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Since real-world multiview data frequently contains numerous samples that are not observed from some viewpoints, the in-
complete multiview clustering (IMC) issue has received a great deal of attention recently. However, most existing IMC methods
choose to zero-fll the missing instances, which leads to the failure to exploit information hidden in the missing instances, and
high-order interactions between various views. To tackle these problems, we proposed an efective IMC method using low-rank
tensor ring completion, which was demonstrated to be powerful in exploiting high-order correlation. Specifcally, we frst stack the
incomplete similarity graphs of all views into a 3rd-order incomplete tensor and then restore it via the tensor ring decomposition.
Next, using an adaptive weighting technique, we apply multiview spectral clustering to all entire graphs in order to balance the
contributions of diferent viewpoints and identify the consensus representation for grouping. Finally, we employ the alternating
direction method of multipliers (ADMM) to optimize the suggested model. Numerous experimental fndings on numerous
diferent datasets show that the suggested approach is superior to other cutting-edge approaches.

1. Introduction

Since technology has advanced, real-world data frequently
originates from a variety of sources. In other words, an
object can be described from several views. For instance,
using the image and text, a product can be explained; the
disease can be diagnosed from blood tests, urine tests, and
magnetic resonance imaging (MRI). Tese data are called
multiview data [1–5]. Since multiview data typically ofers
compatible and complementary information, it is more
comprehensive for object description in comparison with
the single-view data [6–8]. Since this beneft has garnered
a lot of attention in recent years, numerous efcient mul-
tiview clustering techniques have been put forth to enhance
clustering performance by integrating the information
presented in diferent views. For example, the canonical
correlation analysis (CCA)-based method [9] is proposed to
learn the common low-dimension subspace from multiview

data space, and subsequently implemented spectral clus-
tering on the common representation. In reference [10], an
efective multiview clustering method with con-
regularization is proposed to exploit the consistent clus-
tering structure across views, where the co-regularization is
applied to make the clustering of diferent views be agreed
with each other. Cai et al. [11] proposed a robust multiview
k-means clustering (RMKMC) method for handling large-
scale multiview clustering problems. Besides, some other
multiview data clustering techniques are also developed in
many references [12–17].

However, the design of the majority of prior multiview
clustering studies frequently relies on the unrealistic as-
sumption that each example could be completely seen across
all views. In fact, many samples cannot be viewed in some
views due to several unavoidable limitations in the collecting
of multiview data. Hence, each view may have diferent
available instances, and the multiview clustering in this
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condition is called the IMC problem [18, 19]. It, therefore,
brings a challenge to the conventional clustering methods.
One intuitive way is to use the mean of the available in-
stances of the corresponding view to fll in the missing
instances. However, this strategy has a higher likelihood to
damage the underlying structure inside each view, wors-
ening performance, especially when the missing rate is large.
In recent years, numerous attempts have been made to
efectively tackle the IMC problem. For instance, Rai et al.
[18] frst developed the kernel-based clustering method to
address the incomplete multiview problem. Te method
then explored the KCCA to recover the kernel matrix of the
missing view (kernel canonical correlation analysis). Using
nonnegative matrix factorization to take advantage of a la-
tent subspace for efective clustering, Li et al. [20] suggested
the partial multiview clustering (PVC) approach to deal with
the multiview data with partial views. In [21], Zhao et al.
suggested using a novel graph Laplacian term to address the
IMC problem while maintaining the compact global
structure. Xu et al. [22] presented a new clustering approach
called partial multiview subspace clustering (PMSC), where
a more comprehensive representation is learned by estab-
lishing the underlying structure of the original data. But only
two-view data with a single complete view or some fully seen
samples can be used with these strategies. To release this
limitation, numerous generalized clustering techniques have
been suggested to process incomplete multiview data. As
well as we know, multi-incomplete-view clustering (MIC)
[23] is proposed based on a weighted nonnegative matrix
factorization with L2,1 regularization, with a goal to learn
a consensus representation by minimizing the diference
between each view representation and the consensus rep-
resentation. Subsequently, to reduce the memory re-
quirement, Shao et al. [24] further proposed an online
method OMVC (online multiview clustering), where a joint
weighted nonnegative matrix factorization is applied to
chunk-by-chunk handling of the multiview data. In [25], for
the multiview clustering problem with k partial-view sce-
nario, Rai et al. proposed a method called GPMVC (graph
regularized partial multiview clustering) by exploring each
view’s fundamental geometry using the view-specifc graph
Laplacian regularization. Hu and Chen [26] proposed
a doubly aligned IMC algorithm by introducing a regress
technique to capture more information among multiple
views. Besides, some other IMC techniques could be seen in
references [27–31].

