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Te thermal issues generated from friction are the key obstacle in the high-performance machining of titanium alloys. Te friction
between the workpiece being cut and the cutting tool is the dominant parameter that afects the heat generation during themachining
processes, i.e., the temperature inside the cutting zone and the consumed cutting energy. Besides, the complexity is associated with the
nature of the friction phenomenon. However, there are limited eforts to forecast the friction coefcient during the machining
operations. In this work, the friction coefcients between the titanium alloy against zirconia ceramics lubricated byminimumquantity
lubrication were recorded and measured using a universal mechanical tester pin-on-disc tribometer. Ten, we proposed two models
for forecasting the friction coefcient which are trained and tested on the recorded data. Te two predictive models are based on
autoregressive integrated moving average and gated recurrent unit deep neural networkmethods.Te proposedmodels are evaluated
through a set of exhaustive experiments. Tese experiments demonstrated that the proposed models can efciently be used to reduce
power consumption dedicated to monitoring the friction coefcients. Besides, they can reduce or avoid surface thermal damage by
predicting the high level of friction coefcients in advance, which can be used as an alert to enable or readjust the lubrication
parameters (fuid pressure, fuid fow rate, etc.) to maintain lower ranges of friction coefcients and power consumption.

1. Introduction

One of the main reasons for energy wasting in milling
machines is friction [1]. Friction is the key reason for the
heat generated during the metal cutting process [2, 3].
However, friction is inherent to any rubbing surface. It is
usually uncontrolled and undesirable due to the corre-
sponding collateral damages regarding the tool de-
teriorations, surface thermal damages, unwelcome energy

consumption, etc. It is scientifcally proven that about 20%
of the lost energy in the world is consumed through
friction [4]. Tus, building a predictive model to forecast
the behavior of friction experiments is crucial in saving
the time and cost of such experiments (e.g., universal
mechanical tester (UMT) pin-on-disc universal trib-
ometer). Te UMTpin-on-disc universal tribometer is one
of the wide range of machines that are used to perform
frictional tests.
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Nonetheless, friction as a phenomenon is greatly afected
by many parameters such as the applied load, sliding ve-
locity, the rubbing materials, the temperatures, and the
humidity. [5, 6].Terefore, predicting the friction coefcient
is a complicated mission. Tus, an efcient model of pre-
dicting the friction coefcients based onmachine learning or
deep learning can represent the key in estimating the cutting
tool operating life, estimating the critical contact tempera-
ture (generated from the friction) to avoid thermal damages,
maintaining the sustainability of the energy by keeping the
friction coefcient in specifc ranges, etc.

Te eforts to predict the parameters related to the friction
experiments have been conducted in a few pieces of research
[7–9]. All of these eforts include a numerical method to
simulate friction experiments. To the best of the authors’
knowledge, there is no research conducted to predict the
friction coefcient and energy consumption during the
machining operations or no research utilized machine
learning techniques for the sake of friction coefcient pre-
diction. An efcient friction coefcient prediction model can
reduce the machining costs by decreasing the number of
defective products due to thermal damages and the tooling by
extending the operation life. Furthermore, energy con-
sumption is inherent to the friction coefcient. Tus,
maintaining the friction coefcients within specifc limits can
decrease energy consumption signifcantly, which is refected
positively in the economy, environment, and energy savings.
Tese issues motivate the current work. All of these points
motivated this work to predict the friction coefcients.

Tere are several applications for forecasting the friction
coefcient in a cutting machine [6, 10]. For instance, a lubri-
cation system integrated into the machining cycle could be
implemented. A closed-loop control system could be used to
control the friction coefcient within the safe limit. Te cor-
responding forecasting model is responsible for evaluating the
friction coefcient and forecast whenever the friction coefcient
exceeds the safe limit. Te control system can readjust the lu-
brication parameters (lubricant pressure, fow rate, etc.) to lessen
the friction before the failure of the tool and the workpiece.

In another example, forecasting the friction coefcient
can help in reducing the power consumption of the ex-
periment. For instance, if the cutting machine should work
for 20minutes, then the force sensor should work for
20minutes as well to monitor the friction coefcient. Using
the forecast model, the force sensor and the forecast model
can work interchangeably (i.e., sensor force works for only
ten minutes); thus, the time the forecast model is working
the force sensor can be turned of. In addition, turning of
the force sensor for a while and then reusing this sensor
improves the sensor’s accuracy.

In this context, we proposed framing the task of fore-
casting friction coefcient in the UMTpin-on-disc universal
tribometer experiments as a time series forecasting task. Te
friction coefcient changes over time in frictional experi-
ments. Tus, we proposed designing models to capture the
behavior of changes in the friction coefcient values over
time and then forecast future values. In the frst step, we
generated a dataset of friction coefcient values.Tese values
are obtained by attaching force sensors to the UMT pin-

on-disc tribometer and then an experiment was conducted
to collect the friction coefcient values at diferent time
points (e.g., every millisecond).

In this vein, we proposed designing a predictive model of
the friction coefcient of milling machines. We started by
recording the friction coefcient between the titanium alloy
(i.e., Ti-6Al-4V) against zirconia ceramics (i.e., ZrO2).Ten, we
proposed utilizing the autoregressive integrated moving av-
erage (ARIMA) statistical model for forecasting purposes. Te
main drawback of the statistical models is that there is no
mechanism for updating these models. Terefore, if there are
new patterns in the data, then the statistical model should be
rebuilt. On the other hand, deep learning- (DL-) based fore-
casting models support updating the model’s weights as the
data pattern changes. Tus, we proposed harnessing the DL
methods due to its capability of updating and identifying
nonlinear and complex patterns in diferent domains (e.g.,
weather forecasting [11], energymarkets [12], and e-commerce
products [13, 14]), where historical observations of a variable
are analyzed to introduce a model to describe the underlying
relationship. Te proposed DL-based model is built using the
gated recurrent unit deep neural network (GRU-DNN) ar-
chitecture, a variation of the well-known recurrent neural
network (RNN) architecture, which has shown impressive
performance in the time series forecasting feld [15, 16].

Te contributions of this work can be summarized as
follows:

(1) To our knowledge, we proposed the frst DL-based
model (i.e., GRU-DNNmodel) and the frst statistical-
based model (i.e., ARIMA model) for forecasting the
friction coefcient in cutting machines. Te proposed
GRU-DNN architecture and ARIMA model’s pa-
rameters were designed to ft friction coefcient data
patterns. Tis model is utilized in scenarios where the
forecast model needs to be updated.

