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Introduction. Coronary artery disease (CAD) is one of the main causes of death all over the world. One way to reduce the
mortality rate from CAD is to predict its risk and take effective interventions. The use of machine learning- (ML-) based
methods is an effective method for predicting CAD-induced death, which is why many studies in this field have been conducted
in recent years. Thus, this study aimed to review published studies on artificial intelligence classification algorithms in CAD
detection and diagnosis. Methods. This study systematically reviewed the most cutting-edge techniques for analyzing clinical
and paraclinical data to quickly diagnose CAD. We searched PubMed, Scopus, and Web of Science databases using
a combination of related keywords. A data extraction form was used to collect data after selecting the articles based on inclusion
and exclusion criteria. The content analysis method was used to analyze the data, and based on the study’s objectives, the results
are presented in tables and figures. Results. Our search in three prevalent databases resulted in 15689 studies, of which 54 were
included to be reviewed for data analysis. Most studies used laboratory and demographic data classification and have shown
desirable results. In general, three ML methods (traditional ML, DL/NN, and ensemble) were used. Among the algorithms
used, random forest (RF), linear regression (LR), neural networks (NNs), support vector machine (SVM), and K-nearest
networks (KNN's) have the most applications in the field of code recognition. Conclusion. The findings of this study show that
these models based on different ML methods were successful despite the lack of a benchmark for comparing and analyzing ML
features, methods, and algorithms in CAD diagnosis. Many of these models performed better in their analyses of CAD features
as a result of a closer look. In the near future, clinical specialists can use ML-based models as a powerful tool for diagnosing
CAD more quickly and precisely by looking at its design’s technical facets. Among its incredible outcomes are decreased
diagnostic errors, diagnostic time, and needless invasive diagnostic tests, all of which typically result in decreases in diagnostic
expenses for healthcare systems.

1. Introduction

With the industrialization of societies and the surge in urban
populations, cardiovascular diseases (CVDs) are recognized
as the main cause of death in the world. CVDs include
coronary artery disease (CAD), pulmonary embolism,

peripheral arterial disease (PAD), cerebrovascular disease,
rheumatic and congenital heart disorders, and deep vein
thrombosis. However, CADs are the most prevalent CVD
diseases, wherein atherosclerosis causes arterial ducts to
narrow. CAD is a serious health problem that develops due
to the buildup of plaque in the coronary arteries, impeding
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the transfer of oxygen-rich blood to the heart. Patients with
this disease may experience no symptoms, feel pain or
discomfort in their chests (angina), or have heart attacks
[1-3]. The permanence of this condition enfeebles the heart
muscles and leads to arrhythmias, heart failure, and even
sudden death. Thus, the blood flow reaching the distal
myocardium decreases in CAD and, finally, gives rise to
ischemia. The prevalence of CAD, the main cause of death in
the world, has increased in low- and middle-income
countries in recent years. The statistics of patients and
deaths caused by this disease are increasing every day, such
that CAD is the primary cause of mortality among men and
women in the United States. CAD treatments and in-
terventions impose high economic burdens on healthcare
systems. Hence, early detection and faster diagnosis of CAD
can accompany remarkable outcomes concerning patient
survival, reduction in treatment costs, and surgical in-
terventions. Besides, early detection of CAD can facilitate
clinical interventions and save the patient’s life. Coronary
angiography, or catheterization, is among the primary CAD
detection procedures. This golden standard for CAD de-
tection is an invasive approach that needs a Cardiac
Catheterization Laboratory (Cath Lab), where angiography
or angioplasty is applied with the injection of contrast agents
into vessels and the visualization of vessels and blood flows.
However, this method is invasive and requires anesthesia,
and the side effects of the contrast agent on patients are not
negligible, such that this substance negatively impacts pa-
tients and elderlies. On the other hand, the lack of Cath Lab
sites in many geographical regions and clinical sectors and
the long lines of angiography-needing patients are among
the main reasons for this detection method. Therefore,
numerous clinical specialists and researchers look for al-
ternative, noninvasive CAD detection approaches [3-7].
Machine learning (ML) algorithms are among the principal
approaches attracting the attention of many clinical re-
searchers, such that a bulk of studies has employed ML
methods in the past decade. These algorithms use various
markers for CAD detection and classification. Every one of
these studies has employed a specific group of features
(markers) to diagnose CAD and applied different ML al-
gorithms. Likewise, these studies have applied (traditional)
machine learning and deep learning approaches to predict,
detect, and classify CADs. However, no systematic literature
review (SLR) inclusively addressing ML uses and various
influential features in these algorithms has been published
for CAD detection. Thus, the present SLR identifies and
examines studies that have employed different ML methods
to determine CAD severity. This SLR commits as follows:

(i) Design an ontology to classify ML uses in CAD
detection

(ii) Discuss the uses of different ML methods in CAD
detection

(iii) Discuss the application of various features in CAD
detection
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(iv) Present suggestions for future models on CAD
detection

This SLR is organized in the following order:

Section 2 presents the related works, Section 3 discusses
the SLR methodology, and Section 4 tackles the applications
of different ML algorithms in CAD detection.

2. Related Works

Several review studies have addressed the use of ML and Al
methods in detecting cardiac and CAD diseases. Aliza-
dehsani et al. [8] reviewed all studies published in the
1992-2019 interval based on different ML algorithms,
extracted applied ML algorithms, and displayed their degree
of usage. This study disregarded the type of markers and
features. In another survey, Alizadehsani et al. examined
artificial intelligence techniques in CAD detection and
probed trends, diagnostic features, and geographical dif-
ferences in these studies. Yet, AI methods and algorithms
were not explored in this review study.

Concerning the other cardiac diseases, there were several
published review papers that the present SLR refrained from
reviewing. Therefore, by meticulously examining the data-
bases, the researchers found that no comprehensive review
study has targeted different dimensions of ML uses for CAD
detection and classification.

3. Review Protocol and Strategy

This section describes the phases of the review protocol,
including the research questions, the search strategy, in-
clusion and exclusion criteria, and the quality assessment
and data extraction processes. This SLR has been registered
in the International Prospective Register of Systematic Re-
views (PROSPERO) with the CRD42022340726 number.
The early detection of CAD with ML and DL methods has
considerably increased since 2016. Hence, this review study
should be registered as intellectual property to provide re-
searchers with a concise perspective and a glance at CAD
detection by reviewing past studies.

3.1. Search Questions. After searching for the review papers
on CAD detection and applying the paper-searching
methodology, we should raise the research questions not
discussed and answered in these studies. These questions are
presented as follows:

(1) In what countries and years did researchers probe
CAD diagnosis and classification?

(2) What features and markers have been used to
detect CAD?

(3) Which feature extraction techniques are used for
marker and biomarker reduction?

(4) Which machine learning methods have been used to
detect and classify CAD?
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(5) Which machine learning algorithms have been ef-
fective for detecting CAD?

(6) What suggestions can be made for better detection
and classification of CAD using learning algorithms?

3.2. Search Strategy. By concisely investigating the electronic
databases publishing scientific papers in the medical and
computer fields, the researchers discovered that the
PubMed, WOS, and Scopus databases contained numerous
articles related to this research. By focusing on the early
November 2017 to late April 2022 interval, this search
employed keywords and logical phrases included in Table 1
and extracted the respective papers published in this area.
Google Scholar and IEEE publications were excluded from
the search domain due to their proximity.

3.3. Quality Assessment. In systematic studies, a step to-
wards supporting data analysis and preventing evidence
bias and poor results is the quality assessment of the
search, which is as crucial as other phases, such as data
extraction and analysis. As the closest guide to the scope
of our study, we carried out the present SLR based on the
quality assessment (QUADAS-2) [9] for systematic re-
views of diagnostic accuracy studies. This tool has been
designed with seven criteria, four of which examine the
risk of bias, while the others pertain to applicability-
related concerns.

