
Research Article
AnEfficient LoadPrediction-Driven Scheduling StrategyModel in
Container Cloud

Lu Wang , Shuaidong Guo , Pengli Zhang , Haodong Yue , Yaxiao Li ,
Chenyi Wang , Zhuang Cao , and Di Cui

School of Computer Science and Technology, Xidian University, Xi’an 710071, China

Correspondence should be addressed to Lu Wang; wanglu@xidian.edu.cn

Received 4 May 2023; Revised 30 June 2023; Accepted 1 July 2023; Published 17 July 2023

Academic Editor: Mohammad R. Khosravi

Copyright © 2023 Lu Wang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te rise of containerization has led to the development of container cloud technology, which ofers container deployment and
management services. However, scheduling a large number of containers efciently remains a signifcant challenge for container cloud
service platforms. Traditional load prediction methods and scheduling algorithms do not fully consider interdependencies between
containers or fne-grained resource scheduling, leading to poor resource utilization and scheduling efciency. To address these challenges,
this paper proposes a new load prediction model CNN-BiGRU-Attention and a container scheduling strategy based on load prediction.
Te prediction model CNN and BiGRU focus on the local features of load data and long sequence dependencies, respectively, as well as
introduce the attention mechanism to make the model more easily capture the features of long distance dependencies in the sequence. A
container scheduling strategy based on load prediction is also designed, which frst uses the load predictionmodel to predict the load state
and then generates a scheduling strategy based on the load prediction value to determine the change of the number of container replicas in
a fne-grainedmanner based on the load prediction value in the next timewindow,while the established domain-based container selection
method is employed to facilitate the coarse-grained online migration of containers. Experiments conducted using public datasets and
open-source simulation platforms demonstrate that the proposed approach achieves a 37.4% improvement in container load prediction
accuracy and a 21.7% improvement in container scheduling efciency compared to traditional methods. Tese results highlight the
efectiveness of the proposed approach in addressing the challenges faced by container cloud service platforms.

1. Introduction

A container is a form of operating system-level virtualization,
allowing people to use containers to run everything from small-
scale microservices to large-scale applications, afording sys-
tematic construction on agility and high compatibility [1].
Large containers must centralize the deployment and man-
agement of forms, with a container cloud involving a cloud
computing technology that provides container deployment and
management services. Currently, the container cloud has en-
tered a stage of rapid development in the market. In the public
cloud market, containers have widely covered 20%–35% of
virtualization applications. According to iResearch, this
number will grow to 50%–75% in 2025. Furthermore, by 2025,
it will exceed 6 billion yuan, and the container cloud market
will maintain high growth [2].

In the container cloud’s scheduling process, we frst
conduct preselection to traverse all nodes and flter out the
ones that do not meet the conditions. All nodes that meet the
output of the requirement at this stage will be recorded and
used as the input for the second stage. If all nodes do not
meet the conditions, the Pod will be pending until the notes
meet conditions and the scheduler will retry exploiting them.
After fltering, if multiple nodes meet the conditions, the
system will enable them according to their priorities and
fnally select the node with the highest priority to deploy the
Pod application.

Te container cloud platform currently faces several
challenges. Firstly, predicting container load conditions is
a complex and variable process that becomes increasingly
challenging as time progresses. Traditional prediction
methods only consider one factor, which oversimplifes the

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 5959223, 25 pages
https://doi.org/10.1155/2023/5959223

https://orcid.org/0000-0001-8414-4164
https://orcid.org/0009-0006-1887-8788
https://orcid.org/0009-0009-2185-3399
https://orcid.org/0009-0007-0559-6287
https://orcid.org/0009-0009-5259-7260
https://orcid.org/0009-0002-4990-0491
https://orcid.org/0009-0007-7040-9062
https://orcid.org/0000-0003-2859-9003
mailto:wanglu@xidian.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5959223

issue. Secondly, a linear prediction model requires stable and
continuous time series data, which poses signifcant dif-
culties for accurately predicting load conditions. Te con-
tainer scheduling strategy also presents several challenges,
such as larger container scales and complex dependency
relationships, resulting in increased server resource con-
sumption and reduced scheduling efciency. Fine-grained
resource scheduling is not considered, and there is a lack of
distinction between coarse-grained and fne-grained re-
sources. Additionally, maintaining high scheduling fre-
quency may lead to low resource utilization rates. Tese
issues must be addressed to improve the performance and
reliability of the container cloud platform.

Spurred by the current defciencies, this paper conducts
reasonable modeling and accurate prediction of many
heterogeneous resources to ensure the normal operation,
safety, and reliability of the container cloud environment
that stably responds to emergencies. Te contributions of
this work are as follows:

(1) Te proposed solution utilizes the CNN-BiGRU-
Attention model to develop a load prediction
method that addresses traditional model issues and
copes with complex load situations in container
cloud resources. Compared with other load pre-
diction models such as ARIMA, DBN, and CNN-
LSTM, CNN-BiGRU-Attention prediction is better
because (1) for time series data, convolutional neural
networks train models better than ARIMA andDBN;
(2) BiGRU adopts the idea of bidirectional mecha-
nism to build a network structure with bidirectional
gated cyclic units, which has a more concise network
structure with faster model training compared to
LSTM, and the GRU model only extracts features
from a single direction for the input sequence, while
the BiGRU model is designed to process the load
sequence with a pair of opposite direction GRU
models and merge the results of two GRU model
operations along opposite directions at the output,
while a two-dimensional vector transformed by the
Gram's corner feld is used to preserve the de-
pendence on time; thus, capturing features that GRU
may ignored; and (3) the attention mechanism can
capture the long time series data dependencies that
may be missed by BiGRU and improve the accuracy
of the model.

(2) Te container scheduling strategy based on a load
prediction model, CSSLPM, reduces the frequency of
cross-server call with the binding of coarse-grained
node-based and fne-grained container-based
scheduling strategy on the base of load prediction,
solves the fragmentation problem of server re-
sources, and provides load prediction and resource
optimization for cloud container environment.

We experimentally evaluate and improve the proposed
load prediction method and container scheduling strategy
utilizing cluster-trace-v2018 (a public dataset), CloudSim
(open-source cloud computing simulation platform software)

[3], and TrainTicket (an open-source train booking benchmark
system).Te corresponding results demonstrate that compared
with the traditional method, the container load prediction
accuracy of the proposed method is improved by 37.4%, and
the container scheduling efciency is increased by 21.7%.

Te rest of the paper is organized as follows. Section 2
explains related works, while Section 3 describes the CNN-
BiGRU-Attention load prediction model and the CSSLPM
container scheduling strategy in detail. Section 4 presents
experimental verifcation of the model’s accuracy and the
strategy’s efectiveness. Finally, Section 5 summarizes the
paper and suggests future research directions.

2. Related Work

With the development of container technology, scheduling-
based containers have been widely researched, and appealing
results have been achieved.

In industry, widely used container orchestration systems
are Mesos [4], Kubernetes [5], and Swarmkit [6], developed
by diferent companies. Mesos provides an interface for
developers to service, where the developers should overwrite
the original scheduling method and customize the plan. It
has a higher threshold for developers. Kubernetes is an
open-source project from Google. Compared with other
orchestration tools, it has the most features, including au-
tomated software deployment and cluster-level scaling.
However, it has many disadvantages, such as complex ar-
chitecture, involving a large system, and difculty in
modifying and operating [5]. Swarmkit is an open-source
project developed by Docker in 2016. Because it belongs to
the same company as Docker, it is compatible with Docker
container technology. Its architecture is easy to read, and the
tools are simple to learn. Nevertheless, its scheduling
method is too simple to satisfy container scheduling.
However, when the number of containers increases, the
existing scheduling strategies have limited applicability [6].

Various techniques are widely used for scheduling prob-
lems, including mathematical modeling, heuristics, meta-
heuristics, and machine learning. Mathematical modeling in-
volves optimizing a linear function using a set of linear con-
straints, with integer linear programming being a common
technique. Zhang et al. [7] proposed a linear model for the
deployment of containers to servers.Temodel considered two
optimization objects, energy consumption and network cost.
However, due to the complexity of the ILP formulation, it is not
suitable for solving large-scale problems. Heuristics are often
used to quickly realize solutions, with DRAPS [8] being
a proposed algorithm for container deployment in Docker
Swarm. Tis algorithm selects the node for container de-
ployment based on available resources and service demand,
resulting in a more efcient and balanced usage of resources
compared to Swarmkit. However, this approach may lead to
high network workloads. Inspired by intelligent processes and
behaviors in nature, meta-heuristic algorithms have two im-
portant characteristics: selecting the fttest and adapting to the
environment. Ant colony optimization [9] is an example of
meta-heuristics used for container scheduling, which can

2 International Journal of Intelligent Systems

enhance resource utilization using proper load balancing.
However, this algorithm only considers a few optimization
objectives. For example, Li from Southwest Jiaotong University
proposed a load balancing algorithm for the Kubernetes cluster
[10] that considers the cluster node load information, including
CPU, RAM, and disk usage, but does not consider the fne
granularity of resources. Machine learning-based solutions
ofer more intelligent scheduling decisions to improve solution
accuracy and efectiveness than other heuristic algorithms.
Nanda and Hacker [11] proposed a deep reinforcement
learning technique for container scheduling, which out-
performed the shortest job frst and random placement al-
gorithms. However, all methods do not consider container
dependency so that the dependent container is distributed to
diferent server causing cross-server call and increasing server
load. Besides, these methods ignore the grain of server resource
and waste some of server fragment resources. In this academic
paper, we present CSSLPM—a solution that ofers load bal-
ancing and resource optimization capabilities for container
cloud environments. Our approach is based on trainingmodels
to anticipate the state of container cloud loads and leveraging
a combination of coarse-grained node-based and fne-grained
container scheduling. Trough this method, we are able to
decrease the frequency of cross-server scheduling of service
invocations and efectively address the issue of server resource
fragmentation.

For container scheduling technology, its accuracy and
timeliness depend not only on whether the scheduling al-
gorithms are superior but also, to some extent, on whether
the analysis of historical load data is comprehensive and
whether the prediction methods are highly efcient. At
present, academics have widely conducted research on load
prediction and proposed many efective methods, such as
prediction algorithms based on probability and statistics, big
data, and neural networks.

