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Transformer can build global relationships between pixels and enhance pixel representation. Te existing methods only establish
the context relationship from the whole image but will reduce the representation between the category areas. In addition, the
existing methods based on the transformer self-attention do not combine the advantages of convolution and transformer,
resulting in more calculation parameters of the model. In order to solve these two problems, this paper proposes to enhance the
segmentation accuracy and performance by enhancing the relationship between image-level regions and the relationship between
semantic level pixels. First, we design a refned division feature (RDF) module to enhance the channel representation and thus the
same locale representation. Second, we design a transformer based on convolution (CTrans), which frst computes the relationship
between similar pixels and enhances the pixel representation. Ten, the feature map is compressed and enriched to reduce the
computational load of CTrans, and fnally the relationship between pixels is established from a global perspective. We design
a refned division feature module based on transformer for semantic image segmentation (RFT) model combining RDF and
CTrans module. Te experimental results show that the mIoU result of our method in Cityscapes test data set is 81.9%, and the
model parameter is 64.6M, which is superior to other methods in terms of data. In addition, we conducted visualization ex-
periments with Cityscapes and Pascal voc 2012 datasets with other methods, and the results showed that our method was superior
to other methods.

1. Introduction

In recent years, deep learning computer vision has been
rapidly developed in the felds of semantic analysis [1], image
repair [2, 3], object tracking [4], super resolution re-
construction [5], and object detection [6] and has been
favored by many researchers. Semantic segmentation is
a fundamental technique in computer vision. Te role of
semantic segmentation is to predict each category for each
pixel and learn the semantic and spatial information of each
class, for example, the locations and classes of objects. Se-
mantic segmentation generally deals with the issue of
classifying pixels at the pixel scale, and it typically needs rich
contextual semantic information. With the advancement of
convolutional neural networks (CNNs), particularly a fully
convolutional network (FCN) [1], many researchers have
started to focus on the study of multiscale contextual

features for semantic segmentation, for example, SegNet [7],
DeconvNet [8], and the DeepLab series of articles [9–11].
DeepLabv3 [9] and DeepLabv3+ [10] use atrous convolution
with diferent hole rates to extract multiscale contextual
semantic information, which is not benefcial to dense
segmentation. DeepLabv3 excessively uses atrous convolu-
tion, which has generated a grid efect. Similarly, PSPNet
[11] uses a pyramid pooling block consisting of adaptive
average pooling at diferent scales to extract multiscale
contextual semantic information, which has the drawback of
not considering the relationship between pixel dots and the
neighboring pixel set. Since PSPNet pixels do not have rich
upper and lower information, SA-FFNet [12] proposes
VH-CAM and UC-PPM to improve the upper and lower
information of pixels. However, SA-FFNet uses pyramid
pooling to enter pyramid pooling of advanced feature maps,
which will inevitably cause some loss of efective
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information. In addition, multiple UC-PPM models will be
used to compound model structures. RELAXNet [13] pro-
poses that AGF module uses maximum pooling and average
pooling, and the resulting spatial weights are not distin-
guishable. After being multiplied with feature maps, feature
maps cannot be efectively distinguished.

EncNet [14] uses a nonadaptive method to assemble
contextual semantic information and uses a homogeneous
context extraction process for all pixels, which does not meet
the need for diferent context dependencies for each pixel.

Nowadays, convolutional neural network (CNN) se-
mantic segmentation has been widely used in various do-
mains, such as MultiNet for autonomous vehicle driving
[15], UNet3+ for medical image parsing [16], DSFPNet for
object detection [17], and image classifcation [18].

An attention mechanism has recently been integrated
into semantic segmentation networks, which counts the
similarity of adjacent features to obtain contextual semantic
information about pixels. For example, PSANet [19] ag-
gregates the contextual semantic information at each po-
sition by predicting the attentional feature map. ANNet [20]
improves semantic segmentation precision using long-
distance asymmetric dependencies between pixels and
neighboring pixels. A pixel-region relationship is calculated
using OCRNet [21] to improve pixel-region representation.
DANet [22] calculates pixel-to-pixel distances on feature
map channels and spatial locations to improve pixels’
presentation. DADCNet [23] uses the SE structure to learn
the relevant information of the feature maps between the
channels, so that the network attention is focused on the
useful feature maps.

Based on SA-FFNet, we used group convolution,
adaptive maximum pooling, and adaptive average pooling to
integrate more image and texture information into the
channel attention map and used the channel attention map
to update each adjacent channel’s feature map. In addition,
we used two fully connected layers for the feature maps. Te
two fully connected layers not only efectively combine the
linear information between the channel feature maps but
also can establish the information interaction between the
channel feature maps.

With the advancement of computer technology and
CNNs, automatic end-to-end segmentation is now possible.
Small objects, such as pedestrians, trafc signals, and trafc
signs, can be segmented more efciently through the ac-
curate segmentation of object regions from images. A
network has fner spatial information at the lower levels, but
its semantic coherence is poor. Feature maps at the high-
level of the network provide consistent semantic in-
formation, but their spatial information is coarse. To address
this problem, literature [24] took advantage of color features
and edge features to improve the face tracking reliability.
DFNet [25] adopts a V-shaped structure instead of
a U-shaped structure to capture multiscale contextual se-
mantic information. An SFS and FFF module is proposed by
FSN [26] to extract important features and merge them
adaptively.

