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Te vibration signal is easily interfered by noise due to the infuence of environment and other factors, which can lead to the poor
adaptability, low accuracy of remaining useful life (RUL) prediction, and other problems. To solve this problem, this paper
proposes a novel RUL prediction method, which is based on multiscale stacking deep residual shrinkage network (MSDRSN).
MSDRSN combines the ability of stacking in improving prediction accuracy and the advantages of deep residual shrinkage
network (DRSN) in denoising. First, cumulative sum (CUSUM) from statistics is used to divide the full life cycle of the rolling
bearings and discover the points of failure. Second, stacking is used for feature learning on the raw data, multiple convolutional
kernels of diferent scales are selected as base-learners, and fully connected neural networks are selected as meta-learners for
feature fusion and learning. Ten, DRSN is used to do prediction, and the acquired results are ftted with Savitzky–Golay (SG)
smoothing. Finally, the efectiveness of the proposed method is proved by the IEEE PHM 2012 data challenge dataset. Compared
with the multiscale convolutional neural network with fully connected layer (MSCNN-FC) and the bidirectional long short-term
memory (BiLSTM) for RUL prediction under the noise. Using the proposed method, the mean absolute error (MSE) of the best
result is 0.002 and the mean square error (MSE) is 0.014; meanwhile, the coefcient of determination (R2) of the best prediction
result can reach 97.6%. It is also compared with other machine learning methods, and all the results prove the accuracy and
efectiveness of the proposed method for RUL prediction applications.

1. Introduction

In the feld of prognostics and health management (PHM),
the accurate prediction of remaining useful life has always
been a key and extremely challenging problem [1, 2]. Rolling
bearing is one of the most common and the crucial parts of
modern machinery, and almost all kinds of mechanical
equipment needs it [3]. However, long-running and re-
petitive loads can cause wear and damage to bearings, which
can lead to noise. Rolling bearings in normal operating

conditions typically produce low levels of noise, but once the
bearing is damaged or worn, the noise level increases sig-
nifcantly. Noise, which is a common indicator of rolling
bearing failure, can provide engineers with critical in-
formation about the extent of bearing wear and damage [4].
Once a rolling bearing fails, it can afect the operation of the
entire mechanical system and can cause serious conse-
quences for the equipment and the enterprise [5].

Terefore, in order to avoid the premature failure of
rolling bearings, the equipment will cause accidents and
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even cause a huge economic loss to the company.We need to
make an accurate prediction of the remaining useful life of
the rolling bearing so that we can fnd the failure in advance
and replace it and solve the problem in time. It can not only
accurately refect its health condition in operation but also
provide an accurate theoretical basis for the development of
the health management plan for the equipment [6].

In general, RUL prediction methods can be divided into
three categories: methods based on physical model, methods
based on data-driven models, and hybrid methods [7–19].
Te method based on model-driven uses physical and
mathematical models for modeling and then estimates the
parameters of the model from the monitoring data to predict
the degradation trend of rolling bearings over their full life
cycle. For example, Ding et al. [20] proposed a method to
extract time-domain features such as RMS and kurtosis from
the vibration signals of rolling bearings, which were used to
evaluate them by the proportional hazard model, and
achieved a better result. Wang et al. [21] proposed a method
to get the covariates in the Weibull proportional hazard
model by KPCA, which achieved high accuracy in RUL
prediction. However, this often requires numerous kinds of
prior knowledge, resulting in difculty in accurately
establishing a degradation model under the complex system
structure and working condition [22].

With the rapid development of sensor technology,
computer science, and artifcial intelligence theory, data-
driven methods have become more and more attractive in
prognostics and health management (PHM). Te data-
driven method uses machine learning and deep learning to
learn autonomously from the data and then infer the deg-
radation process of rolling bearings; it not only can save time
and labor but also can accurately predict RUL [23, 24].
Zhang et al. [25] proposed an improved CNN to predict RUL
by using CNN’s ability of autonomous learning. Xin and
Weitang [26] proposed a bearing remaining life prediction
method based on multiscale convolutional neural network.