Te classical methods include the ARMA-based time series
model, AR model, and ES model for the prediction algorithms
based on probability and statistics. However, these methods
sufer from limited expressiveness, so some scholars proposed
improvement schemes. For instance, Xue et al. [12] fxed the
regression model and added particle fltering. However, this
method requires a large number of samples.Wei et al. proposed
the dynamic feedback load balancing algorithm of load weight
by comprehensively considering the nodes’ real-time load In-
formation and their performance [13]. Nevertheless, two aspects
are considered to ensure that the nodes with better performance
can bear relatively more loads so that the ratio of computing
resources and loads between nodes in the cluster will be more
balanced. However, the problem that complex dependency
occupies too many server resources is not considered. In ad-
dition, Monfared et al. [14] and Calheiros et al. [15] also im-
proved the prediction algorithm based on the ES and ARMA
models, respectively. Specifcally, these methods automatically
adjust the parameters according to the actual situation, but they
show shortcomings when facing the complex and variable load
in a real situation. For example, the prediction accuracy is
limited. Chen and Fang [16] proposed a load forecasting al-
gorithm based on the analytic integrated model to achieve load
forecasting based on big data analysis for medium- and long-

term load time series data. Wang et al. [17] introduced a load
forecasting method based on K-mode clustering to achieve load
curve forecasting. However, such big data-based load prediction
methods are based on massive data, and the technical difculty
is greater than general methods. So, the span of historical load
time series data cannot be too large. Neural network-based load
forecasting methods can solve the drawbacks of big data-based
methods, and the forecasting process can be achieved with
a smaller amount of data. For example, Islam et al. [18]
implemented load prediction by combining NNs and AR
models, and Qiu et al. [19] proposed a load prediction method
based on RBM and DBN to achieve workload prediction for
virtual machines in cloud environments. Ashraf [20] used an
LSTM-RNNnetwork in automatic scaling for load prediction of
virtual resources, and Guo et al. [21] developed a type-aware-
based prediction method that determines the current load type
based on the dynamic change of the load to switch the pre-
diction method accordingly.

We analyzed the computational complexity of the above-
mentioned prediction models and fnally selected BiGRU to
extract the load data dependencies.TeARMAmodel is a linear
model with relatively low model computational complexity due
to the small number of parameter models. Te computational
complexity of the DBN model mainly depends on the number
and size of its hidden layers and the number of neurons in each
layer. Te computational complexity of the LSTM model de-
pendsmainly on the length of the input sequence and the size of
the hidden layers. Under the same parameter scale, the AMRA
model has the lowest computational complexity but poor
prediction for non-smooth sequences. BiGRU has lower
computational complexity than DBN and LSTM due to its
simple structure and has better prediction performance than
DBNandLSTM for shorter length input sequences, while LSTM
may outperform BiGRU in some long-term dependency tasks.
Te diferences among diferent scheduling strategies and load
prediction methods are shown in Tables 1 and 2, respectively.

In summary, the existing studies of neural network-based
load prediction methods using simple NNs models fail to
capture the complex features in load timing data, lack con-
sideration of the data context, and underperform in training
efciency. When the service invocation, load balancing, and
resource optimization are too complex in the cloud environ-
ment, numerous defects are revealed, and the desired pre-
diction accuracy cannot be achieved. Most currently used
scheduling strategies sufer from additional resource overhead,
resulting in resource waste or scheduling strategy being too
simple to meet the scheduling objectives. Terefore, this paper
proposes a resource scheduling technique based on load
prediction and describes andmodels the container resources in
cloud environments in a more reasonable and diversifed way
with real-time, accuracy, and scalability goals.

3. Load Prediction Algorithm and Container
Scheduling Strategy

Tis section describes the proposed load prediction algo-
rithm and container scheduling strategy in a container cloud
environment, with the corresponding workfow illustrated
in Figure 1.

International Journal of Intelligent Systems 3

Ta
bl

e
1:

Sc
he
du

lin
g
co
m
pa
ri
so
n.

La
rg
e-
sc
al
e
pr
ob

le
m

Lo
w

ne
tw
or
k

lo
ad

Su
f
ci
en
to

pt
im

iz
at
io
n

ob
je
ct
iv
e

D
ep
en
de
nc
ie
s

Pe
rf
or
m
an
ce

C
PU

ut
ili
za
tio

n

M
at
he
m
at
ic
al

m
od

el
[7
]

✕
✓

✓
✕

+
+

H
eu
ri
st
ic
s
[8
]

✓
✕

✓
✕

+
++

M
et
a-
he
ur
ist
ic
s
[9
,1

0]
✓

✓
✕

✕
++

++
M
ac
hi
ne

le
ar
ni
ng

-b
as
ed

m
od

el
[1
1]

✓
✓

✓
✕

+
+

C
SS
LP

M
✓

✓
✓

✓
++

+
++

+
La
rg
e-
sc
al
ep

ro
bl
em

:a
bi
lit
y
to

w
or
k
w
ith

la
rg
e-
sc
al
es
ch
ed
ul
in
g
pr
ob

le
m
s.
Lo

w
ne
tw
or
k
lo
ad
:a
bi
lit
y
to

w
or
k
un

de
rl
ow

ne
tw
or
k
lo
ad
.S
uf

ci
en
to

pt
im

iz
at
io
n
ob

je
ct
iv
e:
ab
ili
ty
to

op
tim

iz
et
he

sc
he
du

lin
g
pr
oc
es
si
n

a
m
ul
ti-
ob

je
ct
iv
e
m
an
ne
r.
D
ep
en
de
nc
ie
s:
ab
ili
ty

to
co
ns
id
er

co
nt
ai
ne
r
de
pe
nd

en
ci
es
.P

er
fo
rm

an
ce
:t
he

le
ss

th
e
re
so
ur
ce
s
an
d
tim

e
co
ns
um

ed
by

sc
he
du

lin
g,
th
e
be
tte

r
th
e
pe
rf
or
m
an
ce
;m

or
e
“+
”
m
ea
ns

be
tte

r
pe
rf
or
m
an
ce
.C

PU
ut
ili
za
tio

n:
ra
tio

of
C
PU

co
ns
um

ed
by

th
e
al
go
ri
th
m

in
sc
he
du

lin
g
on

ly
to

th
e
ov
er
al
lC

PU
co
ns
um

ed
by

th
e
al
go
ri
th
m
;m

or
e
“+
”
m
ea
ns

be
tte

r
C
PU

ut
ili
za
tio

n.

4 International Journal of Intelligent Systems

3.1. Load Characteristics and Load Model. Tis subsection
builds a load model to quantitatively describe the resource
load of the container clouds by extracting characteristic
quantities such as CPU, memory utilization, and network
latency from the container and node perspectives and
temporalizing the container cloud load data by the corre-
sponding load calculation formula. To optimize load pre-
diction, it is necessary to quantify the resource load
conditions, i.e., based on comprehensive and in-depth
analysis of load characteristics, load factors that can be
quantifed are extracted from resource monitoring in-
formation and combined into a load model consisting of
multi-dimensional factors. Regarding the load characteris-
tics, Dinda from Carnegie Mellon University, USA,

conducted experiments and studies for load variation and
obtained a large amount of load information during long-
term tracking sampling.Moreover, the author conducted the
statistical analysis and organized and summarized the load
characteristics, with the results reported in [22], some of
which are summarized in Table 3.

According to the load characteristics in Table 3 and
considering that a container is the smallest service unit in
a container cloud environment and a node is the smallest
service unit of the container carrier, the resource load sit-
uation of the container cloud comprises container and node
loads. Te latter two components’ load values are modeled
from a coarse and fne granularity perspective. Te time
series correlation and high self-similarity in load

Table 2: Prediction comparison.

Large dataset
requirement Completion easiness Length dependent Accuracy Training easiness

ARMA model [12, 14, 15] ✓ ++ ✕ + ++
K-modes [17] ✕ +++ ✕ + ++
RBM and DBN [19] ✓ ++ ✕ + ++
RNN and variants [20] ✓ + ✓ ++ +++
CNN-BiGRU-Attention ✓ + ✓ +++ +
Large dataset requirement: performance depends on large dataset. Completion easiness: ease of building model; more “+” means easier building model.
Length dependent: ability to identify long time series dependencies. Accuracy: accuracy of load prediction for container cloud environments; more “+” means
better accuracy. Training easiness: ease of training model; more “+” means easier training model.

Load Model

MEM

Sampling

CPU

serialization

value

NET parameter

Load Calculation
Formula

Abstraction

ContainerClound

Scheduling

Scheduling Strategy

Co
nt

ai
ne

r E
xp

an
sio

n

Co
nt

ai
ne

r S
hr

in
ki

ng

Co
nt

ai
ne

r S
el

ec
tio

n

Co
nt

ai
ne

r M
ig

ra
tio

n

N
od

e S
el

ec
tio

n

M
ig

ra
tio

n
Tr

ig
ge

re
d

Fine-grained Coarse-grained

Container
Load Predictor

Node Load
Predictor

CNN

x x x x Input

Pooling

Convo
lution

Eigenvalue

Prediction Model

BiGRU

Reverse Positive

GRUh1

GRUh1

GRUh2 GRUh2

GRUht

GRUht

Attention Mechanism

Pr
ed

ic
tio

n
Se

qu
en

ceh1

hi

ht

a1

ai

at

Figure 1: Workfow of the proposed container scheduling strategy based on load prediction.

International Journal of Intelligent Systems 5

characteristics should detect not only the instantaneous load
values but also the load values within a time sequence.
Indeed, a time series data model should be established to
predict the future load value sequence based on the historical
load value sequence. Hence, this paper models the container
load, node load, and timing data in three aspects.

3.1.1. Container Load Model. Te load of a container is
dependent on the management kernel services of the node
host operating system, as noted in [23]. Despite load average
being a measure of each service’s load, there exists no direct
measurement method for the container load. However,
given that CPU and memory are vital computing resources
for containers when providing their services and that these
parameters are easily measurable, their average utilization
value in unit time t can approximate the container’s load
value. It is critical to consider real-time load as an essential
factor in predicting accuracy. A smaller time unit t results in
a more instantaneous load value that can be calculated using
the following equation:

loadi � ωc × avg usedc(􏼁 + ωm × avg usedm(􏼁, (1)

where loadii denotes the container load value in the i-th unit
time, avg(∗) is the mean value operator, usedc and usedm are
the CPU and memory utilization sampled values of the node
host in a given segment t, respectively, and ωc andωm denote
the mean CPU and memory utilization parameters in the
load model.

3.1.2. Node Load Model. Shang et al. [24] studied the node
load by proposing an improved dynamic load model that
selected some characteristic static physical infuences.
However, the non-signature and uncertainty of these metrics
prohibit refecting the actual load of the resources in
a container cloud environment. Terefore, we combine the
characteristic dynamic and static factors to model the node
hosts’ state and actual load availability. Te dynamic factors
comprise resource availability time h, resource request r, and

resource service intensity q [25, 26]. Combining those two
factors ensures that the node load values can be obtained
quickly and enhances the node’s modeling accuracy. As-
suming that the container cloud environment is a cluster of n

nodes, expressed as node1, node2, . . . , noden, and each node
has m resources, then for node i (1< i< n),

(1) Resource request r is that sum the average number of
service requests received by all node. Assume nodei
received ri requests in per unit time, the resource
request of cluster Rt is expressed as follows:

Rt � 􏽘
n

i�1
ri. (2)

(2) Resource service intensity q is the ratio of the average
time timea of nodei to complete a service request to
the average time interval timei of the service request.
pi is the parallel service capability of node i, and is
expressed as equations (3) and (4):

qi �
timea

timei

, (3)

timea �
r

pi

, (4)

and the resource service intensity Q of the node cluster in
unit time t expressed as

Qt � 􏽘
n

i�1
qi. (5)

Based on the above, we also consider the static factors.
Tus, this paper mainly considers the static factors regarding
the average CPU utilization, memory, disk I/O, and network
bandwidth. Hence, a dynamic weighting algorithm [27] is
used to describe the nodes’ load state, with the load of nodei

per unit time t expressed as

loadi �

ω1c
t
u + ω2m

t
u + ω3d

t
u + ω4n

t
u + 1 rt � Rt or qt � Qt

ω1c
t
u + ω2m

t
u + ω3d

t
u + ω4n

t
u + ω5

rt

Rt

+ ω6
qt

Qt

others,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (6)

where c, m, d, and n denote the CPU, memory, disk I/O, and
network bandwidth utilization of nodei per unit time t, re-
spectively. ω1, ω2, ω3, ω4, ω5, and ω6 represent the proportion
of each infuencing factor in the loadmodel, with the parameter
values determined by the service type provided by the container.