(2) Tis work provides a publicly available friction co-
efcient dataset that can be used to improve the task
of predicting friction coefcient.

(3) Te proposed forecasting models are evaluated
thoroughly using four diferent scenarios on four
diferent evaluation metrics. Te obtained solutions
outlined the efciency of the proposed solution to
forecast accurate friction coefcient values.

Te rest of the paper is organized as follows. Section 2
discusses the existing machine learning-based methods
utilized for handling the predictive tasks related to metal
cutting tools. In Section 3, the background is discussed.
Section 4 exposes the proposedmethodology.Te evaluation
of the proposed prediction model is presented in Section 5.
Discussion is shown in Section 6. Finally, the paper is
concluded in Section 7.

2. Related Work

Tis section discusses the research eforts undertaken to
explore phenomena associated with cutting tools. Te em-
ployment of machine learning methods in these attempts
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demonstrates variability, with some studies using such al-
gorithms and others do not [17–19]. Tese phenomena have
a substantial impact on various difculties, including the
reduction of dimensional accuracy in the cut surface, tool
breakage, and machine downtime. Song et al. [17] proposed
a predictive model for estimating cutting forces in carbon
fber reinforced polymer (CFRP) materials based on non-
linear regression analysis. Saha et al. [18] presented an
energy-based model for the prediction of cutting forces in
machine operations. Authors aimed to examine the factors
that contribute to the onset of adhesion in the context of
progressive tool wear. Geng et al. [20] introduced an en-
hanced predictive model for estimating the torque and
thrust force for the GJV450 under conditions of elevated
temperature, big deformation, and signifcant strain rate.
Te proposed model relies on a calculus approach to depict
the variation of partial working angles during tool
machining.

Recently, machine learning algorithms have been widely
recognized for their capability to address nonlinear and
complex interactions by means of data training. Several
studies have used machine learning algorithms in tri-
bological research to analyze and assess various phenomena,
such as cutting force prediction or cutting tool lifetime, to
improve machine efciency [21]. Te thermal efects on
machine operations have been predicted using machine
learning models [22, 23].

Saravanan et al. [22] presented a nonmechanical engi-
neering model that included neural approaches, namely,
logistic regression (LR), k-nearest neighbors (KNN), and
random forest (RF). Te primary objective is to forecast the
thermal efciency of a c-shaped fnned solar air heater
(SAH). Meanwhile, Zhang et al. [8] proposed an analytical
model to investigate coated cutting tools’ rake face tem-
perature distribution in the machining of H13 hardened
steel. Furthermore, Singh et al. [23] examined the machine
learning ability to forecast the maximum temperature in an
elastohydrodynamic lubricated (EHL) line contact. Te
operation of the EHL system under excessive loads or rates
can elevate the temperatures, hence increasing the likelihood
of unexpected system failure [24].Te integration of a neural
network model with a machine learning model results in
a signifcantly high level of accuracy, approximately 0.998.
Tis integration also enhances the model’s capability to
efectively record the nuances of the EHL system.

Te authors in [25] used supervised machine learning
regression-based techniques to make predictions on the ulti-
mate strength friction (USF) stir of stir welded magnesium
joints.Te XGboost algorithm has exhibited superior accuracy,
as evidenced by its coefcient of determination value of 0.816.
Te XGboost algorithm outperformed other machine learning
models such as DT, RF, and AdaBoost. However, additional
investigation is required in order to comprehensively com-
prehend the infuence of other output parameters on stir
welded joints, not limited to the USF output parameter.
Furthermore, the authors of [26] utilized various machine
learning techniques to make predictions regarding the col-
lective characteristics, including tool failure diagnostics, and
real-time control of friction stir welding (FSW).

Te authors in [27] conducted a series of experiments on
an annealed Ti-6Al-4V alloy. Te aim was to assess the
efcacy of their suggested machine learning approach for
predicting cutting force. Te authors used a support vector
machine (SVM) classifer with a polynomial kernel to as-
certain the correlation between the properties of the cutting
force signal and the wear of the tool. Te classifer’s accuracy
and F1-score rates were 91.43% and 86.94%, respectively, as
reported in the study.

Diaz-Rozo et al. [28] devised a diagnostic tool to evaluate
the performance of machined spindles using three clustering
algorithms. Te present study focused on the analysis of
machine spindle behavior patterns through the utilization of
clustering algorithms in an unsupervised manner. By ex-
amining the collected instance data, signifcant information
on spindle data can be extracted and the spindle data is
partitioned into distinct groups based on their inherent
characteristics. Krishnakumar el al. [29] proposed a tool
monitoring system using a classifcation model to categorize
andmonitor tool conditions in a high-speed precisionmilling
center. Statistical features such as count, amplitude, andmean
are captured using an acoustic emission sensor signal. Hence,
the dominant features withmaximum entropy are selected for
classifcation using DT and SVM models.

Lawrence et al. [30] examined the impact of tool vibration
and cutting parameters on bufered impact dumpers- (BID-)
assisted boring process using artifcial neural networks
(ANNs). Te ANN model demonstrated a high level of ac-
curacy in predicting various aspects of cutting performance,
including surface roughness, tool vibration, and cutting force.
Te experimental results indicated a signifcant reduction in
the cutting force, surface fnish, and tool vibration by 85%,
95%, and 93%, respectively.

Te prediction of cutting tool lifetime and torque values
relies on the use of torque data as a dependable indicator
[31]. Oberlé et al. [31] developed a regressor model to
forecast tool wear along with utilizing recorded torque data
from the machining center and then measuring tool wear
directly. Te performance of the regressor model was
evaluated by using the random forest (RF) technique,
resulting in an R2 score of 74%. In [32], the tool wear
throughout the machining process was predicted using
a conventional neural network (CNN) approach.

2.1.GapAnalysis. Te discussion of the literature on friction
coefcient prediction outlines the current eforts to use
diferent machine learning approaches to several related
problems, such as predicting tool wear and tool lifetime.
Despite these eforts, we did not fnd any literary evidence
proposing the prediction of the friction coefcient during
metal cutting procedures using any learning-based model.
Tus, utilizing deep learning and statistical models is re-
quired to investigate their accuracy levels.

