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Te technology of visual servoing, with the digital twin as its driving force, holds great promise and advantages for enhancing the
fexibility and efciency of smart manufacturing assembly and dispensing applications. Te efective deployment of visual
servoing is contingent upon the robust and accurate estimation of the vision-motion correlation. Network-based methodologies
are frequently employed in visual servoing to approximate the mapping between 2D image feature errors and 3D velocities,
ofering promising avenues for improving the accuracy and reliability of visual servoing systems. Tese developments have the
potential to fully leverage the capabilities of digital twin technology in the realm of smart manufacturing. However, obtaining
sufcient training data for these methods is challenging, and thus improving model generalization to reduce data requirements is
imperative. To address this issue, we ofer a learning-based approach for estimating Jacobian matrices of visual servoing that
organically combines an extreme learning machine (ELM) and a diferential evolutionary algorithm (DE). In the frst stage, the
pseudoinverse of the image Jacobianmatrix is approximated using the ELM, which solves the problems associated with traditional
visual servoing and is resistant to outside infuences such as image noise and mistakes in camera calibration. In the second stage,
diferential evolution is utilized to select input weights and hidden layer bias and to determine ELM’s output weights. Ex-
perimental results conducted on a digital twin operating platform for 4-DOF robot with an eye-in-hand confguration dem-
onstrate better performance than classical visual servoing and traditional ELM-based visual servoing in various cases.

1. Introduction

Te digital twin (DT) technology endeavors to fabricate
a simulated model of a tangible device, coupled with
a comprehensive analysis of its life cycle and implementation
model, to enhance the safety andmanufacturing efciency of

the application system. In this regard, the vision servoing
(VS) technology is a fundamental enabler, wherein the DT
and VS are synergistically employed to achieve optimal
system performance. VS is a closed-loop control approach
that integrates robot motion control with visual information
to rapidly process images and minimize error towards the
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desired position. Te dynamic responsiveness and envi-
ronmental adaptability of VS’s closed-loop architecture
make it a versatile technique with diverse applications, in-
cluding industrial robots [1, 2], automated guided vehicles
[3, 4], unmanned aerial vehicles (UAVs) [5, 6], underwater
robots [7, 8], and medical robots [9, 10], among others.

Closed-loop feedback control is the defning feature of
VS. Based on the type of visual information utilized to
provide feedback error, VS can be classifed into three
categories: (1) position-based visual servoing (PBVS)
[11, 12], which defnes the error in cartesian space; (2)
image-based visual servoing (IBVS) [13, 14], which defnes
the error in image space; and (3) Hhybrid visual servoing
(HBVS) [15, 16], which combines both of these character-
istics but is computationally intensive. Among these ap-
proaches, IBVS has gained popularity as a mainstream
research method due to its balance of robustness and ac-
curacy, which is the primary focus of our work.

One of the primary challenges in IBVS is the acquisition
of the image Jacobian matrix and its pseudoinverse. Te
image Jacobian defnes the mapping relationship between
the error in image features in 2D space and velocities in 3D
space, which is constructed using calibration parameters,
feature projection models, and depth information of the
features relative to the camera frame. Te analytic expres-
sions for the image Jacobian corresponding to various types
of image features have been derived in [17]. However, as the
complexity of image features increases, obtaining the
pseudoinverse of the image Jacobian for use in VS control
law can be challenging. Furthermore, stability and con-
vergence issues can arise in certain VS scenarios, such as
camera retreat when the goal is rotated about the z-axis [18].

To address these challenges, an ofine or online scheme
can be employed to estimate the numerical value of the
pseudoinverse. In the online scheme, the image jJacobian
matrix is viewed as an optimization problem that can be
solved using optimization methods. For example, a dynamic
Broyden’s method has been proposed for model-independent
visual servo control without precise calibration of kinematic
and camera models in [19]. Similarly, a novel algorithm for
multicamera pose estimation using virtual visual servoing has
been proposed [20]. However, these iterative approaches may
face issues such as unexpected camera motion due to poor
selection of initial conditions or updated speed. In contrast,
the ofine scheme addresses the mapping problem using
neural networks, which can avoid issues related to training
well models. However, the computational complexity and
error-proneness of vision-based robot positioning techniques
often limit the number of controllable degrees of freedom. A
novel method based on global picture descriptors and neural
learning has been introduced in [21] to address these issues.
An adaptive neural network module has also been con-
structed to approach unknown dynamics, allowing for control
of robots with nonlinear and structurally unknown dynamics
in [22]. However, the control parameters (learning rate,
learning epochs, etc.) of these methods need to be tuned
manually, which can be challenging when faced with local
minima, and training can be time-consuming when there is
a lot of training data.