It should be noted that the methods mentioned above
frequently choose to zero-fll the missing instances when
dealing with incomplete multiview data; however, doing so
would prevent them from being used to their full potential and
result in poorer clustering performance, particularly when
dealing with high rates of missing instances. To tackle this
drawback, some other valid approaches have been recently
proposed, such as efcient and efective IMC (EE-IMVC) [32],
unifed embedding alignment framework (UEAF) [33], and
adaptive graph completion-based IMC (AGC_IMC) [34].
Besides, some researchers seek to combine the deep learning

and conventional IMC approach to improve the performance.
For example, Shang et al. [35] proposed a two-view approach,
named VIGAN, for view imputation via generative adversarial
networks (GANs) by combining the denoising autoencoder
and GANs, where the denoising autoencoder is used to re-
construct the missing views according to the outputs of GANs.
Wang et al. [36] provided a consistent GANs for partial two-
view clustering based on autoencoder (AE) and GANs, which
are named by PVC-GAN, where the common representation
are used to generate themissing data by GANs. Recently, based
on the PVC-GAN model, Wang et al. [37] proposed a novel
generative partial multiview clustering model with adaptive
fusion and cycle consistency, termed as GPMVC-GAN in
this paper.

Teir common advantage is to use the sample correlation
or view correlation to restore missing information and then
further improve the clustering performance. Tis led us to
realize that a well descriptions of sample-level and view-level
correlations would help to understand the data and hence
help to learn a good clustering indicator for clustering
improvement. For fully-observed samples, sample correla-
tion could be found by directly calculating the similarity
graph. But for the missing sample, its correlations to other
samples are failed to be calculated, resulting into the in-
complete similarity graph. Fortunately, samples are gener-
ally drawn from several low-rank subspaces, this indicates
that the corresponding similarity graph also should have the
low-rank structure, and hence the incomplete similarity
graph (i.e., the missing sample correlation) could be re-
covered by exploring its low-rank structure. Since an object
is described from several views, the generated data of dif-
ferent views should admit the same underlying clustering,
i.e., samples in diferent views should have the same cluster
relationship. Tis means that there is low-rank correlation
among similarity graphs of diferent views. To obtain a well
description of sample-level and view-level correlations, we
integrate all similarity graphs into a graph tensor, and then
perform the low-rank tensor ring decomposition [38, 39] on
it to learn sample-level and view-level correlations, simul-
taneously, where the tensor ring decomposition has been
shown to be powerful for high-order correlation exploration
and has achieved remarkable results in the incomplete tensor
restoration in recent years [40–42]. Te multiview spectral
clustering is then applied to all of the entire graphs in order
to determine the consensus clustering indicator. We com-
bine spectral clustering and graph completion into a unifed
model to produce complete graphs that considerably in-
crease clustering performance.Te whole process is depicted
in Figure 1. Besides, considering that distinct views’ con-
tributions are often not equal to each other, an adaptive-
weighting strategy is applied to the multiview spectral
clustering for IMC improvement. Finally, the ADMM is
developed to optimize the suggested model, and we test the
proposed approach using a number of real-life multiview
datasets by comparing it to other cutting-edge techniques.
Following is a summary of our paper’s novelty and
contributions:
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(i) We propose a novel IMC algorithm, where the
missing information resulting from the missing
instances could be restored through tensor ring
completion to discover both sample-level and view-
level correlations to explore the high-order
relationship.

(ii) Te graph tensor completion and consensus clus-
tering indicators are integrated into a unifed model
and optimized jointly, to fuse diferent views
adaptively and ensure the complete graphs could
beneft the clustering task for more accurate
learning.

(iii) Te proposed model is optimized using the ADMM
technique. Te suggested method performs at the
cutting edge in the IMC, as demonstrated by ex-
perimental results on a number of real-life
multiview data.

2. Preliminaries

2.1. Notations. Te following simply indicates some of the
notations and operations employed by this work. Matrices
are represented by bold-face capitals, e.g. D,F, and tensors
denoted by Calligraphic letters, such as S,G. We use S �

Φ(S(1), S(2), . . . , S(l)) to stack multiple matrices
S(v), v � 1, 2, . . . , l into a tensor S with three order, i.e.,
satisfying S(: , : , v) � S(v). Besides, two mode-k unfolding
operations of tensor are adopted in our work. For particular,
given tensorX ∈ RI1×I2×···×IN , its standard mode-k unfolding
[43] can be represented by matrix X(k) and calculated by

X(k) ik, i1 · · · ik−1ik+1 · · · iN(  � X i1, i2, . . . , iN( , (1)

where

i1 · · · ik−1ik+1 · · · iN

� i1 + i2 − 1( I1 + · · · + ik−1 − 1( I1 · · · Ik−2

+ ik+1 − 1( I1 · · · Ik−1 + · · · + iN − 1(  
j≠k,N

Ij.