In a refned division feature (RDF) block, we generated
a channel attention matrix to distinguish the importance of

feature channels inspired by DFNet and FSN [26]. Feature
maps extracted using conventional CNNs gradually decrease
in resolution, and the perceptual feld is limited to global
information and long-range pixel dependencies.

Since the introduction of the transformer [27] in
computer vision, semantic segmentation has improved
dramatically. Transformer is capable of capturing global
information; it can compute dynamic weights between
global pixels, and it can adapt dynamically to diferent input
images. Tese properties are very useful for obtaining high-
level semantic information, but they are only helpful if there
are sufcient data to support the transformer.

Furthermore, the transformer cannot deal with fne
details in the images. Tis is particularly true for small
targets at long distances in Cityscapes that containmultiscale
targets. CMT [28] solved this problem by combining deep
convolution with the transformer, where deep convolution
extracted local features to compress channels and the
transformer established global interdependencies between
the patches. Convolution and transformer were used by
UniForme [29] to extract global and local information,
which efectively addresses the problems of redundancy and
dependency in the learning process of the networks.

Our RDF module not only distinguishes feature map
information from feature maps adaptively and removes
redundant information but also establishes long-distance
links to each channel’s feature maps. Furthermore, we
proposed a module called the CTrans block, which includes
depth-separable convolution, cross-attention, and self-
attention. First, RDF module processes input feature
maps in parallel to establish cross-channel interactions to
produce feature maps with diferent resolutions and depths;
then, instead of using the multilayer perceptron (MLP) in
the transformer, depth-separable convolution is used to
extract multiscale spatial information. Finally, global feature
information is captured using the transformer attention.
Based on the number of parameters and accuracy of
RFTNet, we compared our network with some classical
networks. As shown in Figure 1, our network outperforms
other classical networks not only in terms of the number of
parameters but also in terms of segmentation accuracy.

For this paper, the main contributions are as follows.

(1) Because existing attention models do not consider
the dependencies between feature graph channels
from a macroscopic perspective, this paper proposes
refned division feature (RDF) module, which can
extract multiscale spatial information and establish
long-distance channel dependencies. RDF is very
fexible and scalable, and it can be applied to many
computer vision network architectures.

(2) For existing models, transformer self-attention is
used to establish long-distance dependence between
pixels to improve the accuracy of semantic seg-
mentation, which does not consider the advantages
of combining convolution and transformer. From
the micropoint of view, transformer based on con-
volution (CTrans) is proposed in this paper, which
can not only enhance pixel representation and enrich
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and reduce model computation but also establish
global relations between pixels.

(3) Combining RDF and CTrans, we proposed a se-
mantic segmentation model of RFT to improve the
accuracy and performance of semantic segmenta-
tion. Te proposed framework allows this paper to
achieve leading performance on segmentation-based
benchmarks, including Cityscapes and PASCAL
VOC 2012.

(4) For both PASCAL VOC 2012 and Cityscapes data,
we obtained outstanding results. We used a single
Tesla GPU V100 to develop our models. For PAS-
CAL VOC 2012, the input image resolution was
512× 512, and for Cityscapes, it was 512×1024.
Tere were eight input batches in PASCAL VOC
2012 and only four in Cityscapes.

2. Related Work

In this section, we briefy review the related work, such as
multiscale feature contextual information and convolution
combined with the transformer.

2.1. Multiscale Feature Contextual Information. To combine
semantic and representational information, an FCN adapts
the classifcation network into a fully CNN, but this ignores
high-resolution feature maps, which degrades the edge
information.

To maximize both representation and semantic in-
formation, some subsequent studies have been conducted,
which have shown improved feature information, which can
broadly be divided into two categories: the frst is the
“Encoder–Decoder style.” For example, SegNet uses an
encoder–decoder structure and maximizes pooling preser-
vation. Tis approach not only saves memory but also

increases segmentation speed and accuracy. MCRNet [30]
aims to use deep context to guide multistage fusion. Its
disadvantage is that in the case of deep convolutional neural
network ResNet, fusing feature maps of diferent stages will
cause model redundancy and slow speed. When the per-
ceptual feld is too small and the object is too large, mis-
segmentation can occur because the network ultimately does
not see the object. For example, CENet [31] proposes
a contextual integration network to achieve semantic seg-
mentation. Its disadvantage is that it requires high hardware
and software, and it is easy to cause overftting.

Furthermore, suppose that the object is too small and the
perceptual feld is too large. In this case, the network will see
additional backgrounds and redundant information,
resulting in misclassifcation, because the network will have
difculty judging the tiny object. For example, Zhang et al.
[32] proposed a method based on pyramidal consistency
learning to improve the accuracy of segmentation. Its dis-
advantage is that it requires large computing resources, and
the feature processing is not sufcient, which may lead to the
loss of some detailed information. CCTseg [33] uses the
prediction results obtained by DeepLabv3+. However,
DeepLabv3+ uses a feature map obtained by roughly 4 times
upsampling and fuses it with the feature map of the encoder,
which is easy to cause resolution loss and is not conducive to
semantic segmentation. To overcome this problem,
DeconvNet proposes a deep convolutional network based on
SegNet, where the encoders use VGG-16 convolutional
layers to learn and the decoders use deconvolution with
inverse pooling to upsample. RefneNet [34] and GCNet [35]
combine feature maps inherent in diferent stages of mul-
tiscale contexts, but they lack a consistent global context.