Te preamblemachine learning techniques are used in the
digital twin to analyze physical and virtual data while en-
hancing the design properties and operational characteristics
of key aspects of the visual servo system based on a data-
driven approach to further improve the system performance.
In recent times, the learning efciency of the extreme learning
machine (ELM), a new neural algorithm, has been found to
surpass traditional ofine methods signifcantly. Remarkably,
the ELM algorithm necessitates solely the determination of
the number of hidden nodes as its solitary parameter. Pre-
vious works have attested to the benefts of ELM in this regard
[23, 24]. ELM, in combination with fuzzy logic (FL), has been
profered as a viable solution for addressing three common
problems in visual servoing (VS), which entail obtaining the
interaction matrix and its pseudoinverse for defned feature
points, selecting an appropriate gain value for the VS con-
troller, and ensuring that features remain within the feld of
view (FOV) for VS permanency [25]. In addition, a novel
estimation technique based on ELM and Q-learning has been
put out in [26] to address complex modeling problems and
achieve efective servo gain selection.

Notwithstanding the extensive research conducted on the
matter, a signifcant oversight in the literature pertains to the
inherent challenges associated with obtaining a considerable
quantity of industrial feld data sets to ensure a large range
convergence of VS. Moreover, the weights pertaining to the
input and hidden layer Q, along with the hidden layer bias B,
remain static during the training phase. Tis characteristic
may lead to suboptimal network performance when a sub-
stantial disparity exists between the training and validation
data. Tus, if we are able to devise a means to update Q and B
under specifc circumstances while using the same or fewer
training data as traditional ELM, it may be possible to en-
hance the prediction accuracy of the model. Te Moor-
e–Penrose (MP) generalized inverse of ELM is used to fnd the
output weights analytically, and the diferential evolutionary
algorithm is used to choose the input weights. Tis hybrid
learning technique is detailed in [27]. However, it should be
noted that, to the best of our knowledge, this approach has not
yet been implemented in a visual servoing application.

Tis paper proposes a novel digital twin-based ap-
proach to visual servoing that integrates extreme learning
machine (ELM) and evolutionary algorithm (EA). Te
proposed approach leverages the capabilities of ELM to
approximate the pseudoinverse of the image Jacobian
matrix, which efectively addresses matrix singularity and
provides robustness against image noise and camera
calibration errors. Compared to other classifcation
techniques [28, 29], ELM signifcantly reduces the
training time since it avoids slow gradient-based learning
algorithms and eliminates the need for iterative parameter
calculation. Furthermore, because EA is frequently used
as a global optimization seeking strategy, the combination
of analytical methodologies and EA is anticipated to be
successful for network training. In the suggested method,
EA is used to pick the best input weights and hidden
biases, allowing the network parameters to be adaptively
changed to raise the model’s prediction accuracy. Fur-
thermore, in the context of platform development, we
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have devised a digital twin infrastructure grounded on the
EtherCAT real-time Ethernet technology, tailored to
physical robotic entities, with the aim of guaranteeing the
safety of scenario deployment and the efcacy of per-
formance validation. Overall, the proposed visual servo-
ing approach with ELM and EA is expected to provide
better performance than conventional techniques in
challenging robotic applications.

Te present article is structured as follows: in Section 2,
an exposition of the sophisticated approximation method-
ology for IBVS is presented. Te fundamental principles of
ELM and EA are introduced and subsequently employed in
tandem within the visual servoing module. Section 3
presents empirical results based on a 4-axis robot digital twin
operating platform, which helps to validate the efectiveness
of the proposed approach. Finally, Section 4 outlines the
conclusion derived from the study.

2. A Novel Visual Servoing with ELM and EA

Te present section furnishes an exhaustive exposition of the
proposed methodology for IBVS, with a specifc focus on
point features, designed for robot manipulators operating in
an eye-in-hand confguration.