(2)

Te other one is the modifed mode-k unfolding oper-
ation [38], which is computed by

X[k] ik, ik+1 · · · iNi1 · · · ik−1(  � X i1, i2, . . . , iN( , (3)
where

ik+1ik+2 · · · iNi1 · · · ik−1

� ik+1 + ik+2 − 1( Ik+1 + · · · + iN − 1( Ik+1Ik+2 · · · IN−1

+ i1 − 1( Ik+1Ik+2 · · · IN + · · · + ik−1 − 1(  
j≠k,k−1

Ij.

(4)

2.2. Tensor Ring (TR) Decomposition [38]. Tis de-
composition has a powerful ability to exploit the high-order
correlation and hence has been widely applied for tensor
completion, motivated by this advantage; we apply it to
graph completion in our work. To make the work self-
contained, much relevant knowledge about it is introduced.

2.2.1. Defnition. TR decomposition aims to factorize tensor
X ∈ RI1×I2×···×IN into a sequence of low-order tensors
G(1), . . . ,G(N) , where G(k) ∈ RRk−1×Ik×Rk for k � 1, 2, . . . ,

N, R0 � RN, are also called the TR-cores and the TR-rank is
defned as [R1, R2, . . . , RN]⊤. Te element of X at index
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Figure 1:Te suggested IMCmethod’s framework. For the givenmultiview data with missing instances, the constructed similarity graphs is
incomplete such that fails to provide the complementary information for a good consensus clustering indicator learning F. To restore the
missing information, the tensor ring decomposition is applied to learn a complete tensor representation S from the incomplete tensor S

generated by stacking incomplete graphs S(v)
, v � 1, 2, . . . , l into a 3rd-order tensor. In this way, the complete graphs can be restored and

then be fused for learning a consensus clustering indicator F. Because each viewpoint’s contributions vary, the consensus clustering
indicator learning process makes use of the adaptive weighting technique.
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(i1, i2, . . . , iN) can be represented by the circular products
over N lateral slices G(1)

i1
,G(2)

i2
, . . . ,G(N)

iN
 , i.e.,

X i1, . . . , iN( 

� 

R1

r1�1
· · · 

RN

rN�1
G(1)

i1
rN, r1(  · · ·G(N)

iN
rN−1, rN( 

� tr G(1)
i1

· · ·G(N)
iN

 ,

(5)

where the trace operation is indicated by tr(·) and the ik th
lateral slice of G(k) is represented as G(k)

ik
. For simplicity, we

denote the tensor ring decomposition of X using
X � R(G(1),G(2), . . . ,G(N)). Besides, to help readers un-
derstand, we depict a 3rd-order tensor’s TR decomposition in
Figure 2.

2.2.2. Merging the Adjacent TR-Cores. Tis is the commonly
used operation in optimizing TR decomposition. Assuming
that the tensor X ∈ RI1×I2×···×IN with TR-cores
G(k) ∈ RRk−1×Ik×Rk , for k � 1, . . . , N, the merging of the
two adjacenet cores G(k),G(k+1)  can be calculated by

G
(k,k+1)

rk−1, ikik+1, rk+1( 

� 

Rk

rk�1
G(k)

ik
rk−1, rk( G(k+1)

ik+1
rk, rk+1( ,

(6)

where ikik+1 � ik + (ik+1 − 1)Ik. Generally, for d adjacent cores
G(k+1), . . . ,G(k+d) , their merging can be computed by

G
(k+1,k+2,...,k+d)

rk, ik+1ik+2 · · · ik+d, rk+d( 

� 

Rk+1

rk+1�1


Rk+2

rk+2�1
· · · 

Rk+d−1

rk+d−1�1
G(k+1)

ik+1
rk, rk+1( 

· G(k+2)
ik+2

rk+1, rk+2(  · · ·G(k+d)
ik+d

rk+d−1, rk+d( ,

(7)

where ik+1ik+2 · · · ik+d � ik+1 + (ik+2 − 1)Ik+1 + · · · +

(ik+d − 1)Ik+1 · · · Ik+d−1.

