meet the collaboration needs of CCS. Finally, we implement
a recruitment simulation platform for CCS to simulate the team recruitment process and validate the efectiveness of our proposed
method. Te experimental results show that the teams recruited by the proposed method can signifcantly improve QoS for CCS.

1. Introduction

With the rapid development of intelligent devices such as
mobile phones, crowdsensing provides a new opportunity
for information collection [1]. However, as sensing tasks
become increasingly complex and large-scale, crowdsensing
often requires interaction and collaboration among partic-
ipants. Tis type of sensing is called collaborative crowd-
sensing (CCS). For instance, crowd evacuation path
planning requires the collection, uploading, forwarding, and
fusing of information from the crowd at various times and
locations [2]. Such a task is difcult to complete for a single
individual. Terefore, recruiting optimal teams, so that
members of the same team can collaborate and complete

sensing tasks with higher quality of service (QoS), is
a challenging problem for CCS.

Participant recruitment plays a crucial role in ensuring
the quality of CCS tasks’ fulfllment. We can divide
crowdsensing participant recruitment into two categories:
individual recruitment and team recruitment. Individual
recruitment schemes focus on selecting individuals based on
evaluation metrics such as dynamic trust, as proposed by
Gao et al. [3], or assessing their social infuence, as proposed
by Wang et al. [4]. Tese schemes work well for tasks that
require low collaboration, such as image tagging and photo
collection [5], where the quality of data mainly depends on
individual efort. However, such schemes may not be ef-
fective for CCS scenarios, where the need for teamwork has
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been proposed [6, 7]. Team recruitment involves selecting
participants based on their professional knowledge [8],
personality traits [9], and social networks [10, 11]. Azzam
et al. [12] argued that a group qualifes to perform a task if
they successfully cover the task area and are evenly dis-
tributed. However, the current recruitment methods are not
suitable for CCS team recruitment since they fail to consider
the willingness and trust among participants, which can lead
to inefective collaboration and reduce the QoS of CCS.
Tere are indeed many factors that afect team recruitment,
but ensuring efective cooperation among participants
within the same team is crucial for successful CCS.

An efective team is not a random group but a team with
good cooperation abilities to achieve a common goal. Te
recruitment of optimal teams for CCS is infuenced by both
subjective and objective factors. Inspired by Barnard’s or-
ganization theory [13], it is necessary to consider the sub-
jective willingness of participants to cooperate since CCS is
a “human-centered” activity. Neglecting the subjective
willingness of participants may lead to poor CCS behaviors,
such as inefective execution, withdrawal, or even refusal to
cooperate. Lencioni [14] identifed a lack of trust among
teammembers as one of the fve dysfunctions of a team.Tis
is one of the important characteristics that distinguish ef-
fective teams. With the increasing diversity of CCS envi-
ronments, mutual trust is becoming an essential factor in
participants’ behavior decisions [15, 16]. Terefore, it is
necessary to consider the objective mutual trust among team
members, which can ensure successful collaboration by
reducing risks and uncertainties of working together
[17, 18]. Having a high level of mutual trust among par-
ticipants is an objective factor that the platform expects from
the recruited teams.

To address this problem, we propose a novel team re-
cruitment method for CCS that jointly considers the will-
ingness and trust to recruit the optimal teams so that they
can collaborate mutually to complete the sensing tasks with
higher QoS. Te framework of the proposed method is
presented in Figure 1. It includes two modules: (1) modeling
of the willingness network and trust network for CCS and (2)
willingness and trust-based team recruitment (WT-TR). In
the frst module, we build a graph convolutional network-
based willingness-trust network (GCN-WTN) model for
CCS to obtain mutual willingness and trust among partic-
ipants more accurately. Te model uses graph convolutional
networks (GCNs) to capture the mutuality of willingness
and trust. In the second module, we introduce consensus
and similarity constraints into the willingness and trust
networks built above to better meet the collaboration needs
of CCS. Ten, we transform the CCS team recruitment
process into dual-view spectral clustering to obtain the
optimal teams. Finally, we implement a recruitment simu-
lation platform for CCS to simulate the team recruitment
process and validate the efectiveness of our proposed
method. To the best of our knowledge, this is the frst
method that jointly considers willingness and trust with the
consensus and similarity constraints to recruit the optimal
teams for CCS. Te main contributions of this paper are as
follows:

(1) We build the GCN-WTN model for CCS to obtain
mutual willingness and trust among participants
more accurately.

(2) We propose the WT-TR method to recruit the op-
timal teams for CCS. Tis method introduces the
consensus and similarity constraints into the will-
ingness and trust networks to better meet the col-
laboration needs of CCS.

(3) We implement a recruitment simulation platform
for CCS to simulate the team recruitment process
and validate the efectiveness of our proposed
method.

Te remainder of this article is organized as follows:
Section 2 reviews the related work. Section 3 describes the
model of the willingness network and trust network for CCS.
Section 4 formulates the WT-TR method in detail. Section 5
presents the recruitment simulation platform for CCS and
the analysis of experimental results, and Section 6 consists of
the conclusions and future work.

2. Related Work

Te success of crowdsensing services is entirely dependent
on the sensing behavior of the recruited participants from
the users’ point of view. Hence, the primary focus of re-
search in crowdsensing is participant recruitment, i.e.,
selecting the right participants to perform the sensing task
efectively. Based on the selection criteria, relevant research
work is divided into individual recruitment and team
recruitment.

2.1. Individual Recruitment of Crowdsensing. Zhang et al.
[19] proposed a recruitment algorithm that aimed to cover
all target sensing areas in a cost-efective manner by using
a greedy approach. Hu et al. [20] proposed a reinforcement
learning-based recruitment framework that could accurately
predict the position of participants by gradually accumu-
lating the movement trajectories of individual participants
and selecting the most appropriate candidates. Gao et al. [21]
introduced a learning-based credible participant re-
cruitment strategy (LC-PRS) that aimed to maximize the
benefts of both the platform and participants. Wang et al.
[22] proposed a personalized and task-oriented worker
recruitment mechanism that accurately predicted workers’
preferences for tasks by analyzing their implicit feedback
and then recruiting the most suitable workers. Ota et al. [23]
introduced a novel incentive mechanism called quality and
usability of information (QUOIN) that aimed to increase
participants’ willingness to participate. QUOIN used the
Stackelberg game model to ensure that each participant
could earn a satisfactory proft. Jin et al. [24] developed
a payment mechanism called Teseus that considered the
strategic behavior of workers. Teseus aimed to motivate
workers to provide high-quality data and was combined with
a truth discovery algorithm. Lv et al. [25] proposed a pri-
vacy-preserving truth discovery mechanism called efcient
slicing-based privacy-preserving truth discovery (ESPPTD)
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to increase participants’ willingness to participate from
a privacy perspective. Restuccia et al. [26] proposed a dy-
namic trust-based framework that used a limited number of
high-trust participants to establish credibility in a secure
manner, thereby preventing security attacks of malicious
participants. Gao et al. [3] also proposed a similar frame-
work to recruit credible participants. Teir framework
calculated the combined trust of participants by considering
direct trust, feedback trust, and incentive functions.