3.4. Data Extraction. The data extraction phase included
different issues related to the design of the research ques-
tions. Every study was initially examined by the first reviewer
(M.G.) and then by an expert review team (A.G.) for likely
errors in data extraction. Table 1 presents the list of items
with their definitions in the data extraction form. The dif-
ferences in the searches were removed by discussions with an
independent author (A.B.) The elements of the extracted
data, including the author’s name, country of the research,
examined population, applied data, purpose, method, the
role of mobile applications, and assessment methods, were
evaluated.

4. Results

The researchers searched the valid databases according to the
search strategies, extracted 15689 papers, and selected
52 full-text papers by studying the abstracts and bodies of
papers, applying inclusion and exclusion criteria, and
choosing articles commensurate with the topic of the present
research. Figure 1 displays the PRISMA flowchart of the
mentioned process.

After extracting the searched studies from the research
population, investigating their details, and comparing their
CAD results, we presented the operational metrics of the
machine learning algorithms in the obtained detection and
classification in four sections, endeavoring to answer the
research questions in every section.

4.1. Characteristics of the Included Studies. A large number of
studies have employed ML methods to detect cardiovascular
diseases. However, many of these studies have targeted the
early detection and prediction of CAD. Numerous studies
have utilized different terminologies for CAD. While many
researchers have used ACS as the primary type of CAD,
others have utilized other terms such as obstructive CAD,
SCAD, and varying ischemic heart diseases, including ATHD
(coronary atherosclerosis) and CIHD (ACS). Despite the
different ICD-10 codes for these cardiac diseases, many care
centers use CAD instead of these terminologies. Figure 2
illustrates the sunburst of studies applying various Al
methods to diagnose and classify different CAD types.

In the studies conducted in this domain, 33 used the
CAD title in their research transparently, 13 applied ACS,
and others employed types of obstructive CADs and SCADs.

A further investigation of the studies revealed that re-
searchers were more engrossed in using ML to detect dif-
terent CAD types during the past five years. Presumably,
many studies have attempted to predict a spectrum of CAD
diseases using various ML methods due to the increased
international attention of healthcare organizations to car-
diovascular health and the prevention of cardiac diseases. In
the last four years ending in 2021, we witnessed an uptrend
in these studies, except for 2021, when the number of these
studies became fewer. It is likely that the outbreak of
COVID-19 and the wave of research on this disease have
distracted researchers from CAD detection and made them
focus on other aspects of cardiac disorders, such as their
association with COVID-19, the effect of the coronavirus,
infections resulting from corona, and the impacts of various
vaccines on heart function and coronary diseases. To answer
the first research question, we can refer to Figures 3 and 4,
which display the number of studies on detecting different
CAD diseases in the past five years.

America, with eleven studies, and China, with nine
studies, possessed the maximum number of studies applying
machine learning to predict the conditions of CAD patients.
The next rank belonged to Iran and South Korea, each with
six studies in this domain. Figure 4 depicts the researchers of
countries that have employed deep learning to process CAD
data with the intention of fast detection and prediction of
this disease.

The researchers of the present study presume that
countries with the highest rate of cardiovascular diseases
have conducted more studies on CAD diagnosis, such that
some surveys have categorized America, China, India, and
Iran into the group of countries with the highest number of
cardiac patients. On the other hand, the datasets of Iranian
CAD patients are among the most prevalent in Kaggle. It can
be a justification for researchers to test different ML methods
and algorithms on these datasets [10-14].

4.2. Overview of the Types of Features (Markers) Used for CAD
Diagnosis. Various datasets have been presented for de-
veloping models that can rapidly predict and diagnose
vascular diseases, especially CAD. The investigations showed
that 67 applicative datasets were presented in different
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TaBLE 1: Search keywords and database query.