Te present exposition commences by expounding upon
the process of image plane projection. Specifcally, the pinhole
model of a camera, depicted in Figure 1, is introduced. It is
assumed that the camera captures K pixels, denoted as si �

(ui, vi)
T, i � 1, . . . , K and that the origin Opix is located at the

top left-hand corner of the image plane, in accordance with
convention. Te proposed methodology proceeds to consider
n feature points, denoted as pi � (xi, yi)

T, i � 1, . . . , n ∈ K in
the image frame, and corresponding desired image co-
ordinates p∗i , which are typically obtained through a priori
knowledge. In general, the camera projection can be
expressed in the following form:

s � Kp, cp � IP, P � TP , (1)

where
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f
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.

(2)

Te notation p � (xi, yi, 1)T denotes the homogenous
expression of the image point pi, while c represents the
features’ depth information relative to the camera frame.Te
camera parameter matrix is denoted by K, and I is the
project matrix. Te pixel dimensions are given by ρw and ρh

for width and height, respectively, and (u0, v0) denotes the
pixel coordinate of the principal point. Furthermore, P �

(Xi, Yi, Zi)
T represents the feature points expressed in the

camera frame, with P � (Xi, Yi, Zi, 1)T denoting its ho-
mogenous expression. T is a 3 × 4 homogenous trans-
formation matrix that relates the camera frame and the end
efector frame, and P � (Xw, Yw, Zw, 1)T denotes the feature
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Figure 1: Pinhole model of camera.
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points expressed in the world frame. Feature points
expressed in diferent frames are obtained by (1). Te goal of
IBVS system is to minimize

e � pi − p
∗
i , (3)

where e � (e1, e2, . . . , ei) is the vector of the features error
signal. To convert image space error signals to manipulator
pose space, we use the following relationship:

_e � LeVc, i � 1, . . . , n, (4)

where _e is the time derivative of features error and Vc �

(vc, wc) � (vx, vy, vz, wx, wy, wz) is the camera spatial ve-
locity. Te link between the variation of e and the camera
velocity vc is described by the image Jacobian matrix Le.
According to the classical kinematic theory,

_P � − vc − ωc × P⇔

_X � − vx − ωyZ + ωzY,

_Y � − vy − ωzX + ωxZ,

_Z � − vz − ωxY + ωyX.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Take the derivative of p in (1)

_p �
I _P

c
⇔

_x �
( _X − x _c)

c
,

_y �
( _Y − y _c)

c
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c � Z (6)

Injecting (5) in (6), where Le related to e is
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Te fnal general control law can be calculated by
using Vc as the input to the low level controller and
obtaining

Vc � − λ L
+
e e, (8)

where λ is a control gain to ensure an exponential decrease of
the error, L+

e ∈ R6×2n is the estimation of Moore–Penrose
pseudoinverse of the image matrix.

As shown in (8), the primary objectives of visual servoing
control are to approximate the relationship between the
feature error signal e and the camera spatial velocity Vc,
which is primarily determined by the control gain and the
estimation of the Moore–Penrose pseudoinverse of the
image matrix L+

e . However, as image attributes become
increasingly intricate, computing L+

e becomes a laborious
and complicated task. To address this challenge, ELM is
employed to learn the nonlinear coupling relationship be-
tween e and Vc by randomly selecting the input weights and
hidden bias. Furthermore, DE is utilized to enhance the
performance of the visual servoing controller by tuning the
input weights and hidden bias.

Te accurate estimation of L+
e is essential to determine

the performance of the visual servoing system, but it is
a challenging task due to its dependence on camera cali-
bration parameters and object model parameters, which are
difcult to precisely determine. Considering the lack of
extensive research on the estimation form of L+

e , a novel
method to approximate it, is proposed. ELM is a type of
single-hidden layer feedforward neural network algorithm
(SLFN), and its algorithm framework is presented in Fig-
ure 2. Distinguishing itself from conventional gradient-
based learning algorithms such as Levenberg–Marquardt
(LM) and backpropagation (BP), ELM employs randomly
generated or artifcially set weight coefcients and biases for
the hidden layer, which obviates the need for gradient de-
scent method (GDM) for error backpropagation and reduces
the requirement for tuning. Te objective of ELM is to
determine the weights of the output layer. Based on these
properties, ELM ofers faster computing efciency and
stronger computing power than traditional methods.