Although CNN-based deep learning algorithms have
achieved a large number of excellent results in the feld of
bearing RUL prediction, most of these methods have ac-
complished performance validation on laboratory datasets.
However, it is difcult to capture bearing vibration signals
with high signal-to-noise ratio in industrial production
because of various noise sources in the environment, which
makes many RUL algorithms in the industrial feld have
serious problems of accuracy decline or even failure.
Terefore, in order to realize the practical industrial pro-
duction requirements and enable the methods to complete
the life prediction task in noisy environments, many re-
searchers have focused their research on improving the
robustness of the model. Tey have studied extensively on
fault diagnosis in noisy environments. For example, Zhi-
cheng et al. [27] used empirical wavelet transform to re-
construct the signals, then used minimum entropy
deconvolution CNN to reduce the noise of the signals after
composition, and achieved better results. Zou et al. [28]
automatically extracted features from the background noise
with a 1DCNN by performing structure optimization. Su

et al. [29] designed a class of hierarchical branching CNN
structures and built a basic convolutional block with strong
robustness by stacking one-dimensional small convolutional
kernels, which improved the accuracy. Although there are
a large number of research results on fault diagnosis in noisy
environments by researchers, there are still relatively few
reports on life prediction in noisy environments.

Inaccurate prediction results are obtained because the
CNN-based prediction model usually has the problems of
gradient disappearance and gradient explosion. Terefore,
He et al. [30] proposed a residual network, which brought
the shortcut connection into the network to improve the
linear transformation ability, and it avoids the problems of
gradient explosion and gradient disappearance, thus re-
alizing the network to stack to a deeper layer.Te proposal of
residual network made it possible to have a deeper network,
and then appeared the deep residual network, which can
reduce the number of model parameters and shorten the
time of model training by increasing the setting of residual
connections. Yu et al. [31] proposed a ResNet model con-
structed by extracting features of 1D vibration signals.

When some data containing noise and complex data are
used for feature learning, the results are often not very satis-
factory. Zhao et al. [32] proposed DRSN, which is an improved
network of DRN, brought soft-thresholding into DRSN as
a nonlinear transformation layer, and achieved autonomous
learning of thresholds by adding an attention mechanism, and
thus it can extract degrading information efectively.

Although the hazard methods can make full use of the
advantages of both methods, the process is more compli-
cated; therefore, this kind of method has been rarely re-
ported. Aiming at the problem of noisy signal data in rolling
bearing remaining useful life prediction, this paper focuses
on the ability of deep residual systolic network to handle
noise-containing data and improve it.

Te novelty in this paper can be summarized as follows:

(1) Te deep residual shrinkage network is improved by
bringing the idea of stacking integrated learning,
which learns more features of the dataset by two
layers of learners, so that the results are less partial
and the prediction ability of the model is improved.

(2) Traditional DRSN models usually have a single scale
of convolution. Tis paper proposes to use multiple
scales of convolution kernels as the base-learner of
DRSN, which can learn more features.

(3) Based on the above, this paper proposes a model
based on the MSDRSN prediction method, and the
experiment results show that the method can be
accurate in RUL prediction under noisy data and
complex data.

Te remainder of the paper is organized as follows. In
Related Teory, the related techniques are introduced, and
the basics of the methods used in this paper are presented,
such as the basic deep residual shrinkage network, stacking
integrated learning, and SG smoothing algorithm. By
combining these methods, the MSDRSN method is
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constructed. In Materials and Methods, the detailed pre-
diction process of MSDRSN is given, which includes the data
preprocessing stage and the training process of the model. In
Experimental Verifcation, the dataset used in this paper is
introduced, the parameters of the experiments are de-
termined, and the results obtained are discussed. Finally, this
paper concludes the research.

2. Related Theory

2.1. DRSN. DRSN is a modifed model of deep residual
network, which consists of three parts: deep residual net-
work, attention mechanism, and soft thresholding function,
and is usually used to enhance deep neural networks so that
more useful features can be extracted from noise-laden data
and redundant information is eliminated better [33].

Compared with traditional convolutional neural net-
works, there are two major problems: frst, when the net-
work layers are deeper, it will be prone to gradient
disappearance and explosion; second, the sample data are
less adaptable under the strong noise environment. By using
DRSN, it can improve the above two problems [34]. Te
main structure of DRSN is shown in Figure 1.

Residual building unit (RBU) is the basic component of
ResNet. In Figure 1, where rectangle represents the feature
map, C is channel, W is width, and 1 is height. A deep residual
shrinkage network can contain two Batch Normalizations
(BN), two Rectifer Linear Unit activation functions (ReLU),
two Convolutional layers (Conv), a Identity shortcut, a Global
Average Pooling (GAP) and some Fully Connected Layers (FC).

2.2. Stacking. Stacking is the process of stacking multiple
models on the same layer to get the fnal prediction result. In
the stacking method, there are two stages of models. Te frst
stage model is a model based on the original training set,
which is called the base-learner (level-0 model), and can
choose multiple base models for training. Te second stage
model is the model in which the predictions of the base model
on the original training set are used as the training set, and the
predictions of the base model on the original test set are used
as the test set, called the meta-learner (level-1 model) [35].