Te second style is called the “Backbone style,” where
DeepLabv2 uses atrous convolutions, using diferent sam-
pling scales and input features, to capture target and con-
textual semantic information at multiple levels. To solve the
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Figure 1: Comparison of the parameters and mIoU of our network and other classical networks on the dataset of Cityscapes.
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multiscale segmentation problem, DeepLabv3 developed
cascaded or parallel atrous convolutions and expanded
ASPP, achieving good results without requiring dense CRF
postprocessing. To extract multiscale contextual semantic
information, PSPNet incorporates information at diferent
scales into the PSP module. A self-attentive method is used
by OCNet [36] to learn pixel-to-pixel similarities; then, all
features are aggregated using a similarity attention graph to
approximate an object’s context. OCRNet enriches pixel-
region representations by computing pixel relationships
with the regions.Te spatial attention module of DANet and
the channel attention module are used to capture contextual
information to improve pixel representations, which im-
proves segmentation performance.

Te two methods mentioned above have two disad-
vantages. First, the afnity matrix is calculated by comparing
pixels with other pixels, but the contextual information
about a single pixel is minimal. Tus, the afnity matrix
obtained is unsatisfactory. In addition, these methods focus
on developing complex attention modules, which inevitably
involve more computations and cannot efectively establish
long-distance dependencies. To reduce the matrix compu-
tation complexity and efectively fuse global and local in-
formation, we consider improving the correlation between
afnity matrices and long-distance pixel dependencies. In
this study, we proposed two modules: RDF for obtaining
discriminative feature maps and CTrans for integrating
global and local information and establishing interpixel
relationships over long distances.

2.2. Combination of Convolution andTransformer. As CNNs
share weights and local felds of perception, they can ef-
fectively reduce the number of computational parameters
while extracting spatial details. Te translation invariance of
a CNN also enhances its generalization ability. Nonetheless,
the perceptual feld of CNNs is limited, so they cannot
capture global information and interdependencies between
pixels at a distance.

On the other hand, the transformer has strong abilities to
extract global information and expand the perceptual feld,
but it has two drawbacks: frst, it is challenging to train, and
second, it is not sensitive to fne details. To solve these
problems, subsequent researchers combined the advantages
of CNNs with those of the transformer. UniFormer uses both
CNNs and transformer to efectively solve the redundancy of
network learning as well as the long-distance interdependency
between the pixels. AMACF [37] combines self-attention
mechanism and convolutional network to extract global
and local information of feature maps, respectively. Tran-
sUNet [38] and TransBTS [39] combine transformer and
UNet [40] and apply them to the feld of medical image
segmentation and achieve very satisfactory segmentation
results, but their disadvantage is that they require a large
amount of training data and computing resources to train and
optimize models, so it is impossible not to be used in
resource-constrained and limited-number environments.
TranSiam [41] proposes a method of combining depthwise
separable convolution and transformer, which combines the
advantages of both and reduces the amount of calculation. Its

shortcoming is that it uses multihead attention, which makes
the model more complex and requires more computing re-
sources and time. Coatnet [42] proposes a combination of
convolution and attention, which can adapt to processing
images of various scales and improve the accuracy of seg-
mentation. Its disadvantage is that multiple convolution
kernels of diferent sizes are used, resulting in larger model
parameters, which easily lead to model overftting.

In addition, AMACF can adaptively distinguish the
importance of feature maps according to the weights gen-
erated by the self-attention mechanism and the convolu-
tional network, which makes the matrix operation simple.

Te conformer [43] uses a CNN to extract local features
and transformer to establish global relationships. Mobile-
Former [44] is used to extract local features at the pixel level
with efcient depthwise and pointwise convolution; by
combining convolution with the transformer, global in-
teraction is improved, and the number of randomly gen-
erated tokens is reduced. Several convolution kernels
frequently lead to very computationally intensive and ran-
dom image splits, so encoding patches become unstable
when using several convolution kernels. Echt [45] suggested
using a few convolutional kernels and transformers to en-
code patches to solve the problem of unstable network
training and improve the segmentation efects.

Te CTrans module in this study is based on the above
methods, and it comprises multilayer convolution, cross-
attention, and self-attention. As components in the CTrans
module, convolution is used to extract local features in the
early stages, cross-attention is used to improve the pixel
representation in the middle stages, and self-attention is
used to construct global contextual semantic information
about pixels in the later stages; fnally, local features are
combined with global features.

Trough convolution, local features are extracted further,
and the number of channels is reduced, resulting in dense
segmentation with rich contextual semantic information for
each pixel. CTrans combines the advantages of convolution
and transformer to capture global information and establish
long-distance interdependencies among the pixels.

3. Method

Tis study presents a segmentation model based on RFTNet
that combines the RDF and CTrans modules. First, we
describe RFTNet in Section 3.1; then, we introduce the RDF
and CTrans modules in Sections 3.2 and 3.3, respectively.

3.1. RFTNet. As shown in Figure 2, we briefy discussed
refned division features based on transformer for semantic
image segmentation (RFT).

First, we use ResNet101 to generate featuremaps of the ffth
stage. Next, we use the RDFmodule to identify the importance
of the feature maps, and we use the RDF module to integrate
the spatial information of feature maps and the channel in-
formation of feature maps into group feature maps to obtain
better information interaction in global and local channel
attention, which adaptively distinguishes channels according to
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their importance. We use the CTrans module to extract the
spatial information about the feature maps, and we use the
similarity between pixel points to improve pixel representa-
tions. Finally, we use the CTrans module to extract the spatial
details of feature maps, improve the pixel representation, and
establish the global information relationships, and we use the
FCN Head [1] upsampling method to obtain the same reso-
lution feature maps for the multiscale feature maps.