Keywords Logical combination of keyword
Coronary artery disease, CAD; acute coronary syndrome, ACS; #1 “Coronary artery disease” OR “CAD” OR “acute coronary
coronary heart disease, CHD syndrome” OR “ACS” OR “coronary heart disease” OR “CHD”

“Machine learning” OR “classification” OR “data mining” OR
#2 “data-mining” OR “decision tree” OR “artificial neural network”
OR “support vector machine” OR “ensemble” OR “Bayesian”

Machine learning, classification, data mining, decision tree, neural
network, support vector machine, ensemble, Bayesian

Final search strategy #1 AND #2
PubMed Result Scopus Result Web of Science
45 (n =2559) (n=7678) (n = 5452)
g
b=l
=
=

Collection Result (n=15689)

| » Duplicate article (n=579)
g ;
& . n
b Records after duplicates articles removed Applying exclusion:
;‘3, (n=15110) They aren’t about CAD
Not Index in ISL.
Not English context.
» Not peer-reviewed.
Genomic and OMICS data
Applying inclusion:
Article assessed for Eligibility were about the detection and
(n=215) diagnosis of CAD
Existing quality aspect of publication.
Published in last 5 years.
Used AI and ML algorithms.
g Studies in which the basic criteria for
2 entry into the reasearch were not met.
& (n=14895)
» Full texts aren’t available (n=14843)
v
Full-text in qualitative
synthesis (n = 52)
Extra Research after Google >
= Scholar search (n =2)
<
£
=}
& Studies included in
qualitative synthesis
(n =54)

FiGure 1: PRISMA flowchart of search and exclusion process. Out of 15689 retrieved studies, 54 studies were selected for data analysis.

scientific datasets from 18 countries for CAD prediction and  from diagnostic procedures and measures, such as ECGs.
detection with data mining (DM) techniques. These datasets ~ Figure 5 displays the number of studies using various data.

had different dimensions and features, such that the smallest Some studies have applied more than one data type. One
and biggest datasets with 20 and 24000 samples possessed 9 of the most famous and known datasets in CAD diagnosis is
and 11 features from India, respectively [8]. the SZ-Alizadeh Sani dataset [15], which contains different

By examining these datasets and those used by studiesin ~ data on demographics, symptoms and examination, labo-
the research population, we could provide two answers to  ratory echo features, and ECGs. However, some studies have
the research question. The probed data were generally of  employed an integration of laboratory data, signs and
three kinds: clinical data (data associated with patients’  symptoms, and demographics but ignored ECG data and
biographies, underlying diseases, physical and somatic in-  invasive and noninvasive diagnostic procedures [16, 17].
formation, and so on), laboratory data, and data acquired = Some researchers have utilized a broad spectrum of clinical
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FIGURE 2: Number of studies using machine learning to detect and classify various CADs.
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FIGURE 3: Research included in this SLR, broken down by year of publication.

and demographic data, besides physical diagnostic tests,
such as the stress test and echocardiography, in their ex-
amined datasets [18, 19]. Some introduced models have only
used laboratory and demographic data to estimate the risk of
ACS and CAD incidence and neglected the data provided
with physical diagnostic tests and symptoms [20].
Demographics mostly mean using data about age,
weight, body mass index (BMI), and indices influencing
cardiovascular diseases, such as smoking. Table 2 displays
the most significant and prevalent features influencing the
risk of cardiovascular diseases (CADs). All studies have

employed some of these features according to feature se-
lection algorithms or clinical findings.

4.3. Feature Engineering. Feature engineering, a crucial and
significant task in preparing data for ML- and Al-based
modeling, aims to fabricate fit and optimum features from
available features and improve the performance of the
mathematical model or artificial model [21-23]. Feature
engineering involves applying transfer functions like
arithmetic operators to given features to create new
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F1GURE 5: The rate of various medical data used for CAD diagnosis.

functions. Feature engineering includes feature selection and
extraction, though many studies subsume these two phases
under a single feature selection stage [24-26]. Various
statistical, mathematical, and intelligent algorithms, e.g.,
swarm intelligence, genetic, and evolutionary, are used to
select and extract these features. In some ML-based models,
features are selected automatically (deep learning methods),
such that studies working with visual and auditory data have
employed these methods for feature selection and extraction.
However, numerous investigations have selected features
manually using various mathematical methods (traditional
ML algorithms). Nevertheless, many approaches have been
used to opt for more influential features of CADs in machine
learning algorithms. Since almost countless studies have
applied nonvisual and nonaudio data in detecting CAD,
statistical and mathematical methods were used for feature
selection, and feature extraction techniques like convolution
were not employed. To answer the third research question,
we presented the extent to which feature extraction methods
were used in the examined studies in Figure 6.