Stacking is attracting attention because the base-learner
can get the prediction value with diference and more ac-
curacy for the original data and then relearn it by using the
new feature number, so the models of multiple base-learner
in the integrating learning learn from each other to make the
prediction result more accurate [35].

Te stacking framework is shown in Figure 2.

2.3. Savitzky–Golay Algorithm. SG algorithm, published
early by Savitzky and Golay in 1964, is widely used for data
smoothing and denoising. It is an important method in the
feld of signal processing [36]. In the feld of rolling bearing
remaining useful life prediction, the test set will output
a RUL prediction curve by the model. However, because the
training of the model is difcult to achieve complete ac-
curacy, some points in the predicted RUL curve may be
predicted incorrectly, with sudden increases or decreases.

Here, after smoothing the curve, these points can be
modifed with a local average trend, thereby having the efect
of enhancing the prediction accuracy.

Te signal after smoothing by the SG flter is shown in
Figure 3.

Te blue line is the original signal, and the red line is the
signal after smoothing by the SG flter.

3. Materials and Methods

For the RUL prediction problem, this paper uses CUSUM to
fnd degradation points. In addition, to improve model
performance in learning degenerate features, this paper
proposes a multiscale deep residual shrinkage network
which combines the idea of stacking integrated learning.
Applying integrated learning to DRSN enhances the ability
to extract useful information. Using the residual connections
of the residual network not only solves the gradient van-
ishing problem of the deep network but also improves the
accuracy of the prediction results.
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Te complete RUL prediction process is shown in Figure 4.

3.1. CUSUM. CUSUM is a sequential analysis method that
was frst proposed by E. S. Page of Cambridge University, UK,
in 1954. Its basic idea is to accumulate the small ofset between
the sample data and the target data during the process by
accumulating the sample data, which plays the role of am-
plifying and enhancing the sensitivity of the small ofset in the
detection process, so as to detect the anomaly of the data, which
is called CUSUM variable point detection [37, 38]. When
applied to the bearing vibration signal, it can be used to fnd the
variable point, which is the fault point of the rolling bearing.

Te RUL of a rolling bearing is considered as a mono-
tonically decreasing line. Te health starts at 1. From the
start of sampling until degradation decreases uniformly, it
continues until the rolling bearing does not work, and at that
point the health is 0.

In this paper, the marking method is diferent from the
previous method. Tis paper divides the life cycle of rolling
bearing into stable stage and declining stage. Generally, the
rolling bearing works stably during the stable stage and the
signal features basically do not change, but when it enters the
declining stage, the signal features will change drastically
until the rolling bearing breaks down. Te advantage of this
method is to keep the feature labels unchanged in the stable
stage, and the labels start to decline gradually from the
declining stage. It avoids the infuence of the stable stage on
the model training and improves the accuracy of the training
results. By dividing the labels of the life cycle, the fault point
of a rolling bearing can be found quickly, and the prediction
result of RUL can be improved efectively.

Te CUSUM algorithm is calculated in three steps,
which are shown as follows.

Step 1: calculate the mean value of the series.

x �
x1 + x2 + · · · + xn

n
. (1)

Step 2: calculate the cumulative sum.

Ti � 􏽘
n

i�1
xi − x( 􏼁. (2)

Step 3: take the maximum value in the cumulative sum,
and the corresponding horizontal coordinate is the
fault point.

Tmax
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � max Ti

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (3)

Tis layer accepts the raw rolling bearing vibration
signal and takes the absolute mean value of the vi-
bration signal and then it is used for life division and
labeling by CUSUM.

3.2. MSDRSN. Te network structure of DRSN mainly
consists of convolutional layer, residual shrinkage module,
and pooling layer.MSDRSN is a newmodel that combines the
DRSN model into stacking integrated learning and by using
diferent scale DRSN as the base-learner and fully connected
networks as the meta-learner. In RUL prediction, three re-
sidual shrinkage layers are stacked together as part of the
model structure. Multiple residual shrinkage layers can better
investigate the mapping connection between input and
output and solve the problem of gradient disappearance.
However, the full life data sequence of the bearings will
contain some noise, and the residual network can only reduce
the noise to a certain extent; its training efect is ordinary.