In most of the abovementioned recruitment methods,
individual participants are recruited based on evaluation
metrics such as spatial coverage, cost, personal preference,
individual willingness, and individual trust. Tese methods
assume that participants can complete the task alone without
any interaction with one another. However, with the in-
creasing complexity of crowdsensing tasks, there is
a growing need for collaboration and interaction among
participants.

2.2. Team Recruitment of Crowdsensing. In recent years,
researchers have increasingly recognized the value of team
recruitment for crowdsensing and conducted extensive
research in this area [7, 27]. For instance, Hamrouni et al.
[28] proposed and discussed two team recruitment strat-
egies: platform-based and leader-based. By considering
participants’ professional knowledge and social connec-
tions, a group of individuals were recruited to work to-
gether on complex tasks within a budget. Jiang and
Matsubara [8] focused on dividing complex tasks into
simpler subtask streams and assigning these subtasks to
workers for completion. Azzam et al. [29] designed a group
recruitment system based on stability, allowing the dy-
namic addition and deletion of participants to achieve the
expected sensing results. However, this system did not
consider the credibility of participants. Wang et al. [30]
focused more on the platform budget and divided par-
ticipants into two groups to cope with the recruitment of
diferent budgets. On the other hand, Zhu et al. [31] rec-
ognized the importance of group role assignment (GRA) in
building teams and combined GRA with the E-CARGO
model to solve many collaboration problems, such as GRA
considering collaboration and confict factors [32], GRA
considering the busyness of subjects [33], and group

multirole assignment (GMRA) [34]. However, their model
did not consider willingness and trust relationships among
participants. Cheng and Xiao [35] presented a location-
based task assignment problem, where the platform
assigned complex tasks that required collaboration among
multiple participants. However, their study only focused on
the assignment of tasks and scheduling.

CCS difers from traditional crowdsensing in that suc-
cessful task completion requires a greater focus on team
members’ ability to interact and collaborate closely. CCS
team recruitment is afected by objective and subjective
factors, such as willingness and trust. Participants may refuse
to participate together in the absence of mutual willingness
to work together, and the team cooperation platform will
collapse without considering the mutual trust among par-
ticipants. However, the above work does not take into ac-
count the mutual willingness and trust relationship among
participants simultaneously. Tis could prevent the partic-
ipants of the same team from cooperating closely, ultimately
decreasing the QoS of CCS.

In this paper, we use the team recruitment scheme,
which jointly considers the willingness and trust to recruit
the optimal teams to improve the QoS for CCS.

3. Modeling of the Willingness Network and
Trust Network for CCS

To recruit teams that can work collaboratively, the subjective
willingness to work together and the objective mutual trust
among participants are two key factors that must be con-
sidered jointly. To facilitate the study of the impact of these
two factors on CCS, we construct the model of the will-
ingness network and trust network.

3.1. Willingness Network and Trust Network. We introduce
the following defnitions to describe the willingness and trust
networks.

Defnition 1 (willingness network). Te willingness network
can be modeled by an undirected graph Gw

m � (Uw, Ew
m,Rw

m),
where Uw � 1, · · · , N{ } is the set of participants, N is the
number of participants, Ew

m is the set of edges representing
the mutual willingness relationships to work together
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Figure 1: Te framework of our method.
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between participants, and Rw
mis the weighted adjacency

matrix, the values of which represent the willingness ratings
between participants.

If participants i and j are involved in the same task, an
edge ew

m(i, j) ∈ Ew
m is created between them in the willingness

network. A higher weight is assigned to the corresponding
edge to indicate a stronger willingness rating between
participants i and j. Tis weight refects their frequency of
working on the same task and their positive evaluation of
each other.

Defnition 2 (trust network). Te trust network can be
modeled by an undirected graph Gt

m � (Ut, Et
m,Rt

m), where
Ut � 1, . . . , N{ } is the set of participants, N is the number of
participants, Et

m is the set of the mutual trust relationship
between participants, and Rt

m is the weighted adjacency
matrix, the values of which represent the trust ratings be-
tween participants. Each trust relationship et

m(i, j) ∈ Et
m is

associated with a rating rt
m(i, j) ∈ Rt

m, which indicates the
degree of mutual trust between the participant i and the
participant j.

3.2. GCN-WTN Building. Without loss of generality, we
assume that some willingness and trust relationships can be
obtained. In reality, willingness and trust relationships are
usually directional and sparse. Traditional work considers
the propagation and asymmetry of willingness and trust
between participants [36] but lacks research on mutuality,
which can reduce the QoS of CCS. GCNs have been proven
to learn well about graphical data and have made fresh
progress on problems such as node-link prediction [37, 38].
In this subsection, we use GCNs to build willingness and
trust networks.

Te known willingness relationship is expressed as
a directed network Gw � (Uw, Ew,Rw), where any vertices
i, j ∈ Uw represent participants, ew(i, j) ∈ Ew is the known
willingness relationship, and rw(i, j) ∈ Rw represents the
corresponding willingness rating. Similarly, we use the di-
rected network Gt � (Ut, Et,Rt) to represent the known
directed trust relationship. Te ratings of directed willing-
ness and trust relationships are afected by many factors. For
example, the level of directed trust can be calculated based
on social trust [39] between participants, and the level of
directed willingness can be calculated based on historical
records of participants. Additionally, an alternative way to
calculate the level of cooperation willingness among par-
ticipants is based on electroencephalography signals [40]. It
is worth noting that the specifc rating calculation is not the
focus of this paper.

Figure 2 shows the structure of the GCN-WTN building.
It consists of two components: (1) a willingness/trust con-
volution layer and (2) a mutual willingness/trust relationship
prediction layer. Te input is a directed willingness/trust
network, and the output is the willingness/trust network
with a mutual willingness/trust relationship. In the will-
ingness/trust convolution layer, participant embeddings are
initialized to facilitate GCN learning. Ten, we consider the
higher order in-neighbors and out-neighbors of each

participant to learn the rules of willingness/trust propaga-
tion and aggregation. In the mutual willingness/trust re-
lationship prediction layer, we concatenate the embedded
vectors of each participant pair to predict the willingness/
trust relationship. Ten, we convert the predicted asym-
metric willingness/trust into mutual willingness/trust to
obtain the mutual willingness/trust relationship between
participant pairs. Te entire model is trained end to end.
After training, a convolutional network structure and
a vector embedding representation of the participants are
obtained.