3.2. Refned Division Features Module. According to pre-
vious research [1–14, 46, 47], fusing multiscale features can
improve semantic segmentation in images with objects of
diferent sizes. ResNet101 [48] deals with multiscale features
of varying resolutions in each stage of a feature map. Low-
resolution feature maps contain more semantic information
than high-resolution feature maps, but high-resolution
feature maps contain more detailed spatial information.
In addition, large-scale objects contain weak semantic in-
formation after multiple downsampling because they have
a limited perceptual feld, whereas small objects contain
clearer location information.

As shown in Figure 3, without increasing the computa-
tional cost, group convolution with diferent kernel sizes
extracts multiscale feature map information with multiple
branches.Terefore, feature maps of diferent resolutions and
depths can be obtained. For each branch, group convolution
can learn independent multiscale spatial information, and the
RDF approach involves incorporating adaptive global average
pooling (GAP) and global max pooling (GMP) modules
within the framework of the RDF (residual dense feature)
module. Te primary objective is to efectively encode the
pertinent information from the feature map into the channel
attention map. Tis enables the RDF module to aptly dis-
criminate and diferentiate features across varying scales or
dimensions, thus enhancing its ability to accommodate
multiscale characteristics present within the data. A channel
attention mechanism can assign diferent weights to each
feature in a feature map, thereby generating more in-
formation. According to SAFFN, each pixel point in a feature
map lacks sufcient contextual semantic information; thus,
SAFFN uses irregular convolutions for channel compression,
obtaining pixel points with robust contextual semantics.
RELAXNet suggests that GMP can extract salient features
from the feature maps.

As shown in Figure 3, in our approach, we extracted the
spatial information from the input feature map using the
multigroup convolution.

A feature map of RDF is given as follows:

f ∈ R
C×H×W

, (1)

where f represents the feature map output by the backbone
network and C,H, andW represent the number of channels,
height, and width of the feature map, respectively.

After the group convolution operation, the channel
dimension of C is divided into C/4 in the RDF module.
Trough the group convolution method, input feature maps
are processed simultaneously, and the resolutions of dif-
ferent depths are compressed, resulting in richer feature map
information and efective extraction of spatial information
from each channel of the feature maps. Te spatial in-
formation about these channels can also be linked via group
convolution for information interaction across channels.

We combine adaptive maximum pooling and adaptive
global average pooling to extract feature map information.
Adaptive global average pooling encodes the spatial in-
formation of a feature map into a channel attention map,
whereas maximum pooling removes redundant data to
reduce computation costs and alleviate the overftting of the
network. We added two fully connected layers, a nonlinear
activation function (ReLU) and a softmax function, to the
pooled feature map, following EPSANet [49].

Trough these two fully connected layers, we can better
combine the linear information between channels and im-
prove the interaction between the channels. Next, the
softmax function converts fractional values in each channel
into probability values and multiplies those probability
values by the feature maps in each channel so that in-
formation can be extracted efciently. Te attention weights
of the RDF module channels are calculated as follows:

φ � Convi gu, kv( ,

Gi � η φ Bi( ( (  + μ φ Bi( ( ( ( ,

Bi � σ F2δ F1 Gi( ( ( ,

(2)

where Gi ∈ RC/4×H×W, Bi ∈ RDi×1×1, GAP stands for the
adaptive global average pooling, GMP stands for the
adaptive global max pooling, Gi represents the feature maps,

RDF CTrans

RDF Refined division features

CTrans Combining Convolution and Transformer modules

Image Predicted Image

Stage3 Stage4 Stage5

F1 F2 F3 F4

Figure 2: Overview of RFT’s general frame diagram.
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and φ stands for the phase i group convolution, where the
group size is gu and the convolution kernel size is kv. In this
block, F1 represents the frst fully connected layer, F2
represents the second fully connected layer, δ represents the
ReLU activation function, σ represents the softmax function,
and Bi represents the channel attention map. Te sigmoid
and softmax activation functions are as follows:

Sigmoid xi(  �
1

1 + e
− Di

,

Softmax xi(  �
e

Di


n
i�1e

Di,

(3)

where Di denotes the i-th channel weight value. Finally, the
output feature map is computed as follows:

Ei � Biφ Bi( , (4)

where Ei ∈ RC/4×H×W denotes the feature map output of the
RDF module at i-th branch (i � 1, 2, 3 and 4).

3.3. Combining Convolution and Transformer Modules.
Tis section describes the combination of convolution and
transformer (CTrans) modules in detail. Figure 4 illustrates
the structure of the CTrans block. It comprises depthwise
convolution, cross-attention [50], and self-attention. Te
depth-separable convolution is used to extract spatial in-
formation from a feature map and to improve the in-
teractions between the feature map information on each
channel. Trough the depth-separable convolution, the
convolutional properties of the transformer are improved
while reducing the computational cost. Te CTrans module
captures both the global and spatial details of a feature map.
By replacing the transform in the input of the transformer

with depth-separable convolution according to CMT, we can
reduce the computational cost of encoding features while
maintaining high accuracy. Terefore, the CTrans module
can extract multiscale features and reduce the independence
of pixels on diferent channels by associating pixels with each
other. CTrans divides the feature extraction process into two
phases: local feature extraction and long-range in-
terdependency creation, i.e., a phase for establishing global
information relationships. Trough multilayer convolution,
the local feature extraction phase not only extracts more
pixel space information but also reduces information loss.
As shown in Figure 4, the input feature map for the CTrans
module is F∗ϵRC∗×H∗×W∗. In the CTrans module, considering
that the feature maps for Q1 and K1 branches are highly
correlated, we can improve the similarities of V1 by
establishing relationships between them. We use cross-
attention to calculate the similarity between Q1 and K1 to
produce the spatial attention map; then, we apply the spatial
attention map to weight V1.

