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Te problem of ordered clustering in the context of decision-making with multiple criteria has garnered signifcant interest from
researchers in the feld of management science and operational research. In real-world scenarios, the datasets often exhibit
imprecision or uncertainty, which can lead to suboptimal ordered-clustering outcomes. However, the intuitionistic fuzzy c-means
(IFCM) clustering algorithm enhances the accuracy and efectiveness of decision-making processes by efectively handling
uncertain dataset information for clustering. Terefore, we propose a new clustering algorithm, called the generalized ordered
intuitionistic fuzzy c-means (G-OIFCM), based on PROMETHEE and the IFCM clustering algorithm. Diferent from the classical
IFCM clustering algorithm, we use positive fow (φ+(si) ∈ [0, 1]) and negative fow (φ− (si) ∈ [0, 1]) of PROMETHEE to generate
ordered clusters within the intuitionistic environment. We defne a new objective function based on the positive and negative fow
of the PROMETHEE and IFCM clustering algorithm, whose properties are mathematically justifed in terms of convergence and
optimization. Te performance of the proposed algorithm is evaluated using two diferent real-world datasets to assess both the
ordered clustering and the quality of partitioning. To demonstrate the efectiveness of G-OIFCM, a comparison is conducted with
three other algorithms: fuzzy c-means (FCM), ordered fuzzy c-means (OFCM), and an adaptive generalized intuitionistic fuzzy c-
means (G-IFCM). Te results demonstrate the efectiveness of G-OIFCM in enhancing optimal ordered clustering and utility
when dealing with uncertainty in datasets.

1. Introduction

Te fundamental goal of clustering is to separate samples
and assign them to groups that exhibit similarity. Hard and
soft clustering are two distinct approaches commonly used
in partition-based clustering techniques. In hard clustering,
each sample belongs exclusively to a single cluster, with no
overlap between clusters. On the other hand, fuzzy clus-
tering allows samples to have partial membership inmultiple
clusters [1]. Te fuzzy c-means (FCM) clustering algorithm
[2] is a fuzzy variant of the well-known K-means clustering
algorithm [3]. To expand upon the concept of fuzzy sets (FS)
[4], intuitionistic FS (IFS) was introduced as a means of

managing and interpreting data with varying degrees of
uncertainty, utilizing the membership, nonmembership, and
hesitation degrees [5]. In order to address this uncertainty,
the intuitionistic fuzzy c-means (IFCM) clustering algorithm
[6] incorporates a weighted Euclidean distance between IFSs
in the objective function of the FCM algorithm. Te ap-
plication of IFCM has proven valuable, including medical
image segmentation [7], segmentation of MRI brain tissues
[8], decision making [9, 10], pattern and face recognition
[11], and intuitionistic fuzzy c-ordered clustering algorithm
[12]. Te generalized intuitionistic fuzzy c-means (G-IFCM)
clustering algorithm utilizes an adaptive intuitionistic fuz-
zifcation technique that is based on crisp or fuzzy data sets
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[13]. However, there has been limited exploration of IFCM
clustering algorithm application in the context of ordered
clustering assessed across multiple conficting criteria.

Within the multicriteria decision-making context, re-
searchers typically consider three fundamental types of
problems [14]. Te frst type is the choice problem, which
involves identifying the best or promising solutions that
ofer a suitable compromise. Te second type concerns
ranking alternatives based on merit, from the best to the
worst. Te third type is the sorting problem, which involves
placing alternatives into predefned categories. One prom-
inent problem facing multicriteria decision aid (MCDA) is
supervised classifcation, which involves allocating alterna-
tives into a fxed number of clusters. In this scenario, re-
searchers have created innovative and outstanding
clustering algorithms in the MCDA, including ELEC-
TRE-SORT [15], Flowsort [16], TODIM-Sort [17],
PROAFTN [18], and PAIRCLASS [19]. On the other hand,
numerous types of research studies have been conducted to
address the problem of undefned classes from the MCDA
perspective [20] and their performance evaluation [21]. Tis
area highlights three types of problems in clustering: re-
lational, nonrelational, and ordered clustering (Boujelben
[22]; Meyer and Olteanu [23]). Complete ordered clustering
is a useful addition to the ranking process since it may help
to construct order priority links between a subset of alter-
nates for each cluster.

We are considering a specifc multicriteria method called
PROMETHEE, which has gained widespread recognition
due to its various extensions in clustering and their practical
applications. PROMETHEE relies on pairwise preferences,
including positive and negative fows and partial and total
net outranking, which serve as the primary sources for the
expansion of clustering techniques [24], such as P2CLUST
[25], hierarchical clustering [26], interval clustering [27],
ordered profle clustering [28], performance evaluation [29],
uncertainty management [30], and multicriteria dual clus-
tering [31].Tere have been several contributions in the feld
of clustering that specifcally address issues related to un-
certainty and vagueness through an integrated approach. For
instance, some of these contributions include hierarchical
multicriteria clustering [32], interval clustering [33], and
multicriteria ordered clustering of countries [34]. Tese
approaches aim to incorporate multiple criteria and account
for uncertainty or vagueness of information in the clustering
process, resulting in more robust and accurate clustering
results.

Ordered clustering, as used in MCDA, integrates both
the ranking and sorting processes, allowing for the discovery
and ordering of clusters from the best to the worst. De Smet
et al. [35] present a technique for fnding a total ordered
partition in MCDA based on pairwise preference relations
and the inconsistency matrix. Chen et al. [36] introduced the
ordered K-means (OKM) clustering algorithm, which
combines the traditional K-means method with the partial
net outranking fow of PROMETHEE. OKM clustering al-
gorithms may not give a clear recommendation for the
number of clusters to be used.Tis resulted in the creation of
the ordered fuzzy c-means (OFCM) clustering algorithm

based on the net outranking fow of PROMETHEE and the
fuzzy c-means method [37]. In real-world scenarios, datasets
often exhibit imprecision or uncertainty, which can result in
suboptimal outcomes in ordered clustering. Tis highlights
the need for caution when interpreting scores for catego-
rization. To address this issue, we propose a generalized
ordered intuitionistic fuzzy c-means (G-OIFCM) clustering
algorithm. G-OIFCM incorporates the positive fow
(φ+(si) ∈ [0, 1]) and negative fow (φ− (si) ∈ [0, 1]) of
PROMETHEE and the intuitionistic fuzzy c-means (IFCM)
clustering algorithm. By operating within an intuitionistic
environment, G-OIFCM efectively handles imprecise or
uncertain information and constructs optimal ordered
clustering. In addition, Kaushal and Lohani [13] introduced
the generalized intuitionistic fuzzy c-means (G-IFCM)
clustering algorithm, which utilizes an adaptive intuitionistic
fuzzifcation technique for uncertain datasets. However, it is
rarely investigated in the context of multicriteria ordered
clustering.

In this paper, we present a multicriteria ordered intui-
tionistic fuzzy c-means clustering technique. Motivated by
the positive and negative fow of the PROMETHEE [38] and
IFCM, we propose generalized ordered intuitionistic fuzzy c-
means (G-OIFCM) to optimize clustering results for im-
precise or uncertain information. G-OIFCM frst randomly
selects K diferent intuitionistic centroids, rank the cen-
troids, and computes the membership function values based
on membership, nonmembership, and hesitance degree.
Subsequently, it minimizes the fow objective function and
determines new centroids using an optimization model.Tis
novel approach aims to generate reliable and well-ordered
clustering results within the feld of multicriteria decision
analysis (MCDA) in an intuitionistic environment.

2. Preliminaries

Tis section provides an overview of the PROMETHEE and
intuitionistic fuzzy c-means (IFCM) clustering algorithms,
focusing on the following aspects.

