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Node importance estimation is a fundamental task in graph analysis, which can be applied to various downstream applications
such as recommendation and resource allocation. However, existing studies merely work under a single view, which neglects the
rich information hidden in other aspects of the graph. Hence, in this work, we propose a Multiview Contrastive Representation
Learning (MCRL) model to obtain representations of nodes from multiple perspectives and then infer the node importance.
Specifically, we are the first to apply the contrastive learning technique to the node importance analysis task, which enhances the
expressiveness of graph representations and lays the foundation for importance estimation. Moreover, based on the improved
representations, we generate the entity importance score by attentively aggregating the scores from two different views, i.e., node
view and node-edge interaction view. We conduct extensive experiments on real-world datasets, and the experimental results

show that MCRL outperforms existing methods on all evaluation metrics.

1. Introduction

Knowledge graphs (KGs) are graph-based data structures
consisting of nodes and edges [1, 2]. Each node represents an
“entity” and each edge represents a “relation” between two
connected entities. In recent years, a lot of research has been
devoted to solving problems related to graphs [3-6]. Esti-
mating the importance of each node in a graph, network,
and KG is a highly fundamental and crucial task, which is
beneficial to many downstream applications, such as
question answering, recommendation, web searching, and
resource allocation [7-10].

For instance, Figure 1 shows an example of a movie
knowledge graph, where “Suicide Squad” is a movie node,
with the author node “David Ayer” and the actor node “Jared
Leto” connecting to it via the edges “wrote” and “starred-in.”
Each node is also associated with texts such as the bi-
ographies or movie plots. Before the two movies “Training
Day” and “Suicide Squad” come to screen, we may use the
information in the KG to estimate the potential popularity of

these two films. As can be observed from the figure, the
movie node “Training Day” might become more popular,
since it stars more popular actors and is directed by the
director with higher recognition in terms of professional
reviews.

Thus, a number of works have attempted to estimate the
importance of nodes in a graph, which can be divided into
two main categories. The first category includes classical
methods such as PageRank [7] and Personalized PageRank
[11]. PageRank was originally designed for estimating the
importance of websites. It assumes that more important
nodes may receive more links from other nodes. By
counting the number and quality of edges linked to the
nodes, the importance of the nodes can be roughly esti-
mated, whereas this algorithm only considers the graph
structure. Personalized PageRank improves PageRank by
taking into account the user’s estimation of the importance
of the nodes in the graph, while it neglects the type of edges.
In summary, this category of approaches cannot perform
well when estimating the importance of nodes in large-scale
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FIGURE 1: An example of movie knowledge graph. Different colored boxes represent different types of nodes (e.g., movie and director), and
different edge types represent different types of relations (e.g., wrote and starred-in). The numbers connected to the movies are the known
number of votes (which can be used as a source of importance scores). The “plot” and “biography” are descriptions of the nodes.

complicated graphs, since they merely take into account the
graph’s topology while overlook the substantial amount of
semantic and latent structural information encoded in
the graph.

Another category is machine learning-based strategies,
such as GENI [12] and RGTN [13]. GENI acquires the node
features through node2vec and then converts them to the
importance scores. The scores are flexibly aggregated via
a predicate-aware attention method. Additionally, a cen-
trality adjustment module is used at the end for fine-tuning.
RGTN considers both structural and semantic information
based on representation learning and then uses a common
attention fusion mechanism to interact structural features
with semantic features; after that, these features are pro-
jected into importance values separately and then aggregated
with attention weights to produce the final importance
scores of nodes. These trainable methods outperform the
traditional solutions owing to the advanced supervised
learning framework and the flexible graph attention
mechanism.

Nevertheless, there are still notable issues with current
works:

(1) To learn the graph representations, existing efforts
usually adopt a single graph learning model to
capture the structural information and generate the
embeddings, which can be insufficient for accurately
estimating the node importance.

(2) To aggregate the embeddings and produce the scores,
existing efforts directly combine the node scores and
edge embeddings, which might fail to make full use
of the interaction between node and edge
representations.

