
Research Article
An Intelligent Fault Detection Framework for FW-UAV Based on
HybridDeepDomain AdaptationNetworks and theHampel Filter

Yizong Zhang ,1 Shaobo Li ,1,2 Qiuchen He ,1 Ansi Zhang,1,2 Chuanjiang Li,1,3

and Zihao Liao2

1School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
2State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
3Department of Mechanical Engineering, KU Leuven, Leuven 3001, Belgium

Correspondence should be addressed to Shaobo Li; lishaobo@gzu.edu.cn

Received 16 December 2022; Revised 15 May 2023; Accepted 26 May 2023; Published 7 June 2023

Academic Editor: Fabio Carafni

Copyright © 2023 Yizong Zhang et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fixed-wing unmanned aerial vehicles (FW-UAVs) play an essential role in many felds, but the faults of FW-UAV components
lead to severe accidents frequently; so, there is a need to continuously explore more intelligent fault detection methods to improve
the safety and reliability of FW-UAVs. Deep learning provides advanced solution ideas for future UAV fault detection, but the
current lack of UAV monitoring data limits the advantages of deep learning in UAV fault detection, which are both a challenge
and an opportunity. In this paper, we mainly consider the data availability of deep learning under various practical fight
conditions of FW-UAVs and propose a fault detection framework based on hybrid deep domain adaptation BiLSTM networks
and the Hampel flter (HDBNH), the main purpose of which is to learn the knowledge of acquired data for detecting FW-UAV
faults in other unknown operating conditions. HDBNH consists of three modules: feature extractor, domain adaptor, and fault
detector. Te feature extractor is two BiLSTM networks constructed to extract the past and future state features from the time-
series fight data. Te discrepancy of feature distribution between diferent domains is efectively reduced in the domain adaptor
by a hybrid adversarial and the maximum mean discrepancy (MMD) domain adaptation method. Te fault detector consists of
a fault classifcation module and a Hampel flter. According to the continuous and dynamic characteristics of FW-UAV state
changes, the Hampel flter is used to detect and correct the predicted values of the fault classifcation module. Meanwhile, a new
state sample preparation strategy is proposed to support the work of HDBNH better. Finally, the efectiveness of HDBNH is
confrmed by conducting extensive experiments in real FW-UAV fight data.

1. Introduction

As one of the representatives of complex systems, unmanned
aerial vehicles (UAVs) are widely used in various felds
because of their low manufacturing cost, high mobility, and
high efciency. However, UAVs have more uncontrollable
factors than manned aircraft, and there are more challenges
and potential threats in the process of mission execution [1].
Researchers are continuously exploring more intelligent
fault detection methods to reduce the failure of system
components, improve the safety and reliability of UAV
systems, and ensure that UAVs accomplish various complex
tasks. Currently, the proposed methods mainly include

model-based, knowledge-based, and deep learning-based
methods.

Temain idea of the model-based approach is to establish
an accurate mathematical analytical model, compare the
analytical model’s theoretical value with the UAV’s real state
value, and judge the working state of the UAV system. Te
authors in reference [2] considered the use of a kinematic
model and an adaptive extended Kalman flter (EKF) to detect
UAV faults that minimize turbulent disturbances. However,
errors associated with the linearization of the EKFmay reduce
the detection accuracy and may even lead to flter divergence.
Te adaptivity of the process noise covariance (R andQ) of the
EKF to sensor/actuator faults is considered in [3] so that the
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estimation characteristics do not deteriorate. Compared to
[3], the approach in [4] is more adaptive, with the KF em-
bedded in the neural network used to weight the parameters
of the neural network to update them to identify various faults
in the UAV sensors and actuators. At present, model-based
methods are the most widely researched and applied (espe-
cially various nonlinear observers and Kalman flters), which
have certain superiority in real-time state analysis and real-
time fault diagnosis, but establishing an accurate analytical
model for complex UAVs is not easy to achieve, and there are
often cases of tedious calculations and errors resulting in
misdiagnosis or omission. Te anti-interference capability
also needs to be improved.

Te knowledge-based methods consider the full appli-
cation of the prior knowledge accumulated by the experts in
practice to the fault detection of the UAVs, which is
a process of simulating human logical thinking and rea-
soning. Knowledge-based fault trees [5], expert systems
[6, 7], and fuzzy reasoning [8] methods have all evolved
accordingly, but there has been a gradual decline in the
related research and coverage. Te UAV fault tree model is
simulated by some methods (such as Monte Carlo), and the
components with poor reliability and good reliability are
found, which reduces the time cost of manual evaluation to
a certain extent [9], but there are often various difculties in
obtaining the cause of the fault. Te expert system uses the
experience accumulated by domain experts to build
a knowledge base and designs programs to simulate human
experts’ reasoning and decision-making process for fault
diagnosis. However, it lacks efective self-learning and
adaptive ability. Te authors in reference [7] combine an
expert system with the artifcial neural network, which
enhances its adaptive ability to a certain extent, promotes the
development of this kind of method, and brings new
challenges. Te authors in reference [10] combine the fuzzy
inference system (FIS) with a particle flter (PF)-estimated
state residual to detect the abnormality of the UAV airborne
navigation sensor, which improves the real-time perfor-
mance of fault detection. However, the large amount of
computation of PF and the low performance of FIS limits its
ability to detect anomalies. In conclusion, although the
knowledge-based method solves the problem of accurate
modeling of the diagnosed system to some extent, it is faced
with some problems, such as difcult knowledge reasoning,
difcult knowledge acquisition, self-updating of related
systems, and poor self-learning ability.