Terefore, this paper proposes an MSDRSN by con-
sidering the ability of stacking to learn features. It can not
only solve the problem of gradient disappearance due to
network in deepening but also enhance the training ability of
the model and improve the accuracy of training, which are
all contributions to rolling bearing RUL prediction.

Te DRSN model construction process is shown as
follows.

Step 1: convolutional layer—feature preextraction.
Te calculation principle of the one-dimensional
convolution layer is as follows:
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y
k
i � fcov wk ⊗ xi + bk( 􏼁, (4)

where xi is the input, wk is the weight of the kth con-
volution kernel, ⊗ is the dot product operation, bk is the
bias of the kth convolution kernel, fcov is the activation
function, and yki is the output vector of the kth con-
volution kernel. At this layer, the vibration signal is
frstly processed by using a one-dimensional convolu-
tional kernel to extract the shallow features of the signal,
in order to provide a basis for the deep feature extraction
in the next step and, at the same time, set the padding in
this layer to avoid the loss of boundary features. Tis
layer completes feature preextraction.
Step 2: residual shrinkage module—feature extraction
and denoising.
Given that the input is xi and the output is xj, the soft
thresholding formula can be shown:

xt �

xi − t xi > t( 􏼁,

0(−t≤ x≤ t),

xi + t xi <−t( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩

xj � xi + xt,

(5)

where xt represents the output feature and t is the soft
threshold. Finally, the sum of the soft thresholded
feature map and the input feature map is the output
feature map, and this step is the core of the identity
function in the residual structure. In this layer, the
network automatically extracts the features of the
previous layer’s data and automatically learns the
threshold for denoising. After that, the data are
transmitted to the next layer of the network.

Step 3: adaptive pooling layer—dimensionality reduction.

P
l+1
I (j) � avg(j−1)W+1≤t≤jW q

l
i(t)􏽮 􏽯, (6)

whereW is the width of the pooling domain, ql
i(t) is the

tth neuron of the ith feature vector in layer l, and Pl+1
I (j)

is the value corresponding to the neuron in the l+ 1
layer. Te network at this layer accepts the information
output from the previous layer, automatically down-
samples the data according to the set output size, and
outputs the data to the next layer.
Step 4: splicing and fully connected layers—feature
aggregation and relearning.

f(x) � W × x + b, (7)

where W is the weight of the fully connected layer, x is
the input, and b is the bias. In this layer, it is similar to
the meta-learner in the stacking. After the features are
spliced in this layer, they are sent to the fully connected
layer for feature training as the sample information,
and fnally the results are output.
Step 5: loss function.

We choose the loss function mean square error (MSE),
which is most commonly used to solve the regression
problem; the loss function is as follows:

MSE �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
. (8)

MSDRSN plays the role of feature extraction and initial
output of RUL prediction results.Temodel accepts the data
from the preprocessing of the previous layer, then does
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Figure 4: RUL prediction process based on MSDRSN.
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feature self-extraction and output of lifetime, and puts the
output results into the next layer for curve smoothing.

3.3. SGFilter. Because of the noise that inevitably appears in
the training results, the SG flter was used to reduce the noise
and smooth the curve to increase the accuracy and curve ft
of the prediction results.

Te SG flter is calculated in two steps, which are shown as
follows.

Step 1: Let x[i] (i=−m, . . ., 0, . . ., m) be a set of
consecutive integer values in the moving window; then,
the width of the moving window is M= 2m+1. Using
nth degree polynomials (n≤M) within the flter win-
dow, the data are ftted locally using least squares.

y(x) � 􏽘
n

k�0
akx

k
� a0 + a1x + a2x

2
+ . . . + anx

n
, (9)

where y(x) are the output data after ftting; x are the
data to be ftted; and a is the parameter to be solved.Te
curve is best ftted when the residuals of the nth degree
polynomial are zero.
Step 2: the procedure for fnding the residual for the rth
point is as follows:

E � 􏽘
m

i�−m

[f(i) − x(i)]
2

� 􏽘
n

k�0
aki

k
− x(i)⎡⎣ ⎤⎦

2

,

zE

zar

�
z

zar

􏽘

m

i�−m

􏽘

n

k�0
aki

k
− x(i)⎡⎣ ⎤⎦

2
⎧⎨

⎩

⎫⎬

⎭ � 0,

zE

zar

� 2 􏽘
m

i�−m

i
r

􏽘

n

k�0
aki

k
− x(i)⎡⎣ ⎤⎦

� 􏽘
n

k�0
ak 􏽘

m

i�−m

i
k+r

− 􏽘
m

r�−m

x(i) × i
r

� 0,

(10)

where r= 0, 1, . . ., n, m is the number of single-sided
points to be ftted, and x(i) are the data to be ftted; then,
we have 􏽐

m
r�−mx(i) × ir, carrying this coefcient into

equations. Te ftted polynomial is used to fnd the
center point estimate within that window.Te estimated
value of the center point of the window is obtained by
constantly moving the window and repeating the op-
eration to obtain the estimated value of the center point
of any window. Using SG flter to process the output
data of MSDRSN, the noisy data can be efectively fl-
tered out, so that the output prediction value can be
more closely ftted to the real value, estimation accuracy
can be improved, and model robustness can be
enhanced.