3. Background

3.1. Parameters Afecting the Friction. In the following text,
the parameters that noticeably afect the friction are dis-
cussed. Since the nanofuid is delivered to the contact area in
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the form of droplets. Tus, the contact angle and the surface
tension of the droplets control the efciency of the lubri-
cation. For instance, at GNPs content of 0.03, the contact
angle jumps to 34.475° [1]. Higher GNPs contents of 0.1, 0.2,
0.3, and 0.4 wt.%, which recorded 36.89°, 40.73°, 43.47°, and
48.51°, displayed the same pattern.Tis trend is explained by
nanoparticles’ propensity to congregate in nanofuid
droplets in larger concentrations. As a consequence, the
surface free energy increases [33]. Additionally, as con-
centrations rise, the surface-to-volume ratio rises as well. As
a result, the electrostatic repulsive force is outweighed by the
attractive Van der Waals force, which raises surface energy
and contact angle [34, 35]. As a result, with larger GNPs
concentrations, the nanofuids’ wettability region shrinks.
Te GNPs reduce the impact of the higher contact angle and
maintain a strong antifriction layer between the workpiece
and the grinding wheel.Te normal and tangential forces are
signifcantly decreased as a result of the antifriction layer
that the PG0.03 droplets create. Additionally, the same
general behavior is observed for all nanofuids derived from
palm oil with GNP levels ranging from 0.03 to 0.4 weight
percent. However, the increased contact angles and relatively
higher viscosity of the palm oil-based GNPs nanofuids
prevent them from spreading easily across the surface of the
workpiece. Because of this, there is direct contact between
the grinding wheel and the workpiece in some areas. Te
machined surface’s surface roughness rises as a result of this
close contact. Te applied load plays an unspecifed role in
the friction. Terefore, the role of applied load is usually
selected based on the application and frictional test stan-
dards [36]. Interestingly, the lubrication medium is
a dominant parameter in the friction operation, since the
used medium is palm oil which is a member of class of oils
known as triglyceride and fatty acid composing oils. Te
strong polarity of palm oil makes it a great lubricant
(−COOH in fatty acids and −COOR in triglycerides) [37].

In this section, we briefy review the two forecasting
models used in the proposed forecasting problem. Two
classes of forecasting methods, namely, a statistical approach
(i.e., ARIMA model) and a DL-based approach (i.e.,
GRU-DNNmodel), are proposed for forecasting the friction
coefcient of milling machines.

3.2. ARIMA. ARIMA model is a popular and widely used
linear model in time series forecasting [38], thanks to its
statistical properties and the Box–Jenkins methodology [39]
in its building process. Te ARIMA model is composed of
three diferent types of time series, namely, pure autore-
gressive (AR), pure moving average (MA), and the in-
tegration of AR and MA (ARMA) series. Tus, for a pth

order autoregressive model, (ARp) is given by equation (1).
Similarly, for a qth order moving average model, (MAq) is
given by equation (2).

Yt � β0 + β1Yt−1 + β2Yt−2 + . . . + βpYt−p + ϵt, (1)

Yt � μ+ ϵt + θ1ϵt−1 + θ2ϵt−2 + . . . + θqϵt−q, (2)

where Yt is the dependent (response) variable at time point t,
Yt−1, Yt−2 . . . Yt−p are the response variable at time point lags
t − 1, t − 2, . . . , t − p, respectively, β0, β1 . . . βp are co-
efcients to be evaluated, ϵt, ϵt−1 . . . ϵt−p are error terms at
time t, t − 1, t − 2, . . . , t − p, respectively, and μ is the con-
stant mean of the process.

In the ARIMA model, a variable future value is con-
sidered to be a linear function of several past observations
and random errors. Specifcally, the whole process that
defnes the time series has the form that is represented as
follows:

Yt � c0 + β1Xt−1 + β2Xt−2 + . . . + βpXt−p

+ ϵt − θ1ϵt−1 − θ2ϵt−2 − . . . − θqϵt−q,
(3)

where c0 is a coefcient to be estimated. Random errors (ϵi)
are supposed to be independent and distributed identically
such that

E ϵi( 􏼁 � 0,

var ϵi􏼂 􏼃 � σ2.
(4)

Typically, we assumed

ϵi ∼ N 0, σ2􏼐 􏼑. (5)

3.3.GatedRecurrentUnitNeuralNetworks. Recurrent neural
network (RNN) is one of the deep learning methods that
have been widely used in a range of applications successfully.
In specifc, it has been applied to time series forecasting. Te
RNN has been utilized to successfully address several
problems [40–42]. It is a robust model that can learn a wide
range of complex associations through vast amount of data.
However, the depth of RNN results in two well-known
problems, exploding and vanishing gradient problems.
Terefore, two variations of the recurrent model were in-
troduced, i.e., GRU [43] and LSTM [44], to address the
aforementioned problems that arose with the vanilla RNN.

LSTM and GRU architectures are characterized by
similarity in design which include a gating mechanism for
regulating the information fow through the unit. Never-
theless, due to the complex structure of the LSTM, its
training and converging time is too long. GRU-DNN has
simpler architecture compared to LSTM; thus, a GRU-DNN
model is faster to train, relative to an LSTM model [45].

Te GRU model was introduced to allow recurrent units
to capture patterns and dependencies of diferent time scales.
Compared to the LSTM cell, GRU has no separate memory
gate, which makes it more efcient and fast in data training.
Figure 1 depicts a standard cell architecture for a GRU
model. A typical GRU is composed of a group of cells in
which each cell includes two gates (i.e., update z(t) and reset
r(t)) and a hidden state vector denoted as h(t) over the
current time point t. A neural network of one layer is used to
express each gate. A GRU cell architecture can be better
illustrated in the light of the following equations: equations
(6)–(9). Te cell is fed by two values, namely, the preceding
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hidden state cell and the current input sequence vector
which is denoted as h(t−1) and x(t), respectively. Te cell
output h(t) stands for a hidden state.

z
(t)

� σ Wzx
(t)

+ Uzh
(t−1)

+ bz􏼐 􏼑, (6)

r
(t)

� σ Wrx
(t)

+ Urh
(t−1)

+ br􏼐 􏼑, (7)

􏽥h
(t)

� tan h Whx
(t)

+ Uh h
(t−1) ⊙ r

(t)
􏼐 􏼑 + bh􏼐 􏼑, (8)

h
(t)

� z
(t) ⊙ h

(t−1)
+ 1− z

(t)
􏼐 􏼑⊙ 􏽥h

(t)
, (9)

where ⊙ represents an element-wise multiplication, σ(.) and
tan h(.) are the sigmoid and hyperbolic tangent activation
functions of the NN, respectively, 􏽥h

(t) represents the candi-
date hidden state, Wz,Wr, andWh are the cell model’s weight
matrices for the feed-forward neural networks, while Uz, Ur,
and Uh are the cell model’s weight matrices for the recurrent
neural network, and bz, br, and bh are the model bias.