3.1.3. Temporal Data Model. Since the loads are correlated
and highly self-similar time series, we combine the modeling
of a container and the node loads presented in previous
subsections, with the load timing data over time expressed as

Ln � t1, load1(􏼁, t2, load2(􏼁, . . . , tn, loadn(􏼁􏼈 􏼉|
n
i�1, (7)

where Ln denotes n sequence periods of container cloud
environment load data, n is the sequence length, and loadi is
the load value of the container at the i-th unit time t.

3.2. LoadPredictionModel andAlgorithm. In this section, we
detail the load prediction model. Specifcally, we leverage the
temporal load data obtained in the previous section as input
to extract sequence features through a convolutional neural
network (CNN) prediction model. We further design

6 International Journal of Intelligent Systems

Ta
bl

e
3:

Lo
ad

ch
ar
ac
te
ri
st
ic
s.

Lo
ad

ch
ar
ac
te
ri
st
ic
s

D
es
cr
ip
tio

n
C
on

ta
in
er

st
at
us

or
tr
ig
ge
r
co
nd

iti
on

s

Ra
nd

om
ne
ss

T
e
lo
ad

cu
rv
e
sh
ow

s
a
lo
w

av
er
ag
e
bu

t
a
ve
ry

hi
gh

st
an
da
rd

de
vi
at
io
n
an
d

m
ax
im

um
va
lu
e.
T

is
m
ea
ns

th
at

th
er
e
is
en
ou

gh
cy
cl
e
fo
r
th
e
en
tir
e
cl
us
te
r
to

su
pp

or
tt
he

ex
te
rn
al

pr
ov
isi
on

of
se
rv
ic
es
.

D
yn

am
ic

an
d
sm

oo
th

V
ol
at
ili
ty

T
e
lo
ad

on
a
cl
us
te
rc

an
re
m
ai
n
re
la
tiv

el
y
st
ab
le
ov
er

m
ul
tip

le
tim

e
w
in
do

w
s,
an
d

su
dd

en
ch
an
ge
so

cc
ur

at
th
e
bo

un
da
ri
es

of
th
at
tim

e
an
d
ca
us
e
la
rg
e
fu

ct
ua
tio

ns
in

su
bs
eq
ue
nt

tim
e
w
in
do

w
s.

Ra
nd

om
ev
en
ts

ar
e
tr
ig
ge
re
d

Ti
m
e
se
ri
es

af
ni
ty

H
ist
or
ic
al

tim
e
se
ri
es

lo
ad

va
lu
es

ha
ve

a
la
rg
e
im

pa
ct

on
fu
tu
re

lo
ad

va
lu
es
,s
o

fo
re
ca
st
in
g
ba
se
d
on

hi
st
or
ic
al

lo
ad

va
lu
es

is
fe
as
ib
le
.

C
on

tin
uo

us
ly

oc
cu
pi
ed
/c
on

tin
uo

us
ly

id
le

H
ig
h
se
lf-
sim

ila
ri
ty

T
e
lo
ad

cu
rv
e
is
se
lf-
sim

ila
r
w
he
n
th
e
H
ur
st
ex
po

ne
nt

in
de
x
is
hi
gh

,i
.e
.,
sim

ila
r

lo
ad

cu
rv
es

m
ay

oc
cu
r
in

di
fe
re
nt

tim
e
w
in
do

w
s.

Pe
ri
od

ic
ev
en
tt
ri
gg
er
s

International Journal of Intelligent Systems 7

a bidirectional gated recurrent network layer BiGRU to
continuously capture long-range features. After passing
through the BiGRU layer, an attention mechanism layer is
implemented to capture interdependencies between long-
range features. Finally, a prediction processing algorithm
generates load prediction data. We rely on a generic CNN
model as the basis of our proposed model framework.
However, since the CNN cannot capture long-range fea-
tures, it is supplemented with a BiGRU recurrent neural
network to capture long-range feature sequences. Addi-
tionally, we introduce an attention weight layer to enhance
the infuence of important information. Te proposed deep
learning network preserves long-range feature sequences
during the model training process and enables accurate
feature capture from the input sequence. Te proposed load
prediction model comprises fve parts: input layer, CNN
layer, BiGRU layer, attention layer, and output layer. Fig-
ure 2 illustrates this architecture.

Regarding the model’s workfow, frst, the load timing
data of the container cloud environment are used as the
input. Ten the CNN’s convolution and pooling operations
extract local features. After that, the BiGRU layer and the
attention layer learn the changing pattern of the load timing
data from the local features extracted by the CNN layer and
predict the changing trend of the future load conditions.
Finally, the output layer provides the prediction results.

3.2.1. CNN Layer. Te CNN layer comprises two con-
volutional layers, two pooling layers, and one fully con-
nected layer, with both convolutional layers being one-
dimensional, and the non-linearReLU function is selected
as the activation function. Due to the large volatility of the
container cloud load time series data and to reduce the
model parameters and the risk of overftting, the maximum
pooling method is chosen for both pooling layers. After the
above two convolution and pooling operations, the original
load timing data will be mapped to the feature space of the
hidden layer, which will be transformed by adding a fully
connected layer to extract the feature vectors. Te Sigmoid
function is selected as the activation function in the fully
connected layer. Terefore, the output feature vector Hc of
the CNN layer is expressed as equations (8)–(12):

C1 � f X⊗W1 + b1(􏼁 � ReLU X⊗W1 + b1(􏼁, (8)

P1 � max C1(􏼁 + b2, (9)

C2 � f P1 ⊗W2 + b3(􏼁 � ReLU P1 ⊗W2 + b3(􏼁, (10)

P2 � max C2(􏼁 + b4, (11)

Hc � f P2 × W3 + b5(􏼁 � Sigmoid P2 × W3 + b5(􏼁, (12)

where C1 and C2 are the outputs of convolutional layers 1
and 2, respectively, and this output result vector is expressed
asCi � [C1, C2, . . . , Cn], i � 1, 2. P1 and P2 are the outputs of
pooling layers 1 and 2, expressed as
Pi � [C1, C2, . . . , Cm], i � 1, 2. W1, W2, and W3 are the

weight matrices, b1, b2, b3, b4, and b5 are the deviations, O
denotes the convolution operation, max(∗) is the maximum
pooling function, and the CNN output layer is n. Finally,
Hc � [hc1

, hc2
, . . . , hc2

].

3.2.2. BiGRU Layer. Te prediction model must capture the
data features over a time sequence, and the CNN con-
volutional neural network has certain defects, i.e., it cannot
capture long-range features well. Recurrent Neural Net-
works combine the input of the current moment with the
hidden state of the previous moment by introducing a re-
current connection between the input and the hidden layer,
allowing the hidden state to be transmitted continuously in
time, which can efectively capture long sequence de-
pendencies [28]. Terefore, we introduce the BiGRU layer
(an RNN variant) in the prediction model, which extracts
long sequence dependencies from the local feature vectors
output from the CNN layer.

Figure 3 illustrates the BiGRU layer comprising the forward
and inverse GRU networks. Te GRU network mainly com-
prises update and reset gates, with the former gates controlling
the degree of remembering the hidden state and the latter
controlling the degree of the hidden state-like information
acting on the candidate set. Tese states combined determine
the degree of the hidden state acting on the current hidden state
of the previous layer, and when both states are zero, it is only
related to the input of the current layer.

For the GRU network, assuming that the current mo-
ment is t, the model is expressed as equations (13)–(16):

rt � σ ωr · ht−1, Wt􏼂 􏼃 + br(􏼁, (13)

zt � σ ωz · ht−1, Wt􏼂 􏼃 + bz(􏼁, (14)

􏽥ht � tanh ωh · rt ∗ ht−1, Wt􏼂 􏼃 + bh(􏼁, (15)

ht � zt ∗ ht−1 + 1 − zt(􏼁 ∗ 􏽥ht t ∈ [1, m], (16)

where rt is the reset gate at time t, σ is the Sigmoid activation
function, ωr, ωz, and ωh denote the weight matrices, · is the
dot product, br, bz, and bh are the bias values, Wt is the local
feature vector of the input at time t, and zt is the update gate
at time t. 􏽥ht is the candidate set of the current state, and ht is
the hidden state at time t, which is also the fnal output
vector. Te BiGRU model comprising the GRU network is
expressed as equations (17)–(19):

ht

→
� GRU Wt, ht−1

���→
􏼒 􏼓, (17)

ht

←
� GRU Wt, ht−1

⟵
􏼒 􏼓, (18)

ht � ωt ht

→
+]tht

←
+ bt t ∈ [1, m], (19)

where ht

→
and ht

←
are the hidden states of the forward and

inverse GRU model at time t, respectively, the
GRU(∗)function is the non-linear transformation of the
GRU model, ωt and]t are the weights corresponding to the

forward and inverse GRU hidden layer states ht

→
and ht

←
of

8 International Journal of Intelligent Systems

BiGRU at time t, and bt is the bias value corresponding to the
hidden layer state at time t. Te output of the fnal BiGRU
layer is expressed as Ht � [h1, h2, . . . , ht].

3.2.3. Attention Layer. Te attention mechanism assigns
diferent weights to model input features, enhancing the
impact of important information while avoiding in-
formation loss for long sequences. It also allows the model to
capture long-range interdependent features in the sequence.
In this work, the attention mechanism layer learns features
and patterns of BiGRU output data by combining multiple
structures and iteratively estimating the optimum weight
parameter matrix using the weight assignment principle to
calculate probabilities of diferent feature vectors.

Figure 4 illustrates that the input of the attention
mechanism layer is the output vector Ht that the BiGRU
layer has activated. Moreover, the probabilities corre-
sponding to diferent feature vectors are computed
according to the weight assignment principle, assisting the

iteration process to optimize the weight parameter matrix.
Assuming that the current moment is t, the weight co-
efcients of the attention mechanism layer are expressed as
equations (20)–(22):

et �] tanh ωht + b(􏼁, (20)

αt �
exp et(􏼁

􏽐
t
j�1 exp ej􏼐 􏼑

, (21)

st � 􏽘
i

t�1
αt · ht, (22)

where et denotes the value of the attention probability
distribution determined by the output vector ht of the
BiGRU layer at moment t. Additionally,] and ω are the
weight coefcients, b is the bias value, and st denotes the
output of the attention layer at moment t.