3.4.ModelAlgorithms. Te algorithm for the construction of
the stacking-based prediction network process is shown in
Algorithm 1.

4. Experimental Verification

To demonstrate the validity of the proposed model, this
paper uses the rolling bearing accelerated degradation
dataset published in the IEEE 2012 PHM Data Challenge
[39]. Te proposed RUL prediction method’s feasibility and
efectiveness are analyzed in detail by experiments and
compared with other RUL prediction methods.

4.1. Data Description. Te PHM 2012 challenge dataset was
provided by the PRONOSTIA platform of the FEMTO-ST
Institute. It is shown in Figure 5.

Te PRONOSTIA platform consists of three main parts:
the rotating part, the degradation part, and the measurement
part [40]. Te data provided by PRONOSTIA describe the
degradation of ball bearings throughout their service life (until
complete failure), and each degraded bearing contains almost
all types of defects (inner and outer rings, balls, and cage). In
the experiment, a radial load force is applied to accelerate the
degradation of the bearings. Te vibration signals in the X and
Y directions are acquiredwith sampling frequency of 25600Hz,
2560 data points are recorded at 0.1 s per sampling, and the
recording interval is 10 s. When the vibration level of the
measured data exceeds a certain threshold, the test is stopped
[41]. Te basic characteristics of bearings are listed in Table 1,
and Table 2 gives a detailed description of the dataset.

Diferent working conditions will have some infuence on
the training of themodel.Tis paper selects the datasets under
three conditions for experiments. Te reason for the choice is
that the three datasets had long decline periods and more
information could be learned. In total, three groups of tests
were carried out, and the detailed arrangement is shown in
Table 3 [41].

4.2. EvaluationMetrics. In this paper, three metrics are used
to evaluate performance: mean square error (MSE), mean
absolute error (MAE), and coefcient of determination (R2).
Te three evaluation metrics are defned as follows:

MSE �
1
n

􏽘

n

i�1
RULtrue − RULpredict􏼐 􏼑

2
,

MAE �
1
n

􏽘

n

i�1
RULtrue − RULpredict

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

R
2

� 1 −
􏽐i RULtrue − RULpredict􏼐 􏼑

2

􏽐i RULtrue − RULpredict􏼐 􏼑
2,

(11)

where RULpredict and RULtrue represent the predicted
RUL and the actual RUL, respectively, and n is the length of
the testing data. Te smaller the MSE and MAE, the better
the prediction performance. Te closer R2 is to 1, the better
the prediction performance is.

4.3. Data Preprocessing. In this paper, CUSUM is used to
detect the change point of the operating state of the rolling
bearing vibration signal and to divide the bearing life cycle.
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Input: Training set D � xi, yi􏼈 􏼉
m
i�1

Output: Predicted value after integration H
Process:
Step 1: Data preprocessing
for i� 1 to m do
abs (mean(xi))
end for
p � do CUSUM on xi

for i� 1 to m do
if i<p set yi � 0
else set yi � m − i/m − p

end for
normalization(xi)
Step 2: Training base-learner
for t� 1 to T do
learn ht based on D
end for
Step 3: Feature aggregation
for i� 1 to m do
Dh � xi

′, yi􏼈 􏼉, where xi′ � h1(xi), . . . ,hT(xi)􏼈 􏼉

end for
Step 4: Training meta-learner
learn H based on Dh

Step 5: Smoothing the curve
smooth H
return H

ALGORITHM 1: Stacking-based algorithm for prediction network process construction.