2.1. PROMETHEEMethod. Tis section briefy describes the
PROMETHEEmethod developed by Brans and Vincke [39],
which is primarily employed in ranking problems. Te
following multicriteria problem is considered:

max q1 s1( 􏼁, q2 s2( 􏼁, · · · , qj si( 􏼁, · · · , ql sn( 􏼁 si

􏼌􏼌􏼌􏼌 ∈ S􏽮 􏽯, (1)

where S comprises a fnite set of alternatives
{s1, s2, · · · , si, · · · , sn} and is being evaluated under the criteria
Q � {q1(.), q2(.), · · · , qj(.), · · · , ql(.)} in multicriteria de-
cision making analysis (MCDMA). Let W � w1, w2, · · · ,􏼈

wj, · · · , wl}, where wi ∈] 0, 1 [(i � 1, · · · , n) are the weights
assigned to express the relative importance of criteria, which
can be either equal or diferent. Te PROMETHEE method
assumes that complete knowledge of the performance
(scores) of each alternative for every criterion is available.
Tis assumption allows for a comprehensive evaluation and
comparison of alternatives based on their performance
values across multiple criteria. Let oij denote the
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performance value of the ith alternative concerning the jth

criterion. In addition, the PROMETHEE method requires
the preference function pi (x), ∀i � 1, · · · , n. Tis function
pi: R⟶ [0, 1], stretches the preference degree Pi ∈ [0, 1]

between each pair of alternatives according to the diference
in performance. In PROMETHEE, Figure 1 illustrates six
diferent types of preference functions that can be employed.

Te preference function for a cost-type and beneft-type
criterion is represented by equations (2) and (3),
respectively.

Pi sj, sk􏼐 􏼑 � pi oji − oki􏼐 􏼑 ∀i, j, k, (2)

Pi sj, sk􏼐 􏼑 � pi oki − oji􏼐 􏼑 ∀i, j, k, (3)

if Pi(sj, sk)> 0, then sj is preferred over sk with the pref-
erence degree Pi(sj, sk). On the other hand, if Pi(sj, sk) � 0,
then sj is not preferred to sk at all.

In PROMETHEE, the preference degree
pi: [0, 1]⟶ [0, 1] is computed using the relative difer-
ence instead of the absolute one. In that case, beneft and
cost-type criteria are shown in equations (4) and (5),
respectively.

Pi sj, sk􏼐 􏼑 � pi 1 −
oki

oji

􏼠 􏼡 ∀i, j, k, (4)

Pi sj, sk􏼐 􏼑 � pi 1 −
oji

oki

􏼠 􏼡 ∀i, j, k. (5)

For the criterion ql, the preference function quantifes
the level of preference for alternatives sj to sk [39]. Ten, the
preference degrees Pi(sj, sk) are aggregated to obtain the
preference indices for each alternative π(sj, sk),∀j, k. Tis is
accomplished by calculating the weighted sum of preference
degrees for each alternative using the following formula, as
shown in the following equation:

π sj, sk􏼐 􏼑 � 􏽘
n

i�1
wiPi si, sk( 􏼁, (6)

where π(sj, sk) ∈ [0, 1] is the sum of all preferences of al-
ternatives sj over the sk when all criteria are taken into
consideration. Te PROMETHEE’s positive and negative
fows provides partial ranking for each alternative as shown
in equations (7) and (8), and thus, Vincke and Brans [40]
proposed to further aggregate these partial fows to the net
fows as shown in equation (10).

∅+
si( 􏼁 �

1
m − 1

􏽘

sk∈K\ si{ }

π si, sk( 􏼁 ∈ [0, 1], (7)

∅−
si( 􏼁 �

1
m − 1

􏽘

skK\ si{ } K

π sk, si( 􏼁 ∈ [0, 1], (8)

0≤∅+
si( 􏼁 +∅−

si( 􏼁≤ 1, (9)

∅ si( 􏼁 � ∅+
si( 􏼁 −∅−

si( 􏼁. (10)

Te positive fow ∅+(si) ∈ [0, 1] in the context of
decision-making indicates the extent to which one alter-
native is superior to the others, while the negative fow
(∅− (si) ∈ [0, 1]) refects the degree to which the remaining
alternatives outperform a specifc alternative. Figure 2
provides a visual representation of this concept.

Step-wise implementation of the PROMETHEE method
is presented in Algorithm 1.

2.2. Some Important Details of the Atanassov Intuitionistic
Fuzzy Set (AIFS). An intuitionistic fuzzy set (IFS) is denoted
by F in the universe of discourse H � h1, h2, . . ., hn􏼈 􏼉 is
described as follows:

F � 〈h, μF(h), ]F(h)〉 | h inH􏼈 􏼉. (11)

Te functions μF: H⟶[0, 1] and ]F: H⟶ [0, 1] each
element h in H are assigned a degree of membership and
nonmembership in Atanassov intuitionistic fuzzy set (AIFS),
which are represented by membership and nonmembership
values, respectively, if

0≤ μF(h) + ]F(h)≤ 1, (12)

then, it carries intuitionistic fuzzy due uncertainty in data
called hesitancy index πF(h), such that

πF(h) � 1 − μF(h) − ]F(h), (13)

where 0≤ πF(h)≤ 1 and if πF(h) � 0,∀h ∈ H, the IFS H is
reduced to fuzzy set, whereas when μF(c) � ]F(h) � 0 then
IFS F is completely intuitionistic. Consider the elements
hi ∈ H ∀(i � 1, 2, . . ., n) having diferent weights
w � (w1, w2, . . ., wn) of hi(i � 1, 2, . . ., n), with
wi ≥ 0, 􏽐

n
i�1wi � 1.

Te fuzzy set provided by Zadeh has been generalized by
the Atanassov intuitionistic fuzzy set (AIFS) [5]. In order to
assign a scalar value to each data item based on its mem-
bership and nonmembership values, it has been found that
AIFS is efcient at estimating uncertainty in imprecise and
vague datasets. Efective modelling of uncertainty relies
heavily on the AIFS hesitation component. Te inclusion of
hesitancy in AIFS has made signifcant contributions to
various applications, such as clustering (see [7, 41]),
decision-making ([9, 10]), medical image segmentation [42],
and pattern recognition [11].

2.3. Intuitionistic Fuzzy C-Means (IFCM) Clustering
Algorithm. Intuitionistic fuzzy c-means (IFCM), which
combines the ideas of AIFS with the fuzzy c-means algo-
rithm to provide efective partitioning between clusters by
exploiting hesitancy in its process, was frst presented by Xu
and Wu [6]. In IFCM, predetermined number of initial
clusters is chosen randomly and used as starting cluster
centroids in iterative process. Let T � T1, T2, . . ., Tp􏽮 􏽯 de-
note p intuitionistic fuzzy sets (IFSs), each with n elements.
Te parameter c represents the number of clusters, where
(1≤ c≤p). Te set 􏽥V � 􏽥V1,

􏽥V2, . . ., 􏽥Vc􏼈 􏼉 contains the pro-
totypical IFSs, m> 1 is the fuzzy factor parameter, μij is the
membership degree of the jth sample Tj to the ith cluster and

International Journal of Intelligent Systems 3



x

p (x)

o

1

(a)

o q

1

p (x)

x

(b)

1

x

p (x)

qo

(c)

1

x

p (x)

qo p

1/2

(d)

1

x

p (x)

qo p

(e)

1

x

p (x)

o σ

(f )

Figure 1: Te preference functions employed in PROMETHEE are categorized into six types, namely, (a) usual, (b) U-shape, (c) V-shape,
(d) level, (e) linear, and (f ) Gaussian.
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Figure 2: Positive and negative outranking fow of PROMETHEE. (a) Te ϕ+(α) outranking fow. (b) Te ϕ−(α) outranking fow.

Input:
(1) Performance matrix P represents the performance values of alternatives for each criterion.
(2) Weights vector W: vector containing the relative weights of each criterion.
Output:
(1) Preference ranking of alternatives
BEGIN
Step 1: Calculate the preference degrees Pi(sj, sk) ∈ [0, 1] for each pair of alternatives by using equations (4) and (5).
Step 2: Aggregate the preference degrees Pi(sj, sk) to obtain the preference indices π(sj, sk) ∈ [0, 1] by using equation (6).
Step 3: Calculate the positive fow∅+(si) ∈ [0, 1] and negative fow (∅− (si) ∈ [0, 1]) by using equations (7) and (8) respectively.
Step-4: Calculate the net outranking fow by using equation (10) and sort the alternatives.
Step-5: Return the preference ranking of alternatives.

END.

ALGORITHM 1: Te PROMETHEE method.
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U� (μij)c×p is a matrix has degree c × p. Te objective of the
IFCM algorithm is to minimize the following function:

Minimize Jm(U, 􏽥V) � 􏽘

p

j�1
􏽘

c

i�1
μm

ij d
2
1 Tj,

􏽥Vi􏼐 􏼑, (14)

s.t. 􏽘
c

i�1
μij � 1, 1≤ j≤p, (15)

μij ≥ 0,1≤ i≤ c, 1≤ j≤p, (16)

􏽘

p

j�1
μij > 0, 1≤ i≤ c. (17)

Xu and Wu [6] formulate IFCM clustering algorithm by
taking the basic distance measure d1(Tj,

􏽥Vi) in Jm(U, 􏽥V) of
as a proximity function.