As Figure 6 depicts, statistical methods have been fre-
quently used for feature selection. Twenty-eight studies have
employed these methods to limit the number of features to

the most influential ones. This reduction in feature di-
mensions eliminates irrelevant features and decreases the
memory size allocated to the model’s computations.

Before implementing ML algorithms, some articles have
used feature selection and data reduction methods, classified
in this section, to enhance the accuracy of algorithms over
data. For feature selection, the papers have used various
approaches, the most significant and applied of which is
recursive feature elimination (RFE). Likewise, some studies
have employed statistical analyses for feature selection.
Figure 7 illustrates to what extent the dimension reduction
methods of features have been utilized.

Principal component analysis (PCA) is one of the most
applied methods for reducing data dimensions. Seven
studies have employed PCA to reduce data dimensions
[27-33].

4.4. Overview of Machine Learning Methods in CAD Diagnosis
and Classification. Studies aiming to diagnose and classify
CADs via ML have applied several methods. To answer the
fourth research question, we examined studies using ML for
CAD detection and classification and concluded that three
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TABLE 2: Most prevalent features in detection and diagnosis CAD
using ML methods.

Feature category Feature name

Age
Weight
Length

Sex

BMI

Smoking status
Family history
Pacemaker rhythm

Demographic data

Diabetes mellitus
Thyroids diseases
Edema
Systolic murmur
Typical chest pain
Dyslipidemia
Airway disease
Hyper tension
Congestive heart failure
Cerebrovascular accident
Atypical
Weak peripheral pulse
Exertional chest pain
Nonanginal CP
Dyspnea
Chronic angina
Peripheral arteriopathy
Lung rales
Diastolic murmur
Low threshold angina
Blood pressure (BP)
Function class
Right bundle branch block
Left bundle branch block
Pulse rate (PR) (ppm)
Previous myocardial infarction
Previous CABG surgery
Beta-blocker treatment
Calcium blocker treatment
ACE inhibitor treatment

Diseases and
physical indicators

GCPII C1561T
RFC1G80A
c¢SHMT C1420T
TYMS 5-UTR
MTHEFR C677T
MTR A2756G
MTRR A66G
CYP1Al ml, CYP1Al m2, CYP1A1l
m4

Genetic features

Poor R wave progression (poor R
progression)
T Inversion
Q wave
LVH (left ventricular hypertrophy)
ST depression\ST elevation
Rhythm
ST-deviation
Combination of ECG features
BBB
Rhythm

ECG features

TaBLE 2: Continued.

Feature name

VHD (valvular heart disease)
Erythrocyte sedimentation rate
(ESR) (mm/h)
Neutrophil (neut) (%)

High density lipoprotein (HDL)
(mg/dl)

Hemoglobin (HB) (g/dl)
Platelet (PLT) (1000/m)
Maximum creatine kinase-MB level
in TU/1
Maximum troponin level in TU
Fasting blood sugar (FBS)
Sodium (Na)

White blood cells (WBS)
Maximum creatine kinase-MB level
in IU
Serum creatinine level in mg
HB
ESR
LDL, BUN
K, Lymph, EF, region RWMA, serum
glycemia level (used frequently)
Ejection fraction (EF)
Regional wall motion abnormality
Creatine kinase level

Feature category

Laboratory feature and
biomarkers

Echo features

ML methods were significant and frequent in analyzing
CAD features. They were traditional machine learning
methods, ensemble methods, and neural networks (NNs)
deep learning (DL) methods, used in 25, 21, and 10 studies,
respectively. To answer this research question in detail, we
provided supporting documents as follows.