A GRU cell’s output h(t), given by equation (9), forms
a linear interpolation between a current candidate state 􏽥h

(t)

and a previous hidden state h(t−1). Tis linear interpolation
mechanism is mainly used for learning long-term de-
pendencies. More precisely, as z(t) approaches 1, the pre-
ceding hidden state remains unaltered and is kept
unchanged for a few successive time steps. On the contrary,
as z(t) approaches 0, the output cell will be equal to the value
of the candidate state 􏽥h

(t)
. In this case, the candidate state’s

value 􏽥h
(t)

depends highly on the current input and the
previous hidden state. Similarly, the candidate state 􏽥h

(t)

depends also on the reset gate r(t), which forces the cell to
exclude or keep the last hidden states.

4. Methodology

4.1. Te Proposed ARIMA Model. Te stationarity property
of a data series is a mandatory condition for building an
efcient ARIMA model which is able to forecast. A time
series is stationary when its statistical characteristics (i.e.,
mean and variance) are constant over time. Furthermore,
the ARIMAmodel has diferent parameters that are required
to be estimated or tuned for building an efcient
forecasting model.

Nonseasonal ARIMA parameters are p, d, and q, where p

denotes the order of the autoregressive part, d is the required
number of diferencing needed to convert the data series into
stationary series, and q is the moving average order. Addi-
tionally, if the data series has a seasonality trend, then more
seasonal parameters should be considered by the model.
Terefore, to obtain the ARIMA parameters (nonseasonal
parameters e.g., p, d, and q, and seasonal parameters e.g., P,
D, Q, and S), we perform a grid search (using auto_arima
method (https://alkaline-ml.com/pmdarima/modules/genera
ted/pmdarima.arima.auto_arima.html)) over a search space,
as presented in Table 1. In other words, several model pa-
rameter combinations are evaluated; meanwhile, the model
parameter combination that achieves the best ftting score is
reported.

4.2. Te Proposed Stacked GRU-DNN Model. Te proposed
stacking GRU-DNN is depicted in Figure 2. Te model ar-
chitecture consists of an input layer, a GRU layer, a fully
connected layer (FC), and an output layer. Te input layer
accepts themodel input whereas the output layer involves one
neuron to produce the predicted value.Te primary intention
for using such a model structure is to utilize a recurrent layer
that has the ability to learn and model time series patterns in
the dataset. However, the intermediate fully connected layers
are benefcial for recombining the extracted representation
acquired from preceding layers and gaining supplementary
representations for higher levels of abstraction.

Neural network models are prone to overftting or
underftting problems, which are caused by the excessive/
less training epochs of the neural network model [46].
Terefore, one possibility for resolving the overftting or
underftting problems in DL-model is to apply an early
halting strategy.Te training is devoted in using this strategy
when generalization performance commences degrading
over a successive number of epochs. As a consequence, to
follow up on the generalization performance, the training
data is split into training and validation groups.

Another method to tackle the overftting problem is to
use the dropout method [47]. Dropout is a regularization
method that permits training neural networks with diferent
architectures in parallel, where a certain ratio of layer
neurons are randomly ignored or dropped out. Dropout is
represented in the fully connected layers by the black
neurons as shown in Figure 2.

Adam optimizer [48], which is an adaptive optimization
algorithm, is used with its default learning and decay rate
settings. Adam optimizer has demonstrated its efciency in
solving practical DL problems, and its results outperform the
other stochastic optimization methods. Te proposed DL
model uses the mean square error (MSE) loss function,
given by equation (10), that is, given a training data
(Xi, Yi)􏼈 􏼉

N

i�1 of N observations, the proposed GRU-DNN
model is trained with the objective of minimizing the fol-
lowing loss function:

min
w

1
N

􏽘

N

j�1
Yj−F Xj, w􏼐 􏼑

�����

�����2
􏼚 􏼛, (10)

where w is the network coefcient, F: IRk⟶ IR1 denotes
the neural network fow, and k is the input vector size (i.e.,
number of lag features).

4.2.1. Te Proposed GRU-DNN Model’s Hyperparameter
Optimization. Machine learning algorithms involve the
optimization of model hyperparameters. Hyperparameters
refer to the model parameters (coefcient) that are used to
control the training task. Tus, such parameters (e.g.,
number of layers/neurons of a network/layer, learning rate,
and lag order of ARIMA model) should be fne-tuned prior
to the forecasting process. Hyperparameters tuning (or
optimization) refers to the process of obtaining the best
values for a set of hyperparameters that results in good
ftting/generalization of the model. In our proposed work,
obtaining the best model hyperparameters is achieved using
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an asynchronous distributed hyperparameter optimization
method [49]. Moreover, regarding parameter searching and
optimization, we utilized the Tree-structured Prazen Esti-
mator (TPE) methodology [50] from the Hyperopt package
(https://hyperopt.github.io/hyperopt/). Table 2 shows the
GRU-DNN model hyperparameters and the search spaces
applied to obtain the optimal hyperparameter values of
the model.

Figure 3 depicts the required steps to build the proposed
GRU and ARIMA models, starting from collecting the data
to training the proposed models up to the evaluation phase.
It is worth pointing out that for building the ARIMAmodel,
the validation data set is not used; therefore, the validation
data are appended to the training set.

5. Experimental Results

5.1. Experimental Setup. Framework implementation is
developed in the Python programming language. More-
over, the dataset is loaded using the Pandas [51] Data-
Frame. Te proposed statistical model (e.g., ARIMA/
SARIMA) utilized the statsmodel package [52], which
provides implementations for estimating most of the sta-
tistical models. Furthermore, the proposed stacked
GRU-DNN model is implemented using Keras (https://
keras.io) Tensorfow [53] libraries. Moreover, other used
libraries include Hyperopt [50], Scikit-Learn [54], Numpy
[55], and Matplotlib [56].