In the context of the IBVS system, assuming a given set of
N known input samples, XI � [XI1,XI2, . . . ,XIi] ∈ Rm×N,
where m is the size of the input vector for a single sample, and
YO � [YO1,YO2, . . . ,YOi] ∈ Rn×N, where n is the size of the
output vector from a single sample. Accordingly, we can
express each sample as XIi � [ei1, ei2, . . . , eim]T ∈ Rm, i �

1, . . . , N and YOi � [Vci1, Vci2, . . . , Vcin]
T ∈ Rn, i � 1, . . . , N.

In this paper, we employ AprilTag [30, 31] as the target
and extract four corners as the image features. Subsequently,
we utilize ELM to estimate the Cartesian space velocity of the
camera, where the dimensions of the input and output
vectors are m � 8 and n � 6, respectively. Te hidden layer’s
output function is

fL � βH, (9)

where β is n × L weight matrix, which maps the hidden layer
to output layer, H is L × N weight matrix, which maps the
input layer to hidden layer. H is defned as

H � G(x) � G(QXI + B). (10)

In this regard, the function G(x) is commonly known as
the neuron activation function or feature mapping function.
It can be defned as various functions such as the sigmoid
function, RBF function, and others. In addition, Q stands for
the L × m matrix, which is defned at random as the initial
value for the hidden layer’s input. Furthermore,
B � [B1, B2, . . . , BL] is a representation of the L hidden
nodes’ bias.

Te primary objective of this process is not to learn Q

and B, but rather to minimize the error between fL and YO.
Terefore, the objective function can be defned as

min
β

� ‖βH − YO‖ � ‖ βH − YO‖. (11)

Te Moore–Penrose pseudoinverse matrix of H is cal-
culated in this context, and it is multiplied by YO to produce
the lowest norm least squares solution of the objective
function β. In other words, β can be expressed as β � H+YO.
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Once the matrix β has been trained, it can be utilized to
predict the camera space velocity Vc for a given feature error
input vector using (9).

Te random assignment of input weights and hidden
bias can potentially impact the accuracy of the model’s
predictions. To mitigate this issue, diferential evolution
(DE) is employed. DE is a type of evolutionary algorithm
(EA) frst proposed by Storn and Price [32]. Te funda-
mental concept behind utilizing DE in ELM can be described
as follows:

Step 1, Population Initialization: here, NP represents
the population size, and D is the dimension of each
individual. In our particular design, each individual
consists of input weights and hidden bias, with a total
dimension of D � L × (n + 1). Tus, a population can
be generated in the following manner:

θi,G, i � 1, 2, . . . ,NP ∈ R
D

. (12)

Step 2,Mutation: like living creatures, the individuals in
the population (denoted as θi,G) are subject to muta-
tion. Consequently, mutant individuals can be de-
scribed as follows:

]i,G+1 � θr1,G + F × θr2,G − θr3,G . (13)

Te current investigation revolves around the selection
of indices, specifcally referred to as r1, r2, and r3, from
a given population. It is essential that these indices are
chosen in a random manner and are distinct from each
other. To ensure adherence to this requirement, the
population size, denoted as NP, must surpass a value of

four. Furthermore, the variable F, which is constrained
within the interval [0, 2], represents the zoom factor
that governs the extent of scaling for diferential
variation.
Step 3, Crossover: to broaden the population’s diversity,
it is imperative to carry out crossover operations, and
the D-dimensional of crossover individuals is defned
as follows:

μi,G+1 � μ1i,G+1, μ2i,G+1, . . . , μDi,G+1 , (14)

where

μji,G+1 �
]ji,G+1 if(rand(j)≤CRor j � rnbr(i)),

θji,G if(rand(j)>CRor j≠ rnbr(i)).

⎧⎨

⎩

(15)

Herein, rand(j), where j � 1, 2, . . . , D, represents the
jth value that is randomly generated and conforms to
the range of [0, 1]. Te crossover probability factor CR,
which resides in the interval [0, 1], is subject to de-
termination by the user. Additionally, rnbr(i) denotes
an index that is randomly selected from the set of
integers [1, 2, . . . , D].Tis index guarantees that at least
one parameter from ]ji,G+1 is incorporated into the
vector μi,G+1.
Step 4, Selection: regarding the selection of individuals
for the ensuing generation, the mutant individual
denoted by μi,G+1 is subjected to comparison with θi,G+1.
If the former displays a higher level of performance in
relation to the latter, the former shall be designated for
the succeeding generation. In contrast, should θi,G
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Figure 2: Algorithm framework of ELM.
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outperform μi,G+1, the original individual θi,G, will be
preserved.