3.2.1. Willingness/Trust Convolution Layer. To facilitate the
learning of GCNs, we initialize a D-dimension vector em-
bedding x for each participant and optimize it in an end-
to-end fashion. In the following sections, we use the terms
nodes and participants interchangeably. Moreover, for the
sake of uniform introduction, we do not distinguish the
superscripts w and t in Gw and Gt.

To better capture the asymmetry of willingness/trust, we
divide the neighbors of each node into two groups: in-
neighbors and out-neighbors. An example of in-neighbors
and out-neighbors is shown in Figure 3. Te in-neighbors’
interactions with the node i are the degrees of willingness/
trust from other participants to the node i. Conversely, the
out-neighbors’ interactions of the node i are the degrees of
willingness/trust of the node i towards other participants.

(1) In-Neighbor and Out-Neighbor Feature Propagation. To
obtain the features of in-neighbors and out-neighbors of
each node, we consider the infuence of their direct and
indirect neighbors. As shown in Figure 3(a), the in-
neighbors’ feature of the node i depends on their direct
neighbors j and q. Te corresponding ratings r(j, i) and
r(q, i) provide direct evidence about the degree of will-
ingness/trust of nodes j and q have towards the node i. For
the indirect neighbor k of the node i, we can derive the efect
of the node k on the node i based on r(k, j) and r(j, i). Tis
provides indirect evidence about the degree of willingness/
trust of the node k towards the node i.

To represent the willingness/trust ranking of each type,
we encode it using one-hot vector. Next, the ranking r′(i, j)

encoded by the one-hot vector is converted into a dense
ranking vector embedding as follows:

Dr′(j,i) � W(j,i) · r′(j, i), (1)

where W(j,i) is a trainable transformation matrix. Ten, the
vector embedding x[i] of the node i and the associated dense
rating vector embedding Dr′(j,i) are concatenated to obtain
the willingness/trust representation of the node i to the node
j, which is represented as follows:

I(j, i) � x[i]⊗Dr′(j,i). (2)

Te mean aggregator is used to aggregate the in-
neighbors’ features of the node i. Tus, we can obtain the
in-neighbor feature propagation of the node i, represented as
follows:
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hI[i] �
1

NI(i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽘

j∈NI(i)

I(j, i). (3)

Similarly, we can obtain the out-neighbor feature
propagation of the node i, represented as follows:

Dr′(i,j) � W(i,j) · r′(i, j),

O(i, j) � x[i]⊗Dr′(i,j),

hO[i] �
1

NO(i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽘

j∈NO(i)

O(i, j).

(4)

Next, we use a standard fully connected structure to
connect the features of the two neighbors of the node i. Te
fnal embedded vector of the node i is as follows:

h[i] � σ WIO · hI[i]⊗ hO[i]( 􏼁 + b( 􏼁, (5)

whereWIO represents the trainable transformation matrix, b
represents the learnable bias, and σ is the nonlinear acti-
vation function. Here, we use the softmax function as the
activation function.

(2) High-Order Willingness/Trust Feature Propagation. By
stacking l convolutional layers, the node i can accept
features from its l-hop neighbors. It can be represented as
follows:

Il
(j, i) � hl− 1

[i]⊗Wl
(j,i) · r′(j, i),

Ol
(i, j) � hl− 1

[i]⊗Wl
(i,j) · r′(i, j),

hl
I[i] �

1
NI(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
j∈NI(i)

Il
(j, i),

hl
O[i] �

1
NO(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
j∈No(i)

Ol
(i, j),

hl
[i] � σ Wl

IO · hl
I[i]⊗ hl

O[i]􏼐 􏼑 + b
l

􏼐 􏼑,

(6)

where h0[i] � x[i] is the initialized embedding of the node i.
We control its propagation range by adjusting the size of l.

3.2.2. Mutual Willingness/Trust Prediction Layer. To predict
the mutual willingness/trust relationship between nodes i

and j, the embedding vector representations of nodes i and j

are concatenated. By using the softmax function, we can
predict the probability of the directed willingness/trust of the
node i towards the node j as follows:

􏽥h(i, j) � σ Wp · (h[i]⊗h[j])􏼐 􏼑, (7)

whereWp denotes the trainable weight matrix defned in the
prediction layer and σ is the softmax activation function.
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Tus, the directed willingness/trust rating of the node i

towards the node j is calculated as follows:

􏽥r(i, j) � argmax
r

(􏽥h(i, j)). (8)

Due to the asymmetry of willingness/trust, the will-
ingness/trust rating from the node j to the node i is as
follows:

􏽥r(j, i) � argmax
r

(􏽥h(j, i)). (9)

Since mutual collaboration among participants is re-
quired for CCS, we convert the asymmetric willingness/trust
between each pair of participants into mutual willingness/
trust.Te lower willingness/trust rating between each pair of
nodes is taken as a measure of the mutual willingness/trust
relationship, expressed as follows:

rm(i, j) � min(􏽥r(i, j), 􏽥r(j, i)). (10)

To get the best training results, the backpropagation
algorithm is used to train the convolutional network
structure. Given the proven efectiveness of Adam in
updating parameters [41], we choose it as the parameter
optimizer. Te cross-entropy loss between the predicted and
observed true values is the objective function, expressed as
follows:

Loss � −
1

|E|
􏽘
<i,j>∈E

r′(i, j)log(􏽥h(i, j)) + λ‖Φ‖
2
2, (11)

where Φ � Wl,Wl
IO, bl􏽮 􏽯

L

l�1,Wp􏼚 􏼛 denotes all trainable
parameters and λ is used to control the regularization efect
to prevent overftting.

4. WT-TR

In this section, to better meet the collaboration needs of
CCS, we introduce the consensus and similarity constraints
into the willingness and trust networks to better jointly
consider willingness and trust. Ten, we formulate and solve
the optimization problem of CCS team recruitment to
obtain the optimal teams.

4.1. Consensus Constraint. Let Teamw � Teamw
1 , . . . ,􏼈

Teamw
C} and Teamt � Teamt

1, . . . ,Teamt
C􏼈 􏼉 denote the teams

built in the willingness and trust networks, respectively,
where C is the number of teams. Teamw

c (Teamt
c) refer to the

c th team built in the willingness (trust) network. To facilitate
presentation, two team assignment matrices
Mw � [Mw(i, c)] ∈ RN×C and Mt � [Mt(i, c)] ∈ RN×C are
defned to represent Teamw and Teamt, respectively. Te
elements in these two matrices are expressed as follows:

M
w

(i, c) �

1
�������
Team

w
c

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱 , if i
w ∈ Teamw

c ,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M
t
(i, c) �

1
�������

Teamt
c

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱 , if i
t ∈ Teamt

c,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where |Teamw
c |(|Teamt

c|) represent the number of partici-
pants of the c th team in the willingness (trust) network and
iw(it) represent the i th participant in the willingness (trust)
network.