NI DAQ card Pressure regulator Cylinder Pressure Force sensor Bearing tested Accelerometers

AC Motor Speed sensor Speed reducer Torquemeter Coupling Termocouple

Figure 5: Te PRONOSTIA platform.
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Taking Bearing 1_1 as an example, the steps of sample
labeling are as follows:

Step 1: Rolling bearing vibration signal actually mea-
sures the acceleration of the rolling bearing in a certain
direction, it is usually a vibration signal in the horizontal
direction, it represents not the size but the direction of
bearing vibration, and the direction of vibration of the
bearing is not of concern in the signal analysis; therefore,
the signal should be frst to take the absolute value. Due
to the 2560 vibration signals sampled at a single moment
of the bearing, this paper uses the mean value to replace
the vibration signal at a certain moment. After pro-
cessing the data, the signal curve of the absolute mean
vibration signal is shown in Figure 6.
Step 2: After the signal processing is completed, the
signal curve is smoothed by SG for denoising, and then
CUSUM is used to fnd the fault point. Te former
curve is regarded as the stable stage, and the RUL is 1.
Te latter curve is regarded as the declining stage, and
the RUL is marked as decreasing from 1 to 0.
After all the data RUL are labeled, because the diferent
bearing vibration signal values have diferent intervals, the
bearing vibration signal samples also need to be
normalized.
Te degradation points of each bearing are given in
Table 4, which demonstrates the validity of the method.
Step 3: To verify the superiority of MSDRSN model in
handling noisy data, according to the SNR for noise

addition process, this paper adds 2 db, 4 dB, 6 db, and
8 db of noise in order. SNR formula is shown as follows:

SNR(dB) � 10log10
Psignal

Pnoise
􏼠 􏼡. (12)

4.4. Model Building Experiments. Te structural parameters
of MSDRSN are shown in Table 5. Te hyperparameters
need to be preset, such as the number of residual blocks and
the size of the learning rate. Te hyperparameters are shown
in Table 6.

Tere are some other parameters in this experiment such
as the validity of CUSUM and the validity of SG smoothing.
Meanwhile, the number of residual blocks and the learning
rate size are also determined by the experiment.

(1) Efectiveness of CUSUM: a comparison test based on
bearing 1_3, bearing 2_3, and bearing 3_3 at
8 db noise.
Te SVR machine learning model is used to test the
model, and the kernel function is RBF. Te results of
the comparison experiments are shown in Figure 7.
From the experiments, it can be shown that the MSE
of bearing 1_3, bearing 2_3, and bearing 3_3 in
which CUSUM is applied is lower than that of those
in which CUSUM is not applied, and thus it can be
concluded that CUSUM signifcantly improves the
prediction capability of the model.

(2) Validity of SG smoothing: a comparison test based
on bearing 1_3 at 2 db, 4 db, 6 db, and 8 db noise.
Te number of network layers in this experiment is 2;
the pooling layer size is 80, and the comparison item
is whether SG smoothing is applied or not. Te
results of the comparison experiment are shown in
Figure 8.
From the experiments, it can be concluded that the
training results are better when the model is SG
smoothed. Te training results are worse when SG
smoothing is not set, so the training ability of the
model is greatly enhanced by SG smoothing.

Table 1: Characteristics of the bearings.

Parameter Value
Diameter of rolling elements 3.5mm
Number of rolling elements 13
Diameter of the outer race 29.1mm
Diameter of inner race 22.1mm
Bearing mean diameter 25.6mm
Contact angle 0°

Table 2: Description of the dataset.

Condition 1 Condition 2 Condition 3
Load/N 4000 4200 5000
Speed/(r·min-1) 1800 1650 1500

Bearings

Bearing 1_1 Bearing 2_1 Bearing 3_1
Bearing 1_2 Bearing 2_2 Bearing 3_2
Bearing 1_3 Bearing 2_3 Bearing 3_3
Bearing 1_4 Bearing 2_4 Bearing 3_4
Bearing 1_5 Bearing 2_5 Bearing 3_5
Bearing 1_6 Bearing 2_6 Bearing 3_6
Bearing 1_7 Bearing 2_7 Bearing 3_7

Table 3: RUL prediction tasks.

Tasks Training bearings Test bearings
A Bearing 1_1, Bearing 1_2 Bearing 1_3
B Bearing 2_1, Bearing 2_2 Bearing 2_3
C Bearing 3_1, Bearing 3_2 Bearing 3_3
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Figure 6: Te absolute mean vibration signal.
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(3) Number of residual blocks: a comparison test based
on bearing 1_3 at 8 db noise.
Temost infuential factor for theMSDRSN network
is how many residual blocks are available. Te val-
idation part of the model structure mainly compares
the training efects of MSDRSN with diferent
numbers of basic residual blocks, and it determines
the optimal number of network layers for this ex-
periment. Te experiment sets the convolutional
kernel size of convolutional layer as 3, 5, and 7; the
basic residual block convolutional kernel size as 3, 5,
and 7; the output size of mean pooling layer as 18;
and the aggregation layer as 2 layers with the number
of neurons in each layer as 18 and 1. Te number of
basic residual blocks of the comparison items is 1, 2,
3, 4, and 5. Te results of the comparison experi-
ments are shown in Figure 9.