3.2.4. Load Prediction Processing Algorithm. Te CNN-
BiGRU-Attention model’s load prediction algorithm pre-
dicts future load data in a container cloud environment
through multi-step prediction. Te algorithm is divided into
four parts: initializing fag bits for load overfow and rise,
calculating load variation sequence, determining load rise
degree, and giving fnal prediction based on load rise and fall
values. Algorithm1presents the proposed algorithm’s
pseudocode.

3.3. Container Scheduling Strategy. In this section, we de-
scribe the scheduling strategy and design the container
scheduling strategy CSSLPM (container scheduling strategy

Output Prediction

Attention Mechanism
a1

ai

at

hthi

hi

hi

ht

ht

hi-1

hi-1

h1

h1

h1

GRU GRU GRU

GRUGRUGRU

Po
sit

iv
e

Re
ve

rs

BiGRU

x1 x2
xt xn

Data
Process Input

Pooling1

Po
ol

in
g2

Convolution1

All
Connection

CNN

e

Figure 2: CNN-BiGRU-Attention prediction model architecture.

ht-1

Xt-1 Xt Xt+1

ht ht+1

GRU GRU GRU

GRUGRUGRU

Output

Positive
GRU

Reverse
GRU

Input

Figure 3: BiGRU model architecture.

International Journal of Intelligent Systems 9

based on load prediction model) involving coarse-grained
(node) and fne-grained (container) scheduling, respectively.
CSSLPM is based on the container and node predicted load
values, where container-level scheduling includes the con-
tainer expansion or shrinkage calculation, and node-level
scheduling includes migration triggering, container selec-
tion, node selection, and container migration.

Based on the CNN-BiGRU-Attention predictionmodel, we
design the CSSLPM architecture illustrated in Figure 5, which
is based on our proposed load prediction method and utilizes
the output scheduling demand as the input of the container
scheduling strategy. Depending on the output, CSSLPM frst
determines whether to select a fne-grained or coarse-grained
scheduling strategy, then generates scheduling triggers in the
strategy group, and fnally the triggers actually do the sched-
uling work for the container cloud environment. Te more
accurate the load prediction, the more CSSLPM can solve the
problems faced by the container cloud environment in terms of
load balancing and resource optimization.

3.3.1. Scalable Flexible Scheduling Method. Te scalable
fexible scheduling method is a powerful tool for load bal-
ancing in container cloud environments. During heavy

trafc periods, such as holidays, it can efectively balance the
load at the node level based on predicted load values. Elastic
scaling ensures that the container cloud remains responsive
under sudden increases in load, while also maintaining
overall load balance.Te scale-out elastic scheduling method
consists of three steps: triggering expansion/downsizing
based on current and predicted load values; calculating the
appropriate replica count using an aggressive but dynamic
weighted scheme to prevent overloading; and scheduling
with a cooling period to avoid constant scaling operations
triggered by predicted values. Using this method, containers
can avoid overload and scaling operation problems while
maintaining rapid response times during peak load periods.

Hence, we consider the load forecast value, the current
resource load value, and the resource threshold, and the
dynamic weighting is expressed as

ft � ω1loadp + ω2loadc, (23)

where loadp is the load prediction value, loadc is the current
load value, ω1 and ω2 are weights, and ft is the marker value
obtained by dynamically weighting the predicted and the
current load values. Meanwhile, the trigger strategy of re-
silient scheduling includes two trigger cases:

+ x

Attention Weight

Attention Weight Probability

Target Attention Weight

Attention Weight Generate

Softmax

Learning Function Tanh (*)

h1 h2
ht hn… …

Figure 4: Feedforward attention mechanism architecture.

Input: Prediction listpre, and Load threshold 〈thresholdlow, thresholdhigh〉

Output: Predict the outcome of the processing 〈listpre[0], isExceede d, isRose, riseDegree〉
(1) Initialize isExceeded� false, isRose� false, riseDefree� 0, riseArea� 0, downArea� 0
(2) l length (listpre)
(3) for each i in l
(4) check if i+ 1 exceeds bounds
(5) 〈da taa, da tab > < listpre[i], listpre[i + 1]〉

(6) if da taa grater than da tab
(7) toAdd (downArea, dataa − datab)
(8) else
(9) toAdd (riseArea, da tab − da taa)
(10) end if
(11) end for
(12) riseDegree (riseArea− downArea)/(listpre[0] ∗ l)
(13) checkIsExceeded (〈thresholdlow, thresholdhigh〉 , riseDegree)
(14) isRose riseArea > downArea ? true: false

ALGORITHM 1: Pseudocode of predictive processing algorithm.

10 International Journal of Intelligent Systems

(i) Expansion Trigger. If the dynamically weighted tag
value exceeds the pre-defned expansion threshold, it
suggests that the container replica set is likely to face
excessive load in the near future, and expansion
should be considered to allocate additional
resources.

(ii) Reduction Trigger. If the dynamic weighted marker
value is lower than the pre-defned shrinkage
threshold, it suggests that the container replica set is
likely to have excess resources in the near future, and
a shrinkage operation should be considered to op-
timize resource allocation.

To avoid triggering multiple expansion or contraction
operations quickly, a resilient scheduling cooling phase is
designed to judge whether it is in the cooling phase after
each trigger to reduce the load volatility impact. Te
corresponding workfow is illustrated in Figure 6.

Te key step in the entire scaling scheduling process is to
conduct the replica count calculation process of the con-
tainers based on the current and the predicted resource
value. Next, we introduce the expansion and scaling replica
count calculation schemes to provide accurate data support
for fexible scheduling.

(1) Expansion Replica Count Calculation. To avoid under-
expansion, we adopt a slightly aggressive strategy in the
expansion process, i.e., we select larger predicted and load
values for the expansion replica number calculation to re-
serve sufcient resources for the service. Specifcally, we use
the mathematical expectation method to calculate the
number of replicas which is expressed as

Rexp � ceil max
loadpro, loadcur

loadexp
􏼠 􏼡􏼠 􏼡∗Rcur, (24)

where Rcur and Rexp denote the number of current and
desired replicas, loadpre is the load forecast value, loadcur is
the current load value, and loadexp denotes the desired
load value.

(2) Reduction Replica Count Calculation. Te scaling op-
eration is afected by load volatility, and to reduce the
frequent scaling phenomenon, we adopt a dynamic
weighting method to determine the number of replicas [29],
i.e., the distance weighting formula dynamically adjusts the
weights occupied by the load and the predicted values in
calculating the desired number of replicas, minimizing the
impact of load volatility. Te distance weighting is expressed
as equations (25) and (26):

CSSLPM Workflow

CSSLPM Architecture

Prediction

El
as

tic
M

ig
ra

tio
n

Judge

Container Position|Copies Calculation|Cooling time

load balancing?

N

Y

N
Trigger|Container Selector|Node Selector|Transmitter

Prediction model

–Container load predictor

–Node load predictor

driven

driven

Elastic scheduling

–Telescopic trigger

–Expansion/reduction calculator

Migration scheduling

–Migration Trigger

–Container Selector

–Node Selector

–Data transmitter

Figure 5: Container scheduling strategy architecture.

International Journal of Intelligent Systems 11

Wpre �
loadexp − loadcur􏼐 􏼑

loadexp − loadcur􏼐 􏼑 + loadexp − loadpro􏼐 􏼑
, (25)

Wcur �
loadexp − loadpro􏼐 􏼑

loadexp − loadcur􏼐 􏼑 + loadexp − loadpro􏼐 􏼑
, (26)

where Wpre and Wcur are the prediction weight and load
weight, and loadpro, loadcur, and loadexp satisfy the condi-
tions loadexp > loadcur and loadexp> loadpro. Ten, the for-
mula for the weighted resource values is expressed as

loadW � Wpre ∗ loadpro + Wcur ∗ loadcur. (27)

Tus, the expected replica number Rexp is expressed as

Rexp � ceil
loadw

loadexp
􏼠 􏼡∗Rcur. (28)

3.3.2. Integrated Migration Scheduling Method. We propose
an integrated migration scheduling method for maintaining
balanced load in container cloud environments with high-
intensity services. Coarse-grained elastic scaling ensures
load balance among nodes under continuous high-load
pressure, and it continuously adjusts the load of each node.

Te suggested method has four phases: container mi-
gration triggering, container selection, target node selection,
and container migration. In the frst phase, we trigger
container migration based on the load values of nodes and
predicted load values. In the second phase, containers are
migrated to achieve dormancy of underloaded and load
reduction of overloaded nodes. Te third phase uses a load
correlation algorithm to select an optimal set of nodes to
prevent redundant work. Finally, in the container migration
phase, an online pre-merge-based algorithm improves mi-
gration efciency and guarantees success rate.

Tis integrated method maintains load balance during
long periods of high load while ensuring efcient container
migration.

(1) Container Migration Triggering. Various resource usages,
such as CPU and memory, afect a node’s load and fuctuate
due to the containers’ diversity and dynamics. Terefore, the
deployed nodes and containers must meet the following
requirements in determining the load balancing conditions.

Te containers must be unique, i.e., each container can
and will only be deployed on top of a particular node in the
container cloud environment which is expressed as

􏽘
n

D
m
n � 1,∀m ∈ N, D

m
n ∈ 0, 1, (29)

Start

Obtain the predicted
and current load values

Dynamic weighting calculation

N

N N

Is f1
greater than the expansion

threshold?

Is f1
less than the reduction

threshold?

Is f1
less than the reduction

threshold?

Y

Y

Y

Y

End

End

Is it
in the scheduling cooling

phase?

Calculation of the number
of expanded copies

Calculation of the number
of reduced capacity copies

Flexible scheduling process

Figure 6: Flexible scheduling trigger determination workfow.

12 International Journal of Intelligent Systems

where Dm
n � 1 means container n is deployed to node m.

Otherwise, Dm
n � 0.

Resource fniteness, which refers to the fact that when
multiple containers are deployed on the same node, the total
amount of resources required by all containers must not
exceed the total amount of resources that the node has, is
expressed as

􏽘
n

r
R
n × D

m
n ≤R

R
m, R ∈ CPU,MEM,Net,Disk, (30)

where rCPUn , rMEM
n , rNetn , and rdi skn denote the amount of CPU,

memory, network bandwidth, and disk IO resources re-
quired by container n and RCPU

m , RMEM
m , RNet

m , and RDisk
m

denote the total amount of CPU, memory, network band-
width, and disk IO resources owned by node m.

Meanwhile, we add the predicted load data to the load
balancing model proposed in [30] to evaluate all nodes in the
container cloud environment, i.e., from the evaluation re-
sults of all nodes, the load and resource of the container
cloud can be expressed as equations (31) and (32):

U
R
avg �

􏽐
l
j�1U

R
j

l
, (31)

F �
􏽐R􏽐

l
j�1 U

R
j − U

R
avg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

l
, (32)

where UR
j denotes utilizing resource R in node j, l is the total

number of nodes in the container cloud environment, UR
avg is

the average resource utilization, and F is the load balance of
all nodes in the container cloud environment, ranging from
(0, 1) to (0, 1).Te larger the value of F, the more unbalanced
a load of resources in the container cloud environment, and
vice versa.