Based on the above basis, a novel approach named EA-
ELM-IBVS is proposed and its framework is shown in
Algorithm 1.

Before testing the accuracy of the ELM network on the
validation set, we know that Q is of size L × m and B is of size
1 × L in (10). As a result, we create the population at random.
Every member of the population possesses all Q and B

parameters as a vector

θ � Q11, Q12, . . . , Q1m, Q21, Q22, . . . , Q2m, QL1, QL2, . . . ,

QLm, B1, B1, . . . , BL ∈ R
D

.

(16)

All values of Qij and Bi are initialized randomly within
the interval [− 1, 1]. Subsequently, we calculate the output
weights β for each individual using the least squares solution
in accordance with (11). Te activation function adopted in
this context is as follows:

f(t) �
1

1 + exp(t)
. (17)

Te ftness function is described as follows:

f it �

��������������������������������

 N
j�1  L

i�1βiG Qi × XIj + Bi  − YOj








2

2
m × N




,
(18)

where fit is the root mean squared error (RMSE) to evaluate
each individual.

Conventionally, the RMSE is employed as the ftness
metric, derived from the complete training set. However,
given that the ELM optimizes β through the least-squares
solution, evaluating the ftness metric based on the entire
training set may result in overftting. Terefore, in order to
achieve enhanced performance of the visual servoing con-
troller while mitigating computational overhead, we ex-
clusively assess the RMSE on the validation set.
Subsequently, once the ftness of each individual has been
ascertained, we proceed to delve into the core concept of DE,
encompassing mutation, crossover, and selection
operations.

Te user often assigns a fxed value to the zoom factor F

during mutation, which has an impact on the ability for
global optimization. In the event, where F is set to a smaller
value, themodel will tend to escape from the local minimum,
leading to a slower convergence rate. To circumvent this
issue, an adaptive approach is described below for adjusting
the value of F:

Input
XI: the input training set, the size is m × N

YO: the output training set, the size is n × N

XI′: the input validation set, the size is n × N′

YO′: the output validation set, the size is n × N′

Output
Vc: the camera cartesian space velocity
Begin
Normalized XI and XI′ in [0, 1];
Q � 2 × rand(L, m) − 1;
B � 2 × rand(L, 1) − 1;
θ � rand(NP − D)∗ (b − a) + a;
for i � 1: 1: NP do

Output value of hidden layer H � Q × XI + B;
Activation function h � 1/(1 + exp (H));
Output weight matrix β � pinv(h′) × YO′;
Output value of hidden layer H1 � Q × XI + B;
Activation function h1 � ((1 + exp(H1))/);
Vc � (h1

′ × β)′;
ob(i) � RMSE(θini, Vc, YO′);

end for
for i � 1: 1: G do

](i + 1) � θ(r1, i) + F × (θ(r2, i) − θ(r3, i));
μ(i + 1) � Corssover(](i + 1), θ(i));
ob(i) � RMSE(θ(i), Vc, YO′);

end for
Q, B← get optimal value based on ob;
Return Vc;

end

ALGORITHM 1: Framework of the proposed EA-ELM-IBVS.
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F � F0 × 2c
, (19)

where

c � e
1− (G+1− i/)

, i ∈ [1, G], (20)

where F0 denotes the initial value of the zoom factor, and F

ranges betweenF0 and 2F0. During the early stage of evolution,
F is assigned a relatively large value to preserve the diversity of
individuals and forestall the occurrence of premature con-
vergence. Conversely, during the later stages of evolution, F is
assigned a smaller value to retain valuable information, prevent
the degradation of the optimal solution, and augment the
likelihood of discovering the global optimum.

While performing crossover, if the zoom factor F as-
sumes a large value, the mutated individuals may acquire
values outside of the permissible range. As a result, a limit
function is added that has the following defnition to get
around this problem:

μji,G �
a if μji,G < a,

b if μji,G > b,

⎧⎨

⎩ j � 1, 2, . . . , D, (21)

where a and b are the lower and upper bounds. Here, we
defne a � − 1 and b � 1.