Deep learning, with strong nonlinear feature extraction
ability, has yielded excellent results in many felds including
fault diagnosis [11] and is increasingly considered for UAV
faults. To give full play to the advantages of deep learning,
many researchers try to collect available data through var-
ious methods, such as artifcially destroying the blades of
drones and collecting data in a safe area [12–14], obtaining
fault data through simulation [15–17], and injecting faults
into fying drones through software [18, 19]. Nevertheless,
due to the multiple limitations of the UAVs themselves and

the diversity and complexity of their mission environment, it
still faces problems such as scarcity of fault samples, sample
imbalance, and difculty in obtaining samples from complex
environments. Li et al. [20] proposed a Siamese hybrid
neural network (SHNN) framework for UAV fault diagnosis
in a limited sample space. However, the overall performance
is still much worse than in other felds (e.g., bearing fault
diagnosis). Yang et al. [21] used a sparse autoencoder to
reconstruct the data to achieve the efect of data cleaning
while preserving as much as possible the original fault
knowledge of the data to improve the efciency of diagnosis.
Gao et al. [22] designed a transfer learning framework based
on bidirectional long short-term memory (BiLSTM) net-
works using a multikernel MMD (MK-MMD) domain
adaptation method to reduce the variability between two
domains, applied to the case of insufcient samples in the
target domain. Bondyra et al. [23] proposed a fault detection
algorithm based on signal processing and machine learning
to use the acceleration data of IMU sensors to accurately
identify rotor faults. Te abovementioned methods all use
fight log data, and in order to explore other available data,
the authors in reference [24, 25] considered using audio data
to train a UAV fault detection model, but audio data are
susceptible to interference and may be challenging to work
in more complex situations. Te deep learning-based ap-
proaches only need data to build fault detection models,
which do not require the establishment of accurate math-
ematical models or rely on expert knowledge and is more
intelligent than the previous two approaches and also cater
to the trend of big data development for UAVs [26]. Deep
learning provides an advanced solution for UAV fault de-
tection in the future, but the lack of UAV monitoring data
limits the advantages of deep learning in UAV fault de-
tection technology, which is a challenge and an opportunity
for UAV fault detection technology.

In summary, deep learning-based approaches in UAV
fault detection have endless potential in the future but are
currently facing problems such as the scarcity of fault
samples and difculties in obtaining fault samples from
complex working environments. In this paper, we try to fnd
new ways to solve the abovementioned problems to promote
the continuous eforts and innovation of deep learning in
FW-UAV fault detection. We consider that it is relatively
convenient to obtain FW-UAV fault data in some specifc
environments (such as the test fight environment and the
experimental environment), which contain the knowledge
required for FW-UAV fault detection. If this knowledge can
be used efectively, perhaps the data dilemma can be solved.
Terefore, we propose an FW-UAV fault detection method
based on hybrid deep domain adaptation BiLSTM networks
and the Hampel flter (HDBNH), which combines the ideas
and advantages of data-driven and model-based approaches
to learn the knowledge of acquired data for detecting
FW-UAV faults in an unknown working environment.
Compared with the previous works, the main work and
contributions of this paper are as follows:
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(1) A state sample preparation strategy is proposed,
which solves the problems of data complexity, re-
dundancy, nonstandard, and frequency in-
consistency, while the generated state samples better
support the work of HDBNH.

(2) A novel BiLSTM network combining adversarial and
MMD domain adaptation is proposed, efectively
reducing the diference in feature distribution be-
tween the source and target domains and better-
enabling knowledge transfer.

(3) According to the continuous and dynamic charac-
teristics of FW-UAV states [27], the Hampel flter is
proposed for detecting and correcting the predicted
values of BiLSTM models to improve fault detection
accuracy further.

Te article continues as follows: Section 2 presents the
related work and briefy discusses them. Section 3 presents
the proposed HDBNH framework in detail. In Section 4, the
real fault dataset and the state sample preparation strategy
are presented. Section 5 conducts experiments and analyses
them from diferent perspectives. Te main conclusions are
given in Section 6.

2. Related Work

In this section, we will briefy review and discuss some of the
work related to the proposed methodology.

2.1. Unsupervised Domain Adaptation. Transfer learning is
one of the cutting-edge directions in machine learning re-
search today [28]. Te core idea is to learn and accumulate
knowledge and experience in the source domain and apply it
efectively to the target domain, thus compensating for the
lack of labeled data. However, achieving this goal requires
that the distribution of features in the source and target
domains be as similar as possible. For this reason, un-
supervised domain adaptation (UDA) techniques have be-
come a hot research topic in recent years, aiming to
minimize the diferences in feature distribution between
diferent domains, as shown in Figure 1.