Te source code of the proposed work is freely accessible
online on the author’s GitHub website (https://github.com/
Ahmed-Fathalla/Friction_coef-forecasting) in order to
guarantee the reproducibility of the experimental models,
parameter confgurations, and reported results.

5.2. Dataset. Te sliding tests were done via the universal
pin-on-disc tribometer standards (https://www.astm.org/
Standards/G133.htm). Besides, the sliding tests were done
between Ti alloy and Zirconia ball as a counter ball. Te
whole sliding tests were accomplished at a sliding speed of
0.1m/s (reciprocating speed) and 10N as an applied load.
Te tests were done at lubricating conditions of dry, LB2000,
water GNPs, PG-0.0, PG-0.03, PG-0.1, PG-0.2, PG-0.3, and
PG-0.4. Te whole tests were done for 12,000 cycles/
1,200 cycles per second. Furthermore, the whole tests were
done at room temperature (25°C) and humidity of 72%. Te
frictional coefcients were obtained automatically from the
machine by dividing the tangential force over the normal
force (applied force). Te fuids were delivered to the cutting
zone using MQL. Te chemical and physical properties of
the used material are shown in Tables 3 and 4, respectively.

Te main target of the study is to apply the proposed
technique in the feld of cutting processes, especially in
grinding processes. Te contact between the machined
surface and the cutting edges of each particle (the cutting
tool is the abrasive edges) is considered a point contact.
Tus, the applied load of 10N has been chosen to simulate
the same Hertizian stresses as the stresses generated by the
abrasive edges [57]. On the other hand, the sliding speed of
0.1m/s has been chosen to simulate the linear federate
during the grinding operation. Furthermore, the whole
friction experiment and the applied parameters have been
chosen according to the standards [36].

Te rubbing tests were done on a Ti-6Al-4V sample with
a dimension of 25× 12mm and a counter 9.5mm diameter
ball of zirconia ball using UMT pin-on-disc universal trib-
ometer with the ASTM standards [36], as shown in Figure 4.

Table 1: Te hyperparameter search space for the proposed
ARIMA model.

Hyperparameters Value
p [0, 1, 2, 3, 4, 5]
d [0, 1, 2, 3, 4, 5]
q [0, 1, 2, 3, 4, 5]
P [1, 2]
D [0, 1]
Q [1, 2]

tanhσσ

r(t) z(t)

-1

+h(t-1) h(t)

x(t) reset gate forget gate

h(t)~

Figure 1: GRU cell architecture.
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Te Ti-6Al-4V sample was kept fxed while the counter ball
was reciprocated with a sliding speed of 0.1m/s under an
applied load of 10N. Te tribopairs were dried with hot air
and cleaned with acetone to remove any existing impurities.
Besides, the fuids were delivered to the contact zone as
aerosols with minimum quantity lubrication technique. For
the nanofuid base, we utilized palm oil and distilled water
with the chemical compositions shown in Table 3.

Te experiments were performed against a commercial
grade 5 (as a workpiece) alloy of Ti-6Al-4V given by
Dongguan Luyuan Metal Material Co., Ltd., while the
cutting tool was described as a ZrO2 ball. Te chemical
composition of both the workpiece and the counter ball are
shown in Table 4 while GNPs with technical details are
shown in Table 5. Te GNPs were combined with palm oil
and distilled water, using various graphene levels, as listed in
Table 6, to prepare the nanofuids.

Te mixtures were mechanically mixed for 1hour so that
nanoadditives were homogeneously dispersed. Nonetheless,
for four hours, mixtures were sonicated at 40 kHz frequency at
a temperature of 35°C to prevent agglomerations and nano-
additives sedimentation and preserve a stable GNP suspension

in the palm oil. However, the preparation route diferentiates in
the case of distilled water-based nanofuids due to the absence
of the polar heads which afect the stability of the dispersion of
the nanoadditives in the distilled water. Terefore, sodium
deoxycholate (SDOC) with a content percentage of 0.46mg/ml
was added as a surfactant and mechanically mixed with the
distilled water for 10min. Next, ethanol with a percentage of
10wt.% was appended to the solution andmechanically stirred
for 20min to enhance the dispersion of the nanoadditives in
the distilled water and decrease the possibility of sedimenta-
tions. GNPs additives were fnally added to the solution and
sonicated for 24hours at constant ambient temperature (25°C)
and 40kHz of frequency.

Table 2: Te hyperparameter search space of the proposed
GRU-DNN model.

Hyperparameters Value
No. of GRU cells [4, 8, 16]
No. of FC layers [1, 2]
No. of FC layers’ units [4, 8, 16]
Hidden layers activation (ReLU, linear)
Batch size [4, 8, 16]
Dropout rate of FC layers [0.0, 0.1, 0.2]
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Figure 3: Te block diagram of the proposed method.
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5.2.1. Data Preparation. Te dataset consists of a number of
observations that are gathered over 14.76minutes, where the
observations are collected every 0.01 seconds. Tus, the
dataset has 14.7645× 60× 100� 88, 587 observations. In
order to evaluate the proposed models, the dataset is divided
into a train set and a test set while the test set results are
reported. Furthermore, for deep learning models, data series
are standardized (or normalized), resulting in data of zero

mean and scaling to unit variance (given by equation (11)),
which leads to better training and fast convergence of neural
networks [58], before training, and the predicted values are
back-transformed into original scale.

yi �
yi − μ
σ

, (11)

where μ is the data series mean and σ is its standard
deviation.

5.3. Experiments. Te evaluation of the proposed models is
achieved by performing a set of four classes of experiments
with diferent objectives and confgurations. All of the re-
ported results are the average of running the proposed
forecast models on the obtained ten fles, as explained at the
end of Section. We utilized the confdence interval at the
95% level.

First, experiment-I includes performing single-step
ahead forecasting. In this experiment, the proposed
models read a set of n successive real measured friction
coefcients and then predict a single friction coefcient. Te
value of n is tunable and can be adjusted to set the saving of
the power consumption. For instance, if n � 4, then for each
successive friction coefcient, four coefcients are read from
the sensor, and one coefcient is predicted. Tis makes the
power saving of the friction coefcient sensor 20%.