4.4.1. Traditional Machine Learning (TML). TML methods
with numerous algorithms allocate the highest portion of the
respective research to themselves. The outnumbering algo-
rithms of this method have been used to process the data in
various health domains. These algorithms have developed
from the emerging concepts of Al and are founded on sta-
tistical and mathematical formulas. TML algorithms en-
compass a broad spectrum of algorithms recurrently used for
CAD diagnosis in the past decade. Table 3 presents the extent
to which these algorithms have been used to detect and
classify CAD against other cardiovascular abnormalities.

4.4.2. Ensemble Methods. Ensemble methods are a category
of learning algorithms that build a set of classifiers and then
classify new data points via (maximally) weighted voting.
The ensemble method is mainly based on Bayesian aver-
aging, yet its newer algorithms include bagging, stacking,
and boosting [34, 35]. The ensemble method uses the
prediction capacities of several poor learning techniques
for a given dataset and achieves better prediction results by
combining their outputs. The idea behind the ensemble
method is interesting since the ultimate output is based on



Recursive Feature Elimination (RFE) - 7
Holm-Bonferroni Method - 1
Embeded method - 2
Information gain ranking method - 2
Naive Bayes with sensitivity analysis - 1
XGBoost model (decision trees) - 1
SVM with radial kernel functions - 1
Boruta wrapper - 1

Statistical test - 28

Feature selection

Random Forest - 7

Multivariable Cox Regression - 1
Cross validated error - 1
Mutual information - 1

Logistic regression - 4
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based on random forest - 1

based on SVM - 1

Cohen’s d effect size - 1
Chi square - 7
Kruskal-Wallis/ ANOVA- 2
ttest-7
Mann-Whiney U test - 4
X’ tests - 1
Correlation analysis - 4
Variance threshold - 1

Select percentile - 1

Shapley Additive Explanation values (SHAP) method - 2

Least absolute shrinkage and selection operator (LASSO) regression-random forest model - 1

FIGURE 6: Feature selection methods and algorithms in CAD diagnosis using ML.

Data reduction

Principal Component Analysis (PCA) - 7

partial least-squares discriminant analysis (PLS-DA) - 1

Linear Discriminant Analysis (LDA) - 1

Independent Component Analysis (ICA) - 1

Correlation Analysis of the Input Features - 1

non-linear transformations through kernel approximation (Nystroem, RBF Sampler) - 1

univariate, bivariate and trivariate analysis along with providing Frutcherman-Rheingold plots - 1

FIGURE 7: Data reduction techniques in studies that used ML in the diagnosis of CAD.

a combination of various outputs that lead to more accurate
results. This method helps moderate the problem of finding
global minimums for a given input function against in-
dividuals and isolates techniques and algorithms since one
of the problems of classification techniques is finding the
global minimums of the function. Although sufficient train
data is available in many cases, these techniques need
countless computational sources to determine global

minimums. The ensemble method obviates this problem by
averaging or combining the local optimum solutions of
several poor learning techniques for a given input function
[36, 37]. Many studies have employed different ensemble
methods of various machine learning algorithms for CAD
estimation and diagnosis. Table 4 represents the extent to
which various ensemble methods of ML algorithms have
been used.
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TaBLE 3: TML method and algorithm in studies that used ML in the
diagnosis of CAD.

TaBLe 5: Different types of NN algorithms applied in CAD
diagnosis.

TML methods Type of TML algorithms Number of frequency Method Number of uses in CAD diagnosis
FCM ReAFCM 3 MLP 8
KNN KNN 1 CNN 15
Elastic net Cox RCNN !
regression
Regularized LR To answer the fifth research question and examine the
Regression PCR (principal 7

component regression)
L1-regression adjusted
Logistic regression
QUEST

Decision tree CART 3
Bayesian Hill climbing 3
network Naive Bayes
SVM

SVM NuSVM + GA (genetic 9

algorithm)

SVM + BS
Dlmen.smn Nan 1
reduction

TaBLE 4: Different ensemble algorithms applied in CAD diagnosis.