During the selection process, the mutated population is
compared with the original population based on their ftness.
To achieve this, the output weights of the mutated pop-
ulation are computed and their corresponding ftness is
evaluated on the validation set. Te individuals with better
ftness are then chosen for the next generation. A minor
validation error does not necessarily imply a small testing
error, which depends mainly on the distribution of the
validation data. Terefore, choosing individuals only on the
basis of ftness may not be the best course of action. In order
to overcome this problem, and motivated by [27], a new
criterion, the norm of output weights, denoted as ‖β‖, is
added to the selection process. Te individual who results in
a smaller value of ‖β‖ is chosen when the diference in ftness
between several individuals is minimal. Terefore, the se-
lection strategy for the next generation is defned as

θi,G+1 �

μi,G if f it θi,G  − f it μi,G  > ϵ f it θi,G ,

μi,G if f it θi,G  − f it μi,G  > ϵ f it θi,G ,

βμi ,G
����

���� < βθi ,G
�����

�����,

θi,G else.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

In this formula, f it is the ftness function, and ϵ is the
predetermined tolerance rate. After selecting a fresh pop-
ulation, determine its ftness before starting the DE process
again and repeating it until the desired iteration number or
range of convergence is obtained.

3. Experiment Result

3.1. Numerical Simulations. Tree distinct systems’ perfor-
mances were compared using simulations: the suggested
IBVS system (EA-ELM-IBVS), the extreme learning

machine-based IBVS (ELM-IBVS), and the classical image-
based visual servoing (C-IBVS). Te volume and distribu-
tion of training data have a signifcant impact on the
mapping model’s capacity to learn the link between image
attributes and the end efector’s spatial velocity. However,
acquiring training data that cover the entire workspace of the
robot can be highly time-consuming. Terefore, improving
the generalization ability of the mapping model with fewer
training data can expand the application capability of the
system. To demonstrate the advantages of the proposed
method, experiments were designed and conducted using
MATLAB and theMachine Vision Toolbox [18].Te camera
was mounted at the end of the end efector, and the ho-
mogeneous transformation matrix between the camera and
the end of the manipulator C

TH was assumed to be the
identity. Tis can be expressed as

C
TH �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Te camera resolution is specifed as 1024 × 1024, with
the pixel coordinates of the camera’s origin being (512, 512).
Te camera frame rate is identifed as 33Hz, and the focal
length is determined to be 0.008m. Additionally, the desired
feature points in both Cartesian space, denoted as P∗, and
the pixel frame, denoted as s∗, are provided as

s
∗

�
312 312 712 712

312 712 712 312
 ,

P
∗

�

− 0.25 − 0.25 0.25 0.25

− 0.25 0.25 0.25 − 0.25

3 3 3 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(24)

Te successful completion of the designated task is
contingent upon the attainment of a feature error of less than
σ pixels. In the current study, the number of hidden nodes,
denoted by L, is set to 20, whereas the population number,
denoted by NP, is established at 400. Furthermore, the
algebra of population evolution, represented by G, is de-
termined to be 200.Tese technical specifcations are critical
in guiding the implementation and optimization of the
utilized algorithm, emphasizing their importance in
achieving the desired outcomes.

Te forthcoming subsections adopt two distinct sce-
narios to facilitate a comprehensive comparative evaluation
of C-IBVS, ELM-IBVS, and the proposed EA-ELM-IBVS. In
the frst scenario, the validation data are presumed to be in
close proximity to the training data, and the camera’s spatial
velocity is examined across the three aforementioned
methods. Subsequently, in the second scenario, a greater
disparity is introduced between the initial poses of the
validation and training data, wherein the superiority of the
EA-ELM-IBVS approach in terms of generalization per-
formance becomes evident. Tis comparison analysis sheds
important light on the efcacy and robustness of the various
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Figure 3: Result for case 1 for C-IBVS, ELM-IBVS, and the proposed EA-ELM-IBVS.
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visual servoing techniques under various circumstances,
highlighting their individual advantages and disadvantages.