To tackle the aforementioned issues, we propose
a Multiview Contrastive Representation Learning (MCRL)
model to generate entity representations from multiple
perspectives, which can help make more accurate entity
importance estimation. Specifically, we adopt two graph
encoders to characterize the entity representations in

different views and make cross-view contrasting to extract
more useful signals using the contrastive learning strategy.
Then, given the learned graph embeddings, we estimate the
entity scores from two views—one based purely on the entity
embeddings, and one based on the interaction between
entity and relation embeddings. Finally, the multiview scores
are integrated using the attention mechanism. Compre-
hensive experiments on real-world knowledge graph data-
sets validate that MCRL can outperform existing methods in
terms of all metrics.

1.1. Contribution. The main contributions are summarized
as follows:

(1) We devise a multiview contrastive learning strategy
to estimate entity importance, where the graph
representations are first learned in the two views
separately and then forwarded to the cross-view
contrasting module to further enhance the
expressiveness.

(2) Based on the graph embeddings, we generate the
entity importance score by attentively aggregating
the scores in two views—one merely considering the
entity embeddings and one modeling the in-
teractions between entity and relation embeddings.

(3) We conduct extensive experiments on real-world
public datasets, and the results demonstrate that
MCRL outperforms the baselines in all aspects.

1.2. Organization. The rest of this paper is organized as
follows. Section 2 gives an overview of the literature that is
relevant to this work. Section 3 provides the definitions of
key concepts and the problem formulation. Section 4
elaborates the node importance estimation model. Section 5
reports and discusses the evaluation results on the main-
stream node importance estimation experimental settings.
Section 6 concludes the paper and provides future
directions.
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2. Related Work

This section provides an overview of the literature related to
this work, including node importance estimation methods,
graph neural network methods, contrastive learning
methods, and data augmentation methods.

2.1. Node Importance Estimation. There are numerous ways
to estimate node importance. PageRank (PR) [7] is a random
walk model that propagates the importance of each node by
traversing the graph structure or transmitting it to random
nodes with a fixed probability. Personalized PageRank (PPR)
[11] adjusts node weights or edge weights to bias the random
walk by considering specific topics. Recently, several works
have begun to explore supervised machine learning algo-
rithms with the development of deep learning of graph data.
In addition to employing the random walk model, HAR [14]
additionally distinguishes between different types of pred-
icates in KGs while being aware of importance scores to
make better use of the rich information contained in KGs.
GENI [12] is the earliest work to apply GNN to node im-
portance estimation, which classifies the neighbors of each
node based on the type of edges and aggregates the im-
portance values of neighboring nodes. Additionally, it ad-
justs the node importance in accordance with the nodes’
degree of centrality. RGTN [13] proposes a representation
learning-based framework that utilizes both graph topology
and node semantic information and aggregates them via an
attention mechanism, which in turn infers node importance
scores.

Notably, unlike previous works that use a single graph
learning model to extract the structural information and
generate the embeddings, which may not be adequate for
estimating the node importance precisely, in this work, the
graph representations are initially learned in the two views
independently before being submitted to the cross-view
contrasting module to further improve expressiveness. Be-
sides, existing studies directly combine the node scores and
edge embeddings, which may not fully exploit the in-
teraction between node and edge representations; in this
work, we calculate the attention scores between nodes using
the representations of nodes and edges, and we then
combine the scores to predict the node importance scores
while fully accounting for the information contained in
nodes and edges.

There are also some research works performed on
heterogeneous graphs. Multilmport [15] is an end-to-end
framework that integrates information from both the KG
and external signals, while dealing with challenges arising
from the simultaneous use of multiple input signals, such as
inferring node importance from sparse signals, and potential
conflicts among them. HIVEN [16] traces the local in-
formation of each node, employs the meta schema to alle-
viate the problem of node type dominance, and exploits the
node similarity within each node type to overcome the
limitation of GNN models in capturing global information.
Taking the movie dataset as an example, our model requires
only one type of label, the popularity of the movie, and just

ranks the importance of the movie nodes. In the work on
heterogeneous graph, they also input information about
other types of nodes, such as the director’s box office.