Te calculation of cross-attention is as follows:

CAttn � Softmax
Q1K1

T

���
dk1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠V1, (5)

where CAttn ∈ RC∗×H∗×W∗ denotes the cross-attentive out-
put feature map, K2, Q2 ∈ RN×dk2 , and N � H∗ × W∗ denotes
the number of pixels in the feature map.

In the second step, we channel-compressed the feature
maps output by depth-separable convolution and extracted
the spatial details. Depth-separable convolution is calculated
as follows:

I � DepthConv(CAttn), (6)
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Figure 3: Detailed structure of the RDF block.
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where DepthConv refers to depth-separable convolution,
including point-by-point and depth-by-depth convolutions,
I ∈ RC∗∗×H∗∗×W∗∗, C∗∗ � C∗/n, H∗∗ <<H∗, and W∗∗ <<W∗.
Te input feature map is fltered by depth-by-depth con-
volution, and the input feature map channels are integrated
by point-by-point convolution.

Finally, we used self-attention to establish the correlation
between global pixels. CTrans combines the feature maps of
high-level and low-level stages. To generate segmentation
results, we fed the fused features into a classifer. We
computed the inner product of Q2 and K2 through self-
attention and multiply on the V2 branch to establish a global
pixel relationship. We then fused the output feature map
with the feature map Q2 of the lower stage of the CTrans
block to refne the segmentation.

Te calculation of self-attention is as follows:

SAttn � Softmax
Q2K2

T

���
dk2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠V2,

T � cat SAttn, Q2( ,

(7)

where SAttn ∈ RC∗∗×H∗∗×W∗∗ denotes the self-attentive output
featuremap,K2, Q2 ∈ RN×dk2 , andN � H∗∗ × W∗∗ denotes the
number of pixels in the feature map. We stack self-attentive
output featuremaps and the shallow featuremapsQ2 to produce
robust feature maps that contain both spatial information and
contextual semantics.We stack the featuremap output using the
CTrans module and then input them to the category classifer.

Y � fcnclass(T), (8)

where T represents the feature map output by the CTrans
module at each stage and fcnclass represents the classifer.
Y ∈RK×H×W represents the output result map, and K, H, and
W represent the number of feature map channels, height,
and width, respectively.

4. Experiments

4.1. Datasets. Our approach is evaluated with two primary
datasets, PASCAL VOC 2012 [51] and Cityscapes [52]. PAS-
CAL VOC 2012 is a comprehensive scene dataset containing
2,913 images with 20 categories. Of the 2,913 images, 1,464 are
used for training, 1,449 for validation, and 1,456 for testing.
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attention

Self
attention C

Depthwise
Conv

Depthwise
Conv

Depthwise
Conv 1 × 1Conv

... ...

1 × 1Conv

Depthwise
Conv

C *

n

C *

n C *

n

C *

n

C *

n

C *

n

C *

n
C *

n

C *

n

F *
K1

Q1

V1

K2

Q2

V2

Figure 4: CTrans framework diagram comprising depth-separable convolution, cross-attention, and self-attention.
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Te Cityscapes dataset contains 5,000 high-quality pixel
level annotated images of urban driving scenes, categorized
into 30 categories. Of the 5,000 images, 2,975 were used for
training, 500 for evaluation, and 1,525 for testing. Te
images were taken in 50 diferent cities. Tis dataset also
contains 19,998 coarsely annotated images; here, we only
used fnely labeled images for 19 categories.

4.2. Implementation Details. To train the model on the
Cityscapes dataset, we used stochastic gradient descent
(SGD) [53] using a poly-learning rate decay strategy, where
the initial learning rate is multiplied by
(1 − iter/max iter)power. For training and validation on the
Cityscapes dataset, we used a 0.0025 learning rate, 0.9 weight
decay, and 0.0005 momentum.

During the training and validation phases, we cropped
the original images to 1024× 512 for Cityscapes and
512× 512 for PASCAL VOC 2012. Te input image is
randomly scaled from 0.5 to 2 and fipped horizontally
during training for data augmentation. Our backbone
network is ResNet101, pretrained on the ImageNet dataset
[54]. For the PASCAL VOC 2012 and Cityscapes datasets,
the batch sizes were 8 and 4 and the training epochs were 350
and 400, respectively. According to PSPNet, our models are
optimized using two cross-entropy losses. Te frst loss
function was applied to the output of the fourth stage of
ResNet101 and the second to the model’s output. Terefore,
the total loss function is as follows:

l � λlmodel + lbackbonestage4, (9)

where lbackbonestage4 indicates the loss function at the output of
the fourth stage of the backbone and lmodel represents the loss
function at the output of our model. λ is set to 0.4.