(4) Te size of the learning rate: a comparison test based
on bearing 1_3 at 8 db noise.

Te setting of the learning rate has a signifcant impact
on the MSDRSN network. It is often that too low learning
rate will lead to slow convergence of the model, while too
high learning rate will lead to failure of the model to con-
verge, so this experiment compares the optimal values of
diferent learning rate losses and determines the optimal
learning rate. Te results of the comparison experiment are
shown in Figure 10:

Table 4: Te degradation points of rolling bearing.

Bearing Degradation moment

Condition 1 Bearing 1-1 1325
Bearing 1-2 696

Condition 2 Bearing 2-1 850
Bearing 2-2 745

Condition 3 Bearing 3-1 458
Bearing 3-2 1570

Table 5: Structural parameters of MSDRSN.

Module Layers Output
size and activation

Convolution layers
Conv 1 (None, 3, 6), Activation: ReLU
Conv 2 (None, 3, 6), Activation: ReLU
Conv 3 (None, 3, 6), Activation: ReLU-sigmoid

DRSN layers

Residual building unit 1 (None, 6, 3), Activation: ReLU-sigmoid
Residual building unit 2 (None, 6, 3), Activation: ReLU-sigmoid
Residual building unit 3 (None, 6, 3), Activation: ReLU-sigmoid

Pooling (None, 6, 1), Activation: ReLU-sigmoid
Fully connected (None, 1), Activation: ReLU-sigmoid

Table 6: Te crucial hyperparameters.

Hyperparameters Value
Input dimensions 2560
Output dimensions 1
Residual blocks 2
Learning rate 0.000001
Batch size 128
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From the experiment, it can be concluded that when the
learning rate is set as 0.000001, the loss value is the smallest
and the model training result is the best, so the optimal
learning rate of MSDRSN network is set as 0.000001.

5. RUL Prediction Results

Te programming software used for the experiments is
Python 3.6, and the central processing unit (CPU) used in
the workstation is Intel i7-11800H.

During the experiment, the MSDRSN method was
compared with the common methods, selecting two ma-
chine learning models, which are Random forest and SVR,
and two deep learning models, which are BiLSTM [42] and
MSCNN-FC [43]. BiLSTM is a stack of two LSTM layers. It
can efectively utilize the input forward and backward
feature information. MSCNN-FC can be used for prediction
problems, which is similar to their algorithm for classif-
cation problems, but the last layer is usually a fully connected
layer with only one neuron.

Table 7 shows the comparison table of evaluation metrics
of MSDRSN method, BiLSTM, and MSCNN-FC in diferent
noise environments.

Among them, MSDRSN has the smallest MSE and MAE,
indicating that it has the smallest prediction error, and R2 is the
largest, indicating that its model has the best ftting prediction
results. Besides, the prediction accuracy of tasks 2_3 is low, and
the prediction results of both condition 1 and condition 3 are
better than those of other methods. Te feasibility and supe-
riority of MSDRSN are demonstrated by comparing with
BiLSTM and MSCNN-FC. Te results of the experiments
conducted under diferent noises also demonstrate that the
MSDRSN network is more suitable for prediction tasks with
noisy data. Taking bearings 1_3 as an example, the RUL pre-
diction curves under diferent noises are shown in Figure 11.

It can be shown that the prediction results of the method
have a similar trend to the actual RUL values, and the
prediction accuracy is signifcantly higher than that of
BiLSTM and MSCNN-FC, and thereby it verifes the ef-
fectiveness of the model in rolling bearing RUL prediction.

In order to verify the superiority of the model, this paper
chooses two traditional machine learning methods to
compare with it, Random forest and SVR. Taking bearings
1_3 as an example, the RUL prediction curves of the three
models under diferent noises are shown in Figure 12.

It is obvious from the prediction results that the model
has a higher prediction accuracy compared with other
traditional machine learning methods, and the curves are
most compatible with the actual values, and there is no
obvious fuctuation trend.

In summary, the method proposed in the paper can
more efectively predict the remaining life of rolling bear-
ings. Te method can more accurately capture the early
degradation characteristics of the bearing. At the same time,
the method makes a signifcant improvement in the pre-
diction of the later bearing life.