2.2. Graph Neural Networks. Graph neural networks
(GNNs) apply deep learning ideas to graph data, and these
methods have attracted great research attention in recent
years [17-19]. The pioneering work of GNN is the graph
convolution model GCN [20], which performs convolution
in the Fourier domain by aggregating neighbor node
features and has performed well in many applications.
However, GCN training needs to use the neighbor matrix
of the whole graph, which depends on the specific graph
structure, so GraphSAGE [21] is proposed to solve this
problem. GraphSAGE wuses a multilayer aggregation
function, and each layer of aggregation function will ag-
gregate the information of nodes and their neighbors to get
the feature vector of the next layer, which uses the
neighborhood information of nodes and does not depend
on the global graph structure. In addition, GCN treats all
neighboring nodes equally in convolution and cannot
assign different weights to nodes according to their im-
portance; graph attention networks (GATs) [22] are pro-
posed to solve this problem. GATs adaptively aggregate
neighboring information based on the attention mecha-
nism and can assign different weights to different nodes,
and they provide an efficient framework for integrating
deep learning into graph mining. These GNN works have
been widely used in recommender systems [23], knowledge
graph inference [24], and graph classification [25].

2.3. Contrastive Learning on Graphs. Contrastive learning
(CL) has recently become recognized as an effective method
for learning self-supervised graph representations [26-29].
CL can produce data representations by learning to encode
similarities or dissimilarities between a set of unlabeled
samples. Rich unlabeled data are used as a supervised signal
for model training. Since there are typically few labeled
entities in knowledge graphs, in this work, we employ
contrastive learning and make use of a large number of
unlabeled entities to better obtain feature representations of
nodes and get more precise node importance scores.

3. Problem Formulation

In this section, we provide the definitions of key concepts
and introduce the formalization of the problem studied in
our work.

3.1. Knowledge Graph. A knowledge graph is a graph & =
(7, &, ) that represents a network of real-world entities
and illustrates the relationship between them, where 7/, &,
and & represent the entities, relationships, and predicates,
respectively. In the knowledge graph, it is plausible that there
might be several different types of predicates between two
entities, and hence each edge is linked to a particular
predicate through a mapping function: & — 2.



3.2. Node Importance. An entity’s importance or popularity
in a knowledge graph is indicated by node importance s € R,
which is a nonnegative real value.

3.3. Semantic Information of Nodes. The semantic in-
formation of the node is the natural language text that
provides comprehensive descriptions of the semantic in-
formation of the entity or the concept represented by
the node.

3.4. Problem Definition. Given a knowledge graph & = (7,
&, P), a set of semantic information of nodes I, and
importance scores & for a subset of nodes 7', C 7/, entity
importance estimation aims to learn a function
f: 7 — [0,00) that generates the importance score for
each node in the knowledge graph.

4. Approach

In this section, we first describe the outline of the proposed
model. Then, we introduce the details of the two components
and training. Table 1 provides the definition of symbols used
in this paper.

4.1. Outline. Asshown in Figure 2, the features of entities are
first forwarded to the self-supervised contrastive learning
module to generate node embeddings. By adjusting the
encoders’ hidden-size and out-size parameters, we produce
a high-dimensional embedding and a low-dimensional
embedding for each node, respectively. Then, the high-
dimensional embeddings are mapped directly to the im-
portance score (i.e., score 1), and the low-dimensional
embeddings are concatenated with the edge features,
which are mapped to another importance score (i.e., score 2)
using the attention mechanism. The reason for this is that
node embedding with high dimensionality can save more
information and is better suited for direct mapping to
predict the importance score; node embedding with low
dimensionality can be better combined with edge embed-
ding to get the attention weight between two nodes, and then
the scores are aggregated to make the prediction. The scores
from the two perspectives are combined to obtain the final
predicted node importance score. Finally, we train the entire
model by aggregating the self-supervised contrastive loss, the
supervised root mean square error (RMSE) loss, and the
learning-to-rank (LTR) loss.

4.2. Multiview Contrastive Learning. In this work, we choose
two popular GNN models as the encoders to produce the
graph representations in different views.

4.2.1. GCN. The first one is the graph convolutional network
(GCN) [20]. The GCN model utilizes multiple convolutional
layers to conduct the information passing by aggregating the
features of nodes and their first-order neighborhoods. Given
two message passing layers, the equation of GCN can be
expressed as follows:
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E = o(Ao(AXW, )W, ), (1)

where X is the input feature vector matrix of nodes, A =
A +1 € RV s the scaled adjacency matrix A of the graph
& with added self-loops, W, and W, are trainable weight
matrixes, ¢ is the activation function, and E is the output
node embedding matrix.