4.2.1. Evaluation Metrics. In this paper, we use pixel ac-
curacy (PA), intersection over union (IoU), and the mean of
IoU (mIoU) as our evaluation metrics. Teir calculations are
as follows:

PA �


k
i�0 Pii


k
i�0 

k
j�0 pij

,

IoU �
pii


k
j�0 pij + 

k
j�0 pji − pii

, i � 0, 1, 2 . . . k,

mIoU �
1

K + 1


k

i�0

pii


k
j�0 pij + 

k
j�0 pji − pii

,

(10)

where PA represents the ratio of correctly identifed pixels to
the total number of pixels. IoU, for each class, is calculated as
the intersection and concatenation of true and predicted
values. mIoU is used to calculate this indicator, frst calculate
the IoU for each category and then calculate the average.

If there are k+ 1 classes, pij represents the number of
pixels initially in class i but are predicted to be in class j.
Terefore, Pii is the predicted true number and pij andpji

denote false positive and false negative, respectively.

4.3. Ablation Study. In this section, we conduct ablation
experiments to verify the efectiveness of our method. We
validate the efectiveness of the RDF and CTrans modules on
the PASCAL VOC 2012 and Cityscapes datasets, re-
spectively, through ablation experiments.

4.3.1. RDF Module. According to Figure 3, the RDF module
can adaptively select features based on various channels. In the
group convolution module, feature map channels are com-
pressed to produce compressed feature maps of various spatial
information scales. Adaptive maximum pooling can be used to
extract salient feature information, whereas GAP can reduce
the domain size constraint to preserve more information. An
adaptive maximum pool can highlight the unique perfor-
mance of some features, whereas an average pool can conserve
more efective characteristics. As a result, combining adaptive
global averaging and adaptive maximum pooling can provide
a rich set of information. Te sigmoid and softmax functions
generate channel attention values, and the softmax function
establishes long-run channel dependency and calibrates
channel attention weights. In order to prove the infuence of
adaptive average pooling, adaptivemaximumpooling, sigmoid
function, and softmax function on experimental results, we
successively add adaptive average pooling, adaptive maximum
pooling, sigmoid function, and softmax function to the RDF
module. Table 1 shows the experimental results. In the frst
row, GAP combined with the sigmoid function achieves an
mIoU of 78.11%, but in the second row, GAP combined with
the softmax function achieves an mIoU of 78.72%, which is an
improvement of 0.61 compared with the combination with the
sigmoid function. In the sixth row, after we included GMP, the
corresponding metric reaches 78.88%, which is an improve-
ment of 0.16% compared with the previous value of 78.72% in
the second row. Accordingly, GMP improves performance by
0.16%.Te Cityscapes dataset has 19 categories. Each category
may appear in diferent scenes, so we embed information
extracted from feature maps using adaptive maximum pooling
and adaptive average pooling in the channel attention map.
Channel attention map assigned diferent weights to each
feature map on the channel, and improved feature diferen-
tiation can improve segmentation accuracy.

We verify the performance of the CTrans module in the
network using varying convolution kernel group sizes and
convolution kernel sizes. We initially set the convolution kernel
group size and the convolution kernel size to 1, 2, 4, and 8 and 1,
3, 5, and 7, respectively, achieving an mIoU of 77.95%. Next, we
set the convolution kernel group size and convolution kernel size
to 1, 4, 8, and 16 and 1, 3, 7, and 9, respectively.Tis achieves an
mIoU of up to 78.88%, an improvement of 0.93% compared
with 77.95%.Ten, this article sets the convolution kernel group
size to 1, 2, 2, and 8 and 1, 4, 4, and 16, respectively, and the
corresponding convolution kernel size is set to 1, 4, 4, and 16 and
1, 3, 3, and 9, respectively.TeobtainedmIoU is 77.76 and 77.62,
respectively. Considering the above data, we selected 1, 4, 8, and
16 and 1, 3, 7, and 9 as the parameters of the model.

Te metric values decrease as the group size and con-
volution kernel size increase, as shown in Table 2. Using
multiple convolutional groups can increase the speed of
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model training by allowing the model to be trained in parallel
simultaneously. However, training models in parallel and
optimizing them with SGD can lead to slow convergence and
poor accuracy depending on the input image batch size. To
fully exploit multiscale information from the feature map, the
group size and convolution kernel size must be appropriately
increased. Table 2 shows that when we set the group size and
convolution kernel size to 1, 4, 8, and 16 and 1, 3, 7, and 9,
respectively, the model is optimal.

In the CTrans block, we verify the combination of
convolution and transformer to improve the model per-
formance. Diferent feature maps on diferent channels have
interrelated information, so we compute the similarity of the
feature maps on two branches to weight the feature maps on
the third branch. In addition, we embed convolution in the
transformer, enabling the CTrans module to extract spatial
information as well as build global information.

We conduct ablation experiments to accurately verify the
efect of embedding convolution. Table 3 shows that the
experimental results using depthwise conv embedded in the
transformer is 78.88%, and the experimental results using
the original transformer is 78.66% with 0.22% performance
improvement. Te experimental results are superior to the
results obtained when depthwise conv is used instead of the
MLP linear projection layer. Tus, convolution can extract
local information and spatial location.