In the trigger conditions of the container migration, the
joint action of various resource conditions causes a node
load problem, with the migration triggering factors de-
scribed as follows. First, the load prediction result de-
termines whether the node exceeds the threshold set. Te
node will be directly added to the overloaded node collection
if it exceeds the threshold. Otherwise, according to the
current calculation of the container cloud environment load,
if the load balance is less than the set threshold, the
underload sorting of nodes is performed, and the corre-
sponding nodes are added to the underload node set. If the
load balance exceeds the threshold set, the overload sorting
of the nodes is performed, and the corresponding nodes are
added to the overload node set. Finally, when both the
underload and the overload node sets are not empty, the
container migration schedule is triggered, and vice versa.
Te corresponding process is illustrated in Figure 7.

(2) Container Selection. We describe a method for selecting
the container to be migrated. During this process, a major
concern is selecting the object to be migrated [31]. Tus,
after obtaining the set of nodes to be migrated, the corre-
sponding container must be selected from each node for
migration. However, the service container state and the
dependencies between the containers are also important

factors to be considered in the container scheduling process,
which efectively reduces the time consumption of the
containers by calling each other. Terefore, we adopt
a container selection strategy based on the container de-
pendency model [17].

Te container dependency model uses a weighted di-
rected graph to represent the dependency invocation re-
lationship between the containers on a node belonging to the
set to be migrated and is expressed as equations (33) and
(34):

G(V, E) � ωij􏼐 􏼑
n×n

, (33)

ωij �
0, no call from container i to container j,

k, k calls from container i to container j,
􏼨 (34)

where wij denotes the set of all containers on the node, wij
denotes the dependency relationships between all containers
on the node, and wij is the number of invocations from
container i to container j. Tus, after the containers’ de-
pendency partitioning, we obtain k disjoint dependency
neighborhoods, represented by Vi (0< i<�k). Ten, the
synthesis of all container invocations in neighborhood Vi is
expressed as

ω Vi(􏼁 � 􏽘
V∈Vi

ω(V). (35)

Similarly, the sum of the number of calls between all
containers in neighborhood Vi and all containers in the
neighborhood Vk is expressed as

gain Vi, Vk(􏼁 � 􏽘
m

i�1
ω Vj􏼐 􏼑⊗ω Vk(􏼁. (36)

Te container selection strategy is shown as follows:

Start

Node predicts
whether the load exceeds a

threshold

N

N

Y

Is f1
greater than the expansion

threshold?

Is f1
less than the reduction

threshold?

Y YEnd

Node Underload Sorting Node Overload Sorting

Select Underload Node Select Overload Node

Add underloaded node set Add Overloaded node set

Trigger container migration

End

Figure 7: Migration triggering workfow.

International Journal of Intelligent Systems 13

(i) Node Underload. For underloaded nodes with small
containers, their resource utilization is low. To op-
timize resource allocation, these containers should
be migrated separately to other nodes that are not
overloaded or underloaded. Tis will facilitate sub-
sequent migration and reallocation of resources,
ultimately allowing underloaded hosts to hibernate,
resulting in container consolidation, improved re-
source utilization, and reduced energy consumption.

(ii) Node Overload. To reduce node load on overloaded
nodes, containers must be fltered and selected for
container scheduling. Tis involves dividing each
overloaded node into dependency neighborhoods
using the container dependency model. Next, several
dependency neighborhoods with the smallest sum
gain(Vi, Vk) are chosen from each node’s de-
pendency neighborhoods. Finally, the containers
from these chosen neighborhoods are added to the
set of containers to be migrated in the next step of
container migration scheduling.

(3) Target Node Selection. Te traditional target node se-
lection algorithm simply considers the relationship between
containers in the process of container migration, and there is
a risk that container migration causes the target node to be
overloaded to trigger the migration work several times.
Terefore, we propose a target node selection algorithm
based on load correlation (NSALC), in which the Pearson
correlation coefcient method is introduced as the main
method to calculate the load correlation between containers
and nodes. In the process of container migration target node
selection, the constraint of load correlation is added, which
can efectively solve the problem of migration leading to
node overload and thus frequent triggering of migration.
Terefore, the resource is expressed as

CorresCa,Nk
�

􏽐
n
m�1 resm

Ca
− resCa

􏼐 􏼑 resm
Nk

− resNk
􏼐 􏼑

�����
􏽐

n
m�1

􏽱
resm

Ca
− resCa

􏼐 􏼑
2

􏽐
n

m�1
resm

Nk
− resNk

􏼐 􏼑
2 , (37)

where resm
Ca

|m � 1, 2, 3, . . . , n denotes the load history
timing data of container Ca in n time windows, resCa

is the
average value of load history timing data of container Ca,
resm

Nk
|m � 1, 2, 3, . . . , n denotes the load history timing data

of nodeNk in n time windows, and resNk
denotes the average

value of load history timing data of container Nk.
Te load correlation between container Ca and node Nk

is expressed as

Cor Ca,Nk() � ω CorCPUCa,Nk()

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + ω CorMEM
Ca,Nk()

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (38)

where ω is the weight, which is used to set the node selection
threshold, and Cor(Ca,Nk) ∈ (0, 1).Te load correlation Colr
between the set of containers to be migrated and node Nk for
a set of n containers is expressed as

Cor Colr,Nk() �
􏽐

N
i�1Cor Ci,Nk()

n
. (39)

A node is selected when the load correlation between the
set of containers to be migrated and the node exceeds
Cor(Colr,Nk). In summary, the pseudocode of the load
correlation-based node selection algorithm (NSALC) is
presented in Algorithm 2.

(4) Container Migration Phase. Next, we describe the
working process of container migration, comprising three
parts. First, a full check of the containers to be migrated on
the source node is performed before container migration,
and the memory image fle of the containers before mi-
gration is obtained. Ten, incremental checks are contin-
uously performed on the containers to be migrated during
the container migration process, and the memory image fle
of the container at migration time is obtained. Finally, the
two memory image fles are pre-merged and transferred to
the target node, and the containers to be migrated to the
source node are stopped by restoring the pre-migration state
of the containers according to the memory image fles.

Te main factors afecting a container’s online migration
downtime include the checkpointing, transfer, and recovery
phases. Tus, reducing the time consumed by these three
phases is the key to reducing downtime. Hence, this paper
adds a fast memory synchronization optimization design to
the traditional migration method. Before restoring the
container to normal operation in the recovery phase, the
memory image fles are pre-merged, i.e., the memory image
fles received on the target node are pre-merged, and the
fnal memory image fles are generated. In short, in the
subsequent recovery phase, the recovery process of the
container can be completed only by obtaining the fnal
generated merged image fle. Additionally, the process of
merging memory image fles and reducing downtime can be
conducted through the transmission process.

For the containers, the generatedmemory image fles can
be roughly divided into two categories: pages.img and
pagemap.img fles. Te former fle type is mainly used to
store the specifc content of memory pages, and the latter
type is mainly used to store the memory mapping re-
lationship. pagemap1.img fle in Figure 8 indicates that the
frst four memory pages are read from pages1.img fle and
placed at address 0x1000000. When an incremental
checkpoint is executed, a fag bit in_parent is added to the
pagemap.img fle which indicates that the identifedmemory
page was read from the previous checkpoint.

Te role of the state check is to dump the process state
information of the container to be migrated into an image
fle, either fully or incrementally. Tis operation requires
using a call function to the ptrace interface to inject parasite
code into the container’s processes and enable the collection
of memory data for the container’s processes. Additionally,
this operation relies on the /proc fle system, with the image
fle mainly including fle description information, process
parameter information, and memory mapping information.
Te specifc fow of the container state detection point is as
follows:

(i) Recursively traversing /proc/$ pid/task/ and /proc/$
pid/task/$ tid/children based on the container

14 International Journal of Intelligent Systems

process pid to collect information about the process
tree constructed from the container process and its
child processes.

(ii) Freezing the process tree in step 1 by calling the
PTRACE_SEIZE command of the ptrace interface.

(iii) Collecting fle descriptions, process parameters,
memory maps, and other information about the
container process and its child processes and
writing them to the corresponding memory
image fles.

(iv) Dynamically injecting the parasite code in PIE
format into the container and child processes.
When the mmap operation is invoked by the
container process and its child processes, the par-
asite code will be invoked into the corresponding
memory address space and thememory changes will
be recorded.

(v) Executing the rt_sigreturn() system call by calling
the ptrace interface to clean up the parasite code
injected in the appeal step.

Te pseudocode of the pre-copy-based container online
migration algorithm is presented in Algorithm 3.

4. Experimental Analysis

Tis section presents the experimental results evaluating
a container scheduling strategy based on the CNN-BiGRU-
Attention model and using the CSSLPM policy. First, we
describe the experimental setup, present the actual results,
and then analytically discuss the fndings.

4.1. Experimental Design

4.1.1. Benchmarking Methods and Choice of Comparison
Algorithm. Te prediction efectiveness of the CNN-
BiGRU-Attentionmodel is evaluated based onMAPE (mean
absolute percentage error), MAE (mean absolute error),
MSE (mean square error), and RMSE (root mean square
error). Moreover, based on these evaluation methods, the
ARIMAmodel, the LSTM-RNNmodel, and the CNN-LSTM
model are selected as the CNN-BiGRU-Attention model
control group. Tese models are chosen because they are
good predictors and can be used in various applications,
which are expressed as equations (40)–(43).

MAPE �
100%

n
􏽘

n

i�1

loadi − 􏽤loadi

loadi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (40)

MAE �

�����������������

1
n

􏽘

n

i�1
loadi − 􏽤loadi􏼐 􏼑

2

􏽶
􏽴

, (41)

MSE �
1
n

􏽘

n

i�1
loadi − 􏽤loadi􏼐 􏼑

2
, (42)

RMSE �
1
n

􏽘

n

i�1
loadi − 􏽤loadi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (43)

We utilize CloudSim, a popular simulation software
program for evaluating virtual technology-based scheduling
algorithms, to validate the efectiveness and efciency of the

Input: Container collection to be relocated Colr Node Collection ColN

Output: Target Node Collection ColNr
(1) for each Colir in Colr
(2) for each Nk in ColN

(3) for each Ca in Colir
(4) Cor(Colr ,Nk)Cor(Colr,Nk) + calculate Cor(Ca,Nk)

(5) end for
(6) Cor(Colr ,Nk)Cor(Colr,Nk)/n
(7) if Cor(Colr ,Nk)> 0.6
(8) ColNr

r Nk

(9) end if
(10) sort ColNk

r by Cor(Colr ,Nk)

(11) ColNr max (ColNr
r)

(12) end for
(13) end for

ALGORITHM 2: Pseudocode of NSALC.

pagemap1.img

pagemap.img

pagemap2.img

(0x1000000. 4)

pages1.img

pages.img

pages2.img

(0x1000000, 4, in_parent)
(0xCF00000, 8)

Before Pre-Merge After Pre-Merge

Merge

(0x1000000, 4)
(0xCF00000, 8)

Figure 8: Memory pre-merge workfow.

International Journal of Intelligent Systems 15

container scheduling strategy (CSSLPM) that is based on
a load prediction model. In addition, we compare CSSLPM
with classic container scheduling strategies such as FFHS
[32], MOPSO [33], and Spread [34], which are used as
a control group.