4.2.2. GAT. The other model is graph attention network
(GAT) [22], which assigns attention weight coefficients to
the neighboring nodes of the target node and uses a local
aggregation function to generate node embeddings. Given
the features of nodes, the influence of node j on node i can
be calculated by the following equation:

__ exp(a(viWe(®)We(/)])
Yker@exp (o (v[We(i)[We(K)))’

(2)

where e(-) represents the feature of the node, || is a con-
catenation operator, ¢ is the activation function, /(i)
represents the neighboring nodes of node i, v is a learnable
weight vector, and W is a trainable weight matrix.
Following the acquisition of the attention weights, GAT
aggregates the feature representations of the nodes and its
neighbors. The L-layer GAT aggregation formulation with
multihead attention can be expressed as follows:

k K)xar O\ (k
e = ;L 10( Y (W) e](-)>,k:1,2,...,L,

jeN (i)
(3)

where €) is the input feature vector matrix of nodes in
the graph.

4.2.3. Cross-View Contrastive Learning. After obtaining the
representations in the two views, we use the cross-view
contrastive learning strategy to help learn more expressive
graph representations.

Given a node, we denote its embedding generated by the
first view as e, (i) and the embedding generated by the
second view as €, (7). These two embeddings form a positive
sample. The pairs of embeddings including €, (7) (or e, (1)
and another node’s embedding are the negative samples. The
following is the definition of node 7’s contrastive object:

exp(f (g (e, (1))
exp(f(e(/’ (i)’ eu/(i))) + '/Vcross + ‘/Vintra

£? (i) = -log

>

n

cross Z [k+#i] eXp( ( (p (1)) eV/ (k))))

mtra Z 1 [k+#i] exp( (e(p (1)) e(p (k))),
(4)

where f is a score function that measures the similarity
between two embeddings. Specifically, two embeddings
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TaBLE 1: Table of symbols.

Symbol Definition

X The input feature vector matrix of nodes

A The scaled adjacency matrix of the graph &

W, W,, W, Trainable weight matrixes

o Activation function

e(-) Feature of the node or edge

N (i) Neighboring nodes of node i

f Score function that measures the similarity between two embeddings
1, Indicator function

N cross Cross-view negative samples

€, (1), e, () Embeddings of node i generated by first view and the second view
a;j Attention weight of node i to node j

s, (1), s, () Predicted scores of node i of node view and node-edge interaction view
v Set of nodes with known importance scores

E Output node embedding matrix of GCN

A A with added self-loops

v Learnable weight vector

I Concatenation operator

e; (k) Embedding of node i in the layer k of GAT

n Number of nodes in the graph

F Fully connected neural network

a Hyperparameter

N intra Intraview negative samples

Pij Predicate between nodes i and j

s(+) Valid ground truth importance value of node

s* (i) Predicted score of node i

Self-supervised Contrastive Learning

node embedding

Node feature

embedding

Low-dimensional node

may
P Score 1

High-dimensional

Score

aggregator
8878 Score 2

Attention Aggregator

FiGURE 2: The framework o

are first transformed using a multilayer perceptron
(MLP) with nonlinear activation functions, and then the
similarity between the two embeddings is evaluated by
using the similarity metric. n is the number of nodes in
the graph, and 1, is an indicator function that returns 1
if the argument included in the bracket holds true and
0 otherwise. The first term in the denominator is the
positive sample. The term /¥, refers to the cross-view
negative samples and J/ represents the intraview
negative samples.
Finally, the overall self-supervised loss is defined as

intra

N

1
P =
¢ 2nA

1

[£° () + £¥ (i)]. (5)

I
—

f our proposed MCRL.

4.3. Multiview Score Aggregation. We devise a multiview
strategy to produce and aggregate the entity importance
scores.

4.3.1. Node View. As the two encoders obtain the high-
dimensional embeddings of each node i in the graph, re-
spectively, i.e., €, (i) and e, (i), we add the two embeddings
and generate the node importance scores of the node view:

s, () = F(e, (i) + ¢, (i), (6)
where F represents a fully connected neural network in our
experiments.