2.3. Spectral Clustering. Spectral clustering has been shown
to be a successful technique for extracting a low-dimensional
feature matrix for clustering in past decades. Specifcally,
assuming that dataset X is composed of n samples with m

features, i.e., X � [x1, x2, . . . , xn] ∈ Rm×n, the goal of spec-
tral clustering is to learn a low-dimensional representation,
often known as a clustering indicator, F, from a symmetric
nonnegative similarity-graph S; where the element Si,j or Sj,i

represents the probability of the i th and j th samples be-
longing to the same class. Te following is how spectral
clustering’s goal function is typically expressed.

minF tr F⊤LSF(  s.t. F⊤F � I, (8)

where I represents the identity matrix, F ∈ Rn×c is the op-
timized clustering indicator, c denotes the new feature di-
mension and is usually selected to be the cluster number.
LS ∈ Rn×n denotes the Laplacianmatrix of similarity graph S,
computed using the ratio cut [44] LS � D − S or the nor-
malized cut [45] LS � I − D− 1/2SD− 1/2; where the i th di-
agonal element of the diagonal matrix D is calculated by the
sum of the i th row or column of S.

3. The Proposed Method

3.1. Learning Model. Owing to some unavoidable factors in
the real-world applications, the collected multiview data often
sufers from incompleteness, i.e., only partial samples can be
observed from some views. To be specifc, for an incomplete
multiview data describing n samples from l views, suppose only
nv (nv ≤ n) samples withmv features can be observed in the v th
view, i.e., Y(v) ∈ Rmv×nv , then only the connections of nv

available samples can be revealed, i.e., S(v) ∈ Rnv×nv . Tis tends
to result in the failure to explore the complementary in-
formation for learning a good consensus representation. To
overcome this problem, we attempt to propose an IMC ap-
proach via tensor completion using low rank decomposition,
which mainly consists of three parts: available-connection
preservation, low-rank high-order relationship exploration,
and consensus clustering indicator learning.

3.1.1. Available-Connection Preservation. Generally, the
connections of available instances of the v th view, i.e.,
S(v) ∈ Rnv×nv should be retained in the recovery complete
graph S. In order to achieve this, we develop the following
model:

minS(v) W(v) ⊙ S(v)
− S(v)

 

������

������

2

F

s.t. 0≤ S(v) ≤ 1, S(v)⊤1 � 1, S(v)
i,i � 0,

(9)

where symbol ⊙ denotes the Hadamard (element-wise)
product. W(v) 

l

v�1 is a set of matrix marks, where W(v)
i,j � 1

denotes that the i th sample and the j th sample both have
the instances of the v th view, otherwise,W(v)

i,j � 0. graph S(v)

is obtained by zero-flling S(v) into the size of n × n via the
following formula:

I

IJ J
K

K

R0

R1

R1

R2

R2 R3

(i,j,k)

i
j

k

Figure 2: Illustration of tensor ring decomposition on 3rd-order tensors.
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S(v)
� Z(v)S(v)Z(v)⊤

, (10)

where Z(v) ∈ Rn×nv is defned according to the indexes of
available instances:

Z(v)
i,j �

1, if y
(v)
i is the vth view of the ith sample,

0, otherwise.

⎧⎨

⎩

(11)

3.1.2. Low-Rank High-Order Relationship Exploration.
Since all views admit the same underlying clustering
structure, there should exist low-rank relationship among
similarity graphs of diferent views S(v), v � 1, 2, . . . , l. Be-
sides, owing to n samples comes from diferent groups; there
also exist low-rank relationship within view. Tese dem-
onstrate the stacked graph tensor’s low-rank characteristic,
where � Φ(S(1), S(2), . . . , S(l)) S(: , : , v) � S(v), and thus
provide the reliability for graph completion via exploring the
low-rank high-order relationship among samples. In this
way, the incomplete graphs, resulting from the missing
instances, could be restored. Inspired by this motivation, one
powerful tool of exploiting low-rank high-order correlation
plays an important role in missing information recovery. To
this end, one powerful tensor tool is selected in our work, i.e.,
tensor ring decomposition, which is shown to be powerful
for high-order correlation exploration and has achieved
remarkable results in the incomplete tensor restoration in
recent years. Tus, the recovery model can be formulated as
follow:

minS(v)

1
2
S − R G

(1)
,G

(2)
,G

(3)
 

�����

�����
2

F

s.t. S � Φ S(1)
, S(2)