MMD is a measure of the distance between two prob-
ability distributions.Te main idea is to map two probability
distributions into a high-dimensional reproducing kernel
Hilbert space (RKHS) and then calculate their distance in
this space, as shown in the following equation:
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where ‖ · ‖H is the RKHS, ∅(∙) is a mapping, and m and n

are the number of samples in the source and target domains,
respectively. Te MMD approach has been widely studied
given its ability to efectively solve the UDA problem,
typically representing DDC [29], which uses MMD to align
the features between the layers of two networks. Based on the
DDC, the DAN proposed by [30] uses MK-MMD to achieve
better performance. In the recent research work, the authors

in [31–33] have usedMMDdirectly to learn generic domain-
invariant feature representations. Specifcally, reference [34]
employed MK-MMD at several higher layers with varying
weights to achieve efective domain feature transfer of dif-
ferent faults, while the authors in reference [35] applied
MMD to reduce distribution diferences between training
and test battery data, thereby enabling health assessment of
lithium-ion batteries under diferent usage conditions, and
the authors in reference [36] used MK-MMD to minimize
diferences in the marginal probability distributions of
metastable features to eliminate each fault diagnosis task-
specifc distribution diferences of high-level features in the
discriminator. In addition, many scholars have worked on
improving the performance of MMDmethods. For example,
a cross-domain active learning method based on Hellinger
distance and MMD was proposed by the authors in [37].
Also, the discriminative heterogeneous MMD method
(DMMD) proposed in [38] aims to minimize the variance of
the domain probability distribution while retaining known
discriminative information. In [39], an instance-weighted
dynamic MMD (IDMMD) was proposed to dynamically
estimate the efects of marginal and conditional distributions
of bearing fault data and to adapt the target domain to the
source domain.

Adversarial domain adaptation (ADA) is an important
branch of UDA, where the main idea is to approximate the
distribution of the source and target domains by training
a generative model. ADA methods usually employ an
adversarial generative network (GAN) framework [40],
where discriminators and generators can learn from each
other through adversarial training, where the generators try
to generate samples that match the target domain distri-
bution in order to trick the discriminators; the DANN [41] is
the most representative approach. In the early years, the
authors in [42, 43] only focused on feature matching in some
scenarios and did not focus on whether the matched features
could improve performance. In recent years, many ADA
improvements have been proposed by the researchers for
specifc tasks. For example, the authors in [44] improved its
performance by designing a new framework and a new loss
formulation; a novel domain adaptation scheme for
adversarial entropy optimization (AEO) is introduced in
[45]. Te authors in reference [46] proposes a more suitable
training and more generalized ADA method, using residual
connectivity to share features and reconstruct adversarial
losses.

MMD achieves impressive results, but this approachmay
not be efective for domain adaptation if there are large
diferences between the data in the source and target

No adaptation Domain adaptation

Target
Target

Source Source

Figure 1: UDA schematic.
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domains. Compared to MMD, ADA achieves better results
in most cases, but it also has numerous limitations [47] as
follows:

(1) ADA is a domain-adaptive method based on deep
learning, which needs a lot of data to play a better
efect. Terefore, in the limited data scenario, the
domain-adaptive method based on MMD is more
efective.

(2) In general, the optimization goal of a domain dis-
criminator is to maximize the domain classifcation
error in order to achieve domain adaptation.
However, simply maximizing the domain classif-
cation error does not guarantee the desired domain
adaptation efect, and there is a risk that the feature
distributions of the source and target domains may
be confused due to overoptimization. In other words,
the domain classifcation accuracy refects the dis-
tance of the feature distribution between the source
and target domains, and the ideal domain classif-
cation accuracy is about 50%, as shown in
Figure 2(a). However, it is possible that over-
optimization leads to a domain classifcation accu-
racy of approximately 0%, as shown in Figure 2(b);
the discriminator’s recognition result is the exact
opposite of the true one.

(3) Te optimization processes of the generator and
discriminator may interfere with each other,
resulting in unstable training or difculty in con-
vergence. For example, Figure 2(c) shows the results
of inadequate optimization.

For the efective adaptation of the diferent mission
domains of the FW-UAV, we propose a novel hybrid do-
main adaptation method, the details of which are described
in detail in Section 3.2.

2.2. Hampel Filter. Te Hampel flter is a median absolute
deviation-based flter that handles outliers and noise in time
series.Te flter identifes and replaces outliers by comparing
the distance between each data point and its neighborhood
data points one by one, resulting in smooth time-series data
[48].Te Hampel flter is widely used in medical research for
data processing and anomaly detection processes [49, 50]. In
the feld of intelligent manufacturing, the Hampel flter is
mainly used in processing machine operation data [51],
detecting manufacturing surface defects [52], and other
related work; among them, the authors in [53] applied the
Hampel flter to the study of intelligent fault diagnosis of
wind turbines.

In contrast to general flters, the Hampel flter does not
require the assumption that the data obey a Gaussian or
some other specifc probability distribution, and the median
is an unbiased estimator that resists interference from ex-
treme values and outliers, making the Hampel flter suitable
for data fltering and preprocessing tasks in a wide range of
anomalous scenarios.

3. HDBNH Framework

Te initial stages of minor faults in the FW-UAV will not
severely impact the FW-UAV, but failure to detect and
address these minor faults promptly will lead to catastrophic
accidents. Terefore, it is essential to test the functional
components of FW-UAVs regularly or irregularly. Te
proposed HDBNH framework can serve for test fights,
periodic inspections, and other work and can detect minor
faults in the early stage of the FW-UAV, thus providing fault
information to engineers and avoiding more signifcant
losses. In this section, the working principle of HDBNH is
described in detail. As shown in Figure 3, the HDBNH
framework mainly consists of three parts: feature extractor,
domain adaptor, and fault detector.