4.3.2. CTrans Block. Te multilayer perceptron (MLP) only
has the function of linear mapping and has no feature ex-
traction function, so it is not sensitive to spatial details.
According to the experimental results, depthwise conv
signifcantly improves the model results compared with the
linear projection by MLP. We used ResNet50 as the back-
bone network and observed the efect of the two modules on
the network gain to evaluate the efectiveness of the cross-

attention and self-attention modules. Table 4 shows that
when using only cross-attention and self-attention, an mIoU
of 78.62% and 78.74% are obtained, respectively, indicating
that self-attention is 0.12% more efective than cross-
attention. Combining the two attention mechanisms ach-
ieves an mIoU of 78.88%, which is 0.14% higher than that
when only self-attention is used. Multiscaling and horizontal
fipping are further applied to the Cityscapes dataset, which
achieved an mIoU of 79.31% and 79.56%, respectively.
Terefore, the more data there are, the more efective the
transformer is.

To fully demonstrate the efectiveness of the CTrans
module, we compared it with OCRNet’s object contextual
representation (OCR) module [23]. As shown in Table 5,
CTrans segmentation is 0.12% higher than OCR. We visu-
alized the segmentation graphs for the CTrans and OCR
modules in Figure 5. In the third column of the frst row, the
edge of the wine bottle is missing, but our segmentation
result is complete. Te human leg in the second row and
third column is segmented into a horse, the middle of the cat
in the third row and third column is segmented into diferent
classes, and a cow in the fourth row and third column is
segmented into a horse. As mentioned above, this problem is
called the inconsistency problem within a class. To address
this issue, we designed the RDF module to efectively handle
the intraclass inconsistency issue. Furthermore, we designed
the CTrans module to further mitigate intraclass in-
consistency. Similarly, the fourth row’s third column of cows
is mispredicted because of a lack of contextual semantic.

In contrast, the above issue is nonexistent in CTrans
segmentation. As shown in Table 5, despite having 6.8 more
parameters than OCR, CTrans has a 0.12% higher mIoU.

(1) Combining RDF and CTrans Modules. We cascaded the
CTrans and RDFmodules as RFTnetworks to obtain superior
segmentation results. Te CTrans module is composed of
a depth-separable convolution module, a cross-attention
module, a self-attention module, and an FCN Head [1]. In
addition, we replaced the transformer’s MLP with depth-
separable convolution so that the transformer can construct
global information and convolutional features. To demon-
strate the efects of the two modules, diferent experimental
settings (Table 6) were used to show that adding the RDF and
CTrans modules improved semantic segmentation. Com-
pared with the dilated FCN, the RDFmodule improves mIoU
by 6.36% and the CTrans module improves mIoU by 6.67%.
When both modules are used, semantic segmentation yields
a 78.88% improvement. Te results indicate that our method
improves semantic segmentation very efectively.

Table 2: Variations in convolutional group size and convolutional
kernel size in experiments.

Backbone Kernel size Group size mIoU (%)
ResNet50 1, 3, 5, 7 1, 2, 4, 8 77.95
ResNet50 1, 3, 7, 9 1, 4, 8, 16 78.88
ResNet50 1, 3, 3, 5 1, 2, 2, 8 77.76
ResNet50 1, 3, 3, 9 1, 4, 4, 16 77.62
Bold indicates that the highest results are obtained when we choose the
appropriate kernel size and group size.

Table 3: Experimental comparison between depthwise conv and
MLP embedded in the input of transformer.

Backbone Transformer based on
depthwise conv

Transformer
based on MLP mIoU (%)

ResNet50 ✓ 78.88
ResNet50 ✓ 78.66
Bold indicates that the highest results are obtained when we choose the
transformer based on depthwise conv.

Table 1: Te ablation experiments are conducted on the validation
set of Cityscapes in the RDF module to verify the adaptive global
average pooling (GAP), adaptive global maximum pooling (GMP),
and normalization functions, sigmoid and softmax, respectively.
Te ablation experiments use ResNet50 as the backbone network.

GAP GMP Sigmoid Softmax mIoU (%)
✓ ✓ 78.11
✓ ✓ 78.72

✓ ✓ 78.13
✓ ✓ 78.02

✓ ✓ ✓ 78.76
✓ ✓ ✓ 78.88
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For further verifcation, we visualized the segmentation
maps of the dilated FCN, RDF, and CTransmodules. As shown
in Figure 6, the pole in the fourth column of the frst row has
a limited number of texture features, so the RDF module is
introduced to improve feature diferentiation; then, the CTrans
module is used to improve pixel-region representations.
Pavement and grass sections of the second and third rows of
the fourth column are divided into other categories in the RDF

block. In the CTrans module, the same problem exists as in the
RDF module. Tis is known as intraclass inconsistency. Tis
paper combines RDF and CTrans modules to solve this
problem. Te RDF block can extract important information
and create information interactions between the channels,
whereas the CTrans module improves the pixel representation
and creates global pixel relationships based on similar feature
maps, which avoids the problem of intraclass inconsistency.

Table 4: Ablation experiments are conducted for self-attention and cross-attention; then, random fipping and multiscaling are applied to
improve the efectiveness of the network.

Backbone RDF and
GC and DC Cross-attention Self-attention MS (0.75,

1, 1.25) FH mIoU

ResNet50 ✓ ✓ 78.62
ResNet50 ✓ ✓ 78.74
ResNet50 ✓ ✓ ✓ 78.88
ResNet50 ✓ ✓ ✓ ✓ 79.31
ResNet50 ✓ ✓ ✓ ✓ ✓ 79.56
MS denotes multiscaling, FH denotes fip horizontal, RDF denotes the refned division features, GC denotes group convolution, and DC denotes deep
separation convolution.