According to equation (12), we can deduce the or-
thogonal properties of Mw and Mt as follows:

Mw⊤Mw
� I,

Mt⊤Mt
� I.

⎧⎨

⎩ (13)

Defnition 3 (consensus constraint). Te consensus con-
straint is used to ensure that the recruited teams reach
a consensus on willingness and trust. We minimize the
diference between the team assignment matrices Mw and
Mton the willingness network and trust networks to achieve
the consensus constraint.

Participants may have diferent degrees of willingness
and trust relationships, which can lead to diferent team
distributions in the willingness and trust networks. To solve
this problem, we do not force the teams built in the will-
ingness network and the trust network to be completely
equal, that is, Mw ≠Mt. Instead, inspired by Kumar et al.
[42], we minimize equation (14) to achieve the consensus
constraint:

Con Mw
,Mt

􏼐 􏼑 �
MwMw⊤

Mw‖ ‖2F
−
MtMt⊤

Mt
����

����
2
F

����������

����������

2

F

, (14)

where ‖Mw‖2F � tr(MwMw⊤) � C and ‖Mt‖
2
F � tr

(MtMt⊤) � C.

4.2. Similarity Constraint. According to the principle of
“neighborhood protection” [43], there are similarities in the
willingness and trust relationships between participants and
their immediate neighbors. Participants with mutual trust
are more likely than average to participate in the same
sensing tasks together. Te willingness of participants to
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participate in sensing tasks can in turn strengthen their
mutual trust. Tus, the participant behaviors in the two
networks of willingness and trust are to some extent
compatible, rather than independent.

Defnition 4 (similarity constraint).Te similarity constraint
describes similar interaction contexts of the same partici-
pants in diferent networks.

For the participant i, we select the K-nearest neighbors
who have the highest willingness and the highest trust with
the participant i in the willingness and trust networks, re-
spectively. Based on these selections, we construct the in-
teraction contexts of the willingness circle and trust circles
for the participant i as follows:

WK i
w

( 􏼁 � i
w
1 , . . . , i

w
K􏼈 􏼉,

TK i
t

􏼐 􏼑 � i
t
1, . . . , i

t
K􏽮 􏽯,

⎧⎨

⎩ (15)

where iwk and itk are the k th nearest neighbors of the i th
participant in the willingness and trust networks, re-
spectively. We defne two neighbor selection matrices Xw

i �

[Xw
i (j, k)] ∈ RN×K and Xt

i � [Xt
i(j, k)] ∈ RN×K, where each

participant i selects his/her neighbors according to equation
(15). Te elements of these two matrices are given by

X
w
i (j, k) �

1, if j � i
w
k ∈WK i

w
( 􏼁,

0, otherwise,
􏼨

X
t
i(j, k) �

1, if j � i
t
k ∈ TK i

t
􏼐 􏼑,

0, otherwise.

⎧⎨

⎩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

According to the willingness circle and trust circles of the
participant i, the corresponding K distribution vectors of C

teams can be selected fromMw andMt. Ten, we can defne
the context team assignment matrices Mw

i ∈ R
K×C and

Mt
i ∈ R

K×C for the participant i as follows:

Mw
i � Xw⊤

i Mw
,

Mt
i � Xt⊤

i Mt
.

⎧⎨

⎩ (17)

Given the K-nearest neighbors and the context team
assignment matrices of the participant i, we impose the
similarity constraint on the willingness and trust networks.
Specifcally, we aim to ensure that the distribution of the
participant i’s K-nearest neighbors is similar in the will-
ingness and trust networks. It is assumed that each team c

places similar weights on its K neighbors. Terefore, there
should be a sufciently small diference between
􏽐

K
k�1M

w
i (k, c) and 􏽐

K
k�1M

t
i(k, c). To achieve the similarity

constraint for the participant i, we minimize the following
formula:

Sim Mw
i ,Mt

i􏼐 􏼑 � 􏽘
C

c�1
􏽘

K

k�1
M

w
i (k, c) − 􏽘

K

k�1
M

t
i(k, c)⎛⎝ ⎞⎠

2

� Mw
i − Mt

i􏼐 􏼑
⊤
e

�����

�����
2
, (18)

where e is a vector of all ones.Te similarity constraint for all
participants is as follows:

Sim Mw
,Mt

􏼐 􏼑 � 􏽘
N

i�1
Mw

i − Mt
i􏼐 􏼑
⊤
e

�����

�����
2
. (19)

4.3. Te Formulation and Solution of CCS Team
Recruitment Optimization. To improve the QoS of CCS,
we are committed to recruiting the optimal teams Team �

Team1, . . . ,TeamC􏼈 􏼉 by dividing all participants into C

teams. Essentially, this is a classifcation problem, where
participants are assigned to teams based on their willingness
and trust relationships. In each team, participants have
a higher mutual willingness and trust so that they can
collaborate more efectively to complete sensing tasks. In the
optimization of CCS team recruitment, participants and
teams are both parties to team recruitment. Te formal
defnition of the CCS team recruitment optimization
problem is as follows.

Defnition 5 (CCS team recruitment optimization problem).
Given a set of N participants with mutual willingness and
trust relationships and C required teams, our goal is to
recruit these N participants into C optimal teams
Team � Team1, . . . ,TeamC􏼈 􏼉. Te teams should satisfy both
consensus and similarity constraints on the willingness and
trust networks to ensure efective completion of CCS tasks.