3.1. Feature Extractor. Te fight data record detailed in-
formation about the FW-UAV fight process and imply
much knowledge.Te feature extractor is expected to extract
the features of FW-UAV faults from the fight data and use
them for subsequent fault detection. Te feature extractor
consists of two weight-sharing BiLSTMnetworks (F1 and F2)
with 3 layers and 64 hidden units in each layer. Te BiLSTM
networks can handle both forward and backward time-series
data and extract important features of the past and future.
Te process is as follows:
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where W, V, and b are the parameters of the model; σ is the
sigmoid function and t is the time point; and it, ft, and ot are
the input, oblivion and output gates, respectively. ⊙ is the
element-wise product, and ct is a memory cell. Te output of

BiLSTM is composed of h
→

t and h
←

t as follows:
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→
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t.
(3)

3.2. Domain Adaptor. In the real world, FW-UAV mission
environments are exceedingly complex and are infuenced
by multiple factors such as human operation, weather and
the task load. Terefore, there exist signifcant nonlinear
diferences between data from diferent tasks, making ef-
fective domain adaptation exceptionally difcult. Tomitigate

these challenges and successfully perform fault detection
tasks in the target domain, we propose a hybrid deep domain
adaptation method that efectively reduces the feature dis-
tribution diferences between the source and target domains.
As shown in the upper right of Figure 3 (domain adaptor),
this method includes an MMD module and a domain
classifer (DC).

First, the MMD module can measure the diference of
feature distribution between the source and target domains
as in the following equation. Te MMD module reduces the
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diference in edge distribution between the source and target
domain data by using Lm backpropagation and updating the
F1 and F2 parameters, as shown in Figure 4.
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where ‖ · ‖H is the regenerated Hibelt space, and fi
s and f

j
t

are the ith source-domain feature and the ith target domain
feature, respectively. m and n are the number of samples in
the source and target domains, respectively.

Next, fs and ft are concatenated as shown in equation
(5) and fed into the DC for domain classifcation. In this
work, we set up a virtual domain label yD to supervise the
classifcation task and calculate the domain classifcation
error by equation (6). Te optimization process employs
adversarial training to ensure that the feature extractor can
extract similar features from both the source and target
domains. If the DC cannot accurately recognize features
from the source and target domains, domain adaptation is
achieved. Terefore, our optimization goal is to maximize
the domain classifcation error of the DC. To achieve this
goal, the parameters of the F1, F2, and DC are optimized
through diferent processes. Te DC optimized through Ld

backpropagation, while the F1 and F2 are optimized through
−Ld backpropagation, as shown in Figure 4.

fst � Concat fs, ft􏼂 􏼃, (5)

where Concat is the concatenation character.
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1
n

􏽘

n

i�1
yi · logp yi( 􏼁 + 1 − yi( 􏼁 · log 1 − p yi( 􏼁( 􏼁􏼂 􏼃,

(6)

where n is the batch size, yi is the label 0 or 1 of the domain,
and p(yi) is the predicted value of DC.

Te hybrid deep domain adaptation method proposed in
this study partially addresses the limitations of traditional
MMD and ADA methods. MMD methods always provide
domain adaptation based on distance measurement, while
ADA can achieve consistency of data distribution through
adversarial training. Combining both methods can com-
pensate for their respective shortcomings, better achieve
domain adaptation between source and target domains, and

improve the performance of domain adaptation tasks, as
shown in Figure 5 (these limitations are detailed in Section
2.1, and we will verify them through ablation experiments in
Section 5.1.1).

3.3. Fault Detector. Te fault detector module is designed to
accurately identify the state of the FW-UAV, which is our
ultimate goal. Its structure is shown in Figure 3 bottom right
and consists of a label classifer (LC) and a Hampel
flter (HF).

Te LC consists of a fully connected layer that allows the
initial detection of faults in the FW-UAV. Its fault classi-
fcation error is calculated via equation (7).Te optimization
objective of the LC is to minimize the fault classifcation
error.
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1
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where n is the batch size, k is the number of classes, yj is the
actual value, and p(yi) is the predicted value of LC.

We designed a HF to test and correct the predicted
values of the deep learning model because the change
process of the FW-UAV’s state during fight is continuous
and dynamic [27], which means that the transition process
between diferent states takes a certain time. In other words,
diferent states before and after the transformation should be
maintained for a certain period and show diferent char-
acteristics. If the minor faults detected by the deep learning
model only occur in a moment and then return to its original
state, it does not afect the original fight, which may be
a misjudgment of the deep learning model, and we need to
correct it to an original state through the HF. Te main
implementation process is shown in Figure 6. LC pre-
liminarily detects the fault of FW-UAV and continuously
outputs the results Yl as shown in equation (8) and calculate
the median mi (equation (9)) and the median si (equation
(10)) of the window length of Yl within 2k + 1. If
|yi − mi|≥ 3si, return the new results Yh with mi instead of yi

as shown in equation (11). In this way, HF will verify and
correct the detected results of each LC in turn.

Y
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where yi is the fault detection result at time point i, median is
the median calculator, and | · | is the absolute value.

It is worth noting that unlike methods such as themodel-
based KF, the HF can detect and correct only based on the
output values of the deep learning model without the need to
build any mathematical model, which is the biggest ad-
vantage of the HF.
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Figure 4: Working details of the domain adaptor.
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3.4. HDBNH Framework Workfow. In summary, the entire
HDBNH framework has 3 optimization objectives:

(1) Minimize the fault classifcation error in LC.
(2) Maximize the domain classifcation error in DC. If

the domain classifer cannot accurately classify the
features between the source and target domains, it
means that the efect of domain adaptation is
achieved.

(3) Minimize the MMD between the source and target
domain features.