, . . . , S(l)
 ,

(12)

where G(1) ∈ RR3×I1×R1 ,G(2) ∈ RR1×I2×R2 ,G(3) ∈ RR2×I3×R3 

denote the TR-cores of the graph tensorS, and [R1, R2, R3]
⊤

represents the TR-rank. By exploring the low-rank tensor-
ring structure via optimizing model (12), the complete graph
tensor S, in turn, can be obtained. However, as shown in
references [41, 46], the TR decomposition is easily afected by
its TR-rank selection during the tensor completion process. To
overcome this drawback, following the work in [46], we further
add the Frobenius norm of TR-core, i.e. μ/2

3
k�1‖G

(k)‖‖2F, to
reduce the sensitivity of the TR decomposition to its TR-rank
selection, which has been verifed to can achieve rather good
completion results even when the selected TR-rank increases
and more details can be found in [46]. In order to do this, the
recovery model might be further defned as

minS(v)

1
2
S − R G

(1)
,G

(2)
,G

(3)
 

�����

�����
2

F
+
μ
2



3

k�1
G

(k)
�����

�����
2

F

s.t. S � Φ S(1)
, S(2)

, . . . , S(l)
 ,

(13)

where parameter μ is positive value to balance the impor-
tance of the corresponding term.

3.1.3. Consensus Clustering Indicator Learning. After in-
complete graphs of all views are restored, the consensus
clustering indicator shared by every view is often learned via
the following spectral clustering model, i.e.,

minF 

l

v�1
tr F⊤LS(v)F(  s.t. F⊤F � I, (14)

where F ∈ Rn×c denotes the consensus clustering indicator, c

is the manually chosen dimension that is frequently specifed
as the cluster number. Since our work’s optimized S(v) is not
a symmetric matrix, we compute LS(v) by

LS(v) � D(v)
−
S(v)

+ S(v)⊤

2
, (15)

where D(v) is a diagonal matrix whose i th diagonal element
is computed as

D(v)
i,i � 

n

j�1

S(v)
i,j + S(v)

j,i 

2
. (16)

Note that model (15) treats all views equally to the
consensus clustering indicator learning, which may actually
reduce the fexibility of the method because the contribu-
tions of all views are commonly diferent. Inspired by this
motivation, the following adaptively weighting strategy
α(v) 

l

v�1 is leveraged to improve the model, i.e.,

minF,α(v) 

l

v�1
α(v)2

tr F⊤LS(v)F( 

s.t. 
l

v�1
α(v)

� 1, α(v) ≥ 0, F⊤F � I,

(17)

where the non-negative α(v) denotes the normalized
weighting parameter of the v-th view.

3.1.4. Overall Objective Function. As analyzed above, the
above-mentioned three parts play diferent key roles in IMC.
To take full advantage of these three parts, we integrate them
into a unifed framework and thus getting the overall ob-
jective model:

minS(v) ,F,α(v)

1
2
W(v) ⊙ S(v)

− S(v)
 

������

������

2

F

+
1
2
S − R G

(1)
,G

(2)
,G

(3)
 

�����

�����
2

F
+
μ
2



3

k�1
G

(k)
�����

�����
2

F

+ β 
l

v�1
α(v)2

tr F⊤LS(v)F( 

s.t. 0≤ S(v) ≤ 1, S(v)⊤1 � 1, S(v)
i,i � 0, 

l

v�1
α(v)

� 1,

α(v) ≥ 0, F⊤F � I,S � Φ S(1)
, S(2)

, . . . , S(l)
 ,

(18)
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where parameter β is positive value to balance the impor-
tance of the corresponding term.

As seen from equation (18), the frst term plays a role to
preserve the available connection of observed samples
during the optimization of graphs S(v), v � 1, 2, . . . , l . Te
middle two terms attempt to discover the low-rank high-
order corrections of samples across all views by imple-
menting the tensor ring decomposition on a stacked graph
tensor S � Φ(S(1), S(2), . . . , S(l)), satisfying
S(: , : , v) � S(v), and then to obtain a series of complete
graphs S(1), S(2), . . . , S(l) . Finally, the last term aims to
learn a consensus clustering indicator F via implementing
spectral clustering on the optimal complete graphs, where
adaptive weights α(v) 

l

v�1 are leveraged to weigh the con-
tributions of diferent views. Furthermore, to ensure the

complete graphs would bring a signifcant improvement in
the clustering performance, these terms are integrated into
a unifed framework and optimized jointly. To summarize,
we highlight that the proposed method has two advantages:
(1) In order to examine the high-order correlations, our
model concurrently takes into account sample-level and
view-level correlations, which is important for incomplete
multiview data. (2) Te suggested approach incorporates
consensus multiview information that might guide the
learners for more precise clustering.