Problem 1. To address the optimization problem presented
in equation (14), Xu and Wu [6] employ the Lagrange
multiplier method [43]. Te following equation is
considered:

L � 􏽘

p

j�1
􏽘

c

i�1
μm

ij d
2
1 Tj,

􏽥Vi􏼐 􏼑 − 􏽘

p

j�1
λj 􏽘

c

i�i

μij − 1⎛⎝ ⎞⎠, (18)

where

d
2
1 Tj,

􏽥Vi􏼐 􏼑 �
1
2

􏽘

n

l�1
wl μTj

xl( 􏼁 − μ􏽥Vi

xl( 􏼁􏼒 􏼓
2

+ ]Tj
xl( 􏼁 − ]􏽥Vi

xl( 􏼁􏼒 􏼓
2

+ πTj
xl( 􏼁 − π􏽥Vi

xl( 􏼁􏼒 􏼓
2

⎛⎝ ⎞⎠, (19)

Furthermore, let

zL

zμij

�
zL

zλj

� 0, 1≤ i≤ c, 1≤ j≤p, (20)

we obtain

μij �
1

􏽐
c
r�1 d1 Tj,

􏽥Vi􏼐 􏼑/d1 Tj,
􏽥Vr􏼐 􏼑􏼐 􏼑

2/m− 1, 1≤ i≤ c ; 1≤ j≤p.

(21)

Next, we compute 􏽥V � (μ􏽥Vi

(xl), ]􏽥Vi

(xl), π􏽥Vi

(xl)), the
prototypical IFSs. Let

zL

zμ􏽥Vi

xl( 􏼁
�

zL

z]􏽥Vi

xl( 􏼁
�

zL

zπ􏽥Vi

xl( 􏼁
� 0, 1≤ i≤ c; 1≤ l≤ n,

(22)

we have the following equation:

μ􏽥Vi

xl( 􏼁 �
􏽐

p
j�1μ

m
ij μTj

xl( 􏼁

􏽐
p
j�1μ

m
ij

, 1≤ i≤ c; 1≤ l≤ n, (23)

]􏽥Vi

xl( 􏼁 �
􏽐

p
j�1μ

m
ij]Tj

xl( 􏼁

􏽐
p
j�1μ

m
ij

, 1≤ i≤ c; 1≤ l≤ n, (24)

π􏽥Vi

xl( 􏼁 �
􏽐

p
j�1μ

m
ij πTj

xl( 􏼁

􏽐
p
j�1μ

m
ij

, 1≤ i≤ c; 1≤ l≤ n. (25)

Te following is a simplifed description of a weighted
average operator for IFSs provided by Xu and Wu [6]. Let
B � B1, B2, . . ., Bp􏽮 􏽯 be a set of IFSs, where each IFSs has n

elements. Let w � w1, w2, . . ., wp􏽮 􏽯 be a set of weights cor-
responding to the IFSs, such that the sum of all the weights is
equal to 1. Te weighted average operator f can be defned
as follows:

f(B, w) � <xl, 􏽘

p

j�1
wjμTj

xl( 􏼁, 􏽘

p

j�1
􏽘

p

j�1
wj]Tj

xl( 􏼁> | 1≤ l≤ n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(26)

According to (23)–(26), if we let

w
i

�
μi1

􏽐
p
j�1μij

,
μi2

􏽐
p
j�1μij

, · · · ,
μip

􏽐
p
j�1μij

⎧⎨

⎩

⎫⎬

⎭, 1≤ i≤ c. (27)

Ten, the prototypical IFSs 􏽥V � 􏽥V1,
􏽥V2, · · · , 􏽥Vc􏼈 􏼉 of the

IFCM algorithm can be computed as follows:

􏽥Vi � f T, w
(i)

􏼐 􏼑 � <xl, 􏽘

p

j�1
wj

(i)μTj
xl( 􏼁, 􏽘

p

j�1
wj

(i)]Tj
xl( 􏼁> | 1≤ l≤ n, 1≤ i≤ c

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (28)
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Step-wise implementation of IFCM is presented in
Algorithm 2.

2.4. Davies–Bouldin (DB) Index for Cluster Validity Index.
Te metric used to evaluate clustering algorithms is known
as the cluster validity index [44]. In order to achieve optimal
clustering, it is important to minimize the DB scale, which
quantifes the ratio of within-cluster separation to between-
cluster separation. To calculate the scatter within the ith

cluster, denoted as Zi, we calculate it as follows:

Zi �
1
Ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
x∈Ci

x − si

����
����􏽮 􏽯. (29)

Te distance between cluster Ci to another cluster Cj is
denoted as eij, is defned as eij � ‖si − sj‖. Here, si represents
the ith center. DB scale is defned as follows:

DB �
1

M
􏽘

M

i�1
Li,qt,where Li,qt � maxj, j≠ i

Zi,q + Zj,q

eij,t

􏼨 􏼩.

(30)

2.5. Dunn Index (DI). Dunn index (DI) is a clustering
validation measure that is used to evaluate the quality of
clustering results. It measures the ratio of the minimum
distance between clusters to the maximum diameter of
clusters [45]. Te goal of DI is to minimize intracluster
distances and maximize intercluster distances. A high value
of DI suggests that the clusters are well-separated and
compact, indicating that the clustering algorithm efectively
separates noise from the clusters.

2.6. Ranking of Intuitionistic Fuzzy Values. Szmidt and
Kacprzyk [46] proposed a method for comparing the
intuitionistic fuzzy values of∅+(si) and∅− (si) and provide
a quantitative measure of the similarity between two
intuitionistic fuzzy values.

ρ ∅ si( 􏼁 � 0.5 1 + π∅ si( )􏼒 􏼓 1 − μ∅ si( )􏼒 􏼓􏼒 . (31)

3. Multicriteria Ordered Clustering Algorithm
Combining with IFCM and PROMETHEE

We address a unique type of clustering problem called
multicriteria ordered clustering in an intuitionistic envi-
ronment. Te objective of ordered clustering is to assist the
decision maker (DM) in sorting the possibilities in a specifc
order. Unlike traditional clustering problems, ordered
clustering involves dividing the alternatives into a pre-
defned number of groups while maintaining a complete
ordering relationship among these groups.

Let S � s1, s2, . . ., si, . . ., sn􏼈 􏼉⊆Rm be a set of alternatives
assessing through a set of multicriteria
Q � q1, q2, . . ., qi, . . ., ql􏼈 􏼉. We call a partition an ordered
partition if it meets the following criteria:

(i) S � ∪ i�1,2,...,KCi

(ii) ∀i≠j,Ci ∩Cj � φ
(iii) C1≻C2≻ . . .≻CK

Here, Ci represents the ith ordered cluster and ≻ denotes
a priority relation among the clusters. For instance ifCi ≻Cj,
it means that the elements in Ci are superior to those in Cj.

Te PROMETHEE preference indices are aggregated to
negative fows (∅− (si) ∈ [0, 1]) and positive (∅+(si) ∈
[0, 1]) of each alternative to estimate the priority degree for
each pair of alternatives. As a result, we present generalized
ordered intuitionistic fuzzy c-means (G-OIFCM), a novel
supervised clustering technique based on PROMETHEE and
IFCM. Tis algorithm will generate an optimal partition of
alternative for uncertain and vague data based on the
PROMETHEE and IFCM clustering algorithm.