4.1.2. Research Questions. Te following research questions
are answered to verify the accuracy of the CNN-BiGRU-
Attention model and the efectiveness of the CSSLPM.

RQ1. Is the CNN-BiGRU-Attention model signifcantly
superior to other load prediction models, and is there
hyperparameterization in the CNN-BiGRU-Attention
model?
RQ2. Is CSSLPM efcient in scheduling containers
based on load prediction? Does it ensure better con-
tainer cloud resource utilization than other scheduling
strategies?
RQ3. Does the container scheduling strategy based on
the CNN-BiGRU-Attention prediction model still have
better prediction results on real-running software
systems? Is it able to maintain container cloud load
balancing?

4.1.3. Experimental Datasets. We employ the Alibaba public
dataset cluster-trace-v2018, with further information listed
in Table4. Specifcally, the cluster-trace-v2018 dataset was
produced by tracking operational data from approximately
4000 machines over eight days. It has a larger scaler than the
previous v2017 version and contains DAG information for
production batch workloads.

Moreover, we use TrainTicket, a benchmark system
developed by Professor Xin’s team at Fudan University, to
validate our scheduling strategy. Tis microservice-based
system refects a real train ticket ordering system in a pro-
duction environment and consists of 41 microservices, in-
cluding 24 business logic services and 17 infrastructure
services. Te system can be run in a small container cloud
environment. In addition, 22 typical industrial microservice

failure cases are replicated in the TrainTicket system and can
be verifed directly without the need for injection in
this paper.

4.1.4. Operating Environment Confguration. Te corre-
sponding training and simulation experiments were con-
ducted for the designed load prediction and container
scheduling techniques. In particular, the hardware device
details are listed in Table 5, and the utilized software and
version information is presented in Table 6.

4.2. Algorithm Validity Testing

4.2.1. CNN-BiGRU-Attention Model Prediction Accuracy
Test. Tis section aims to validate the prediction accuracy of
the CNN-BiGRU-Attention model and compare it with
similar models using a cross-validation process. Te process
includes optimizing the model hyperparameters using
a multi-layer iterative search network implementation. Te
optimized model is then used for comparative experiments
against competitor models under the same load prediction
conditions. Te results are analyzed to draw clear conclu-
sions and answer RQ1.

(1) Analysis of Model Hyperparameter Selection. Several key
parameters in neural network-based prediction algorithms
can signifcantly impact prediction accuracy. Tese pa-
rameters generally include the length of each input load, the
number of hidden layers, and the number of neurons per

Input: to be migrated node Podx, Target node Pody, Global Checkpoint Ωc, Incremental checkpoints Δc, Iteration number N,
Treshold L
Output: Target node Pody

(1) ImitializenCheak Ωc � Image (Podx and container)
(2) Transfer (Pody,Ωc)
(3) for each i in N
(4) Δc � Image (Podx and runningcontainer)
(5) if (Δc >L)
(6) break/n
(7) Transfer (Pody,Δc)

(8) end for
(9) Stop (Podx and container)
(10) Transfer (Pody,Δc)

(11) Merge (Ωc, 􏽐Δc)

(12) Run (Pody and container)

ALGORITHM 3: Pseudocode of container online migration algorithm.

Table 4: Cluster-trace-v2018 datasets.

Name Description
machine_meta Meta and event information for the machine
machine_usage Resource usage per machine
container_meta Te container’s meta and event information
container_usage Resource usage per container
batch_instance Instance information in batch workloads
batch_task Instance information in batch workloads

16 International Journal of Intelligent Systems

hidden layer. In this experiment, the length of each input
load data and the number of hidden layers are set. Ad-
ditionally, the number of neurons in each hidden layer
was preserved to reduce the difculty of this experiment.
Finally, the maximum number of iterations during
training was set to 240, the tensor dimension in the at-
tention mechanism layer was set to 64, and the error was
appropriately set due to hardware considerations, af-
fecting the prediction accuracy.

Terefore, we use a cross-validation method to obtain
the optimum parameters based on a multi-layer iterative
search network implementation. Te best parameters are
also based on the model parameters, prediction accuracy,
and model training time. In this paper, the best parameter
confgurations are obtained by ranking parameter setups in
descending order according to their prediction accuracy.
Te experimental results are illustrated in Figures 9 and 10,
where the horizontal coordinates indicate the parameter
combinations. For example, 32-2-50means that the length of
each input load datais 32 bytes, the number of hidden layers
is 2, and the number of neurons in each hidden layer is 50.

From the above experimental results, we observe that the
training time used by the CNN-BiGRU-Attention model is
longer when the data length of each input load is 16, the
number of hidden layers is 3, and the number of neurons in
each hidden layer is 40. However, in this case, the pre-error
is relatively low. In this paper, we consider that this is the
best-performing experimental model. Hence, the load versus
the predicted values using this parameter combination are
depicted in Figure 11, where the solid red curve indicates the
actual load of the node, and the blue dotted curve indicates
the predicted load value of the CNN-BiGRU-Attention
model. Te results infer that the CNN-BiGRU-Attention
model sufers from hyperparameterization, answering RQ1.
Te test results show diferences between the predicted and
load value curves, which do not ft well, but the curve trends
and magnitudes are the same, and a better load prediction is
possible.

(2) Comparison of Experimental Results. Tis study com-
pares the load prediction error of the CNN-BiGRU-

Attention model to that of ARIMA, DBN, and
CNN-LSTM models under the same experimental con-
ditions. Load series of 5, 10, 15, and 20minutes are used as
input data, and the MAE, MAPE, and RMSE metrics are

Table 5: Hardware confguration.

Class Parameter information
CPU Intel (R) Xeon (R) Silver 4210R 2.4 GHz
Treads 20
CPU cores 10
Memory 128GB
GPU GeForce RTX 3080
GPU’s memory 10GB

Table 6: Software confguration.

Class Parameter information
Programming language Python (3.6.8), Java(1.8.0_191)
Compiler PyCharm 2021.2, IntelliJ IDEA 2021.3

Toolkit TensorFlow-gpu (2.1.4), Keras (2.3.1), Numpy (1.22.3), pandas (1.1.5), CUDA
(11.4.141)

Parameter selection Experimental results-prediction error

MSE
MAPE

32–2–50 8–2–40 20–2–308–3–3016–3–40
parameter combination

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

di
ffe

re
nc

e

Figure 9: Prediction error.

Parameter selection Experimental results-training time

250

255

260

265

270

275

280

Ti
m

e (
un

it:
 m

in
ut

es
)

32–2–50 8–2–40 20–2–308–3–3016–3–40
parameter combination

Figure 10: Training time.

International Journal of Intelligent Systems 17

employed to measure prediction error. Te results are
presented in Figures 12–14.

Figure 12 illustrates the experimental results using MAE,
where the horizontal coordinate is the length of the time
series, and the vertical coordinate is the absolute mean error
value of the load prediction values. Figure 12 highlights that
the average absolute prediction error of the container and
node loads using the competitor models increases the length
of the load time series. However, the load prediction al-
gorithms based on the CNN-BiGRU-Attention model have
smaller average absolute errors for each length of the load
sequence, indicating that the overall diference between the
predicted and load values is small.

Te evaluation results of this experiment using MAPE
are shown in Figure 13, where the horizontal coordinate is
the length of the time series, and the vertical coordinate is
the average absolute percentage error value of the load
prediction values. Te fgure reveals that the average ab-
solute percentage prediction error of the container and node
loads using the competitor models increases as the length of
the load time series increases. Nevertheless, the load pre-
diction algorithms based on the CNN-BiGRU-Attention
model have smaller average absolute percentage errors for
all lengths of load sequences, suggesting that the error values
have a smaller ratio to the load values and the errors are
relatively low.

Te results of the evaluation of this experiment using
RMSE are shown in Figure 14, where the horizontal co-
ordinate is the length of the time series, and the vertical
coordinate is the root mean square error value of the load
predictions. As seen from the fgure, the RMSE of the
predictions of both container load and node load by various
models tends to increase as the length of the load time series
increases. In comparison, the load prediction algorithms
based on the CNN-BiGRU-Attention model have smaller
root mean square errors for each length of the load sequence,
which indicates that the overall diference between the error
values and the load values is small.

In summary, the errors of all competitor models tend to
increase as the time length of the load sequence increases.
However, the prediction error growth of the CNN-BiGRU-
Attention model gradually slows down. Moreover, the
prediction accuracy of the load value within 20minutes for
the CNN-BiGRU-Attention model improves by about
23.1%–93.2% compared to ARIMA, CNN-LSTM, and DBN
under the MAE, MAPE, and RMSE metrics. Tis indicates
that the model is better in load prediction in the container-
based cloud environment comparison experiments and
demonstrates better prediction accuracy for both the con-
tainer and node load prediction. Te CNN-BiGRU-
Attention model performs better in similar model com-
parison experiments, answering RQ1.

4.2.2. CSSLPM Container Scheduling Strategy Validation.
In this section, CloudSim, a cloud computing simulation
software program widely used in academia to test and
evaluate scheduling algorithms based on virtual technolo-
gies, is used to answer RQ2, i.e., validate the efectiveness and
scheduling efciency of the container scheduling strategy
(CSSLPM) based on the load prediction model. First, this
paper extends various simulation interfaces and builds
a container model, enabling its cloud data center to support
the container-based scheduling simulation process. Second,
to simulate the heterogeneous nature of cloud data centers,
this paper sets up various server types for conducting this
experiment. Te start/stop latency of the containers and
virtual machines is also set at the second and minute levels.
Finally, the current scheduling strategies commonly used in
industry and academia are compared with the CSSLPM
scheduling strategy. Additionally, fve diferent types of
multiple servers are set up to simulate the heterogeneity of
cloud servers to run container clusters. Te confguration
information of each server is listed in Table 7.

First, based on the cluster size, this experiment sets up
three diferent sizes of container clusters for testing, i.e., ten-

Predictive value - load value comparison test
0.70

0.65

0.60

0.55

0.50

0.45

D
eg

re
e o

f l
oa

d

time series
0 25 50 75 100 125 150

load value
predicted value

Figure 11: Predictive value-load value comparison test.

18 International Journal of Intelligent Systems

volume, hundred-volume, and thousand-volume covering
small-, medium-, and large-scale application scenarios. Te
container cluster confguration information is presented in
Table 8.

Second, for the virtual machines (nodes) and containers
used in this experiment, four diferent types of virtual

machines (nodes) and containers are set up, with the specifc
confguration information reported in Tables 9 and 10,
respectively.

Te First Fit Host Selection Algorithm (FFHS), Multi-
Objective Particle Swarm Optimization (MOPSO), and
Spread are selected as the CSSLPM control group. In the

ARIMA
CNN–LSTM

DBN
CNN–BiGRU–
Attention

ARIMA
CNN–LSTM

DBN
CNN–BiGRU–
Attention

Container load prediction Evaluation Node load prediction evaluation

0.80

0.75

0.70

0.65

0.60

0.55

0.50

41 32
Time series (unit: 5 minutes)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
A

E

41 32
Time series (unit: 5 minutes)

Figure 12: Results of MAE.