6. Discussion of RUL Prediction

(1) Te MSDRSN method convolves operations with
multiple convolution kernels of diferent scales to
achieve the efect of extracting detailed features and
increasing the prediction accuracy of the model.
Stacking integrated learning can observe the features
of the data from multiple perspectives and learn
them with the base-learner and relearn them after
fusing the obtained features so as to improve the
accuracy of the prediction results. Ten, this paper
uses the powerful noise reduction capability of
DRSN, which enables it to get more useful features of
the dataset, which improves the feature learning
capability of the model in complex datasets and
improves the feature extraction capability of
the model.

(2) Te model utilizes the “skip connection” structure of
the residual network, which illustrates the good
feature extraction performance of the deep network
and avoids the problem of gradient disappearance
when the deep neural network trains.

(3) Compared with the four models including BiLSTM,
MSCNN-FC, SVR, and Random forest, the
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Figure 11: Continued.

Table 7: Comparison of evaluation metric results.

Testing bearing MSDRSN BiLSTM MSCNN-FC
MSE MAE R2 MSE MAE R2 MSE MAE R2

1-3

2 db 0.00 0.042 0.9 4 0.102 0.243 0.418 0.047 0.186 0.537
4 db 0.003 0.028 0.97 0.078 0.141 0.568 0.050 0.126 0.503
6 db 0.004 0.0 4 0.9 6 0.115 0.548 0.432 0.053 0.122 0.477
8 db 0.004 0.036 0.962 0.256 0.106 0.566 0.035 0.068 0.659

2-3

2 db 0.004 0.012 0.62 0.015 0.275 0.578 0.007 0.720 0.551
4 db 0.00 0.016 0. 03 0.032 0.349 0.498 0.008 0.135 0.256
6 db 0.003 0.014 0.6 3 0.048 0.217 0.651 0.008 0.057 0.146
8 db 0.003 0.014 0.6 7 0.041 0.136 0.557 0.009 0.060 0.093

3-3

2 db 0.003 0.026 0.971 0.033 0.159 0.667 0.015 0.076 0.851
4 db 0.004 0.0 4 0.964 0.006 0.047 0.941 0.011 0.063 0.892
6 db 0.002 0.043 0.976 0.046 0.189 0.537 0.025 0.144 0.744
8 db 0.004 0.0 4 0.963 0.024 0.102 0.759 0.018 0.077 0.811

Te bold values in the table are the values of the proposed method, which is convenient and clearer to compare with the values of other methods.
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Figure 11: (a) 2 db MSDRSN. (b) 2 db BiLSTM. (c) 2 db MSCNN-FC. (d) 4 db MSDRSN. (e) 4 db BiLSTM. (f) 4 db MSCNN-FC. (g) 6 db
MSDRSN. (h) 6 db BiLSTM. (i) 6 db MSCNN-FC. (j) 8 db MSDRSN. (k) 8 db BiLSTM. (l) 8 db MSCNN-FC.
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Figure 12: Continued.
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MSDRSN method can get better results, and the
R2under 4 db noise in bearings 1_3 is 0.975, and the
loss values MAE and MSE under 6 db noise in
bearings 3_3 are 0.002 and 0.043; the prediction is
almost close to the actual life. Tus, it is verifed that
the MSDRSN method has a high accuracy of RUL
prediction.

7. Conclusions

Tis paper proposes a novel rolling bearing RUL pre-
diction method using MSDRSN. In the preprocessing
stage of the dataset, this paper fnds the fault points in the
bearing with CUSUM. In the RUL prediction network, the
idea of stacking integrated learning is merged with the
traditional deep residual shrinkage network to improve
the prediction ability of the model with noise. We have
conducted experiments to validate the method with the
IEEE PHM 2012 data challenge dataset, and the results
show that the proposed MSDRSN method improves the
accuracy of RUL prediction. Comparing with diferent
methods for predicting the remaining useful life, it is
demonstrated that the feasibility and superiority of the
method.

Te future directions of the article can be improved as
follows:

(1) MSDRSN has a powerful denoising capability, but
the calculations take a very long time and the model
parameters are too many, making it difcult to de-
bug. In the future, people can consider using dis-
tributed technology to speed up the training of the
model and create an algorithm that can automati-
cally adjust the parameters of the model to fnd the
optimal solution.

(2) Stacking fusion technique can efectively improve
the model training results, but the selection of base-
learner is a difcult problem, which requires a lot of
time to select. In the future, people can consider
proposing an evaluation system to predict the efect
of the base-learner model fusion and reduce the
difculty of model selection.
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