Te total optimization objective can be written as
follows:

Lt � Ll − λ1Ld + λ2Lm, (12)

where λ1 and λ2 determine the intensity of the domain
training and increase from 0 to 1 with training using formula
2/e− 10∗E/maxE+1 − 1, and E is the training Epoch. Te
workfow of the HDBNH framework around the above-
mentioned objectives is shown in Algorithm 1.

4. Data Processing

4.1. Real Datasets. Real fight data (https://github.com/
mrtbrnz/fault_detection/tree/master/data) used in this
work are provided by [18]. Te fight experiment system and
FW-UAV specifcation are shown in Figure 7. Te ground
control station (GCS) can set up autonomous fight missions
and manually inject faults during fight. In case of severe
faults, the FW-UAV can be controlled manually with an RC-
transmitter. Te X-Bee radio modem is used for telemetry

Source

Target

MMD
and

ADA

ADA

ADAMMD 

MMD

MMD 
MMD ADA ADA

(a) (b)

Figure 5: (a) MMD and ADA promote domain adaptation to make the optimization result as close to the ideal result as possible and solve
the underoptimization problem. (b) MMD can mitigate the overoptimization of ADA. Te green and light blue arrows indicate that the
source and target domain distributions migrate with the optimization process, respectively. Te dotted and solid lines represent MMD and
ADA, respectively.
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Figure 6: HF in turn detects and corrects the results of LC.
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and datalink communication, and the GCS receives the fight
data from the FW-UAV via the X-Bee.

Te experimental system mainly simulates the situation
where faults occur in the aerodynamic control surfaces, and
the fault model is defned as follows [18]:

uapp � ducom + e, (13)

where uapp is the control defection of the fnal application,
ucom is the desired control defection of the ground control, d
is the efciency loss of control surfaces, the value of d can be
set to simulate the degree of control surface failure, and e is
the defection error.

According to equation (13), the two aerodynamic control
surfaces of the FW-UAV injected into the fault through the
GCS can then be rewritten as follows:

uapp1

uapp2

⎡⎣ ⎤⎦ �
d1, 0

0, d2
􏼢 􏼣

ucom1

ucom2

⎡⎣ ⎤⎦ +
e1

e2
􏼢 􏼣, (14)

where 1 represents the right-wing control surface and 2
represents the left-wing control surface.

Finally, faults were injected into the FW-UAV being
fown through the GCS, and fight data were recorded for
diferent dates in July 2020. In this work, experiments were
conducted mainly using the fight data of the 12th, 13th, 21st,
and 23rd, where two states were simulated in the data of 12th

(1) Datasets processing: DS xs, ys􏼈 􏼉⟶ Dtrain xs, ys􏼈 􏼉, Dval xs, ys􏼈 􏼉 and Dt xt􏼈 􏼉⟶ Dtest xt􏼈 􏼉; set the virtual domain label yD � [0, 1]

(2) Training:
(3) Input: Dtrain xs, ys􏼈 􏼉, Dval xs, ys􏼈 􏼉, Dtest xt􏼈 􏼉, yD

(4) For i in train epochs
(5) fs, ft � F1(xs), F2(xt)

(6) Backpropagation Ld(fsft), yD,
(7) Optimizer Adam (DC. parameters)
(8) ypre � LC (fs)

(9) Calculate Ll(ypreys), Lm(fsft)

(10) Backpropagation total Lt � Ll − λ1Ld + λ2Lm

(11) Optimizer Adam (F1. parameters, F2. parameters, LC. parameter)
(12) Save the best model on Dval
(13) End for
(14) Testing:
(15) Input: Dtest
(16) ft � F2(xt)

(17) yl � LC(ft)

(18) yh �HF (yl)

(19) Output: yh

ALGORITHM 1: Training and testing of the HDBNH framework.

FW-UAV

RC-Transmitter GCS

X-Bee radio modem

Motor (T-Motor 2208/18 - Kv
1100) 

Autopilot (Paparazzi Chimera
v1.0) 

GPS (U-Blox M8 N) 

FW-UAV Components

Wing span (12 m)
Mass (0.75 kg)
Surface Area (0.28 m2)
Flight speed (12 m/s)
Flight time (60 min)

FW-UAV Specification

Companion board (Raspberry
Pi Zero v1.3)

Figure 7: Flight experiment system and FW-UAV specifcation.
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and 13th, i.e., normal and d1 � 0.3 (30% efciency of the
right-wing control surface), and nine states (normal,
d1 � 0.3, and d2 � 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) were sim-
ulated on 21st and 23rd.

4.2. State Sample Preparation Strategy. In order to obtain
samples suitable for the HDBNH framework and fully utilize
the performance of HDBNH, we performed a series of
processing on the data.

First of all, fight data record more than 50 variables. To
save computing resources and ensure computing speed, we
need to select a small number of related variables to support
our work. We refer to the choices in [13, 16, 18] and select v,
ψ, θ, ϕ, ax, ay, az,ωx, ωy,ωz, u1, and u2, 12 variables, as shown
in Figure 8. v is the airspeed, ψ is the yaw angle, θ is the pitch
angle, ϕ is the roll angle, axyz is the linear acceleration in three
directions, ωxyz is the angular rate in three directions, and u1
and u2 are the control commands of the autopilot. Tese 12
variables are assembled to form the state vector X:

X � vψθϕaxayazωxωyωzu1u2􏽨 􏽩. (15)

Second, the data of each variable are collected by dif-
ferent sensors, which means that the sampling frequency is
also inconsistent, where the sampling frequency of axyz and
ωxyz is 50Hz and the sampling rate of the rest is 20Hz,
resulting in the data points and time points not aligned. To
solve this problem, we use a linear interpolation method to
make the data frequency of all variables become 20Hz and
then align the time points by moving the time axis, as shown
in Figure 9. In addition, each variable has diferent units and
value sizes, and all variables were standardized to eliminate
the possibility of dominance by one variable.