3.1. Minimum Partial Outranking Flow Objective Function.
Equations (7) and (8) provide the means to calculate the
positive fow (φ+(si) ∈ [0, 1]) and negative fow
(φ− (si) ∈ [0, 1]) of a specifc alternative in the PROMETHEE
method. Te positive fow represents the average preference
indices indicating howmuch better the alternative is compared
to the others in amulticriteria context. Conversely, the negative
fow represents the average preference indices comparing the
remaining alternatives to the evaluated option, indicating how
much worse it is in comparison. Te sum of the positive and
negative fows of PROMETHEE for a given alternative, i.e.,
(0≤ φ+(si) + φ− (si)≤ 1), lies between 0 and 1. Tese positive
and negative fows of PROMETHEE are the relative optimized
membership (μφ+(si) � φ+(si)) and nonmembership
(vφ−(si) � φ− (si)) values of the alternatives building a natural
intuitionistic environment for uncertain or vague data. Te
hesitancy degree between preference indices can be calculated
as follows:

πφ si( ) � 1 − μφ
+ si( ) − v

φ− si( ). (32)

So, (μφ+(si), vφ
−(si), πφ(si)) is a relative optimized intui-

tionistic fuzzy values for uncertain or vague data.
Let S � {s1, s2, . . ., sj, . . ., sn} be a fnite set of alternatives

are being evaluated under the criteria Q �

{q1(.), q2(.), . . ., qj(.), . . ., ql(.)} in multicriteria decision
making analysis (MCDMA). V � V1, V2, . . . . . ., Vc􏼈 􏼉 are the
centroids of the ordered clusters and m is the fuzzy factor
m> 1, μij is the membership degree of the jth sample Sj to
the ith ordered cluster, U� (μij)c×p is a matrix of c × p.

Motivated by [47], we can calculate the weighted Eu-
clidean distance between the optimized intuitionistic fuzzy
values (μφ+(si), vφ

−(si), πφ(si)) of PROMETHEE as follows:
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d1 Sj, Vi􏼐 􏼑 �
1
2

􏽘

c

i�1
wi μφ

+ sj( 􏼁
− μφ

+ vi( )􏼒 􏼓
2

+ v
φ− sj( 􏼁

− v
φ− vi( )􏼒 􏼓

2
+ πφ sj( 􏼁

− πφ vi( )􏼒 􏼓
2

⎛⎝ ⎞⎠

1/2

, (33)

where we take w � (1/n, 1/n, . . ., 1/n), then

d2 Sj, Vi􏼐 􏼑 �
1
2n

􏽘

c

i�1
μφ

+ sj( 􏼁
− μφ

+ vi( )􏼒 􏼓
2

+ v
φ− sj( 􏼁

− v
φ− vi( )􏼒 􏼓

2
+ πφ sj( 􏼁

− πφ vi( )􏼒 􏼓
2

⎛⎝ ⎞⎠

1/2

. (34)

Similar to IFCM clustering algorithm, we introduce
a new objective function JOIFCM(U, V) based on PROM-
ETHEE to minimize:

JG−OIFCM(U, V) � 􏽘
n

j�1
􏽘

c

i�1
μm

ij d
2
1 Sj, Vi􏼐 􏼑, (35)

s.t. 􏽘

c

i�1
μij � 1, 1≤ j≤ n, (36)

μij ≥ 0, 1≤ i≤ c; 1≤ j≤ n, (37)

􏽘

p

j�1
μij > 0, 1≤ i≤ c. (38)

To address the optimization problem presented in
equation (35), Xu and Wu [6] employ the Lagrange mul-
tiplier method [43]. Te following equation is considered:

L (U, V) � 􏽘
n

j�1
􏽘

c

i�1
μm

ij d
2
1 Sj, Vi􏼐 􏼑 − 􏽘

n

j�1
λj 􏽘

c

i�1
μij − 1⎛⎝ ⎞⎠, (39)

where

d1 Sj, Vi􏼐 􏼑 �
1
2

􏽘

c

i�1
wi μφ

+ sj( 􏼁
− μφ

+ vi( )􏼒 􏼓
2

+ v
φ− sj( 􏼁

− v
φ− vi( )􏼒 􏼓

2
+ πφ sj( 􏼁

− πφ vi( )􏼒 􏼓
2

⎛⎝ ⎞⎠

1/2

, (40)

d2 Sj, Vi􏼐 􏼑 �
1
2n

􏽘

c

i�1
μφ

+ sj( 􏼁
− μφ

+ vi( )􏼒 􏼓
2

+ v
φ− sj( 􏼁

− v
φ− vi( )􏼒 􏼓

2
+ πφ sj( 􏼁

− πφ vi( )􏼒 􏼓
2

⎛⎝ ⎞⎠

1/2

. (41)

Input:
(1) Data matrix X: matrix representing the dataset
(2) Number of clusters c: the desired number of clusters
(3) Fuzzifer m: parameter controlling the fuzziness of the clusters
(4) Maximum number of iterations max_iter: the maximum number of iterations allowed
Output:
(1) Fuzzy cluster centers
(2) Fuzzy membership matrix U
(3) Objective function
BEGIN
(1) Step-1: Initialize seeds 􏽥V(0), let k � 0 and ϵ> 0.

(2) Step-2: Calculate U(k) � (μij(k))c×p, where
If ∀j, r, d1(Tj,

􏽥Vr(k))> 0, then
μij(k) � 1/􏽐c

r�1(d1(Tj,
􏽥Vj(k))/d1(Tj,

􏽥Vr(k)))2/m−1 1≤ i≤ c; 1≤ j≤p

If there exist j, r such that d1(Tj,
􏽥Vr(k)) � 0, then let μrj(k) � 1 and μij(k) � 0 for all i≠ r.

Step-3: Calculate 􏽥V(k + 1) � 􏽥V1(k + 1), 􏽥V2(k + 2), . . ., 􏽥Vc(k + 1)􏼈 􏼉, where
􏽥Vi(k + 1) � f(T, w(i)(k + 1)), 1≤ i≤ c

where, w(i)(k + 1) � μi1(k)/􏽐p
j�1μij, μi2(k)/􏽐p

j�1μij, . . ., μip(k)/􏽐p
j�1μij􏽮 􏽯 1≤ i≤ c

Step-4: If 􏽐
c
i�1d1(

􏽥Vi(k), 􏽥Vi(k + 1))/c< ϵ� 10− 5 > 0, then proceed step 5.
Otherwise, let k � k + 1, and then return to the Step 2.

END.

ALGORITHM 2: Intuitionistic fuzzy c-means (IFCM) clustering.
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Theorem 2. Let ψ: Uij × V ik⟶ R, such that
ψ(U, V) � J(U, V), where V ∈ V ik is fxed. Ten U∗ � μij is
a strict local minima if it is derived from the (47). Here, Uij

and V ik are a collection of matrices of membership and cluster
center, respectively.

Proof. Let L (U, V) be a Lagrangian of criterion function
under the constraints is defned with the help of λj

(1≤ j≤p). Te parameter m ∈ (0, 1)∪ (1,∞) is weighting
exponent for a memberships. Now,

L (U, V) � 􏽘
n

j�1
􏽘

c

i�1
μm

ij d
2
1 Sj, Vi􏼐 􏼑 − 􏽘

n

j�1
λj 􏽘

c

i�i

μij − 1⎛⎝ ⎞⎠. (42)

By using equation (40), we have the following equation:

L (U, V) � 􏽘
n

j�1
􏽘

c

i�1
μm

ij

1
2

􏽘

c

i�1
wi μφ

+ sj( 􏼁
− μφ

+ vi( )􏼒 􏼓
2

+ v
φ− sj( 􏼁

− v
φ− vi( )􏼒 􏼓

2
+ πφ sj( 􏼁

− πφ vi( )􏼒 􏼓
2

⎛⎝ ⎞⎠ − 􏽘
n

j�1
λj 􏽘

c

i�i

μij − 1⎛⎝ ⎞⎠. (43)

Te Lagrangian condition (42) is solved by setting the
derivatives with respect to Lagrangian multiplier λj equal to
zero:

zL (U, V)

zλj

� 0 − 􏽘
c

i�i

μij − 1⎛⎝ ⎞⎠ � 0. (44)

Similarly, the Lagrangian condition (42) is also solved by
setting the derivatives with respect to membership param-
eter μij equal to zero, where 1≤ i≤ c; 1≤ j≤ n.

zL (U, V)

zμij

� 􏽘
n

j�1
􏽘

c

i�1
m μm−1

ij

1
2

μφ
+ sj( 􏼁

− μφ
+ vi( )􏼒 􏼓

2
+ v

φ− sj( 􏼁
− v

φ− vi( )􏼒 􏼓
2

+ πφ sj( 􏼁
− πφ vi( )􏼒 􏼓

2
􏼠 􏼡 � 0, (45)

on combining (44) and (45), we have the following equation:

μij �
1

􏽐
c
r�1 1/2􏽐

c
i�1 wi μφ

+ sj( 􏼁 − μφ+ vi( )􏼒 􏼓
2

+ vφ
− sj( 􏼁 − vφ

− vj( 􏼁􏼒 􏼓
2

+ πφ sj( 􏼁 − πφ vj( 􏼁􏼒 􏼓
2

􏼠 􏼡/ 1/2􏽐
c
i�1 wi μφ

+ sj( 􏼁 − μφ+ vr( )􏼒 􏼓
2

+ vφ
− sj( 􏼁 − vφ

− vr( )􏼒 􏼓
2

+ πφ sj( 􏼁 − πφ vr( )􏼒 􏼓
2

􏼠 􏼡􏼠 􏼡

2/m− 1 ,

(46)

μij �
1

􏽐
c
r�1 d

2
1 Sj, Vi􏼐 􏼑/d2

1 Sj, Vr􏼐 􏼑􏼐 􏼑
2/m− 1 . (47)

Equation (42) is formulated as an optimization problem
to fnd the optimal solution that maximizes or minimizes
a given objective function while satisfying certain
constraints. □

Theorem 3. Te optimal minima of the problem L (U, V) is
obtained at a point Vi(k) � Vi(k + 1). Here, the point
Vi(k) � Vi(k + 1) is derived based upon (51)–(53).