3.2. Optimization. Te augmented Lagrangian function of
model (18) can be defned as

L �
1
2
‖W⊙ (S − S)‖

2
F +

1
2
S − R G

(1)
,G

(2)
,G

(3)
 

�����

�����
2

F

+
μ
2



3

k�1
G

(k)
‖‖

2
F

����� + β 
l

v�1
α(v)2

tr F⊤LS(v)F( 

s.t. 0≤ S(v) ≤ 1, S(v)⊤1 � 1, S(v)
i,i � 0, 

l

v�1
α(v)

� 1,

α(v) ≥ 0, F⊤F � I,S � Φ S(1)
, S(2)

, . . . , S(l)
 .

(19)

Consequently, the model can be optimized as follows:

3.2.1. Update Variable G(k). Note that according to refer-
ence [38], we can get

R G
(1)

,G
(2)

,G
(3)

 
�����

�����
2

F
� G(k)

(2) G(≠k)
[2] 
⊤�����

�����
2

F
, (20)

whereG(≠k) is a subchain tensor generated by merging all but
k th core tensor. Hence, fxing other variables, the aug-
mented Lagrangian function with respect to G(k) can be
simplifed as

L G(k)
(2)  �

1
2
S[k] − G(k)

(2) G(≠k)
[2] 
⊤�����

�����
2

F
+
μ
2
G(k)

(2)

�����

�����
2

F
, (21)

Te derivative of L(G(k)
[k] ) with respect to G(k)

[k] is

zL

zG(k)
(2)

� G(k)
(2) G(≠k)

[2] 
⊤

− S[k] G(k)
(2) + μG(k)

(2). (22)

Let zL/zG(k)
(2) � 0, we can obtain

G(k)
(2) � S[k]G

(≠k)
[2] μI + G(≠k)

[2] 
⊤
G(≠k)

[2] 
− 1

. (23)

3.2.2. Update Variable S(v). Fixing other variables, the
problem with respect to S(v) is reduced to solve the following
problem:

minS(v)

1
2

S(v)
− S(v)

 ⊙W(v)
������

������

2

F
+ βα(v)2

tr F⊤LS(v)F( 

+
1
2

S(v)
− Z(v)

�����

�����
2
F

s.t. 0≤ S(v) ≤ 1, S(v)⊤1 � 1, S(v)
i,i � 0,

(24)
where we defne Z(v) � R(G(1),G(2),G(3)

v ). Note that
tr(F⊤LS(v)F) � 1/2

n
i�1

n
j�1S

(v)
i,j ‖Fi,: − Fj,: ‖22, by defning

Hi,j � ‖Fi,: − Fj,: ‖22, the problem (24) can be rewritten into

minS(v)

1
2



n

i�1


n

j�1
W(v)

i,j S(v)
i,j − S(v)

i,j 
2

+
βα(v)2

2


n

i�1


n

j�1
Hi,jS

(v)
i,j +

1
2



n

i�1


n

j�1
S(v)

i,j − Z(v)
i,j 

2

s.t. 0≤ S(v) ≤ 1, S(v)⊤1 � 1, S(v)
i,i � 0.

(25)
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Trough mathematical transformation, the above
problem is equivalent to solve the following problem:

minS(v)

1
2



n

i�1


n

j�1
S(v)

i,j − T(v)
i,j 

2

s.t. 0≤ S(v) ≤ 1, S(v)⊤1 � 1, S(v)
i,i � 0,

(26)

where

T(v)
i,j �

W(v)
i,j

S(v)

i,j + Z(v)
i,j − βα(v)2/2 Hi,j

W(v)
i,j

. (27)

Since problem (26) is independent with respect to each
column, we can solve it column by column using the op-
timization method in reference [47], i.e., the solution of (26)
can be given by

S(v)
i,j �

max T(v)
i,j + ηj, 0 , i≠j,

0, i � j.

⎧⎨

⎩ (28)

Because of the constraints S(v)⊤1 � 1 and S(v)
i,i � 0, we

can get

ηj �
1 − 

n
i�1,i≠jT

(v)
i,j

n − 1
. (29)

3.2.3. Update Variable F. By fxing other variables, we can
obtain the new representation F by solving the following
subproblem, i.e.,

minF 

l

v�1
α(v)2

tr F⊤LS(v)F(  s.t. F⊤F � I. (30)

Trough mathematical transformation, the above
problem can be further rewritten as

minF tr F⊤

l

v�1
α(v)2LS(v)F⎛⎝ ⎞⎠ s.t. F⊤F � I. (31)

Te optimal solution F can be given by the eigenvectors
set corresponding to the frst c smallest eigenvalues of matrix


l
v�1α(v)2LS(v) .