4.3.2. Node-Edge Interaction View. The node view merely
focuses on the features of nodes. However, edge features also
contain a wealth of information and play an essential role in
terms of estimating node importance. Thus, we concatenate
the node and edge vectors to better model their interactions.
Specifically, we use the attention mechanism, and the at-
tention weight of node i to node j can be calculated by the
following equation:

enlbleokoku])

) }exP("(v[e(i)“e(l’ij)"e(j)]>>’

ke (i)uli

where e(-) represents the feature of the node (or edge), p;;
denote the predicate between nodes i and j, || is a concatenation
operator, ¢ is the activation function, .4 (i) represents the
neighboring nodes of node i, and v is a learnable weight vector.

We first convert the low-dimensional embeddings to
scores, and the scores can then be aggregated using the
attention weights obtained with the following formulation:

si= )

jed (i)

a;;F(e, (i) + e, (7). ()

4.3.3. Score Aggregation. The final predicted scores are
formed by integrating the scores from the node view and the
node-edge interaction view:

s* (i) = as; (i) + (1 — a)s, (i), (9)

where a is the hyperparameter.

4.4. Training. We select mean square error and learning-
to-rank loss as supervised loss functions. First, we establish
the node set 7, using nodes with known importance ratings.
The following equation illustrates how to utilize RMSE to
calculate the error between the predicted and labeled nodes’
important scores:

1 . A2
Ly =17 s (i) —-s(@)),
7] 2 ¢ ) (1o

where s(i) is the valid ground truth importance value of
node i and s * (i) represents the predicted score.

In order to take the entire graph into account while
rating the nodes” importance, we use the learning-to-rank
(LTR) loss in the training process, We sample # nodes for
node i to form a node set //;n. The calculation method is
shown below:

o exp(s(d))

S ey L

o exp(sT(D)

= e s () (a

Z,() == 3(i)log(s" (i)).

et

International Journal of Intelligent Systems

By combining the supervised loss function with the self-
supervised comparison loss function, we can obtain the total
loss function for model training:

1
P=L, +— Zy,(jngfc. (12)
l%S| JEV

5. Experiments

In this section, we conduct extensive experiments on real-
world datasets to answer the following questions:

(1) Does MCRL work better than the existing baseline
and previous models? Are the contrastive learning
and score aggregation modules useful?

(2) Is MCRL generally valid for different encoders? Is it
sensitive to hyperparameters?

We describe detailed information about the dataset and
baseline in Section 5.1, answer the above questions in
Sections 5.2 to 5.4, and perform a case study in Section 5.5.

5.1. Experimental Setting

5.1.1. Datasets. Following previous works, we conduct
comprehensive experiments on three public knowledge
graphs with different features. More details can be found in
Table 2.

FB15K [30] is a subset of the Freebase [31] database
which contains knowledge base relation triples and textual
mentions of entity pairs. The 30-day view count of the
corresponding Wikipedia page is utilized as the node im-
portance score for each entity in the graph, and the de-
scription of the entity in the Wikidata is used as the node
semantic information. Compared to the rest of the datasets,
FB15K has more predicates and also a higher density.

TMDB5K is a movie knowledge graph generated from
TMDB (https://www.kaggle.com/tmdb/tmdb-movie-metadata),
and it contains information about movies as well as other
closely related entities including actors, casts, crews, and
countries. The popularity of the movie is conducted to
identify the entity’s importance scores, while the movie
summaries provide the nodes’ semantic information.

IMDB is a movie knowledge graph created from the
IMDB dataset (https://www.imdb.com/interfaces/), which
includes entities for movies, casts, crews, genres, publishing
companies, and countries. The importance scores are de-
termined by the number of votes for each movie. As the
semantic information for the nodes, the movie plot sum-
maries and personal biographies are used.

5.1.2. Competing Methods. We compare MCRL with two
primary kinds of methods that are readily available for
ranking the importance of nodes in the graph. The first refers
to the unsupervised approaches, including

(1) PR [7]: a random walk-based algorithm for mea-
suring the importance of web pages can also be used
to rank the importance of nodes in a graph.
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TaBLE 2: Summary of the datasets used for evaluation.