Table 5: Comparative ablation experiments on the Cityscapes for the CTrans and OCR modules.

Method Backbone mIoU Parameters (M)
OCR ResNet50 78.76 10.5
CTrans (ours) ResNet50 78.88 17.3

(a) (b) (c) (d)

Figure 5: Visual comparison of segmentation graphs on the PASCAL VOC 2012 validation set; from left to right: (a) image, (b) ground
truth, (c) OCRNet’s object contextual representation (OCR) module, and (d) transformer based on convolution (CTrans) module.
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4.4. Comparison with Classical Semantic Segmentation Net-
works on Cityscapes Data. To demonstrate the efectiveness
of the model, we conducted comparison experiments with

other studies on the Cityscapes dataset. We trained our
model using the fnely labeled Cityscapes dataset, including
the RDF module, which improved the distinguishability of

Table 6: Ablation experiments on the Cityscapes validation dataset.

Method Backbone RDF CTrans mIoU
Dilated FCN ResNet50 71.56
RFT ResNet50 ✓ 77.92
RFT ResNet50 ✓ 78.23
RFT ResNet50 ✓ ✓ 78.88
Te RDF module represents refned division features, and the CTrans module represents transformer based on depthwise convolution.

(a) (b) (c) (d) (e) (f)

Figure 6: Visual comparison of segmentation graphs; from left to right: (a) image, (b) actual label, (c) dilated FCN, (d) RDF, (e) CTrans, and
(f) RDF combined with CTrans.

Table 7: In terms of mIoU, comparison with some existing methods on the cityscapes dataset.

Method Backbone Val MIoU (%)
SA-FFNet ResNet101 ✓ 73.1
RELAXNet ResNet101 74.8
DFNet ResNet101 ✓ 79.3
Axial-DeepLab-XL [56] Axial-ResNet-XL ✓ 79.9
PSANet ResNet101 ✓ 80.1
SETR-PUP (100k) [57] T-large ✓ 81.08
SETR ViT-large ✓ 81.1
ANNet ResNet101 ✓ 81.3
CCNet ResNet101 ✓ 81.4
DANet ResNet101 ✓ 81.5
OCRNet ResNet101 81.8
SFNet [58] ResNet101 ✓ 81.8
Ours ResNet101 81.9
Te val column indicates whether fnely annotated validation set data containing cityscapes was used to train the model.
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the feature maps, and the CTrans module, which builds
long-distance pixel dependencies to improve pixel repre-
sentation and construct global information relations.

To improve the segmentation results, we combined the
RDF and CTrans modules into RFTNet. As shown in Fig-
ure 1, we compared RFTNet with some classical networks,
including ANNet, PSPNet, GCNet, CCNet [55], DANet, and
OCRNet. Table 7 shows that our network’s segmentation
mIoU is 81.9%, which is signifcantly better than that of
other methods.

As shown in Figure 1, we visualize the data and fnd that
our mIoU metric is 81.9%, which is 0.1% higher than that of
OCRNet. In addition, our method has more network pa-
rameters than GCNet, but it has a 5% higher mIoU value

than GCNet. Terefore, the parameters of our network will
be a topic for future studies.

In Figure 7, we visualize the segmentation result graphs
of the above networks, where the other methods segment
bicycle wheels into diferent classes, while our network
segments bicycle completely. Similarly, the wall, truck, and
car in rows 2, 3, and 4 are partially segmented into other
classes. We combine the RDF and CTrans modules to en-
hance feature diferentiation frst and then enhance pixel-
region representation, which improves these problems
greatly. In the fourth and ffth rows, the bars and bicycle
front ends have few texture features, making them difcult to
segment out. We can, however, segment out the subtle speed
bars and bicycle front ends with the help of our method.

(a) (b) (c) (d) (e) (f )

Figure 7: Segmentation plots of the cityscapes validation set are shown from left to right for (a) image, (b) ground truth, (c) PSPNet,
(d) DANet, (e) OCRNet, and (f) RFTNet.
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5. Conclusion

Tis paper enhances the category region representation and
pixel representation from micro and macro aspects, re-
spectively. Te image-level context information is easily
afected by the outside world, and other categories of context
information are introduced into the pixel representation,
resulting in network misclassifcation. Inspired by this
problem, from a macro point of view, this paper proposes
RDF module to enhance the representation of channel
category region in the feature graph. To further enhance the
performance of semantic segmentation, we design the
CTrans module from the micro point of view. First, it
compacts and enriches the feature map to reduce the
computational load of CTrans module. Ten, the similarity
between pixels is used to enhance the pixel representation.
Finally, the global relationship between the pixels is estab-
lished. Te method in this paper can accurately segment
object categories under the conditions of illumination
changes, similar colors, background, and so on. Compared
with other methods, our segmentation index and segmen-
tation efect are optimal. However, the method in this paper
has some limitations. On the one hand, it is still necessary to
improve the ability of the model to segment the boundary of
small objects with fuzzy edges. On the other hand, our model
was trained, validated, and tested on Cityscapes and PAS-
CAL VOC 2012 data sets, which are commonly used. Tey
are both refned and annotated data sets. Te generalization
ability of the model is not strong enough in the face of
images that difer greatly from the two data sets. Terefore,
for the method proposed in this paper, we need to test and
modify our model on more data sets to maximize our model
generalization ability.
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