3.2.4. Update variable α(v), v � 1, 2, . . . , l. To properly bal-
ance the role of each view, we adaptively update parameters
α(v), v � 1, 2, . . . , l using an efective mechanism, i.e.,

minα(v) 

l

v�1
α(v)2

tr F⊤LS(v)F( 

s.t. 
l

v�1
α(v)

� 1, α(v) ≥ 0.

(32)

Let ϕ(v) � tr(F⊤LS(v)F), then (32) can be rewritten into

minα(v) 

l

v�1
α(v)2φ(v)

s.t. 
l

v�1
α(v)

� 1, α(v) ≥ 0. (33)

Te Lagrange function of equation (33) is

L α(v)
  � 

l

v�1
α(v)2ϕ(v)

− λ 
l

v�1
α(v)

− 1⎛⎝ ⎞⎠. (34)

Let the derivative of (34) wrt. α(v) to be zero, i.e.,

zL α(v)
 

zα(v)
� 2α(v)ϕ(v)

− λ � 0, (35)

we have

α(v)
�

λ
2α(v)

. (36)

According to the condition 
l
v�1α

(v) � 1, we can get the
optimal α(v) is

α(v)
�

ϕ(v)− 1


l
v�1ϕ

(v)− 1 . (37)

Te above computation procedures are summarized in
Algorithm 1. Te k-means technique is applied to the con-
sensus representation F to produce the fnal clustering results.

3.3. Computational Complexity Analysis. As seen from Al-
gorithm 1, the computation cost of the suggested approach is
caused by updating the variables G(k), S(v), F, α(v). Te sug-
gested approach’s computational cost is evaluated as follows,
assuming the multiview data has l views, n samples of mv

features, and c class number. In the update of G(k), the main
computational burden comes from the inversion part
(μI + (G(≠k)

[2] )⊤G(≠k)
[2] )− 1 with complexity O(R4n2 + R6), where

the TR-rank is selected by R1 � R2 � R3 � R in default. Due to
the fact that the update of S(v) just uses some-wise based op-
erations, its computational cost can be disregarded. Te update
of F needs to calculate the frst c smallest eigenvalues of


l
v�1α

(v)2LS(v) , which can be speeded up using an efcient
function “eigs” [48] with computational complexity O(cn2). As
seen from (37), since the numerical division operation may be
used to calculate the variable α(v), the complexity of their
computations can be disregarded. According to the study above,
the proposed method’s overall computational complexity is
around O(R4n2 + R6 + cn2) for each iteration.

4. Experiments

Te proposed method, IMC-LTR, would be compared with
other cutting-edge methods through studies on various actual
multiview datasets with diferent missing rate samples. Addi-
tionally, we do experiments to test the proposed method’s
convergence characteristics as well as the impact of the adaptive
weighting strategy. Te suggested approach has two hyper-
parameters: μ and β, which are both tuned in our experiments
from the range of [10− 5, 10− 4, . . . , 101]. Furthermore, we
simply set R1 � R2 � R3 � R for the TR-rank of the proposed
method, [R1, R2, R3], and then fne-tune the value of R to get
the optimum outcomes. Note that, other comparedmethods are
adjusted for the best results, per the relevant articles.
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4.1. Dataset Description and Incomplete Multiview Data
Construction

(1) MSRC-v1 (https://github.com/youweiliang/
ConsistentGraphLearning/): Tis dataset contains
8 categories of images. Following [49], 7 categories
are chosen in our experiment, i.e., cow, airplane,
building, face, bicycle,and car, where each has 30
images. Here, CENTRIST, GIST, color moment,
HOG, and LBP are selected as fve views, with feature
dimensions 254, 512, 24, 576, and 256, respectively.

(2) NewsGroups Dataset (https://lig-membres.imag.fr/
grimal/data.html):Tis contains subsets of the NG20
dataset. In the experiment, we select a subset com-
posed of 500 documents over 5 topics with 3 diferent
preprocessing: supervised mutual information,
partitioning around medoı̈ds, and unsupervised
mutual information; where each preprocessing has
a feature dimension of 2000.

(3) ORL Database (https://www.cl.cam.ac.uk/research/
dtg/attarchive/):Tis image dataset contains 400 face
images from 40 distinct subjects, where some of
them were taken at diferent times, varying the
lighting, facial expressions, and facial details. Here, 3
types of features are selected as 3 views, i.e.,4096
dimension intensity feature, 3304 dimension LBP
feature, and 6750 dimension Gabor feature.