Ensemble algorithms Number of uses in CAD diagnosis

Bagging 4
Stacking 1
Boosting 15
Other 1

4.4.3. Neural Network and Deep Learning. Neural networks
(NNs) are among the principal methods used for analyzing
medical data. Inspired by brain function, these networks
have achieved extraordinary results in diagnosing and
classifying diseases. NNs, also known as fully connected
neural networks, have a long history. Articles use these
networks under the name “Multilayer Perceptron (MLP).”
MLP possesses a topology that often exploits the gradient
decent methodology and yields excellent results in discov-
ering the patterns of nonlinear models in healthcare
data [38].

Concerning the large datasets of some studies, NNs were
no longer responsive to the volume of computations, and
deep networks were required. CNNs were among the most
conventional types of these networks and were part of deep
learning concepts. CNNs are a subclass of NNs and possess
a minimal convolution layer. Feature selection is performed
automatically, not manually, in CNNs [34, 39]. Table 5 dis-
plays the extent to which various NNs have been employed.

Table 6 presents all studies using ML methods for CAD
diagnosis and classification. The first column of this table
provides the first author and the year and country of
publication. The other columns give information about the
research purpose, data type, data size, dataset, cross-
validation technique, type of ML methods, type of ML al-
gorithms, and data preprocessing methods.

effectiveness of the ML methods in analyzing CAD data, we
attempted to visualize their degree of utilization and di-
agnostic performance on a map by probing all evaluation
metrics for 54 papers in the research population. The ML
models and techniques applied in these studies have been
classified in Figure 8 hierarchically. According to this chart
(drawn using Microsoft Visio 2021), the ML methods have
been classified into three general groups: traditional learn-
ing, ensemble models, and deep learning. The diagnostic
CAD models that are based on various ML algorithms have
been demonstrated in the next layers. Hence, SVM and
regression, with 9 and 7 models, are the most intensively
used models in the traditional learning group. With 15
models, Boost allocates the maximum number of models to
itself in the ensemble models group. Likewise, the highest
frequency in the neural networks and deep learning group
belongs to multilayer perceptron (MLP) with 8 models.

In this chart, the datasets on which learning models have
been implemented and the model assessment results have
been presented in rectangular boxes. The assessment indices,
being the ACC and AUC metrics in many studies, have been
mentioned with an accuracy of two decimal places in the
chart. Since many studies have employed the AUC criterion
in their articles, we showed the respective AUC index for
a better comparison of the results if a paper had reported the
ACC and AUC of its proposed model. Empty and colored
boxes display ACC and AUC values, respectively. The three
yellow boxes show different assessment criteria, such as
PPV, C-index, and c-statistics. The maximum AUC value
equals 0.997 and is associated with the stacking technique
applied to the Z-Alizadeh Sani Dataset. Similarly, the
maximum ACC value equals 1.0 and is related to the CART
and MLP models implemented on the Z-Alizadeh Sani
dataset.

Numerous studies have employed the demographic,
clinical, and laboratory data of hospitalized CDA patients.
Some studies have implemented their models based on the
available data in hospital systems (EMR/HER/Registries) or
the present datasets for this disease. All in all, the Z-Alizadeh
dataset was applied more than other datasets, and the results
of implementing various models on this dataset were more
accurate.

This study employed a comparative graphic chart to
compare the extent to which various algorithms of ML
methods were used. The chart in Figure 9 which was drawn
in VOS viewer version 1.6.17, illustrates the relationships
between different methods and their algorithms in analyzing
CAD features. These methods are depicted as nodes, and the
intermethod comparison in every study is shown by edges.
Thus, if a study has compared several methods, they fall into
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a group (every group is shown with the same color). Every
study using an ML methodology with higher AUC or ACC
indices is displayed in parentheses. Besides, this network
shows which methods have had the highest implementation
frequency and which methods have outperformed others. A
glance at the graphic chart reveals that the random forest
(RF), linear regression (LR), neural networks (NNs), support
vector machine (SVM), K-nearest neighbor network (KNN),
Naive Bayesian (NB), decision tree (DT), and XGBoost were
used in many studies for evaluation and comparison with
other methods.