Multiview spectral clustering can divide objects into
diferent cohesive clusters by exploring the consensus with
multiple views [44, 45]. Hence, to obtain the optimal teams
using the willingness network and trust network, we
transform the CCS team recruitment process into dual-view
spectral clustering. Te willingness network can be seen as
describing the mutual willingness relationship among par-
ticipants to participate in sensing tasks together from the
willingness view.Te trust network can be seen as describing
the mutual trust relationship among participants from the
trust view. Tus, the number of optimal teams is equivalent
to the number of clusters generated by dual-view spectral
clustering.
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Specifcally, we build teams based on standard spectral
clustering in the willingness and trust networks, respectively.
At the same time, consensus and similarity constraints are
introduced to constrain the CCS team recruitment opti-
mization results. Te optimization function of building
teams with high mutual willingness in the willingness
network is as follows:

min tr Mw⊤LwMw
􏼐 􏼑 s.t.Mw⊤Mw

� I. (20)

Similarly, the objective function of building teams with
high mutual trust in the trust network is as follows:

min tr Mt⊤LtMt
􏼐 􏼑 s.t.Mt⊤Mt

� I, (21)

where Lw � I − (Dw
m)− 1/2Rw

m(Dw
m)− 1/2 and

Lt � I − (Dt
m)− 1/2Rt

m(Dt
m)− 1/2 represent the normalized

Laplace matrices on the willingness and trust networks,
respectively, and Dw

m and Dt
mare the diagonal degree ma-

trices on Rw
m and Rt

m.
Combining equations (14), (19–21), we fnally obtain the

objective function of CCS team recruitment optimization,
which is formulated as follows:

min F Mw
,Mt

􏼐 􏼑 � min tr Mw⊤LwMw
􏼐 􏼑

+ tr Mt⊤LtMt
􏼐 􏼑 +

λ1
2
Con Mw

,Mt
􏼐 􏼑 +

λ2
2
Sim Mw

,Mt
􏼐 􏼑,

s.t. Mw⊤Mw
� I,Mt⊤Mt

� I,

(22)

where λ1 and λ2 control the weights of consensus and
similarity constraints, respectively.

We convert the consensus constraint term of equation
(22) into the trance-norm form:

1
C
2 tr MwMw⊤MwMw⊤

− 2MwMw⊤MtMt⊤
+ MtMt⊤MtMt⊤

􏼐 􏼑

�
2
C

−
2

C
2 tr MwMw⊤MtMt⊤

􏼐 􏼑.

(23)

Similarly, we transform the similarity constraint term as
follows:

tr Mt⊤ZtMt
􏼐 􏼑 + tr Mw⊤ZwMw

􏼐 􏼑 − 2tr Mt⊤Zw,tMw
􏼐 􏼑, (24)

where Zt � 􏽐
N
i�1X

t
iEX

t⊤
i , Zw � 􏽐

N
i�1X

w
i EX

w⊤
i , and

Zw,t � 􏽐
N
i�1X

t
iEX

w⊤
i . E is an all-one matrix. Ignoring the

constant terms, the objective function is rewritten as follows:

min F Mw
,Mt

􏼐 􏼑 � min tr Mw⊤􏽥LwMw
􏼐 􏼑

+ tr Mt⊤􏽥LtMt
􏼐 􏼑 − λ1tr MwMw⊤MtMt⊤

􏼐 􏼑 − λ2tr Mt⊤Zw,tMw
􏼐 􏼑,

s.t. Mw⊤Mw
� I,Mt⊤Mt

� I,

(25)

where 􏽥Lt
� Lt + (λ2/2)Zt and 􏽥Lw

� Lw + (λ2/2)Zw.
Te curvilinear search method (CSM) [46] uses an

update scheme similar to Crank–Nicolson, which can retain
constraints for updating with a low iterative cost. Inspired by
this, to obtain the optimal solution of equation (25), we
combine this constraint-keeping update method with an
alternative optimization strategy [47]. Specifcally, given
initial Mt

(0), we alternate by optimizing one variable in each
iteration while maintaining the other variable until con-
vergence as follows:

Mw
(a+1) � argmin

Mw
F Mw

,Mt
(a)􏼐 􏼑,

s.t.Mw⊤Mw
� I,

(26)

Mt
(a+1) � argmin

Mt
F Mw

(a+1),M
t

􏼐 􏼑,

s.t.Mt⊤Mt
� I,

(27)

where a is the number of iterations.
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Based on the team assignment matrices Mw and Mt

obtained from the above optimization, we fuse them to
calculate the fnal unifed team assignment matrix as
follows:

􏽥M �
􏽥Mw

+ 􏽥Mt

2
, (28)

where

􏽥Mw
� Mw ⊙Mw

( 􏼁 Mw ⊙Mw
( 􏼁

⊤ Mw ⊙Mw
( 􏼁􏼐 􏼑

− 1
,

􏽥Mt
� Mt ⊙Mt

􏼐 􏼑 Mt ⊙Mt
􏼐 􏼑

⊤
Mt ⊙Mt

􏼐 􏼑􏼒 􏼓
− 1

.

(29)

Te elements of matrices 􏽥Mw and 􏽥Mt are the probability
that the i th participant is assigned to the c th team in the
willingness and trust networks, respectively. Te matrix 􏽥M
refects the fnal probability distribution for all teams. Tus,
we can recruit each participant to the team with the highest
probability according to the matrix 􏽥M. Finally, we can obtain
the optimal teams recruited for CCS.

Te specifc process of the CCS team recruitment op-
timization solution is shown in Algorithm 1. Te inputs of
Algorithm 1 are N participants with the mutual willingness
matrix Rw

m and the mutual trust matrix Rt
m, the number of

recruited teams C, consensus constraint weight λ1, similarity
constraint weight λ2, the number of neighbors K for each
participant, and the maximum number of iterations Maxite.
Te output is the result Team � Team1, . . . ,TeamC􏼈 􏼉 of the
recruited C teams. First, the team assignment matrices Mw

(0)

and Mw
(0) are initialized. Ten, CSM is used to alternately

optimize Mw
(a) and Mw

(a) in each iteration until convergence.
Finally, 􏽥M is calculated according to equation (28) to obtain
the optimal teams recruited by CCS. Te time complexity of
Algorithm 1 depends mainly on the number of iterations of
CSM executed in its loop body (steps 3-4). Referring to
literature [46], we know that the time complexity of CSM in
each iteration depends mainly on the inverse computation
with complexity O(N3) in the Crank–Nicolson-like scheme.
Terefore, it can be inferred that the overall time complexity
of Algorithm 1 is O(N3).

5. Experiments and Analysis

In this section, we introduce the setup of the recruitment
simulation platform for CCS. Ten, we simulate the re-
cruitment process using this platform and analyze the ex-
perimental results. All reported results are obtained on
a machine with a 3.3GHz Intel Core 2 Duo CPU and
2GB RAM.

5.1. Te Setup of the CCS Recruitment Simulation Platform.
In this subsection, frst, the QoS metric is proposed to
evaluate the performance of CCS services. Second, we deploy
other recruitment methods to prove the efectiveness of the
proposed methods. Finally, we also present other settings for
the experiments.

5.1.1. QoS Evaluation Metric for CCS Services

(1) Te Impact of Mutual Willingness and Trust on Collab-
oration. We comprehensively consider the mutual willing-
ness and trust relationships among participants. If mutual
willingness/trust exceeds the willingness/trust threshold, it is
a high willingness/trust relationship. On the contrary, it is
a low willingness/trust relationship. Based on the level of
mutual willingness and trust relationships between partic-
ipants, the relationship between participant pairs in CCS is
divided into four types: high willingness-trust, low
willingness-high trust, high willingness-low trust, and low
willingness-trust. A low willingness-trust relationship will
lead to noncooperation among participants, which is
a “malicious” relationship for CCS.