Finally, based on the t time point, the data of the previous
20 time points (1 s) are chosen as a state sample Xt (equation
(16)) at moment t. Similarly, slide one time points (0.05 s) to
obtain the state sample Xt+1, as shown in Figure 10. Vi-
sualizing Xt as shown in Figure 11 provides a more intuitive
understanding of the sample states at moment t.

Xt �

vt · · · azt · · ·ωzt · · · u2t

vt−1 · · · azt−1 · · ·ωzt−1· · · u2t−1

. . . . . .

vt−19· · · azt−19 · · ·ωzt−19 · · · u2t−19

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Trough the abovementioned series of data processing,
we get four state sample sets as shown in Table 1. In fact, such
a state sample preparation strategy gives a better perfor-
mance of the HF, which is further described in Section 5.1.2.

5. Experiments and Results

In this section, we will experiment with diferent perspec-
tives to verify the performance of the HDBNH framework.
Te GCS computer confguration of the experiment is as
follows: an Ubuntu 18.04 operating system, an Intel (R)
Xeon (R) Silver 4210R CPU @ 2.40GHz, a GeForce RTX
2080 Ti GPU with CUDA 11.6, and Torch 1.4.0. Te training

epoch was 25, the batch size was 64, and the network pa-
rameters were updated using an Adam optimizer with an
initial learning rate of 0.01.

5.1. Ablation Study. In this section, we mainly analyze the
performance of domain adaptors and the HF through ab-
lation experiments.

5.1.1. Ablation Study of the Domain Adaptor. To verify the
efect of hybrid deep domain adaptation of the HDBNH
framework, the relevant modules of the domain adaptor
were decomposed and ablation experiments were performed
according to the control variable principle (as shown in
Table 2). Each experiment was repeated fve times and av-
eraged. Te experimental results are shown in the Table 3,
where the mutual transfer between A and B is binary
classifcation tasks, and the mutual transfer between C andD
is 9 classifcation tasks.

From Table 3, it can be seen that HDBNH has obvious
advantages, which shows that our proposed hybrid deep
domain adaptation method can learn domain-invariant
features well to improve fault detection accuracy. FDLH
and FMLH are generally better than FLH, but the im-
provement is limited and even negative optimization occurs
on individual tasks, such as FMLH is lower than FLH in
A⟶ B and FDLH is lower than FLH in C⟶ D. Te
main reason for this result is the large diferences in the
distribution of features in diferent domains of the FW-UAV
and the inherent limitations of theMMDdomain adaptation
and ADA optimization process (as described in Section 2.1),
which do not allow for efective domain adaptation. In
contrast, HDBNH’s hybrid depth domain adaptation ap-
proach allows for efective domain adaptation between the
source and target domains in the more complex FW-UAV
domain adaptation task.

As an example of experiment C⟶ D, the source-
domain features and target domain features extracted by
F1 and F2 are visualized by T-SNE to better observe the efect
of domain adaptation. As shown in Figure 12, HDBNH
shows the best domain adaptation, where the feature dis-
tribution spaces of the same faults are matched in the source
and target domains; at the same time, the diferences in the
feature distributions of diferent faults are more obvious.
Tis indicates that HDBNH is better able to identify multiple
types of faults. Te matching of the feature distributions of
the source and target domains of FLH, FDLH, and FMLH
are relatively less efective. We also found more severe class-
level alignment confusion for FLH, FDLH, and FMLH, such
as matching the feature distributions of fault 4 in the source
domain and fault 5 in the target domain, which is an in-
efective or negatively acting domain adaptation phenom-
enon. Tis validates the associated domain adaptation
problem as described in Section 2.1.

5.1.2. Performance Analysis of the HF. Te fight data are
highly time series and refect the FW-UAV’s ever-
changing state. If a fault detected by LC occurs for
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a short period and then subsequently returns to its
original state, this is likely to be an error judgment of LC.
Terefore, the HF module is added for judging and
correcting the results of LC. Tis is one of the main in-
novations in this work. In this study, the window length
(2k + 1) for H is set to 21, corresponding to a time length

of 1 second. But in fact, the window length can be set
according to diferent situations. Experiments without
and with the HF participation (denoted by FDML and
HDBNH, respectively) were conducted separately to test
the validity of the HF. Each experiment was repeated fve
times, and the results are shown in Figure 13.
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As can be seen from Figure 13, the HF substantially
improves the accuracy of fault detection, especially in the
transfer task of C⟶ D, which is 10.51% higher than FDML
without the HF. Figure 14 shows the real fault labels, output
of LC, and output of the HF over time and the embedded
fgure shows the partial details. As shown in Figure 14, the
HF efectively corrects the false predictions of LC, such as the
misprediction around 231.4 s. However, there are also many
mispredictions that are not corrected, such as between
230.5 s and 231 s. Tis is due to the multiple false predictions
of LC in a short period of time, which prevent the HF from
working. Te prerequisite for the HF to function better is
that LC has a good performance; so, we choose a BiLSTM
network to extract past and future features from the time-
series fight data, while adding DC and MMD for domain
adaptation to improve the performance of LC.

k is the most crucial parameter of the HF. Terefore,
we did the experiment of gradually increasing k from 0 to
30 to observe the efect of k on the results, and the ex-
perimental results are shown in Figure 15. It can be seen
from Figure 15 that when k increases from 0 to 10, the
accuracy of all fault detection tasks also increases sig-
nifcantly, but as k continues to increase, the improve-
ment of accuracy is not obvious and tends to be stable.
Because the HF detects outliers by referring to values in
the window, the number of values in the window is too
small to provide an accurate reference. In the state
sample preparation strategy (Section 4.2), the sampling
frequency of all variables is frst changed to 20 Hz by
interpolation, and a state sample is taken by sliding each
time point so that 21 state samples of the FW-UAV are
obtained in 1 second (except for the very frst second); in
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Table 1: Details of the state sample sets.