Proof. Let L (U, V) be a Lagrangian of criterion function
under the constraints is defned with the help of λj

(1≤ j≤p). Te parameter m ∈ (0,1)∪ (1,∞) is weighting
exponent for a memberships. Now,

L (U, V) � 􏽘

n

j�1
􏽘

c

i�1
μm

ij d
2
1 Sj, Vi􏼐 􏼑 − 􏽘

n

j�1
λj 􏽘

c

i�i

μij − 1⎛⎝ ⎞⎠.

(48)

By using (40), we have the following equation:

L (U, V) � 􏽘
n
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2
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Te derivatives of (48) are set equal to zero with respect
to Vi(k + 1) � (μφ+(vi), vφ

−(vi), πφ(vi)) as follows:

zL

zμφ
+ vi( )

�
zL

zv
φ− vi( )

�
zL

zπφ vi( )
� 0, 1≤ i≤ c. (50)

We have the following equation:

μφ
+ vi( ) �

􏽐
n
j�1μ

m
ijμ

φ+ sj( 􏼁

􏽐
n
j�1μ

m
ij

, 1≤ i≤ c, (51)

v
φ− vi( ) �

􏽐
p
j�1μ

m
ij v

φ− sj( 􏼁

􏽐
n
j�1μ

m
ij

, 1≤ i≤ c, (52)

πφ vi( ) �
􏽐

p
j�1μ

m
ijπ

φ sj( 􏼁

􏽐
n
j�1μ

m
ij

, 1≤ i≤ c, (53)

So, Vi(k + 1) � (μφ+(vi), vφ
−(vi), πφ(vi)) is a required cen-

troid for optimization of L (U, V).
By using equations (51)–(53), the membership matrix U

is updated as a result of the centroid being updated. Te
objective function JOIFCM(U, V) is optimized continuously
updating the centroid and membership function until
􏽐

c
i�1d1(Vi(k), Vi(k + 1))/c< ϵ � 10− 5 is satisfed.
Step wise implementation of G-OIFCM is presented in

Algorithm 3.
Te primary framework of the G-OIFCM is derived from

the IFCM clustering algorithm, as illustrated in Figure 3.Te
implementation of G-OIFCM may result in only a slightly
increased computational load compared to the
traditional IFCM. □

4. Case Studies of Generalized Ordered
Intuitionistic Fuzzy C-Means (G-OIFCM)
Clustering Algorithm

In this section, we will delve into two distinct case studies
that demonstrate the process of ordered regrouping of
countries based on their performance within an intuition-
istic environment. Our focus is not on determining the
precise ranking of nations but rather on categorizing
countries into predefned labels based on their performance
in specifc criteria. Our objective is to employ a targeted
rank-based approach to efectively regroup countries in an
intuitionistic environment, taking into account uncertainty
crisp data by considering the positive and negative fow of
PROMETHEE.

4.1. Case Study-1: Regrouping the Countries in Global Health
Security Index (GHSI). In the frst case study, we are fo-
cusing on a particular class of data sets: uncertain crisp data
sets from the Global Health Security Index (GHSI). Te
Nuclear Treat Initiative, the Johns Hopkins University
Center for Health Security, and Te Economist Intelligence
Unit (EIU) created the GHSI in 2019 as a benchmark to help
nations improve their capacity to control infectious disease

outbreaks that could have signifcant global repercussions
[48]. To assess a country’s ability to prevent and mitigate
epidemics and pandemics in 2019-2020, the GHSI employs
six categories, 34 indicators and 85 subindicators, with 171
questions. Tese indicators and subindicators are grouped
into six categories or criteria, namely,
C � C1, C2, C3, C4, C5, C6􏼈 􏼉 � {prevention of the emergence,
detection and reporting, rapid response, health system,
compliance with international norms, and risk
environment}.

Recently, there have been emerging criticisms sur-
rounding the Global Health Security Index (GHSI). Tese
criticisms encompass the inverse correlation observed be-
tween certain indicators and subindicators during the
COVID-19 pandemic, as well as the subjective imple-
mentation of weights in the scoring system [49]; the
questionable validity of some indicators and subindicators
[50]; and the incomplete defnition of relevant categories
(most prepared, more prepared, and least prepared [51]). In
addition, during pandemics, the ranking based on results
from indicators and subindicators is not directly comparable
[52]. Kaiser et al. [53] have identifed two main criticisms of
composite indices in GHSI. Te frst criticism is related to
the hierarchical structure of criteria, indicators, and sub-
indicators. Tis structure includes issues of utility, bias, and
reliability that require further study. Te second criticism is
the uncertainty arising due to missing data, normalization of
data, aggregation of normalized indicators, and the difculty
of assigning weights to criteria, indicators, and
subindicators.

4.1.1. Regrouping the Countries in Global Health Security
Index Based on the G-OIFCM Algorithm. Tis subsection
demonstrates the utilization of G-OIFCM to cluster coun-
tries in GHSI, considering their performance across six
criteria during the period of 2019-20. Let A�

{ai | i � 1,2, . . . , n} represent the alternatives or countries
across the six criteria. Let si denote the ranking of the ith

country in the GHSI ranking. Te goal is to cluster the
countries into ordered groups based on their scores. Te
stepwise execution process of Algorithm 3 for ordered
clustering is as follows:

Step 1: frst, we calculate the preference indices for each
country as π(sj, sk),∀j, k and then obtain positive,
negative, and hesitancy fow (μφ+(si), vφ

−(si), πφ(si))
∈ [0, 1] of PROMETHEE by using the equations (7),
(8), and (32), respectively, as illustrated in Figure 4. We
select the same linear preference function for
each criterion, as mentioned in the following equation
[34]:

fk(v) �

0, v≤ 0,

v

pl

, 0≤ v≥pl,

1, v≥pl,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

l � 1, 2, 3. (54)
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Te threshold value (pl) and the corresponding weights
(w(i)) for each criterion have been presented in Table 1.
Step-2: initialized K diferent centroids (Vr(k)) from
(μφ+(vi), vφ

−(vi), πφ(vi)) and rank the centroids by using
the equation (31), i.e., if (ρ(∅(s1))> (ρ(∅(s2))

thenC1 ≻C2, i.e., countries in C1 are better than
the C2.

Step 3: compute membership function
U(k) � (μij(k))c×p by using equation (47) and let
m� 2, where

(a) If ∀j, r, d1(Sj, Vr(k))> 0, then

μij(k) �
1

􏽐
c
r�1 d

2
1 Sj, Vi􏼐 􏼑/d2

1 Sj, Vr􏼐 􏼑􏼐 􏼑
2/m− 1 , 1≤ i≤ c; 1≤ j≤p. (55)

(b) If there exists j, r such that d1(Sj, Vr(k)) � 0, then
let μrj(k) � 1 and μij(k) � 0 for all i≠ r.