ARIMA
CNN–LSTM

DBN
CNN–BiGRU–
Attention

ARIMA
CNN–LSTM

DBN
CNN–BiGRU–
Attention

Container load prediction Evaluation Node load prediction evaluation

0.250

0.225

0.200

0.175

0.150

0.125

0.100

41 32
Time series (unit: 5 minutes)

41 32
Time series (unit: 5 minutes)

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

M
A

PE

Figure 13: Results of MAPE.

International Journal of Intelligent Systems 19

same experimental environment, all three sets of experi-
ments included in this experiment are executed 30 times,
and the model uses the optimal combination of parameters.
Te experimental results include resource usage in the
cluster, the average number of containers migrated in
5minutes, and the average number of nodes created.

(1) Use of Resources. Resource usage’s main concern for the
same container cluster is achieving relative load balancing
on heterogeneous servers. In this experiment, multiple
servers of fve diferent types are set up. Terefore, the re-
sources of the same type of servers are calculated together to
observe the execution of each scheduling strategy. Te re-
sults are illustrated in Figures 15(a)–15(c).

Te test results reveal that the total server load in the
FFHS, Spread, and MOPSO scheduling strategy environ-
ments is signifcantly higher than the total load in the
CSSLPM environment for each level of container cluster of
this experiment.

(2) Container Scheduling Situation. For the same container
cluster, container scheduling focuses on the number of
containers scheduled and the number of nodes created
within the cluster during the observed time. It further
considers the efciency of the scheduling strategy in
achieving relative load balancing of the cluster during the
observed time. Te results are shown in Figures 16(a) and
16(b).

From the side-by-side comparison of the above test
results, it can be seen that CSSLPM is 4.6%–25.8% more
efcient than FFHS, Spread, and MOPSO in terms of the
number of containers scheduled and nodes created,

respectively, in the same cluster environment. Terefore,
compared with FFHS, Spread, and MOPSO scheduling
strategies, the CSSLPM designed in this paper has better
performance regarding load resource usage and container
scheduling. Tis also shows resource fragmentation and
uneven load across servers in the FFHS, Spread, and
MOPSO scheduling environments. Tere are two main
reasons for this: frst, the three scheduling strategies do not
consider the interdependencies between the containers. Tis
may cause containers with interdependencies to be migrated
to diferent servers, resulting in cross-server scheduling of
service requests and increasing the load on the servers.
Second, these three scheduling strategies do not consider the
fne-grained scheduling of resources, resulting in frag-
mented server resources not being utilized efectively. In
contrast, CSSLPM combines coarse and fne granularity to
achieve container scheduling. On the one hand, container
migration-based scheduling uses nodes as the scheduling
unit, solving the load imbalance problem from a coarse-
grained perspective, and, during the process, aims to migrate
containers with interdependent relationships to the same
server, thus reducing the frequency of cross-server sched-
uling of service calls. On the other hand, the scheduling
based on container elasticity scaling uses containers as the
scheduling unit. Tis solves the problem of server resource
fragmentation from a fne-grained perspective and further
improves the utilization of cluster resources.

4.2.3. Case System Validates Algorithm Efectiveness. In this
section, the open-source case system TrainTicket is used to
answer the research question RQ3. Te trained load

ARIMA
CNN–LSTM

DBN
CNN–BiGRU–
Attention

ARIMA
CNN–LSTM

DBN
CNN–BiGRU–
Attention

Container load prediction Evaluation Node load prediction evaluation

1.20

1.15

1.10

1.05

1.00

0.90
0.90

0.95

0.85

0.95

1.00

1.05

1.10

1.15

1.20

1.25

RM
SE

2 3 41
Time series (unit: 5 minutes)

2 3 41
Time series (unit: 5 minutes)

Figure 14: Results of RMSE.

20 International Journal of Intelligent Systems

prediction model and the developed and implemented
container scheduling strategy are embedded in the system
and compared with the model and policy selected as the
control group in experiments.

We frst conduct a runtime load monitoring process
based on the container cluster supporting the TrainTicket
ticketing system. Furthermore, we obtain the load data of
each node from this process (part of the load data is reported

in Table 11), which is used to validate the load prediction
algorithm and container scheduling strategy.

Based on the above load data, these data are input into
the CNN-BiGRU-Attention model and the control group
model for load prediction. Te parameters of the CNN-
BiGRU-Attentionmodel are set as follows: the length of each
input load data is 16, the number of hidden layers is 3, and
the number of neurons in each hidden layer is 40. Figure 17

Table 7: Server confguration.

Number Cores MIPS/core Memory (GB) Bandwidth (Gbps) Storage (TB)
T1 44 2200 128 10 2
T2 16 2200 64 10 2
T3 36 2300 24 10 2
T4 36 2300 64 10 2
T5 16 2200 24 10 2

Table 8: Container cluster confguration.

Number Containers Nodes
Cluster 1 64 5
Cluster 2 256 15
Cluster 3 1024 45

Table 9: Node confguration.

Number Cores MIPS/core Memory (GB) Bandwidth (Gbps) Storage (GB)
VM1 2 1500 1 10 20
VM2 4 1500 2 10 20
VM3 1 1500 4 10 20
VM4 8 1500 1 10 20

Table 10: Container confguration.

Number Cores MIPS/core Memory (GB) Bandwidth (Gbps) Storage (GB)
Container 1 1 100 1 10 5
Container 2 1 200 2 10 5
Container 3 1 400 4 10 5
Container 4 1 600 2 10 5

Se
rv

er
 T

2

Se
rv

er
 T

3

Se
rv

er
 T

4

Se
rv

er
 T

5

Se
rv

er
 T

1

server

Cluster1 server resource usage

FFHS
Spread

MOPSO
CSSLPM

20
22
24
26
28
30
32

lo
ad

 (%
)

(a)

Se
rv

er
 T

2

Se
rv

er
 T

3

Se
rv

er
 T

4

Se
rv

er
 T

5

Se
rv

er
 T

1

server

Cluster 2 server resource usage

FFHS
Spread

MOPSO
CSSLPM

35.0
37.5
40.0
42.5
45.0
47.5
50.0
52.5

lo
ad

 (%
)

(b)

Se
rv

er
 T

2

Se
rv

er
 T

3

Se
rv

er
 T

4

Se
rv

er
 T

5

Se
rv

er
 T

1

Server

Cluster 3 server resource usage

FFHS
Spread

MOPSO
CSSLPM

70

75

80

85

90

lo
ad

 (%
)

(c)

Figure 15: Result of resource usage. (a) Resource usage in cluster 1. (b) Resource usage in cluster 2. (c) Resource usage in cluster 3.

International Journal of Intelligent Systems 21

shows the prediction results of some of the intercepted load
data. Te solid black line represents the real load data, the
red dashed line is the prediction value of the method
designed in this paper, and the rest are the prediction values
of the control model.

As seen in Figure 17, both the CNN-BiGRU-Attention
model and the control model can predict the load in the
setting of this experimental setup, and the trend of each
predicted value is the same. However, the CNN-BiGRU-
Attention model afords the best ft, although it does not
achieve a perfect ft in terms of prediction results. In order to
verify the accuracy of each load prediction model more
intuitively, we employ the MAE, MAPE, and RMSE pre-
diction error metrics for each prediction model and node
load. Te corresponding results are reported in Table 12.

In addition, based on the above prediction results, the
efectiveness of the CSSLPM policy is further validated. A
fve-virtual machine environment is created in the server,
and a multi-node container cluster is built in this envi-
ronment to support the operation of the TrainTicket pas-
senger ticket system. To analyze the experimental results, we
utilize the results from the experiment (2). In particular,
Figure 18 shows the resource usage of each VM, and Fig-
ure 19 compares the container scheduling results.

For the same experimental setup environment, Figure 18
highlights that the resource load profle of each VM under
the designed CSSLPM policy is better than the load profle
under the control group, where the VMs have the same
attributes, and there is no resource heterogeneity. As seen in
Figure 19, the number of scaling and migrations is lower for
the designed CSSLPM policy compared to the control group,
and therefore, the proposed CSSLPM achieves better load
balancing and resource optimization with less scaling and
fewer migrations.

4.3. Analysis of Validity Treats

4.3.1. Internal Treats. Te internal threat refers to the
internal threat from the proposed method that limits the
efectiveness of the proposed method. Te threat to the
efectiveness of the CSSLPM scheduling policy comes from
the accuracy of the CNN-BiGRU-Attention load prediction
model, which is limited by two main factors. Te frst factor
is that the load model established in this paper does not
match the load of real scenarios totally, i.e., there is
a problem of container cloud load that cannot be described,
and this paper adopts the idea of approximation instead of

Container scheduling situation

Cluster 1
Cluster 2
Cluster 3

FFHS MOPSO CSSLPMSpread
Scheduling algorithm

0

50

100

150

200

250

300

N
um

be
r o

f s
ch

ed
ul

es

(a)

Average node creation

Cluster 1
Cluster 2
Cluster 3

FFHS MOPSO CSSLPMSpread
Scheduling algorithm

0

10

20

30

40

50

60

70

N
um

be
r o

f c
re

at
io

ns

(b)

Figure 16: Result of container scheduling. (a)Te average number of containers migrated in 5minutes. (b)Te average number of times the
container scales in 5minutes.

Table 11: TrainTicket ticket system load data within 20 seconds.

node_id time_stamp cpu_util_percent mem_gps disk_usage_percent disk_io_percent
n_1932 17:23:51 32.25 91.17 53.27 67.84
n_1932 17:23:54 32.64 92.65 57.12 73.31
n_1932 17:23:57 35.38 90.81 54.77 74.67
n_1932 17:23:00 34.64 89.76 55.47 77.91
n_1932 17:24:03 36.29 89.38 57.82 63.93
n_1932 17:24:06 34.83 90.15 59.77 61.57
n_1932 17:24:09 38.68 92.46 49.42 59.38

22 International Journal of Intelligent Systems

load modeling, i.e., the average value of CPU and memory
utilization per unit time is used to approximate the load
value of containers, which can efectively reduce the real-
time load data processing delay but inevitably leads to the
degradation of prediction accuracy. Te second factor is the
range of model hyperparameters. Te second factor is that
the range of model hyperparameters does not completely
cover the whole parameter domain. Since it is a time-
consuming task to compare the model training efect of
each parameter combination, the hyperparameters of the
model are selected from a limited range of parameter

combinations, and the existence of globally optimal
hyperparameters outside this range may improve the ac-
curacy of the prediction model.

4.3.2. External Treats. Te external threat refers to the
diference between the experimental environment and the real
scenario, thus limiting the efectiveness of the proposed
method. In this paper, the proposed CSSLPM is experimentally
validated under the open-source cloud computing simulation
platform software CloudSim and the open-source benchmark

Predictive value - load value comparison test

Lo
ad

 d
eg

re
e

0.70

0.60

0.65

0.45

0.40

0.55

0.50

0 25 50 75
Time series

100 125 150

load balue
Predicted value of CNN-BIGRU-
ATTENTION
The predicted value of AMIRA
Predicted value of DBN
Predicted value of ONN_LSTM

Figure 17: Comparison of load prediction results for each model.

Table 12: Performance comparison of each forecast model.