A high level of mutual willingness and trust will lead to
more active collaboration. As shown in equations (30) and
(31), we use an exponential function to quantify the impact
of mutual willingness and trust on collaboration among
participants, respectively. When mutual willingness and
trust are greater than the willingness threshold and trust
threshold, the impact of mutual willingness and mutual trust
on collaboration among participants is greater than 1.
Equation (32) calculates the degree of collaboration between
participants. Te higher the value, the higher the degree of
collaboration between participants. A value greater than 1
indicates active collaboration, while a value less than 1 in-
dicates negative collaboration:

C
w
(i,j) � exp − θw

− r
w
m(i, j)( 􏼁( 􏼁, (30)

C
t
(i,j) � exp − θt

− r
t
m(i, j)􏼐 􏼑􏼐 􏼑, (31)

C(i,j) � μw
C

w
(i,j) + μt

C
t
(i,j), (32)

where μw, μt ∈ [0, 1] represent the weights of trust and
willingness, respectively, and θw and θt represent the will-
ingness and trust threshold required for the team, re-
spectively. θw and θt are assumed to follow a normal
distribution N(μ, σ2), and their values are in [0, 1]. To unify
the magnitude, the value of C(i,j) is normalized to a value
between 0 and 1.

To evaluate the performance of CCS services, we draw on
the QoS evaluation model proposed by Truong et al. [48].
However, they only consider the quality of data provided by
individuals and ignore the quality of collaboration in their
QoS evaluation. Terefore, their metric is unsuitable for the
QoS evaluation of CCS services. For this reason, we redefne
the QoS evaluation metric for CCS services as follows:

QoS(R) �
T

log 􏽑
T
t�1QTaskt

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (33)

QTaskt
�

1 − αcol( 􏼁 􏽐
i∈Teamc

Q
D
i + αcolQ

C
Teamc

Teamc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,
(34)
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􏽘
i∈Teamc

􏽘
j∈Teamt∧i≠j

C(i,j). (35)

Each request R has T tasks.Tere is a positive correlation
between the quality of service QoS(R) of the request R and
the quality of each sensing task QTaskt

. We use the product of
the natural logarithm of each task quality QTaskt

to express
the quality of service QoS(R), as shown in equation (33).
Each task is completed by a team Teamc. Te quality of each
task QTaskt

is calculated by the average of data quality QD and
team collaboration quality QC

Teamc
, where αcol ∈ [0, 1] de-

notes the task collaboration requirement and controls their
weighting. As shown in equation (35), the team collabo-
ration quality of Teamc depends on the degree of collabo-
ration among team members.

5.1.2. Other Recruitment Method Deployment. To verify the
efectiveness of the proposed method, we set up three other
recruitment methods: (1) trust-based recruitment method,
(2) average-based recruitment method, and (3) random
recruitmentmethod. Unlike the versions of these methods in
literature [48], which focus on individual recruitment, we
adapt these methods for team recruitment in the CCS
scenario. In the trust-based recruitment method, the trust
between the task requester and participants is used to recruit
teams, but the trust within participants is ignored. Te
average-based recruitment method uses average regression
to predict participants’ data quality scores. For better
comparisons, we also set up the random recruitmentmethod
as the simplest recruitment method, which randomly selects
a team from all participants. Te parameter settings of these
three recruitment methods are consistent with
literature [48].

5.1.3. Other Settings. Te recruitment simulation platform
contains multiple service requests and four team re-
cruitment methods. Te simulations of all recruitment
methods have the same inputs, i.e., N participants and M

service requests. After each service request, we calculate its
QoS score using equations (33–35) and output it. We use
grid search to set the optimal weights λ1 and λ2 of the
consensus and similarity constraints between 10− 1 and 102.

For the ranges [0.1, 1], [1, 10], and [10, 100], our steps are set
to 0.1, 1, and 10, respectively. Unless otherwise specifed, we
set the number of participants N to 400, the number of
teams C to 20, K to 5, μt and μw to 0.5, the number of
platform task requests M to 160, the number of tasks per
request in the range of 10 to 60, μ to 0.5, and σ to 2; the
maximum number of iterations Max ite is 40 as the default
value. We use the data quality QD score distribution of
participants given in literature [48]. Te high-quality par-
ticipants in the platform are set to 250, and the low-quality
participants are set to 150. Note that the malicious users in
[48] do not belong to our research scope. We focus on the
“malicious” relationship among participants.

5.2. Results and Analysis. We evaluate the proposed method
in terms of the following three aspects: First, we verify the
performance of the GCN-WTN building. Second, we sim-
ulate our method in the directed small-world network
(Poisson distribution) and the directed scale-free network
(Power-law distribution) with diferent task collaboration
requirements. Tird, we study the efect of low willingness
and trust on QoS scores. Finally, we evaluate the efciency of
the WT-TR method.

5.2.1. Performance Verifcation of the GCN-WTN Building.
To verify the performance of the GCN-WTN building,
a willingness network of 2000 nodes and a trust network of
2000 nodes are built. We select 25239 real relationships from
the Pretty Good Privacy (https://networkrepository.com/
arenas%20pgp.php) dataset as the directed willingness rat-
ings and 7988 real relationships from the Advogato (https://
www.trustlet.org/datasets/advogato/) dataset as the directed
trust ratings.Te Pretty Good Privacy dataset is a network of
cryptographic procedures, which can be seen as using the
concept of “willingness” to provide encryption and au-
thentication for data communication. Te Advogato dataset
is an open-source online social network where participants
can authenticate one another. In the experiment, we set the
convolutional layer L to 3, the learning rate to 0.005, the
normalization factor λ to 10− 5, the initialized embedding
dimension D to 128, and the number of epochs to 100. We
test the prediction performance with diferent percentages of
the training set. Te prediction accuracy with the number of
training epochs is shown in Figure 4.