In experiment-II, the predictive models are trained on
the real measured friction coefcients of the frst m minutes
of the overall running time of the UMT. Ten, each fore-
casting model begins to forecast the friction coefcients for
the remaining time of the experiment time. Tus, if the
overall running time of UMTis T, then the save in the power
consumption of the friction coefcient sensor is (T − m) × p,
where p represents the power consumption of the afore-
mentioned sensor per minute. Of note, the predictive model
is trained on the real friction coefcient of the frst m

minutes, but the window of the predictive model consists of
the last w forecasted values, that is, no actual readings are
used in the forecasting process for this experiment. Spe-
cifcally, for experiment-II, we performed three experiments
of the three training time intervals, m ∈ 7, 10, 13{ }.

In experiment-III, the forecasting models are trained on
the frictional coefcient of the frst m1 minutes of data.Ten,
the predictive models forecast the friction coefcients of the
next m2 minutes while the friction coefcient sensor is not
working. Ten, the friction coefcient sensor is started again

Table 3: Palm oil fatty acids contents and physical properties.

Physical properties

Pour point (°C) Flash point (°C)
Dynamic viscosity (Pa.s)

RT (25°C) 60°C
23.6 314 0.07144± 3.79× 10−4 0.02223± 7.213× 10−5

Chemical composition
Saturated fatty acids Monounsaturated fatty acids Polyunsaturated fatty acids

Palmitic
(C16 : 0)

Stearic
(C18 : 0)

Myristic
(C14 : 0)

Oleic
(C18 :1)

Linoleic
(C18 : 2)

44.3% 4.6% 1.0% 38.7% 10.5%

Figure 4: Universal pin-on-disc tribometer.

Table 5: Technical details of GNPs.

Diameter 5–10mm
Tickness 3–10 nm
Surface area 31.657m2/g
Tap density 0.075 g/cm3

Apparent density 0.050 g/cm3

Purity > 99.5%

Table 4: Ti alloy and zirconia ball chemical and physical properties.

Ti-6Al-4V alloy “grade 5”
Chemical composition

Al V C Fe O N H Ti
6% 4% 0.03% 0.1% 0.15% 0.01% 0.003% Balance

Density (gm/cm3)

4.57
Hardness (HRC)

32
Zirconia ball (ZrO2)
Density (gm/cm3)

6.02
Hardness (HRC)

77
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to produce the friction coefcients of the next m3 minutes.
Meanwhile, the predictive models are updated with the
values obtained during the m3 minutes producing no pre-
dicted values. Tis scenario is repeated until the end of the
experiment. Te observed real readings of the m3 minutes
enable the proposed model from capturing the new patterns.
Te goal of this experiment is to reduce the power con-
sumption sensor and to make the accuracy of this sensor
more accurate for the upcoming interval, as the sensor is
turned of while the proposed model forecasts the readings.
In addition, we suggested an updating mechanism for the
weights of the GRU model.

Finally, in experiment-IV, as depicted in Figure 5, the
proposed predictive models forecast the friction coefcient
values of s seconds in advance (i.e., the brown color intervals in
Figure 5). Te forecasted values are obtained from the model
which is trained on the real friction coefcient values (i.e., the
green color intervals in Figure 5). Te model utilized in this
experiment can be used to provide an alert when the predicted
friction coefcient value approaches a certain critical threshold
that afects the product to be cut. Ten, the lubrication pa-
rameters (i.e., lubricant pressure and fow rate) can be readjusted
to lessen the friction before the failure of the tool and the
workpiece. To obtain the most accurate results, in this experi-
ment, the attached force sensors to the UMT pin-on-disc
tribometer were not turned of like in the three previous ex-
periments, as the main goal of this experiment is to avoid
workpiece deterioration not reducing power consumption.
Tus, themodel is trained on real data instead of forecasted data.

To study the efect of various training set sizes onmodels’
performance, we proposed four training and test set pairs of
the original dataset. Te four datasets are varied by changing
the number of minutes used to collect the training data, as
listed in Table 7.

5.4. Accuracy Metrics. To better assess the forecasting per-
formance of the proposedmodels, we use numerouswidely used
time series forecasting evaluation metrics [59–61]. Terefore,
four metrics are utilized, namely, mean absolute error (MAE),
mean squared error (MSE), root mean squared error (RMSE),
and prediction of change in direction (POCID).

MAE measures the mean of the absolute diferences
between the actual values and the forecasted values, which is
given by equation (12).MSE is the square value of the error
between the actual values and the predicted values, which is
given by equation (13).RMSE measures the root of the

average squared error deviation of the predicted values with
respect to the actual values, which is measured by equation
(14). Te lower the values for MAE, MSE, and RMSE, the
better a forecasting model is.

Finally, POCID denotes the percentage of the model
correctly forecasting trend (i.e., up/down) relative to the
actual data trend. POCID metric is given by equation (15). A
higher POCID value indicates better trend forecasting
produced by the model.

MAE�
1
N

􏽘

N

i�1
Yi − 􏽢Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (12)

MSE�
1
N

􏽘

N

i�1
Yi−

􏽢Yi􏼐 􏼑
2
, (13)

RMSE�

�������������

1
N

􏽘

N

i�1
Yi−

􏽢Yi􏼐 􏼑
2

􏽶
􏽴

, (14)

POCID�
1
N

􏽘

N

i�1
Di × 100%, (15)

Table 6: Te composition of the nanofuids.

Sample Distilled water Palm oil (wt.%) Graphene nanoplatelets (GNPs)
LB2000 — — —
PG-0.0 — 100 0wt.%
PG-0.03 — 99.97 0.03wt.%
PG-0.1 — 99.90 0.10 wt.%
PG-0.2 — 99.80 0.20wt.%
PG-0.3 — 99.70 0.30wt.%
PG-0.4 — 99.60 0.40wt.%
W15 50ml — 7.5mg concentration (0.15mg/ml)

Real sensor data
to train the frst model

Forecast

update Forecast

Cycle 1

Cycle 2

Forecast
Cycle 3

Cycle 4
Forecastupdate

Cycle 5
Forecastupdate

One cycle
period

update

Real seosor data
to update the successive models

Actual data gathered by the sensor
Predicted data using each cycle model

Figure 5: Experiment-IV block diagram.
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where

Di �
1, if Yi − Yi−1( 􏼁 􏽢Yi − 􏽢Yi−1􏼐 􏼑> 0,

0, otherwise,

⎧⎨

⎩ (16)

where N denotes the number of test set data records, Yi

represents the actual observation values, and 􏽢Yi is the model
output values.