3.1.1. Case 1: Validation Data ≈ Training Data. In the frst
scenario, w

e H1 is designated as the initial pose of the end
efector frame relative to the world frame. Subsequently, the
end efector is directed to move towards the desired pose
until the image feature error converges. Te calculated error
and spatial velocity at each iteration of the process are
utilized as the inputs and outputs of the training data, re-
spectively. Te corresponding information pertaining to
w
e H2 is designated as the validation data. Te homogeneous
transformation matrix of w

e H1 and w
e H2 is of critical im-

portance in this experimental setting, which is shown as
follows:

w
e H1 �

0.8253 − 0.5646 0 1

0.5646 0.8253 0 1

0 0 1 − 3

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

w
e H2 �

0.8253 − 0.5646 0 0.99

0.5646 0.8253 0 1

0 0 1 − 3

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

It is apparent that a minute discrepancy of solely 0.01m

in the x direction exists between the initial poses of the
training data and the validation data. Te forecasted spatial
velocity, V � (vx, vy, vz,ωx,ωy,ωz), is depicted in Figure 3,
with the red curves signifying the desired output. As inferred
from the experimental outcomes, the disparity in prediction
between the two techniques in the frst scenario is not
statistically noteworthy. Since the validation and training
data are proximate, the ELM technique has computed the
optimal prediction via norm least squares approximation,
while the diferential evolution approach has had a subtle
infuence.

3.1.2. Case 2: Validation Data ≠ Training Data. In the
second scenario, the process information of the homogenous
transformation matrix w

e H1 is utilized as the training dataset.
Nevertheless, an alternative initial pose, w

e H3, associated
with the world frame is designated as the validation dataset.
Notably, the disparity in the x-direction is augmented by
a factor of ten. Te value attributed to w

e H3 is thereby ex-
panded as follows:

w
e H2 �

0.8253 − 0.5646 0 0.9

0.5646 0.8253 0 1

0 0 1 − 3

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Observing the results presented in Figure 4, it is evident
that the discrepancy between the initial poses of the training
and validation datasets is 0.1m in the x-direction. Tis value

is substantially larger than the corresponding disparity in the
frst case. Notably, the curve denoted in green and generated
by the ELM-IBVS exhibits a pronounced phenomenon of
signifcant deviation. Tis trend implies that the predicted
spatial velocity curve markedly increases in both slope and
extreme value. Notably, if the velocity predicted by the
ELM-IBVS is fed into the underlying velocity controller
under identical experimental conditions, the motor will
experience more signifcant vibrations, potentially leading to
damage to the robot. In contrast, EA-ELM-IBVS manages to
retain its predictive ability even when confronted with
substantial diferences between the testing and validation
datasets.

3.2. Real Experiments. In order to ensure the safety and
efciency of physical device experimentation, we have de-
veloped a digital twin operation platform that integrates a 4-
axis robot virtual model with its corresponding physical
entity. Tis organic combination enables the concurrent
evolution of both the virtual and physical components and
facilitates system-level analysis and performance verifca-
tion. Te efectiveness of the proposed method is validated
through experiments conducted on the platform, as illus-
trated in Figure 5, thus demonstrating its practical appli-
cability in real-world settings. Tis platform encompasses
a testbed composed of a high-level visual servoing controller
as well as a low-level motion controller. To acquire image
data, a Realsense D435 camera is afxed to the end of the
SCARA robot. Subsequently, the environmental data is
conveyed to the visual servoing controller, while the motion
controller receives motion commands following certain
processing steps.

Te fundamental aspect of the construction of a digital
twin framework lies in the capacity to procure accurate data
from tangible apparatuses contemporaneously. In consid-
eration of the system depicted in Figure 5, the data fow
within the system is illustrated in Figure 6. To facilitate real-
time activities, we opted to implement the xenomai patch on
a Linux IPC (Intel i3-4150, 3.5GHz). Subsequently, the
following three programs are installed on the IPC: (1) Te
visual servoing controller, which processes the visual ser-
voing algorithm, robot kinematics, and Jacobian conversion
at a rate of 30− 50Hz. (2) Te motion controller, which
enables real-time layer control and facilitates communica-
tion of motion tasks at a frequency of 1 KHz. (3) Te data
collector, which generates a data bufer designed to receive
pulse values for each axis in real time. Additionally, four
Panasonic MADHT1507BA1 EtherCAT servo drives are
confgured to operate in cyclic synchronous (CSP) mode,
functioning as slaves of the EtherCAT network.