Require: N, Rw
m, Rt

m, C, λ1, λ2, K, and Maxite

Ensure: Team � Team1, · · · ,TeamC􏼈 􏼉

(1) Initialize the team assignment matrices Mw
(0) and Mt

(0);
(2) a � 0;
(3) According to equation (26), update Mw

(a) by using CSM;
(4) According to equation (27), update Mt

(a) by using CSM;
(5) a←a + 1;
(6) Repeat steps 3–5 until a � Maxite;
(7) Return Mw←Mw

(a) and Mt←Mt
(a);

(8) Calculate 􏽥M according to equation (28) to obtain the optimal teams Team � Team1, . . . ,TeamC􏼈 􏼉 for CCS;

ALGORITHM 1: CCS team recruitment optimization solution.
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From Figure 4, we can see that the GCN-WTN building
reaches the best prediction accuracy for the willingness and
trust networks in the range of 10 to 20 training epochs. For
example, when the training set makes up 80% of the data, the
best prediction accuracy of 0.774 is obtained at the 13th
training epoch in the willingness network (as shown in
Figure 4(a)). Similarly, when the training set is 80% of the
data, we obtain the best prediction accuracy of 0.748 at the
13th training epoch in the trust network (as shown in
Figure 4(b)). Figure 4(a) also shows that even when the
training set is 30% of the total data, it achieves the best
prediction accuracy of 0.748 at the 11th training epoch,
which is only 0.026 lower than the value of the training set
when it is 80%. In the trust network, it also achieves the best
prediction accuracy of 0.702 at the 11th training epoch,
a drop of 0.046 compared to the training set with 80% of the
total data, as shown in Figure 4(b). Tis is a good indication
that the GCN-WTN building is not dependent on a specifc
dataset and not sensitive to the size of the training set.

5.2.2. Special Cases

(1) Simulation in the Directed Small-World Network.
Analysis of experimental data in literature [49] shows that
many real-world networks have small-world efects.
Terefore, we use a special case of the directed willingness
network and directed trust networks based on a small-world
network [50]. We set the number of neighbors of each node
in the two networks 〈kw〉 � 〈kt〉 � 6, the probability of
randomized reconnection pt � pw � 0.1, and the directed
willingness and trust rating rw, rt ∈ 0.15, 0.45, 0.75, 0.95{ },
where 0.95 is the highest rating and 0.15 is the lowest rating.
Te proportions of these four ratings on the edge are 10%,
20%, 30%, and 40%, respectively.

Te visualization of the CCS team recruitment opti-
mization process at diferent time steps is shown in Figure 5.
Te light gray line indicates the mutual willingness re-
lationship among participants, and the light blue line in-
dicates the mutual trust relationship among participants.
Te 20 teams are represented by 20 diferent colors. As
shown in Figure 5(a), we randomly initialize the 20 teams at
a � 0. To evaluate the optimization performance of CCS
teams at diferent time steps, we calculate the normalized
Davies–Bouldin index (NDBI) [51] and normalized mutual
information (NMI) [42] of the optimized teams in each time
step, as shown in Table 1. A higher NDBI value indicates
a more cohesive team. A higher NMI value indicates that the
optimized teams have a higher consensus in the views of
willingness and trust. From Table 1, we observe that the
NDBI and NMI increase as the number of time steps in-
creases. Tis means that the teams are becoming more
cohesive and more consistent in their willingness and trust
views. At a � 40, we obtain the weights λ1 and λ2 of con-
sensus and similarity constraints as 4.0 and 0.7, respectively.

By simulating the four recruitment methods on the
recruitment simulation platform of CCS with diferent task
collaboration requirements, we obtain the QoS scores, as
shown in Figure 6. We can see that as the task collaboration

requirement αcol increases, the gap between the QoS scores
obtained by our method and other methods keeps widening.
For example, when the task collaboration requirement αcol of
CCS is 0.5, 0.6, 0.7, 0.8, and 0.9, the gap between the average
QoS score of 160 service requests of our method and the
trust-based recruitment method increases from 0.3277,
1.3634, 2.5194, and 3.9197 to 5.9385. Moreover, the QoS
score obtained by our method fuctuates between 8.2 and 10
when αcol is 0.9, as shown in Figure 6(f). It proves the
advantages of the proposed method in the environment of
high task collaboration requirements.

Te average-based recruitment method learns from the
participants’ history of their previous data quality scores to
select the teammost likely to provide high-quality data in the
next task. Te trust-based recruitment method recruits the
team most trusted by the task requester, which yields
a slightly higher QoS score than the average-based re-
cruitment method. Tis is understandable. Because trust is
transitivity to a certain extent, participants recruited by the
trust-based recruitment method have a certain level of trust
among themselves and are more likely to cooperate.
However, with the exception of our method, none of them
jointly consider the willingness and trust factors that in-
fuence CCS team recruitment. Tis is why both the trust-
based and the average-based recruitment methods obtain
poor QoS scores. Te teams recruited by our method
comprehensively consider the willingness and trust that
afect team recruitment and improve the teams’ collabora-
tion quality score. Tereby, the QoS score of CCS is
improved.

(2) Simulation in the Directed Scale-Free Network. We also
simulate our method in the directed scale-free network to
further analyze its efectiveness. A scale-free network refers
to a network whose edges obey a power-law distribution
[52]; that is, very few nodes (called head nodes) have a huge
number of incident edges, while most nodes (called tail
nodes) have very few incident edges. We use a special case of
the directed willingness network and directed trust networks
based on the scale-free network. Te proportion of ratings
on the edge is the same as above. By simulating the four
recruitment methods on the recruitment simulation plat-
form of CCS with diferent task collaboration requirements,
we obtain the QoS scores, as shown in Figure 7. In Figure 7,
we can fnd that as the task collaboration requirement αcol
increases, our method can still obtain a higher QoS score in
the directed scale-free network than the other three
methods. Te experimental results show that the proposed
method obtains the highest QoS scores in both directed
small-world networks and scale-free networks, thus vali-
dating the efectiveness of our method and demonstrating its
good adaptability.

5.2.3. Te Infuence of Low Willingness and Trust. In ad-
dition, to explore the impact of low willingness and trust on
the obtained QoS scores, we simulate the above recruitment
methods when the percentage of participant pairs with a low
willingness-trust relationship is diferent. On the basis of the
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experiment in the previous section, we add a low
willingness-trust relationship between participant pairs that
is lower than the required willingness and trust threshold.
Te number of teams C is set to 80, and the service request R

is 50. Other settings are consistent with the above experi-
ments. Te obtained QoS scores are shown in Figures 8 and
9, where Figure 8 shows the simulation in the directed small-
world network and Figure 9 shows the simulation in the
directed scale-free network. Te participant pairs with a low
willingness-trust relationship change from 20% to 80% of
the total number of participant pairs.