Dataset Nodes Edges Edge types Nodes with values Importance value type
FB15K 14,951 592,213 1,345 14,105 (94%) Pageviews
TMDB5K 114,805 761,648 34 4,803 (4%) Movie popularity
IMDB 1,124,995 9,729,868 30 202,538 (18%) Vote number for movie

(2) PPR [11]: a variant of PageRank that considers the
node’s own feature information.

The second includes the supervised methods:

(1) LR: a simple machine learning technique that uses
the least squares algorithm based on the reduction of
mean square errors.

(2) RF: another basic machine learning algorithm that
uses the ensemble learning method based on
decision trees.

(3) GCN [20]: a GNN model that aggregates the
neighbor node embeddings to conduct graph con-
volutions in the Fourier domain.

(4) GAT [22]: a GNN model that uses the multihead
attention mechanism to aggregate the features of the
neighbor nodes.

(5) GENI [12]: the model aggregates scores using
a predicate-aware attention mechanism and flexible
centrality adjustment to perform node importance
estimation.

(6) RGTN [13]: the model provides a representation
learning-based framework for node importance es-
timation, which propagates the embedding of nodes
in a relational graph transformer.

5.1.3. Detailed Settings. For fair comparison, we maintain
consistency with previous works [12, 13] by concatenating
semantic and structural features as node input features,
except for GENI * using the structure features only by
following the setting in the original paper [12]. The
structural features of the nodes are obtained by node2vec
[32], and the semantic features are obtained from
Transformer-XL [33]. To enhance the GNN model in ac-
quiring the node representation more accurately, we em-
ploy two widely used graph data augmentation techniques
during training. Given a graph, edge dropout [34] refers to
randomly dropping some edges with the probability p,
while node dropout [35] is the process of randomly dis-
carding some nodes and their connected edges with the
ratio g. The nodes with the important scores in datasets are
divided into training, validation, and testing parts with
aratio of 7:1:2. To obtain reliable and stable experimental
results, we conducted five-fold cross-validation on each
dataset to evaluate all the models. In order to avoid the
overfitting problem, we apply early stopping if the per-
formance on the validation set is not improved for 1000
consecutive epochs. For testing, the parameters that per-
form the best during validation are used. The experimental
setup includes a Linux operating system, an NVIDIA
GeForce RTX 3090 graphics card with 24 GB of memory,

CUDA version 11.3, and Python 3.8 programming lan-
guage, and the model is built using PyTorch framework
version 1.11.0.

5.1.4. Evaluation Metrics. Following previous works
[12, 13], we use three evaluation metrics to give a thorough
evaluation of the rank quality and importance relevance:
normalized discounted cumulative gain (NDCG) [36],
Spearman’s rank correlation coefficient (SPEARMAN) [37],
and Top-K Hit Ratio (HR). For all metrics, higher values are
preferable. The definitions of metrics in formal terms are
provided below.

(1) NDCG is a popular metric for evaluating ranking
quality for the top k nodes. Given a list of k nodes
ranked by predicted important scores and their
ground truth important scores s (i), the discounted
cumulative gain at position k (DCG@Kk) can be de-
fined. The Ideal DCG at rank position k (IDCG@K) is
obtained by an ideal ordering of nodes based on their
ground truth scores. Then, we can get the normalized
DCQG at position k (NDCG@k).

(2) SPEARMAN measures the strength and direction of
the correlation between two node rankings that are
rated in accordance with the predicted scores s * (i)
and the ground truth scores s ().

(3) HR measures the ratio of the predicted nodes that have
been contained by the real important nodes. HR@k is
achieved through HR@k = NumberofHits@Qk/k.

5.2. Analysis of Experimental Results. The performance re-
sults are shown in Table 3. Numbers after + symbol refer to
standard deviation from the cross-validation. The approach
denoted by an asterisk (*) only employs structure features.

It can be observed from the table that our proposal
MCRL outperforms all the compared models in all metrics.
Besides, the results also reveal the following:

(1) Supervised methods typically perform better than
unsupervised approaches and are more accurate in
predicting node importance scores.