Step 4: update the centroids
V(k + 1) � V1(k + 1), V2(k + 2), . . ., Vc(k + 1)􏼈 􏼉,
where

Vi(k + 1) � f Z, w
(i)

(k + 1)􏼐 􏼑, 1≤ i≤ c, (56)

where w(i)(k + 1) � μi1(k)/􏽐n
j�1μij, μi2(k)/􏽐n

j�1μij, . . .,􏽮

μij (k)/􏽐
n
j�1μij} 1≤ i≤ c

Step 5: if 􏽐
c
i�1d1(Vi(k), Vi(k + 1))/c< ϵ � 10− 5 > 0,

then go to step 6.
Otherwise, let k � k + 1, and return to Step 3.
Step 6: end

We propose an ordered classifcation of countries in
a manner similar to the Human Development Index (HDI).
In order to assess the ordering in the Global Health Security
Index (GHSI) problem, we divide countries’ performance
into fve tiers, which can be found on http://www.ghsindex.
org. Due to uncertainty in the data, i.e., measurement and
parameterization, we employ the IFCM clustering algorithm
on the optimized values of PROMETHEE, i.e., positive,
negative, and hesitance fow for the year 2019. Tis allows us
to identify countries in fve levels of GHSI: (1) very high level,
(2) high level, (3) medium level, (4) low level, and (5) lowest
level. In Table 2, it is shown that the frst 33 countries belong
to the cluster of very high level Global Health Security Index,
32 countries belong to high level, 43 countries belong to
medium level, 46 countries belong to low level, and 41
countries belong to the cluster of lowest level Global Health

Input:
S � s1, s2, . . ., sj, . . ., sn􏽮 􏽯, K clusters, V � V1, V2, . . ., Vi, . . ., Vc􏼈 􏼉 centroids, t � 0, Tmax � 1000.
Output:
MatrixU, set of centroidsV∗, Objective function JOIFCM(U, V).
BEGIN
Step-1: Compute (μφ+(si), vφ

−(si), πφ(si)) by using the Equations (7), (8) and (32).
Step-2: Initialized K diferent centroids (Vr(k)) from (μφ+(vi), vφ

−(vi), πφ(vi)) and rank the centroids by using the (31), i.e., if
(ρ(∅(s1))> (ρ(∅(s2)) thenC1 ≻C2.

Step-3: Compute membership function U(k) � (μij(k))c×p by using (47) and let m� 2, where
(a) If ∀j, r, d1(Sj, Vr(k))> 0, then
μij(k) � 1/􏽐c

r�1(d2
1(Sj, Vi)/d

2
1(Sj, Vr))

2/m−1 1≤ i≤ c; 1≤ j≤p

(b) If there exist j, r such that d1(Sj, Vr(k)) � 0, then let μrj(k) � 1 and μij(k) � 0 for all i≠ r.

Step-4: Update the centroids V(k + 1) � V1(k + 1), V2(k + 2), . . ., Vc(k + 1)􏼈 􏼉, where
Vi(k + 1) � f(Z, w(i)(k + 1)), 1≤ i≤ c

Where, w(i)(k + 1) � μi1(k)/􏽐n
j�1μij, μi2(k)/􏽐n

j�1μij, . . ., μij (k)/􏽐
n
j�1μij􏽮 􏽯 1≤ i≤ c

Step-5: If 􏽐
c
i�1d1(Vi(k), Vi(k + 1))/c< ϵ � 10− 5 > 0, then proceed step 6.

Otherwise, let k � k + 1, and then return to the Step 3.
END.

ALGORITHM 3: Generalized ordered intuitionistic fuzzy c-means clustering (G-OIFCM).
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Figure 3: Process of G-OIFCM clustering algorithm.
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Figure 4: Te x-axis denotes the label of 195 countries and y-axis denotes positive, negative, and hesitancy fow
(μφ+(si), vφ−(si), πφ(si)) ∈ [0, 1].
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Security Index. Te boundaries separating the fve clusters
are considered appropriate as they efectively divide coun-
tries into very high, high, medium, low, and lowest level
countries in proportions that are appropriate.

To verify the number of tiers with the clusters, we employ
the elbowmethod on (μφ+(si), vφ−(si), πφ(si)) of PROMETHEE
as shown in Figure 5. Tis method aids in identifying the
point of maximum curvature and verifes the appropriate
number of clusters.

Next, we present the extended results of ordered clus-
tering for the year 2019, categorized into 1-very high, 2-high,
3-medium, 4-low, and 5-lowest level GHSI, as depicted in
Figure 6.Te x-axis represents GHSI ranks for 195 countries,
while the y-axis indicates ith cluster for i � 1, 2, 3, 4, 5.
Furthermore, the clusters are not evenly distributed. Cluster
C1 contains 17% of the countries, C2 contains 16%, C3
contains 22%, C4 contains 24%, and C5 contains 21%. Tis
observation aligns with common sense as it is expected that
the number of countries in the very high level GHSI category
would be smaller than the number of countries in the lowest
level GHSI category. It is evident that the ordered grouping
aligns closely with the GHSI ranks provided by EIU, which
can be accessed at http://www.ghsindex.org.

4.1.2. Comparison of G-OIFCM with Other Clustering
Algorithms. We compared the clustering results of G-
OIFCM with the FCM, OFCM, and G-IFCM clustering
algorithms to address the same GHSI issue mentioned
earlier. Te aim was to further validate our proposed
clustering technique, as shown in Table 3. Te clustering
results obtained from FCM and G-IFCM were deemed
inadequate in aligning with the GHSI ranking. Tis in-
adequacy can be attributed to the observed heterogeneity
among countries resulting from overlapping. In contrast, G-
OIFCM consistently produced smooth results, presenting
groups of homogeneous countries, as depicted in Figure 7.
Notably, the classifcation results from OFCM exhibited
fewer inconsistencies compared to the other clustering al-
gorithms. Details of comparison are further included for
soling GHSI problem as mentioned above.

(1) Regrouping the Countries by Using FCM. We applied the
conventional FCM clustering technique to preprocessed
data with respect to six diferent criteria of GHSI to group
the countries into fve predefned clusters. Figure 7 shows the
results derived by FCM that reveal apparent inconsistencies
between the partitioning results and GHSI ranking. Te

Table 1: Te preference (pl), indiference (ql), thresholds, and
weight (wl) of each criterion.

Parameters C1 C2 C3 C4 C5 C6

Strict preference
threshold: pl

14.8 20.5 13.3 15.0 10.9 13.9

Indiference
threshold: ql

7.4 10.2 6.7 7.5 5.4 6.9

Weight of criteria: wl 0.167 0.167 0.167 0.167 0.167 0.167

Table 2: A Ranking comparison of GHSI countries based on G-
OIFCM clustering.

Country G-OIFCM
Te United States 1
Australia 1
Canada 1
Te United Kingdom 1
Te Netherlands 1
Sweden 1
Finland 1
Denmark 1
Slovenia 1
South Korea 1
France 1
Tailand 1
Switzerland 1
Norway 1
Germany 1
Spain 1
Malaysia 1
Belgium 1
Portugal 1
Japan 1
Latvia 1
Singapore 1
Ireland 1
Austria 1
Estonia 1
Chile 1
Argentina 1
Mexico 1
Poland 1
Indonesia 1
New Zealand 1
Italy 1
Hungary 1
Czech Republic 1
Brazil 1
Lithuania 1
Turkey 2
South Africa 2
Serbia 2
Greece 2
Croatia 2
Peru 2
Georgia 2
Vietnam 2
Te United Arab Emirates 2
Slovakia 2
Kyrgyz Republic 2
Armenia 2
Ecuador 2
China 2
Mongolia 2
Israel 2
Iceland 2
Romania 2
Te Philippines 2
Bulgaria 2
Saudi Arabia 2
Liechtenstein 2
Kuwait 2
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Table 2: Continued.

Country G-OIFCM
India 2
Russia 2
Colombia 2
Kenya 2
Costa Rica 2
Oman 2
Luxembourg 2
Cyprus 2
Panama 2
Montenegro 2
Uganda 2
Moldova 2
Nicaragua 2
Uruguay 2
Jordan 2
Bosnia 2
Ethiopia 2
Kazakhstan 2
Qatar 2
Morocco 2
Myanmar 2
Lebanon 3
Bhutan 3
Egypt 3
Laos 3
Trinidad and Tobago 3
North Macedonia 3
Madagascar 3
Bahrain 3
Malta 3
Senegal 3
Ukraine 3
Dominican Republic 3
Cuba 3
Sierra Leone 3
Cambodia 3
Iran 3
Nigeria 3
St Lucia 3
Suriname 3
Tanzania 3
Bolivia 3
Uzbekistan 3
Liberia 3
Belarus 3
Paraguay 3
Nepal 3
Zimbabwe 3
St Vincent and the Grenadines 3
Te Maldives 3
Namibia 3
Pakistan 3
Cameroon 3
Ghana 3
C“te d’Ivoire 3
Mauritius 3
Tunisia 3
Barbados 3
Te Gambia 3
Bangladesh 3

Table 2: Continued.