5.5. Results. To mitigate the stochastic nature of the neural
network, due to the initial random weight and bias values,
we ran each experiment fve times, whereas the average run’s
outcomes were reported. Moreover, we reported the mean
and standard deviation of the fve diferent runs, as shown in
Figure 6. In contrast, the ARIMA model produces the same
result for diferent runs. As a result, its error bar is a single
point; thus, we ignored reporting the standard deviation of
the ARIMA models.

5.5.1. Experiment-I. Running the ARIMA model for
experiment-I requires training the model on the training set
(e.g., observations for 2minutes, dataset I) and forecasting
a time point ahead. Ten, the ARIMA model should be
trained again using the same previous data points plus a new
actual observation to forecast a new time point ahead, and so
forth, that is, because each time the ARIMAmodel is trained
(at each time point) without having any experience from the
last trained model of the previously trained models. Addi-
tionally, ftting the ARIMA model on 2minutes’ observa-
tion, the smallest portion of the dataset to be used as training
data in experiment-I takes around 52 seconds. Terefore,
due to the large size of the test set, it is not applicable to train
100 ARIMAmodels per second to forecast the next 100 time
points. By this at hand, the ARIMA model is not applicable
to be utilized in experiment-I confgurations.

In Figure 7, one can notice that as the k value increases,
the MAE value decreases till it reaches a plateau at k � 9,
while k � 10 results in the least MAE value. Terefore, we set
k � 10 for the GRU-DNN model experiment-I and other
remaining experiments. Table 8 reports the GRU-DNN
model performance of experiment-I in terms of the accuracy
metrics. Of note, the training and validation loss in Figure 8
is much higher than the test loss, reported in Table 8, as they
are measured during the training (while data are normalized
to a wider scale than the original data scale (equation (11))).

Figure 9 presents the frst 100 values for the actual and
predicted values produced by a GRU-DNN model trained
on dataset III of the PG-0.1 sample. Figure 9 represents the
same behavior of the other samples of Table 6. Furthermore,

Figure 8 presents the loss values of the same model, i.e.,
training and validation loss (i.e., MAE), while other models
have similar behavior. Te training and validation losses
confrm the model’s ability to generalize to unseen data, that
is, the model does not sufer from an overftting problem.

5.5.2. Experiment-II. Table 9 presents the ARIMA results for
experiment-II. In this experiment, we performed a grid search
to fnd the best ARIMA model parameter values before ftting
the model. Te hyperparameter grid search shows a non-
seasonality trend in the data series; therefore, P � 0, D � 0,
Q � 0, and S � 0. Table 10 reports the ARIMA hyper-
parameters values, training time, and model sizes for
experiment-II. Notably, as the training data increases, the
training time, and model size increase as well, as listed in
Table 11.

5.5.3. Experiment-III. Te ARIMA results for experiment-
III are listed in Table 12. One of the main drawbacks of the
ARIMAmodel is that it does not provide a useful experience
of ftting ARIMA on previous training.

5.5.4. Experiment-IV. Table 13 lists the values of the four used
metrics for predicting 60 seconds in advance (i.e., one minute).
Te ARIMA model shows a better performance for all the
evaluation metrics except POCID. Tis shows that for the
scenario of predicting a set of n seconds in advance, the
ARIMA model should be preferred over the GRU model. Te
required time to prepare the newmodel for forecasting the next
minute is 30 and 20 seconds for the ARIMA and GRUmodels,
respectively.

6. Discussion

Te proposed GRU model is considered more suitable than
the ARIMA model for the scenario of forecasting a few
future friction coefcients, i.e., experiment-I, due to its time

Table 7: Diferent dataset train test split length.

Dataset Training time interval
(minutes) Training length Test length

Dataset I 2 12,000 76,587
Dataset II 3 18,000 70,587
Dataset III 4 24,000 64,587
Dataset IV 5 30,000 58,587

0.000

0.005

0.009

0.014

0.019

0.023

0.028

M
A

E

3 4 52
No. of training minutes

Figure 6: Error bar of 5 runs of experiment-I using dataset III for
GRU-DNN model.
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requirement for building the model. Tis scenario required
updating the forecast model several times, e.g., every four
friction coefcient measurements. On the other hand, the
GRU model weights can be updated in fractions of a second
to forecast a few friction coefcients. For the task of fore-
casting an extended number of friction coefcients, and
measurements for tens of seconds, the ARIMA model
outperforms the GRU model in all evaluation metrics but
not in the POCID. Tus, the ARIMA model can predict the

friction coefcient for a prolonged period of time in advance
better than the proposed GRU model while the GRU model
predicts the changes in the friction coefcient over a short
period of time better, e.g., experiment-I.

Regarding the predictive model requirements, the
memory and time requirements of the GRU-DNN model for
experiments I and II are listed in Tables 11 and 14, re-
spectively. Te listed memory sizes, training, and forecast
times show that the proposed GRU-DNN model requires
fewer resources relative to the ARIMA model. For instance,
comparing the ARIMA and GRU models’ memory for
experiment-II, the ARIMA model’s size is four orders of
magnitude larger while the forecasting time of the ARIMA is
smaller than the GRU-DNNmodel by an order of magnitude.
For training and forecasting times, the proposed ARIMA
model outperformed the GRU-DNNmodel in terms, as listed
in Table 9. Based on this discussion, in experiment-II, the
ARIMA and proposedGRU-DNNmodels achieved very close
results where the ARIMA model slightly performed better.
Tus, the ARIMA model is preferred over the proposed
GRU-DNN for scenarios similar to experiment-II.

In experiment-III and experiment-IV, the performance
of the ARIMA model is clearly better, as the error metric
values are lower for the ARIMA model. Te listed results of
Table 13 are for forecasting one minute in advance. Tus,
comparing Tables 12 and 13 for one minute forecasting only
outlines a better performance for experiment-IV.Tis can be
linked to the fact that the predictive models used in
experiment-IV are trained on real sensors’ readings, as the
force sensors are not turned of during experiment-IV. For
experiment-III, the predictive models are trained on mixed
data of real sensors’ readings and forecasted readings; this is
because the force sensors were turned of during the fore-
casting period to reduce the power consumption. As the
forecasted readings include some errors, these errors afect
the predictive model performance.
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Figure 7: Te MEA values of the proposed GRU-DNN model for
diferent values of k.

Table 8: Evaluation metric scores of the proposed GRU-DNN
model for experiment-I.