Sample sets Dates Wind speeds Fault labels Number of samples
A 12 <2.0m/s Normal⟶ 0, d1 � 0.3⟶ 1 17992
B 13 8.0m/s Normal⟶ 0, d1 � 0.3⟶ 1 17987
C 21 2.5m/s Normal⟶ 0, d1 � 0.3⟶ 1, d2 � 0.9 ∼ 0.3⟶ 2 ∼ 8 44011
D 23 5.0m/s Normal⟶ 0, d1 � 0.3⟶ 1, d2 � 0.9 ∼ 0.3⟶ 2 ∼ 8 44007

Table 2: Detailed rules of ablation experiments for verifying the domain adaptor.

Participation modules (see
Figure 3) Remarks Names

F1, F2, LC, HF No domain adaptation method FLH (baseline)
F1, F2, DC, LC, HF ADA method, similar to DANN [41] FDLH
F1, F2, MMD, LC, HF MMD domain adaptation, similar to DDC [29] FMLH
F1, F2, DC, MMD, LC, HF Hybrid MMD and ADA HDBNH
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other words, LC detects the state of the FW-UAV
21 times in 1 second. Such high-frequency detection
allows the HF to work better.

5.2. Compared to Other Methods. In this section, we use
FDML and HDBNH to compare with some current
mainstream methods, including SVM, CNN, SHNN, DDC,
MMDA, DANN, CNN_FT, and BiLSTM_FT; each method
is introduced as shown in Table 4. Four experiments with

transfer tasks were set up for each method, and again, each
experiment was repeated fve times, and the experimental
results are shown in Figure 16. It is worth noting that we try
to set the details of each experiment to the optimal case to
ensure fairness of comparison, including data format,
hyperparameters, and training process based on the char-
acteristics of each method.

From Figure 16, we can see that HDBNH has the best
performance in all transfer tasks with an average accuracy of
91.57%, which is much higher than other methods and the

Table 3: Experimental results.

Tasks FLH (baseline) FDLH FMLH HDBNH
A⟶ B 85.26± 2.71 86.27 ±  .48 85.07± 1.62 86.03± 2.88
B⟶ A 94.05± 0.28 96.94± 0.48 97.43± 0.10 97.44 ± 0. 4
C⟶ D 86.90± 0.72 86.75± 0.97 89.40± 1.06 89.54 ± 0.87
D⟶ C 87.53± 1.52 92.17± 1.21 91.48± 1.54 93.26 ±  .3 
Average 88.44± 1.31 90.53± 1.04 90.85± 1.08 9 .57 ±  .30
Note: Bolded are optimal.
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highest accuracy of 97.44% in B⟶ A. FDML outperforms
other methods in B⟶ A, C⟶ D, and D⟶ C except
HDBNH, and the average value is second only to HDBNH.
Tis indicates that our proposed framework has excellent
performance in fault detection of FW-UAV and can perform
most transfer tasks well. BiLSTM_FT and CNN_FT also
achieved good fault detection accuracy, with average ac-
curacies of 83.11% and 80.58%, respectively. However, both
methods are fne-tuned using a small number of labeled
target samples and are supervised domain adaptation
methods, while the other domain adaptation methods are
unsupervised, which is not strictly fair. To our surprise, DDC
and DANN have the worst performance, even lower than
SVM, CNN, and SHNN without using any domain adap-
tation method. DDC and DANN do not work as intended in
our experiments and make the performance worse instead,

due to the inability to efectively align the fault features in
our fight data. In fact, MMD or adversarial-based domain
adaptation methods focus on domain-level adaptation and
ignore class-level adaptation, leading to class confusion
adaptation and making domain-invariant features poorly
learned, which is consistent with the results of 4.1.1. In
addition, as most of the comparison methods use a diferent
dataset in the original papers than our dataset, the results
will be diferent. However, the SVM and SHNN original
papers use the same dataset as the one in this paper, and the
results are both diferent and similar. Te SVM agrees with
our results in the original paper in the B⟶ A task, but in
the other tasks, our results are better than the original paper.
Te reasons for the inconsistent results include diferences in
data processing, variable selection, and the details of method
reproduction. Te results of SHNN are generally consistent
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with the original paper; SHNN is a few-shot learning method
based on hybrid CNN and LSTM Siamese network, which
will be more advantageous in the case of limited samples.

5.3.Te Infuence ofWind Speed. Te FW-UAVs are afected
by many factors (such as wind, payload, and icing) during
the execution of the mission. It is impossible to obtain data
from all mission environments for training fault detection
models. HDBNH is a transfer learning idea that is expected
to learn from certain mission environment data and be used
to detect the states of FW-UAVs in other mission envi-
ronments. However, in transfer learning, the knowledge
learned by the model in the source domain is crucial. In this
section, we will explore the efect of model learning
knowledge under diferent wind speeds. Figure 17 shows the
experimental results of each model trained in the source
domain with diferent wind speeds and detecting faults in
the target domain. Te datasets A, B, C, and D in the ex-
periments were obtained from the missions on the 12th,
13th, 21st, and 23rd days with wind speeds <2m/s, 8m/s,
2.5m/s, and 5m/s, respectively.