Country G-OIFCM
Te Seychelles 3
Rwanda 3
Sri Lanka 3
Micronesia 3
Guyana 3
Azerbaijan 3
Belize 3
Tajikistan 3
Afghanistan 3
Botswana 3
Bahamas 3
eSwatini (Swaziland) 3
San Marino 4
Antigua and Barbuda 4
Andorra 4
Niger 4
Guatemala 4
Togo 4
Guinea 4
Cabo Verde 4
Lesotho 4
Haiti 4
Turkmenistan 4
Burkina Faso 4
Jamaica 4
Benin 4
Mali 4
Grenada 4
Chad 4
St Kitts and Nevis 4
Malawi 4
Central African Republic 4
Zambia 4
Mozambique 4
Samoa 4
Comoros 4
Papua New Guinea 4
Vanuatu 4
Congo (Democratic Republic) 4
Honduras 4
Papua New Guinea 4
Sudan 5
Fiji 5
Dominica 5
Congo (Brazzaville) 5
Tonga 5
Mauritania 5
Angola 5
Timor-Leste 5
Algeria 5
Libya 5
Venezuela 5
Iraq 5
Tuvalu 5
Palau 5
Burundi 5
Djibouti 5
Niue 5
Eritrea 5
Nauru 5
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main reason for this is that the classical FCM calculates the
similarity between any two countries using the Euclidean
distance. In other words, due to the symmetric nature of the
Euclidean distance, the conventional FCM is unable to
capture preference relationships between objects and
clusters.

(2) Regrouping the Countries by Using OFCM. We employed
the FCM clustering technique to group countries into fve
predefned clusters based on the net outranking of the
PROMETHEE in GHSI. However, in GHSI scenarios, the
datasets frequently demonstrate imprecision or uncertainty,
which can result in suboptimal outcomes when applying
ordered clustering. Figure 7 presents the OFCM classifca-
tion results, highlighting apparent less inconsistencies as
compare to the FCM. Te primary reason for this dis-
crepancy may be the need for caution when interpreting
scores for categorization during the partitioning process.

(3) Regrouping the Countries by Using IFCM. To establish fve
specifed clusters, we utilized the adaptive generalized
intuitionistic fuzzy c-means (G-IFCM) clustering algorithm
[13] on preprocessed data derived from six distinct GHSI
criteria. Figure 7 displays the results obtained fromG-IFCM,
revealing notable inconsistencies between the partitioning
outcomes and GHSI ranking. Tese inconsistencies pri-
marily stem from the fact that traditional G-IFCM relies on
the Euclidean distance to measure similarity between any
two countries. In other words, the symmetry of the Eu-
clidean distance restricts the conventional G-IFCM’s ca-
pacity to represent preference relations between objects and
clusters.

In conclusion, the G-OIFCM algorithm distinguishes
itself from classical clustering algorithms by incorporating
the objective function as the sum of all alternatives’

optimized values, including the positive and negative fow of
PROMETHEE. In addition, it introduces a comprehensive
ordered relationship among the clusters, addressing the
limitations of the traditional approach. Te boundaries
between the various clusters are adequate because they split
very high, high, medium, low, and lowest level countries in
proportions that are appropriate.

4.1.3. Clustering ValidationMeasure. To evaluate the quality
of the preference structure generated by G-OIFCM, we
conducted a comparative analysis of its clustering results
with those obtained from classical and other ordered
clustering algorithms. We employed the Davies–Bouldin
index (DB) as a cost criterion and the Dunn index (DI) as
a beneft criterion to evaluate the performance of these al-
gorithms. Te GHSI data were classifed into fve distinct
categories: very high, high, medium, low, and the lowest level
of global health security. Our analysis revealed that the G-
OIFCM algorithm produced more accurate outcomes
compared to the OFCM, FCM, and G-IFCM algorithms, as
demonstrated in Table 4. Upon reviewing the evaluation
results of the assessed algorithms, it became evident that G-
OIFCM exhibited superior performance by improving in-
tercluster distance and reducing cluster diameter.

4.2. Case Study-2: Regrouping the Countries in Human De-
velopment Index (HDI). Te United Nations Development
Program (UNDP) ranks the 179 countries in the Human
Development Index (HDI) ranking based on three criteria, i.e.,
G � t1,t2, t3􏽮 􏽯 � life expectancy,􏼈 education, income index}.
Literature has also explored various types of uncertainty in
the HDI data [54], which emphasizes the need for caution
when interpreting scores for categorization [55]. To validate
the efciency of our proposed approach, we apply the G-
OIFCM on HDI problems adapted from [35]. Our objective
is to apply a specifc rank-based clustering methodology that
considers the positive and negative fow of all three criteria,
followed by a comparison of the outcomes with those
generated by the FCM, OFCM, and G-IFCM techniques.

4.2.1. Regrouping the Countries in a Human Development
Index (HDI) Based on the G-OIFCM Algorithm. We frst
compute preference indices π(sj, sk),∀j, k for each country
in HDI and then obtain positive, negative, and hesitancy
fow (μφ+(si), vφ

−(si), πφ(si)) of PROMETHEE by using the
equations (7), (8), and (32), respectively, which are showing
in Figure 8. We select the same linear preference function for
each criterion as mentioned in [35].

We employed Algorithm 3 for ordered clustering in an
intuitionistic environment based on positive, negative, and

Table 2: Continued.

Country G-OIFCM
Te Solomon Islands 5
Te Cook Islands 5
Syria 5
South Sudan 5
Gabon 5
Te Marshall Islands 5
Kiribati 5
Guinea-Bissau 5
Yemen 5
São Tomé and Pŕıncipe 5
North Korea 5
Equatorial Guinea 5
Somalia 5
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hesitancy fow (μφ+(si), vφ−(si), πφ(si)) ∈ [0, 1] for 179 coun-
tries and results are compared. In evaluating the ordering of
the HDI problem, we establish four prerequisite clusters:

very high, high, medium, and low human-developed index
countries. Te frst 50 countries fall within the cluster of very
high human development index, while 75 countries are

0.030

0.035

0.040

0.050

0.060

0.055

0.045

2.5 5.0 7.5 10.0
k

12.5 15.0 17.5

fit
 ti

m
e (

se
co

nd
s)

6

5

4

3

2

1

di
sto

rt
io

n 
sc

or
e

0

elbow at k = 5, score = 1.240

Figure 5: Elbow graph of (μφ+(si), vφ−(si), πφ(si)) indicates the fve clusters.
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Figure 6: Te ordered clustering results of the G-OIFCM for fve clusters for the year 2019-20. Te x-axis denotes the label of countries and
y-axis denotes the cluster number.

Table 3: Partitioning comparison of FCM, OFCM, G-IFCM, and G-OIFCM clustering algorithms into fve clusters of GHSI.

Proposed classifcations
Number of countries

FCM OFCM G-IFCM G-OIFCM
Very high level global health security index 21 20 33 33
High level global health security index 37 30 42 32
Medium level global health security index 41 45 49 43
Low-level global health security index 51 58 40 46
Lowest level global health security index 45 42 31 41
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Table 4: Davies–Bouldin (DB) index and Dunn index scores for classical and other ordered clustering algorithms.

Partitioning measures
Clustering algorithms

G-IFCM FCM OFCM G-OIFCM
Davies–Bouldin index score 2.8812 1.4357 0.1288  .1242
Dunn index 0.0860 0.0906 2.8443 3.25 7
Te best results in the ranking of clustering algorithms are shown in bold.
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Table 5: A ranking comparison of HDI countries based on G-
OIFCM clustering is given below.