In the subsequent part, we proceed to carry out ex-
periments on actual SCARA robots in relation to cases 1 and
2, respectively. We present a scenario wherein a SCARA
robot is tasked with conducting an IBVS eye-in-hand static
tracking experiment. Te outcomes of the experiment are
showcased in Figures 7 and 8. In the context of case 1, it is
evident that ELM-IBVS exhibits a consistent bias along with
larger fuctuations in amplitude. In contrast, the proposed
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Figure 4: Result for case 2 for C-IBVS, ELM-IBVS, and the proposed EA-ELM-IBVS.
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EA-ELM-IBVS successfully achieves convergence at the
desired speed andmaintains smaller fuctuations. Moving on
to case 2, the fuctuations observed in ELM-IBVS are more
pronounced. Additionally, a peculiar phenomenon arises
where the predicted velocity direction contradicts the ex-
pected velocity direction, which is also observed in EA-
ELM-IBVS. To address this issue, the most straightforward
solution entails augmenting the training data samples.
However, merely increasing the number of training samples
falls short inmeeting the requirements of robots operating in
a wide range, thereby presenting a signifcant research
problem that necessitates further investigation in sub-
sequent studies.

Ultimately, within the domain of error analysis, there
exist two quintessential calculated indicators which hold
great import, namely the sum of error squares (SSE) and the
mean square error (MSE). Tese indicators, SSE and MSE,
are commonly described as

SSE � 
N

i�1

Y
pre
i − Y

des
i 

2
,

MSE �
1
N



N

i�1

Y
pre
i − Y

des
i 

2
,

(27)

where Y
pre

i denotes the predicted value, and Ydes
i refers to the

desired value. N, on the other hand, denotes the total
number of samples under consideration. It is pertinent to
note that Y

pre

i and Ydes
i are four-dimensional vectors in the

current experimental setup. Terefore, in order to measure
the extent of improvement brought about by the experi-
mental intervention, we propose the utilization of two in-
dicators, namely the average of the sum of error squares
(AS-SSE) and the average of the sum of mean square errors
(AS-MSE), which are defned as follows:

AS − SSE �
1
6



6

j�1


N

i�1

Y
pre
ij − Y

des
ij 

2
,

AS − SSE �
1
6N



6

j�1


N

i�1

Y
pre
ij − Y

des
ij 

2
.

(28)

Tables 1 and 2 present the pertinent data indicators for
the aforementioned four experiments. Upon conducting an
in-depth analysis of the simulation data, it was observed that
the EA-ELM-IBVSmethod outperformed the other methods
with respect to AS-SSE and AS-MSE. Tese fndings cor-
roborate the notion that the proposed methodology exhibits

Figure 5: Structures of the testbed platform.
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Figure 6: Data interactions in the testbed platform.
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Figure 7: Result for case 1 on SCARA robot for C-IBVS, ELM-IBVS, and the proposed EA-ELM-IBVS.
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Figure 8: Result for case 2 on SCARA robot for C-IBVS, ELM-IBVS, and the proposed EA-ELM-IBVS.
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superior generalization ability, particularly when there is
a signifcant divergence between the training and verifcation
data. Moreover, an examination of the actual robot data also
revealed that the EA-ELM-IBVS approach demonstrated
superior performance, thereby providing evidence for its
heightened robustness in the face of environmental factors
such as image noise.

4. Conclusion

Given that the efcacy of learning-based methods for
approximating the correlation between image feature
errors and the spatial velocity of the end efector is
primarily contingent on the volume of data contained
within the training set, it can be a time-consuming and
challenging task to amass a sufcient amount of data for
the robot to operate efectively across a broad range of
scenarios. To address this issue, the present study pro-
poses an EA-ELM-IBVS approach that has been shown to
exhibit superior generalization ability in comparison to
the ELM-IBVS method. Tis signifes that the suggested
method can perform better with a comparatively smaller
training dataset. Meanwhile, the built digital twin op-
eration system can better realize the organic interaction
between virtual models and physical entities, which fa-
cilitates the efciency and security of algorithm de-
ployment and performance verifcation. Nevertheless, it
is crucial to acknowledge that there are notable hurdles
that persist in situations where the training and vali-
dation data showcase substantial dissimilarities con-
cerning image noise. In light of this circumstance,
forthcoming investigations will concentrate on un-
dertaking algorithmic and methodological interventions
and improvements that render the learning-based ap-
proach more resilient and dependable in the realm of
image Jacobi estimation within the visual servo system.
Furthermore, eforts will be made to incorporate addi-
tional constraints when implementing the proposed
approach on tangible devices.
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