In Figure 17, the results for each model B (8m/s)⟶A
(<2m/s) are better than A (<2m/s)⟶B (8m/s), and the
results for each model D (5m/s)⟶C (2.5m/s) are better
than C (2.5m/s)⟶D (5m/s). To analyze the reason, the
fight traces of diferent dates were printed as shown in
Figure 18. In fact, the ground control station sets an “8”
shaped autonomous fight path, but it can be seen from the

fgure that the greater the wind speed, the greater the de-
viation of the track. It may be because as wind speed in-
creases and working conditions becomemore complex, state
features becomemore obvious; as a result, the model is easier
to extract and apply fault features in more complex working
conditions. At the same time, we also found that the dif-
ference between the results of B⟶ A and A⟶ B is
greater than that of C⟶ D and D⟶ C because the wind
speed diference between A and B is greater.

Although the abovementioned results show that the
wind speed is greater, the model learning efect is better, but
we think there will be an optimal wind speed, which needs to
get more data and verify in the future.

5.4. Other Analysis. Experiments show that HDBNH has
excellent robustness and generalization, can learn knowl-
edge from one working condition well, and efectively detect
the state of FW-UAV in other unknown working conditions.
However, HDBNH has some limitations in real-time online
detection, which is more suitable for ofine detection, such
as detecting FW-UAVs that have completed tasks, ofine
analysis of test fights, and regular or irregular ofine de-
tection. Because HDBNH has the process of domain ad-
aptation training, it needs the participation of target domain
samples; this means that if real-time fault detection is
performed, it is necessary to obtain fight data from the
FW-UAV in real-time for onsite training. However, the
energy reserve of the FW-UAV is limited. Figure 19 shows
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Table 4: Information of various methods.

Methods Domain adaptation methods Details
SVM [18] None Traditional machine learning method: support vector machine
CNN None Ordinary convolution neural network
SHNN [20] None Few-shot learning method based on hybrid CNN and LSTM Siamese network
DDC [29] MMD An adaptive MMD criterion metric is added to the previous layer of the classifer
MMDA [54] MMD Multilayer MMD domain adaptation
DANN [41] Adversarial Domain adaptation based on adversarial
CNN_FT [55] Fine tuning Fine-tune the full connection layer with the labeled target sample
BiLSTM_FT [56] Fine tuning Fine-tuning method for residual life prediction
FDML (ours) Hybrid adversarial and MMD HDBNH framework removes the HF
HDBNH (ours) Hybrid adversarial and MMD Based on hybrid domain-adaptive BiLSTM networks and the HF
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the training elapsed time of HDBNH, which takes about
400 s to achieve optimal training. Such a situation may be
improved when the GCS computer confguration is
upgraded. In addition, the detection process of the HF
module will also generate additional delays. In this work, the

additional delay caused by the HF is 0.5 s, which is half the
length of the time window.

Meanwhile, it can be seen from Figure 19(a) that the
change trend of each loss is consistent with the optimization
objectives of HDBNH (see Section 3.4), where Ll, Lm, and Lt
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Figure 16: Experimental results of diferent methods in diferent tasks.
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Figure 17: Results of model learning at diferent wind speeds: (a) binary classifcation task and (b) 9 classifcation task.
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Figure 18: Flight tracks for diferent dates.
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gradually converge near 0, and Ld increases gently with
training. It further proves the efectiveness of the designed
HDBNH framework.

6. Conclusion

Deep learning provides advanced solution ideas for future
UAV fault detection, but the current lack of UAV moni-
toring data limits the advantages of deep learning for UAV
fault detection, which are a challenge and an opportunity. In
this paper, we mainly consider the data availability of FW-
UAVs under a variety of actual fight conditions and propose
an FW-UAV fault detection framework based on hybrid
deep domain adaptation BiLSTM networks and the HF
(HDBNH), the main purpose of which is to learn the
knowledge of acquired data for detecting FW-UAV faults in
other unknown operating conditions. Also, a state sample
preparation strategy is proposed for the HDBNH frame-
work, which solves the problems of data complexity, re-
dundancy, nonstandard, and frequency inconsistency, while
the generated state samples better support the work of
HDBNH.

Extensive experiments have been done in real fight data
to verify the efectiveness of the hybrid deep domain ad-
aptation method, the efectiveness of the HF module, and
high ft between the state sample preparation strategy and
the HDBNH framework. Compared with some current
mainstream methods, HDBNH has better performance. It
can learn detection knowledge from acquired fight data and
efectively use the learned knowledge to detect faults in other
unknown conditions. Te efect of wind speed is also ex-
plored in this work, and it is believed that the higher the
wind speed, the more complex the working conditions are
and the more pronounced the state features will be.
Terefore, it is also easier for the model to extract the state
features from the fight data at larger wind speeds. Finally,
the limitations of HDBNH are discussed, and it is pointed
out that HDBNH is more suitable for ofine detection.

HDBNH provides a new solution for FW-UAV fault
detection. However, there is still a lot of work to be done,
such as improving the capability of real-time detection and
collecting more fight data for more experiments.
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