Countries G-OIFCM
Iceland 1
Norway 1
Canada 1
Australia 1
Ireland 1
Netherlands 1
Sweden 1
Japan 1
Luxembourg 1
Switzerland 1
France 1
Finland 1
Denmark 1
Austria 1
United States 1
Spain 1
Belgium 1
Greece 1
Italy 1
New Zealand 1
United Kingdom 1
Hong Kong 1
Germany 1
Israel 1
Korea, Rep 1
Slovenia 1
Brunei Darussalam 1
Singapore 1
Kuwait 1
Cyprus 1
United Arab Emirates 1
Bahrain 1
Portugal 1
Qatar 1
Czech Republic 1
Malta 1
Barbados 1
Hungary 1
Poland 1
Chile 1
Slovak Republic 1
Estonia 1
Lithuania 1
Latvia 1
Croatia 1
Argentina 1
Uruguay 1
Cuba 1
Te Bahamas 1
Costa Rica 1
Dominican Republic 2
St. Vincent and the Grenadines 2
Georgia 2
China 2
Tunisia 2
Samoa 2
Azerbaijan 2
Paraguay 2
Mexico 2

Table 5: Continued.

Countries G-OIFCM
Libya 2
Oman 2
Seychelles 2
Saudi Arabia 2
Bulgaria 2
Trinidad and Tobago 2
Panama 2
Antigua and Barbuda 2
Saint Kitts and Nevis 2
Guatemala 2
Kyrgyz Republic 2
Vanuatu 2
Tajikistan 2
South Africa 2
Venezuela, RB 2
Romania 2
Malaysia 2
Montenegro 2
Serbia 2
St. Lucia 2
Belarus 2
North Macedonia 2
Albania 2
Brazil 2
Kazakhstan 2
Ecuador 2
Russian Federation 2
Mauritius 2
Bosnia 2
Turkey 2
Dominican Republic 2
Lebanon 2
Peru 2
Colombia 2
Tailand 2
Ukraine 2
Armenia 2
Iran, Islamic Rep 2
Tonga 2
Grenada 2
Jamaica 2
Belize 2
Suriname 2
Jordan 2
Maldives 2
Algeria 2
El Salvador 2
Philippines 2
Fiji 2
Sri Lanka 2
Syrian Arab Republic 2
Palestinian 2
Gabon 2
Turkmenistan 2
Indonesia 2
Guyana 2
Bolivia 2
Mongolia 2
Moldova 2
Vietnam 2
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classifed as high human development index, 35 countries
fall into the medium level of human development index, and
19 countries fall into the low-level human development
index, as indicated in Table 5.Te boundaries delineating the
various clusters demonstrate adequacy, efectively parti-
tioning developing, developed, and undeveloped countries
in suitable proportions, as depicted in Figure 9.

4.2.2. Comparison of G-OIFCM with Other Clustering
Algorithms. In order to further validate our suggested
clustering technique for addressing the identical HDI issue
mentioned earlier, we conduct a comparison of the results
obtained from the G-OIFCM algorithm with those from
the FCM, OFCM, and G-IFCM clustering algorithms. Te
outcomes of this comparison are presented in Table 6. We
apply the conventional FCM and adaptive G-IFCM clus-
tering technique on preprocessing data based on three
diferent HDI criteria to group the homogeneous countries,
results are showing that the clustering and HDI ranking are
incompatible as shown in Figure 10. Te fundamental
reason for this might be that these clustering algorithms are
uses the Euclidean distance to assess the level of similarity
among any two alternatives and the dissimilarity between
the clusters.

In other words, the conventional methods are incapable
of providing preference relations between alternatives and
clusters due to the symmetric nature of the Euclidean dis-
tance. Te G-OIFCM algorithm difers from classical clus-
tering algorithms by calculating the objective function as the
sum of all alternatives’ optimized values, i.e., positive and
negative fow of PROMETHEE and incorporating a com-
plete ordered relationship between the clusters.

In conclusion, the G-OIFCM algorithm distinguishes
itself from classical clustering algorithms by incorporating
the objective function as the sum of all alternatives’ opti-
mized values, including the positive and negative fow of
PROMETHEE. In addition, it introduces a comprehensive
ordered relationship among the clusters, addressing the
limitations of the traditional approach. Te divisions be-
tween the diferent ordered clusters are suitable as they
accurately separate countries into the categories of very high,
high, medium, and low levels in appropriate proportions.
While G-OIFCM demonstrates superior performance
compared to other classical clustering algorithms, the
ranking outcomes produced by the classic algorithm do not
align with common sense, as depicted in Figure 10.
Moreover, it inadequately leverages the complete data
structure of alternatives.

In summary, we propose a novel generalized ordered
intuitionistic fuzzy c-means (G-OIFCM) clustering algo-
rithm based on positive fow (φ+(si) ∈ [0, 1]) and negative
fow (φ− (si) ∈ [0, 1]) of PROMETHEE and the intuition-
istic fuzzy c-means (IFCM) clustering algorithm. G-OIFCM
clustering algorithm deals with crisp and fuzzy datasets that
have imprecise or uncertain information and builds the
ordered clustering in an intuitionistic environment. G-
OIFCM provides a clear and structured way to compare and

Table 5: Continued.

Countries G-OIFCM
Equatorial Guinea 2
Egypt, Arab Rep 2
Honduras 2
Cabo Verde 2
Uzbekistan 2
Nicaragua 2
Botswana 3
Morocco 3
Sao Tome and Principe 3
Djibouti 3
Tanzania 3
Senegal 3
Nigeria 3
Lesotho 3
Uganda 3
Angola 3
Timor-Leste 3
Namibia 3
Congo, Dem. Rep 3
Bhutan 3
India 3
Lao PDR 3
Solomon Islands 3
Myanmar 3
Cambodia 3
Comoros 3
Yemen, Rep 3
Pakistan 3
Mauritania 3
Eswatini 3
Ghana 3
Madagascar 3
Kenya 3
Nepal 3
Sudan 3
Bangladesh 3
Haiti 3
Papua New Guinea 3
Cameroon 3
Togo 3
Gambia, the 3
Benin 4
Malawi 4
Zambia 4
Eritrea 4
Rwanda 4
Cote d’Ivoire 4
Guinea 4
Mali 4
Ethiopia 4
Chad 4
Guinea-Bissau 4
Burundi 4
Burkina Faso 4
Niger 4
Mozambique 4
Liberia 4
Congo, Rep 4
Central African 4
Republic Sierra Leone 4
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rank countries based on their performance in the GHSI and
HDI problem which can be useful for decision-making and
policy planning in the area of global health security.

5. Conclusion

In this article, we present a novel approach to address the
multicriteria ordered clustering problem for uncertain or
vague information. Our proposed algorithm, known as the
generalized ordered intuitionistic fuzzy c-means (G-OIFCM)
clustering algorithm, is based on the intuitionistic fuzzy c-
means (IFCM) clustering algorithm and PROMETHEE.
Diferent from the classical IFCM using Euclidean norms, we
established a new generalized objective function based on the
positive (φ+(si) ∈ [0, 1]) and negative fow (φ− (si) ∈ [0, 1])

of PROMETHEE to build the ordering of clusters. Several
important properties of G-OIFCM are also mathematically
justifed in terms of convergence and optimization. Te

efciency of G-OIFCM has been illustrated by the uncertain
information of the Global Health Security Index (GHSI) and
Human Development Index (HDI) problem. Tis approach
provides a clear and structured way to compare and rank
clusters based on their performance in the GHSI and HDI
problem, which can be valuable for decision-making and
policy planning in the feld of ordered classifcation.

Meanwhile, the classical FCM, G-IFCM, and ordered
fuzzy c-means (OFCM) clustering algorithms are included
for comparison. Te results of our analysis show that the G-
OIFCM algorithm outperforms other classical and ordered
clustering algorithms, making it a promising tool for clus-
tering data with uncertain or vague information.

In the future, we plan to utilize G-OIFCM for efcient
and rapid iterative clustering of big data. In addition, we
intend to conduct further research to explore the potential
benefts of incorporating nonlinear preference functions
into PROMETHEE to enhance its performance.
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Figure 9:Te ordered clustering results of the G-OIFCM for four clusters for the year 2008. Te x-axis denotes the label of countries and
y-axis denotes the cluster number.

Table 6: Partitioning comparison of FCM, OFCM, G-IFCM, and G-OIFCM clustering algorithms into fve clusters of HDI.

Proposed classifcations
Number of countries

FCM OFCM G-IFCM G-OIFCM
Very high human development index 54 49 45 50
High human development index 72 75 43 75
Medium level human development index 30 35 50 35
Low human development index 23 20 41 19
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Figure 10: Comparison of boundaries between the objects and the clusters of FCM with G-OIFCM.
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