(2) GENI prematurely maps node features into scores
and calculates attention weights by simply splicing
node scores with edge embeddings, which cannot
fully utilize the interaction between nodes and edges.

(3) RGTN learns graph representations from a single
perspective, which is not flexible and accurate
enough for node features.

(4) The model proposed in this paper also has some
shortcomings because it uses data augmentation
methods that randomly discard some nodes or edges
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in the graph, thus increasing the uncertainty and
instability, and the standard deviations from the
cross-validation are a little bit higher.

5.3. Ablation Study. In this section, we perform ablation
studies to prove the validity of each module in our proposed
framework.

5.3.1. On Multiview Contrastive Learning. To verify the
effectiveness of contrastive learning, we conducted ablation
study on two datasets. Specifically, one variant merely uses
GCN as the encoder and the other merely uses GAT as the
encoder, both removing the contrastive loss component in
the training. It can be observed from Figure 3 that using
contrastive learning effectively increases the performance by
improving the graph representations.

5.3.2. On Multiview Score Aggregation. To validate the
performance of the score aggregation module and also to
demonstrate that splicing the features of nodes with those of
edges to calculate attention weights is more effective than
simply splicing the scores of nodes with the features of edges,
we conduct the experiment on multiview score aggregation.
Table 4 shows that employing score aggregation enhances
the effectiveness and stability of model prediction. Besides,
concatenating the node and edge representations can better
capture their interactions and generate superior
performance.

5.4. Further Experiments

5.4.1. Choices of Encoders. In this study, we select the GCN
and GAT models as the encoders and employ contrastive
learning approaches to produce the node representations. In
fact, the encoders in the model can be replaced with any
graph representation learning model, and we choose
GraphSAGE for experiments for verification.

From Figure 4, we can see that the outcomes of the
experiments on the two datasets are not sensitive to the
choices of encoders, and employing contrastive learning can
consistently enhance the performance. Therefore, MCRL
can be applied to a variety of encoders, and in this paper, we
choose two popular encoders.

5.4.2. Parameter Sensitivity. As mentioned in Section 4.3, we
obtain the final prediction scores by assigning hyper-
parameter a as the weight to the scores from two per-
spectives. To show that the model is stable under
hyperparameter perturbations, we conduct sensitivity ana-
lyses on this important hyperparameter on FB15K. Figure 5
demonstrates that changing the weights of the two scores has
no appreciable impact on the experimental outcomes.
Therefore, MCRL is robust to the perturbations of a.

5.4.3. Training Time. To compare the efficiency of different
methods, we report the overall training time on the FB15K

NDCG@100
0.97 - - -

0.96
0.95
0.94
0.93
0.92
0.91

0.9
0.89
0.88
0.87

MCRL-gecn MCRL-gat MCRL

B FBISK
TMDB5K

FIGUre 3: The results of employing two encoders for contrastive
learning versus using just one encoder. MCRL g, the model only
uses GCN as the encoder. MCRL ,¢: the model only uses GAT as
the encoder. MCRL: our proposed model, which uses two encoders
and employs contrastive learning.

dataset in Table 5. For each model, we ran the experiment
five times and took the average of the run times to obtain
the time cost. As shown in Table 5, it is evident that
contrastive learning and dropout method used in our
proposed model increase the model training time, while the
slight increase in training time is acceptable considering the
improvement in prediction results, which is shown in
Table 3.

5.4.4. Comparison with Methods Proposed for Heterogeneous
Graphs. Recent years have also witnessed the emergence of
importance estimation methods on heterogeneous graph.
Thus, for the comprehensiveness of experiment, we com-
pare our proposal with state-of-the-art importance esti-
mation method on heterogeneous graph, i.e., HIVEN [16],
and report the performance in Table 3. In order to compare
the outcomes of the two models without taking into ac-
count the different node types, we apply HIVEN on ho-
mogeneous graph with the same input data as our proposed
model. Taking the movie dataset as an example, we only
provide the models with labels of some of the movie nodes
to just estimate the importance of the movie nodes. The
experimental results demonstrate that our work out-
performs the method proposed for heterogeneous graphs
when evaluating on the homogeneous graph. This indicates
that the methods proposed for heterogeneous graphs
cannot work well on homogeneous graphs where the nodes
are of the same type.