As shown in Figures 8 and 9, the QoS scores of all re-
cruitment methods decrease as the percentage of participant
pairs with a low willingness-trust relationship increases.Tis
is inevitable. As the percentage of participant pairs with
a low willingness-trust relationship becomes larger, the
collaboration ecosystem in the recruitment simulation
platform of CCS becomes progressively worse. Furthermore,
as the collaboration ecosystem in the recruitment simulation
platform worsens and the quality of participant collabora-
tion decreases, the QoS score decreases. Of all the re-
cruitment methods, our method changes most signifcantly
as the task collaboration requirement increases. For ex-
ample, in Figure 8(d), when participant pairs with a low
willingness-trust relationship make up 25% of the total
participant pairs, our method obtains a QoS score of 8.04.
When participant pairs with a low willingness-trust re-
lationship make up 75% of the total participant pairs, our
method obtains a QoS score of 4.04. Te QoS score is
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Figure 4: Prediction accuracy with the number of training epochs: (a) prediction accuracy in the willingness network; (b) prediction
accuracy in the trust network.

(a) (b) (c)

Figure 5: Visualization of the CCS team recruitment optimization process at diferent time steps: (a) a � 0; (b) a � 10; (c) a � 40. Nodes of
the same color are recruited as a team.

Table 1: NDBI and NMI values at diferent time steps.

a NDBI NMI
0 0.350 0.232
10 0.475 0.430
40 0.492 0.542
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reduced by 4.00. Tis further demonstrates the high demand
for CCS tasks in a cooperative ecosystem environment.

However, it is encouraging to note that the teams
recruited by our method still obtain relatively higher QoS
scores. Tis is because our method imposes consensus and
similarity constraints on the willingness and trust networks.
Tis allows participant pairs with low willingness-trust

relationships to be recruited into diferent teams. Te degree
of collaboration between participants in the same team is still
greater than 1. Tat is, there is active collaboration. For
example, when the task collaboration requirement is 0.9 and
the percentage of participant pairs with a low willingness-
trust relationship is 75%, our method obtains QoS scores of
4.04 and 3.05, respectively, as shown in Figures 8(d) and
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Figure 7: QoS scores in the directed scale-free network: (a) αcol � 0.4; (b) αcol � 0.5; (c) αcol � 0.6; (d) αcol � 0.7; (e) αcol � 0.8; (f ) αcol � 0.9.

10

8

6

4

2

0 20 40 60 80 100 120 140 160

Q
oS

 S
co

re
Our method
Trust-based
Average-based
Random

Number of Requested Services: 160

(a)

10

8

6

4

2

0 20 40 60 80 100 120 140 160

Q
oS

 S
co

re

Our method
Trust-based
Average-based
Random

Number of Requested Services: 160

(b)

10

8

6

4

2

0 20 40 60 80 100 120 140 160

Q
oS

 S
co

re

Our method
Trust-based
Average-based
Random

Number of Requested Services: 160

(c)

10

8

6

4

2

0 20 40 60 80 100 120 140 160

Q
oS

 S
co

re

Our method
Trust-based
Average-based
Random

Number of Requested Services: 160

(d)

10

8

6

4

2

0 20 40 60 80 100 120 140 160

Q
oS

 S
co

re

Our method
Trust-based
Average-based
Random

Number of Requested Services: 160

(e)

10

8

6

4

2

0 20 40 60 80 100 120 140 160

Q
oS

 S
co

re Our method
Trust-based
Average-based
Random

Number of Requested Services: 160

(f )

Figure 6: QoS scores in the directed small-world network: (a) αcol � 0.4; (b) αcol � 0.5; (c) αcol � 0.6; (d) αcol � 0.7; (e) αcol � 0.8; (f ) αcol � 0.9.
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Figure 9: QoS scores with diferent percentages of participant pairs with low willingness-trust in the directed scale-free network: (a)
αcol � 0.3; (b) αcol � 0.5; (c) αcol � 0.7; (d) αcol � 0.9.
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Figure 8: QoS scores with diferent percentages of participant pairs with low willingness-trust in the directed small-world network: (a)
αcol � 0.3; (b) αcol � 0.5; (c) αcol � 0.7; (d) αcol � 0.9.
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9(d). Tus, our method can still obtain a good QoS score as
the percentage of participant pairs with a low willingness-
trust relationship increases.

5.2.4. Efciency of the WT-TR Method. We evaluate the
efciency of the WT-TR method by changing the size of
participants in the CCS platform. Figure 10 shows the
runtime of the WT-TR method in diferent numbers of
participants in the CCS platform, where Figure 10(a) shows
the runtime in the directed small-world network and
Figure 10(b) shows the runtime in the directed scale-free
network. Te yellow bar graph demonstrates that the
number of teams C is set to 80. Te green bar graph
demonstrates that the number of teams C is set to 50. Te
blue bar graph demonstrates that the number of teams C is
set to 20.

As shown in Figure 10, we can see that the runtime of the
WT-TR method is acceptable. In the directed small-world
network with 4000 participants (as shown in Figure 10(a)),
the runtime of the WT-TR method is 125.68 s for team
number C � 20, 202.24 s for team number C � 50, and
275.39 s for team number C � 80. In a directed scale-free
network with 4000 participants (as shown in Figure 10(b)),
the runtime of the WT-TR method is 139.78 s for team
number C � 20, 262.68 s for team number C � 50, and
295.20 s for team number C � 80. In practice, the number of
participants in a given task area cannot be very large due to
the limited population capacity of the area where the CCS
task is located. Terefore, it shows that our method is ef-
fcient and capable of handling team recruitment with rel-
atively large participant sizes in CCS platforms.

6. Conclusion and Future Work

Our study focuses on how to recruit the optimal teams for
CCS so that they can collaborate mutually to complete the
sensing tasks with higher QoS. To address this problem,

we design a novel team recruitment scheme for CCS that
jointly considers willingness and trust. First, we build
a GCN-WTN model for CCS to obtain the mutual will-
ingness and trust among participants more accurately.
Second, we propose a WT-TR method to recruit the
optimal teams for CCS. Tis method introduces the
consensus and similarity constraints into the willingness
and trust networks to better meet the collaboration needs
of CCS. Finally, we implement a recruitment simulation
platform for CCS to simulate the team recruitment pro-
cess and validate the efectiveness of our proposed
method. Te experimental results show that the teams
recruited by the proposed method can signifcantly im-
prove QoS for CCS.

We provide an outlook for future research from the
following aspects. First, the proposed method does not limit
the recruitment cost or the number of participants. It will be
our future work to further consider them based on the
proposed method. Second, as group roles are important
factors in improving team performance, we plan to combine
GRA with our WT-TR model to recruit more competitive
teams in the future. Tird, considering the variability of
participants across willingness and trust networks, the
similarity between diferent teams would be more helpful to
recruit the optimal teams for CCS [53]. Fourth, it is also
a problem worth exploring to promote the collaboration of
participants in CCS by integrating other mechanisms, such
as incentive mechanisms.
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Figure 10: Runtime in diferent numbers of participants in the CCS platform: (a) runtime in the directed small-world network; (b) runtime
in the directed scale-free network.
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