Dataset MAE
×10−2

MSE
×10−3

RMSE
×10−2

POCID
%

Dataset I 4.09 ± 2.23 14.15 ± 32.71 7.79 ± 8.72 83.40 ± 9.68
Dataset II 3.57 ± 1.85 7.73 ± 16.12 6.25 ± 5.98 83.52 ± 10.49
Dataset III 3.59 ± 1.84 7.23 ± 13.97 6.21 ± 5.61 83.09 ± 10.49
Dataset IV 3.47 ± 1.65 7.20 ± 13.83 6.22 ± 5.57 84.04 ± 9.83
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Figure 8: Te proposed GRU-DNN model’s training and vali-
dation loss of experiment-I using dataset III.
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Figure 9:Te actual and forecasted values of the proposedGRU-DNN
model for experiment-I using dataset III of sample PG-0.1.
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Table 9: Evaluation metric scores of the proposed models for experiment-II.

Model Training minutes MAE
×10−2

MSE
×10−3

RMSE
×10−2

POCID
%

ARIMA
7 9.22 ± 3.58 18.52 ± 21.43 11.96 ± 6.33 32.22 ± 21.07
10 8.89 ± 3.18 15.94 ± 14.44 11.45 ± 5.18 31.38 ± 22.68
13 8.84 ± 3.14 17.37 ± 17.98 11.76 ± 5.80 39.80 ± 18.96

GRU-DNN
7 9.30 ± 3.00 19.87 ± 16.37 12.91 ± 5.52 47.13 ± 16.48
10 9.36 ± 3.43 18.46 ± 12.77 12.57 ± 5.02 50.38 ± 7.79
13 9.55 ± 3.19 20.11 ± 15.98 13.02 ± 5.46 48.12 ± 16.75

Bold values indicate best results achieved for each experiment.

Table 10: ARIMA parameters for experiment-II.

Experiment training minutes
Hyperparameters

Training time (seconds) Forecasting time (seconds) Model size (MB)
p d q

7 5 0 1 84 1.0 191
10 5 0 1 109 0.7 273
13 5 0 4 183 0.3 355

Table 11: Te proposed GRU-DNN model performance for experiment-II.

Training minutes No. of epoch Training time (sec) Forecasting time (sec) Model size (MB)
7 28 122.3 55.8 0.031
10 22 219.2 35.7 0.031
13 28 429.0 13.4 0.033

Table 12: Evaluation metric scores of the proposed models for experiment-III.

Mode Training minutes Forecast MAE
× 10−2

MSE
× 10−3

RMSE
× 10−2

POCID
%

ARIMA

0.5 0.25 7.54 ± 2.93 29.39 ± 61.90 9.99 ± 5.44 53.19 ± 13.79
0.5 1.0 8.88 ± 4.25 34.66 ± 73.22 11.58 ± 7.55 45.75 ± 13.13
1.0 0.5 7.83 ± 2.98 27.81 ± 55.73 10.44 ± 5.79 51.69 ± 11.12
1.0 2.0 8.94 ± 4.21 31.45 ± 63.10 11.73 ± 7.64 48.06 ± 9.93

GRU-DNN

0.5 0.25 10.07 ± 5.53 38.65 ± 65.11 12.88 ± 7.14 45.58 ± 24.33
0.5 1.0 10.02 ± 5.04 31.84 ± 42.59 13.67 ± 7.18 44.99 ± 14.38
1.0 0.5 8.33 ± 3.47 29.73 ± 51.60 11.44 ± 5.69 53.80 ± 16.73
1.0 2.0 9.40 ± 3.36 31.53 ± 53.54 13.46 ± 7.18 46.80 ± 13.38

Bold values indicate best results achieved for each experiment.

Table 13: Evaluation metric scores of the proposed models for experiment-IV.

Model MAE
× 10−2

MSE
× 10−3

RMSE
× 10−2

POCID
%

ARIMA 7.75 ± 2.77 21.23 ± 36.38 10.29 ± 5.28 40.01 ± 11.00
GRU-DNN 9.82 ± 4.18 84.40 ± 204.88 13.64 ± 8.61 47.86 ± 9.98
Bold values indicate best results for achieved each experiment.

Table 14: Te proposed GRU-DNN model performance for experiment-I.

Dataset No. of epoch Training time (sec) Forecasting time (sec) Model size (MB)
Dataset I 26 54.4 3.5 0.040
Dataset II 40 216.9 3.0 0.031
Dataset III 37 160.5 2.9 0.042
Dataset IV 42 164.7 2.2 0.040
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6.1. Applications of the Proposed Predictive Model. Tere are
two possible applications of the proposed work.Temain target
of the study is to predict the friction based on real-time readings
of the friction coefcients and control the lubrication param-
eters like the fuid mist pressure to keep the friction coefcients
at minimum levels. Achieving this goal leads to a signifcant
reduction in energy consumption. Te proposed technique can
be applied directly to the feld ofmanufacturing whereas cutting
processes are considered a heavy energy consumption sector
and friction is themain suspect.Te second possible application
is to utilize the proposed model in reducing or avoiding surface
thermal damage. By predicting the high level of friction co-
efcients in advance, it is possible to readjust the lubrication
parameters (fuid pressure, fuid fow rate, etc.) to maintain
lower ranges of friction coefcients, as high ranges of friction
coefcients may deteriorate the workpiece.

7. Conclusion

Te task of monitoring the friction coefcient of the surface
friction is vital in any metal cutting technique, but it is a time
power consuming as well. Besides, the ability to predict future
friction coefcients from historical data is a vital task to reduce
or avoid thermal damage. In this work, we proposed the frst
predictive models to capture the patterns of the friction co-
efcient during a metal cutting process. We generated a real
friction coefcient of the surface friction using UMT.Ten, we
proposed ARIMA and GRU-DNN models to perform the
forecast task on a real dataset. Te ARIMA and GRU-DNN
model parameters are tuned to get the best performance. Fi-
nally, the proposed models are tested on four diferent power
consumption reduction scenarios, and the fourth scenario
proves the ability of the proposed model to avoid thermal
damage. Te proposed models show a signifcant performance
in terms of prediction accuracy. Te future directions include
using a hybrid model of the ARIMA and GRU-DNN models
using ensemble learning models to combine the results of these
two models. Besides, increasing the dataset by collecting
friction coefcient data from diferent milling machines might
increase the prediction accuracy rates.
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