5.5. Case Study Analysis. To demonstrate the effectiveness of
MCRL on the prediction task, we conduct a case study using
the movie dataset IMDB as an example. Table 6 shows the
top-10 movies with the highest importance scores predicted
by MCRL, GENI, and RGTN along with the difference
between their ground truth ranks and estimated ranks. The
ground truth rank is calculated from known importance
scores of movies. From the table, we can see that the top-10



10 International Journal of Intelligent Systems

TaBLE 4: The results of MCRL and its variants.

Data Metric MCRL-none MCRL-score MCRL
NDCG@100 0.9485 +0.034 0.9502 +0.015 0.9626 +0.013
FB15K SPEARMAN 0.7901 +0.026 0.8173 +0.012 0.8229 +0.014
HR@100 0.4829 + 0.094 0.4902 +£0.075 0.5100 +0.069
NDCG@100 0.9054 +0.048 0.9107 £0.021 0.9195+0.020
TMDB5K SPEARMAN 0.7768 +£0.022 0.7826 +0.016 0.7961 +0.013
HR@100 0.5427 +£0.069 0.5579 +£0.038 0.5680 + 0.041
NDCG@100 0.9422 +£0.016 0.9535+0.007 0.9624 +0.008
IMDB SPEARMAN 0.7593 +0.014 0.7664 +0.009 0.7713 +0.007
HR@100 0.5545 +0.067 0.5636 +0.038 0.5720 +0.044

MCRL-none: the model without score aggregation module. MCRL-score: the model that simply splices the scores of nodes with the features of edges to
calculate attention weights. MCRL: our proposed model, which splices the features of nodes with those of edges to calculate attention weights.

NDCG@100 NDCG@100
1 . . . . . . . . . . . 0.95 . . .
0.99 : : : : : : : : : : : 0.94
0.98 : : : : : : : : : : : 0.93
0.97 . . . 0.92 . . .
0.96 091
0.95 0.9
0.94 0.89
0.93 0.88
0.92 0.87
0.91 0.86
0.9 0.85
GraphSAGE ~ GCN GAT GCN GAT  GraphSAGE ~ GCN GCN
contrast contrast contrast contrast contrast contrast
GAT  GraphSAGE GraphSAGE GAT  GraphSAGE GraphSAGE
B FBISK B TMDBSK
(a) (b)
FIGURE 4: Results of experiments with different encoders on (a) FB15K and (b) TMDB5K.
NDCG@100
1 . . .
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9
a=04 a=0.5 a=0.6 a=0.7
B FBI5SK
FIGURE 5: Results of experiments with different hyperparameters on FB15K.
TaBLE 5: Training time comparison of existing methods.
Method Training time (min)
GCN 1
GAT 3
GENI" 4
GENI 5
RGTN 1
HIVEN 3
MCRL 8
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movies predicted by MCRL are qualitatively better than the
two others, demonstrating our model’s effectiveness in terms
of evaluation.

6. Conclusion

Estimating the importance of nodes in KGs is a highly
fundamental and crucial task in graph analysis, which is
beneficial to many downstream applications. In this paper,
we propose a multiview contrastive learning strategy to
obtain representations of nodes from multiple perspectives
and use cross-view contrasting module to enhance the ex-
pressiveness. Additionally, we generate the entity impor-
tance score by attentively aggregating the scores in two
views—one merely considering the entity embeddings and
one modeling the interactions between entity and relation
embeddings. Comprehensive experiments on real-world
knowledge graphs show that our model outperforms
existing methods in measures. There are also some works on
node importance estimation for heterogeneous graphs
[15, 16], so for future work, we intend to apply cutting-edge
representation learning techniques to estimate node im-
portance on heterogeneous knowledge graphs.

Data Availability

This study used the movie datasets from TMDB and IMDB,
the TMDB dataset can be downloaded from website https://
www.kaggle.com/datasets/tmdb/tmdb-movie-metadata,
and the IMDB dataset can be downloaded from the official
IMDB website https://www.imdb.com/interfaces/or https://
datasets.imdbws.com/. The datasets are available for access
to customers for personal and noncommercial use.
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