5. Discussion and Further Recommendations

With recent advancements, the use of ML-based diagnostic
methods in the healthcare domain has attracted the attention
of researchers and specialists in various areas. These
methods have been intensively employed for CAD detection
and classification during the past five years. The present
study synthesized 54 studies addressing the use of ML in
analyzing CAD data and delineated its examination and
comparison results in tables and figures. If studies employed
clinical, laboratory, and ECG data, their intention behind
using these data for CAD detection was to present a model
for screening out the unnecessary use of invasive and costly
tests, such as CCVT, echocardiography, and angiography.
However, if they used clinical visual data, such as Echo, for
CAD diagnosis, they aimed to present a framework for
automatic detection or offer consultation for thorough
decisions. To answer the sixth research question, we can
refer to many challenges and provide future studies with
recommendations by meticulously examining studies and
their barriers and problems.

With the uptrend of intelligent models based on ML
methods and new DL algorithms in early CAD detection and
the presentation of correct clinical decisions, we believe
there are some problems to be considered in future studies.
These gaps include as follows:

(i) Data Preprocessing.

According to the texts, the performance of ML
models does not solely lie in the topology and
structure of networks; rather, a significant step
toward the efficiency of learning models and their
convergence is data preparation and preprocessing.
Some studies have neglected data preprocessing,
e.g., data normalization, standardization, segmen-
tation, feature engineering, and data categorization.
It is suggested that the preprocessing and feature
selection operations be performed according to the
data type for better results for the model.
(ii) Sufficient Data.

A significant factor in the success of ML methods is
the use of voluminous datasets. Concerning DL
methods, larger datasets play a determinant role in
the pattern recognition of cardiac diseases. If these
methods apply insufficient data, the likelihood of
overfitting increases, and the validation of ML

International Journal of Intelligent Systems

models is tainted. Hence, we cannot rely on them as
tools for solving clinical diagnostic challenges.
(iii) Escape Ovetfitting Technique.

The investigation of the studies on CAD detection
with various ML methods revealed that a large
number of these studies had not tackled overfitting
concepts and had not presented techniques for
escaping this serious challenge of ML methods.
However, overfitting arises in some ML methods,
and preventive approaches should be adopted for
the implementation of these models. In this respect,
this review suggests employing more voluminous
datasets and the dropout technique in the DL
domain.

(iv) Comparing Different ML Techniques or CNN Pre-
trained Network.

Various ML algorithms and DL networks manifest
varying performances in the pattern recognition
and detection of CAD. Hence, future studies are
proposed to employ several algorithms and select
one as the most efficient. Likewise, concerning
CNNs, we suggest comparing the performance of
various types of pretrained networks and optimiz-
ing the hyperparameters of the most efficient net-
work selected to enhance its efficiency.

(v) Free Platform.

Several studies have only implemented models
within the research and development confines.
However, models based on DL networks and CNN
algorithms are implementable in mobile, tablet, and
PDA equipment. Thus, we recommend using CNN
networks, especially lightweight networks, for CAD
data analysis in portable equipment that enables the
point-of-care testing of this ML-based software and
is accessed by clinical specialists inclusively.

6. Conclusion

With the development of AI methods, such as ML and DL,
the models based on these methods will soon be an in-
separable part of diagnostic equipment in the field of cor-
onary artery disease. The employment of these tools paves
the way for providing clinical specialists with specialized
consultations in the CAD detection area. As instruments in
clinical specialists’ hands, these models as screening software
modules prevent risky and invasive diagnostic tests and take
the high financial burden of CAD detection and other
coronary artery diseases from the shoulders of clinical care
systems. Even DL-based systems can be used to design
mobile applications for patients in the future. Furthermore,
their equipment can enhance the quality of life of CAD
patients by promptly notifying Alert and Alarm tools.
After reviewing many methods in the field of CAD
diagnosis using machine learning, it is suggested to use
a combination of images and other metadata in future
studies for a faster and more accurate diagnosis of this
disease and other heart diseases. It is also suggested that the
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edges of new technology such as pretrained networks should
be studied in future research. Of course, in the countries that
use active and robust EHR, the data of its repositories can be
used in the timely diagnosis of heart diseases using machine
learning algorithms.
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