Model MAE MAPE RMSE
ARIMA 0.7895 0.1673 1.2181
DBN 0.6534 0.1361 1.0618
CNN-LSTM 0.5957 0.11093 0.9839
CNN-BiGRU-Attention 0. 63 0.0973 0.8572
First, MAE, MAPE, and RMSE are the error assessment methods mentioned in the paper, and the smaller their values are, the better the prediction model is.
Bold values highlight the evaluation methods on which the model outperforms other models.

FFHS
Spread

MOPSO
CSSLPM

VM resource usage

VM 4VM 1 VM 5VM 2 VM 3
Server

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Lo
ad

 (%
)

Figure 18: Comparison of resource usage for each model.

International Journal of Intelligent Systems 23

system TrainTicket. Although our work has a more compre-
hensive experimental design, it lacks consideration of the real
industrial environment such as the heterogeneity in the con-
tainer cloud environment is not only composed of several
servers and the user access pressure of the real ticketing system
is not really simulated. We must admit that these diferences
between the experimental environment and the real scenario
do threaten the efectiveness of the CSSLPM.

5. Conclusion

Tis paper proposes a load prediction method and container
scheduling strategy for container cloud environments. Te
proposed method uses a CNN-BiGRU-Attention model to
improve the accuracy of load prediction and achieve load
balancing and resource optimization. However, there are some
limitations, such as inaccurate load modeling and insufcient
accuracy in fexible scheduling, which need to be addressed in
future research. Additionally, real industrial environment
validation is needed since the proposed method has only been
experimentally validated in simulation platforms.

Data Availability

Te data used to support the fndings of this study have been
deposited in the Alibaba Cluster Data repository (https://github.
com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_
2018.md).

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China (grant nos. U21B2015, 61972300, and
62202357) and Young Talent Fund of Association for Sci-
ence and Technology in Shaanxi (grant no. 20220113).

References

[1] Canonical Ltd, “Linux containers,” 2023, https://
linuxcontainers.org/.

[2] H. Chen, “Cloud computing ecosystem report,” pp. 1–244,
2022, https://comptiacdn.azureedge.net/webcontent/docs/def
ault-source/research-reports/research-brief-comptia-cloud-e
cosystem.pdf?sfvrsn=2495b5a7_2.

[3] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “Cloudsim: a toolkit for modeling and simu-
lation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, pp. 23–50, 2011.

[4] D. Kakadia, Apache Mesos Essentials, Packt Publishing, Bir-
mingham, UK, 2015.

[5] D. Vohra and D. Vohra, Kubernetes on google cloud platform,
pp. 49–87, Kubernetes Management Design Patterns: With
Docker, CoreOS Linux, and Other Platforms, Apress, Ber-
keley, CA, USA, 2017.

[6] K. Ye, Y. Kou, C. Lu, Y. Wang, and C.-Z. Xu, “Modeling
application performance in docker containers using machine
learning techniques,” in Proceedings of the 2018 IEEE 24th
International Conference on Parallel and Distributed Systems
(ICPADS), pp. 1–6, IEEE, Singapore, December 2018.

[7] D. Zhang, B.-H. Yan, Z. Feng, C. Zhang, and Y.-X. Wang,
“Container oriented job scheduling using linear programming
model,” in Proceedings of the 2017 3rd International Con-
ference on Information Management (ICIM), pp. 174–180,
IEEE, Chengdu, China, April 2017.

[8] Y. Mao, J. Oak, P. Anthony, B. Daniel, H. Tao, and H. Peizhao,
“Draps: dynamic and resource-aware placement scheme for
docker containers in a heterogeneous cluster,” in Proceedings
of the 2017 IEEE 36th International Performance Computing
and Communications Conference (IPCCC), pp. 1–8, IEEE, San
Diego, CA, USA, December 2017.

[9] C. Kaewkasi and K. Chuenmuneewong, “Improvement of
container scheduling for docker using ant colony optimiza-
tion,” in Proceedings of the 2017 9th international conference
on knowledge and smart technology (KST), pp. 254–259, IEEE,
Chonburi, Tailand, March 2017.

[10] L. Tan and H. Tao, “An improved kubernetes scheduling
algorithm based on load balancing,” Journal of Chengdu
University of Information Technology, vol. 34, no. 3,
pp. 228–231, 2019.

[11] S. Nanda and T. J. Hacker, “Racc: resource-aware container
consolidation using a deep learning approach,” in Proceedings
of the First Workshop on Machine Learning for Computing
Systems, pp. 1–5, West Lafayette, IN, USA, May 2018.

[12] D. Xue, F. Long, and G. Chen, “Fault prediction algorithm
based on particle flter and linear autoregressive models,”
Computer technology and development, vol. 21, no. 11,
pp. 133–136, 2011.

[13] Q. Wei, F. Zhang, and Y. Zhao, “Load balancing algorithm
based on load weights,” Computer Application Research,
vol. 29, no. 12, pp. 4711–4713, 2012.

[14] M. A. S. Monfared, R. Ghandali, and M. Esmaeili, “A new
adaptive exponential smoothing method for non-stationary
time series with level shifts,” Journal of industrial engineering
international, vol. 10, no. 4, pp. 209–216, 2014.

[15] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya,
“Workload prediction using arima model and its impact on
cloud applications’ qos,” IEEE transactions on cloud com-
puting, vol. 3, no. 4, pp. 449–458, 2015.

Number of scaling
Number of migrations

FFHS CSSLPMMOPSOSpread
Scheduling algorithm

Node creation

0

5

10

15

20

25

30

35

am
ou

nt

Figure 19: Comparison of number of schedules for each model.

24 International Journal of Intelligent Systems

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://linuxcontainers.org/
https://linuxcontainers.org/
https://comptiacdn.azureedge.net/webcontent/docs/default-source/research-reports/research-brief-comptia-cloud-ecosystem.pdf?sfvrsn=2495b5a7_2
https://comptiacdn.azureedge.net/webcontent/docs/default-source/research-reports/research-brief-comptia-cloud-ecosystem.pdf?sfvrsn=2495b5a7_2
https://comptiacdn.azureedge.net/webcontent/docs/default-source/research-reports/research-brief-comptia-cloud-ecosystem.pdf?sfvrsn=2495b5a7_2

[16] Q. Chen and H. Fang, “A prediction method for mid-long
term load forecasting using big data technology,” Journal of
Wuhan University (Natural Science Edition), vol. 50, no. 2,
pp. 239–244, 2017.

[17] Y. Wang, Y. Li, and Y. Liao, “Dailyload curve
forecastingbyusingk-modes clustering algorithm under the
framework of mapreduce,” Computer and Digital Engineering,
vol. 44, no. 2, pp. 230–232, 2016.

[18] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,”
Future Generation Computer Systems, vol. 28, no. 1,
pp. 155–162, 2012.

[19] F. Qiu, B. Zhang, and J. Guo, “A deep learning approach for
vm workload prediction in the cloud,” in Proceedings of the
2016 17th IEEE/ACIS International Conference on Software
Engineering, Artifcial Intelligence, Networking and Parallel/
Distributed Computing (SNPD), pp. 319–324, IEEE, Shanghai,
China, May 2016.

[20] A. S. Ashraf, “Automatic cloud resource scaling algorithm
based on long short-term memory recurrent neural network,”
2017, https://arxiv.org/ftp/arxiv/papers/1701/1701.03295.pdf.

[21] J. Guo, J. Wu, J. Na, and B. Zhang, “A type-aware workload
prediction strategy for non-stationary cloud service,” in
Proceedings of the 2017 IEEE 10th Conference on Service-
Oriented Computing and Applications (SOCA), pp. 98–103,
IEEE, Kanazawa, Japan, November 2017.

[22] A. Peter, “Dinda. “Te statistical properties of host load”,” in
Languages, Compilers, and Run-Time Systems for Scalable
Computers, D. R. O’Hallaron, Ed., pp. 319–334, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998.

[23] T. Inagaki, Y. Ueda, and M. Ohara, “Container management
as emerging workload for operating systems,” in Proceedings
of the 2016 IEEE International Symposium on Workload
Characterization (IISWC), pp. 1–10, Providence, RI, USA,
September 2016.

[24] W. Shang, D. Liu, L. Zhu, and D. Feng, “An improved dy-
namic load-balancing model,” in Proceedings of the 2016 4th
Intl Conf on Applied Computing and Information Technology/
3rd Intl Conf on Computational Science/Intelligence and
Applied Informatics/1st Intl Conf on Big Data, Cloud Com-
puting, Data Science & Engineering (ACIT-CSII-BCD),
pp. 337–341, Las Vegas, NV, USA, December 2016.

[25] Z.-J. Hu, “A qos-oriented resource availability evaluation
model in computational grids,” 2010, https://www.
sciencedirect.com/science/article/abs/pii/S0164121215001715.

[26] L. Y. Zuo, Z. B. Cao, and S. B. Dong, “Virtual resource
evaluation model based on entropy optimized and dynamic
weighted in cloud computing,” Journal of Software, vol. 24,
no. 8, pp. 1937–1946, 2014.

[27] M. Tao, S. Dong, and L. Zhang, “A multi-strategy collabo-
rative prediction model for the runtime of online tasks in
computing cluster/grid,” Cluster Computing, vol. 14, no. 2,
pp. 199–210, 2011.

[28] K. Wang, C. Wu, Y. Yao et al., “Association between socio-
economic factors and the risk of overweight and obesity
among Chinese adults: a retrospective cross-sectional study
from the China Health and Nutrition Survey,” Global health
research and policy, vol. 7, no. 1, pp. 41–49, 2022.

[29] L. Luo, “Research on container elastic scaling technology
based on load prediction,” M.Sc. thesis, Wuhan Textile
University, Wuhan, China, 2021.

[30] Y. Guo, Research and implementation of docker container
scheduling strategy in microservice environment, Ph.D. thesis,

Beijing University of Posts and Telecommunications, Beijing,
China, 2018.

[31] S. Wu, “Research on docker container scheduling optimiza-
tion method,” M.Sc. thesis, Zhengzhou University, Zhengz-
hou, China, 2019.

[32] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, omega, and kubernetes,” Communications of the ACM,
vol. 59, no. 5, pp. 50–57, 2016.

[33] Y. Sun, B. Jacobus van Wyk, and Z. Wang, “A new multi-
swarm multi-objective particle swarm optimization based on
pareto front set,” in Proceedings of the Advanced Intelligent
Computing Teories and Applications. With Aspects of Arti-
fcial Intelligence: 7th International Conference, ICIC 2011,
vol. 7, pp. 203–210, Springer, Zhengzhou, China, August 2011.

[34] S.-H. Kim, G. Lee, I. Hong, Y.-J. Kim, and D. Kim, “New
potential functions for multi robot path planning: swarm or
spread,” in Proceedings of the 2010 Te 2nd International
Conference on Computer and Automation Engineering
(ICCAE), vol. 2, pp. 557–561, IEEE, Singapore, April 2010.

International Journal of Intelligent Systems 25

https://arxiv.org/ftp/arxiv/papers/1701/1701.03295.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0164121215001715
https://www.sciencedirect.com/science/article/abs/pii/S0164121215001715