(4) Yale (https://www.cl.cam.ac.uk/research/dtg/
attarchive/): Tis image dataset contains 165 gray-
scale images of 15 individuals. We select 3 types of
features as 3 views, i.e., 4096 dimension intensity
feature, 3304 dimension LBP feature, and 6750 di-
mension Gabor feature.

Incomplete Multiview Data Construction: Assuming the
dataset with nv views, we randomly select p of samples to be
fully observed from all views, and then make the remaining
samples only can be observed from one view, i.e., each view
is constructed by p fully-observed samples and 1 − p/nv

single-view samples. Here, p can be seen as the fully-
observed rate, and it is chosen as 30%, 50%, and 70% in
our experiment.

4.2. Compared Methods and Evaluation Metric. Other ap-
proaches, designed to deal with the incomplete multiview
data, are chosen to compare the suggested approach, i.e.,

4.2.1. Best Single View (BSV) [21]. Te best single-view
clustering result was determined by performing k-means
on every view, separately, where the missing instances are
flled by using the mean of other observable instances of the
same view.

4.2.2. Concat [21]. Concat flled the missing instances by
using the mean of other observable instances of the same
view, and then stacked all instances into a single-view dataset
of a large feature dimension. Next, the clustering result is
obtained by implementing k-means on the single-view
dataset.

4.2.3. Multi-Incomplete-View Clustering (MIC) [23]. MIC is
proposed based on a weighted nonnegative matrix factor-
ization with L2,1 regularization, with a goal to learn a con-
sensus representation via the minimization of the diference
between each view representation and the consensus
representation.

4.2.4. Online Multiview Clustering (OMVC) [24]. OMVC
created a joint weighted nonnegative matrix factorization to
handle the multiview data chunk by chunk in order to save
memory.

4.2.5. Graph Regularized Partial Multiview Clustering
(GPMVC) [25]. By using the view-specifc graph Laplacian
regularization to explore each view’s intrinsic geometry,
GPMVC seeks to tackle the incomplete multiview issue.

4.2.6. Adaptive Graph Completion-Based IMC (AGC_IMC)
[34]. To improve the multiview clustering performance,
AGC_IMC is proposed to learn an efective common rep-
resentation via a multiview spectral learning model that
includes the graph completion.

Require: Multiview data X(v) 
l

v�1, parameters μ, β.
Initialization:Construct the similarity graphs S(v)

, v � 1, . . . , l from observable instances of each viewX(v), and then fll it into S(v)

via formular (10). Initialize F by solving (31).
(1) while not converged do
(2) Update G(k), k � 1, 2, 3 by equation (23).
(3) Update variable S(v), v � 1, . . . , l by equation (28).
(4) Update F by solving (31).
(5) Update variable α(v), v � 1, . . . , l by equation (37).
(6) end while
(7) Return F.

ALGORITHM 1: Algorithm to solve equation (18).
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4.2.7. Incomplete Multiview Tensor Spectral Clustering with
Missing View Inferring (IMVTSC-MVI) [50]. Tis approach
introduces a tensor low-rank constraint and manifold space
based incomplete multiview graph learning method.

4.2.8. Localized Sparse IMC (LSIMVC) [51]. Recently, the
LSIMVC method was proposed as a way to extract in-
complete multiview data and learn a sparse and structured
shared low-dimensional representation.

4.2.9. Generative Partial Multiview Clustering Based on GAN
(GPMVC-GAN) [37]. To solve the incomplete multiview
problem by explicitly generating the data of missing views,
this generative partial multiview clustering model was
proposed by design and build with adaptive fusion and cycle
consistency, which is the newly proposed GAN-based IMC
method.

We compare the accuracy (ACC), normalized mutual
information (NMI), purity, adjusted rand index (AR), and F-
score [52–54] of the suggested method to those of previous
incomplete multiview approaches in attempt to demonstrate
the advantage of the suggested approach. Higher values
indicate greater clustering performance for the aforemen-
tioned well-known metrics. In our tests, each approach is
applied multiple times with various views absent groups, and
the method’s fnal fndings are given based on the average
results.

4.3. Experiment Results and Analyses. Te suggested ap-
proach is evaluated against other approaches using a number
of real-world multiview datasets with varying observed rate
samples. Experimental fndings are reported in Table 1 and
Figure 3.Te following conclusions can be drawn from these
experimental fndings:

(1) Te suggested approach typically outperforms other
IMC algorithms on multiview datasets with various
missing rate samples. For instance, the proposed
method improves ACC by around 12 percent, 8
percent, and 8 percent, respectively, on theMSRC-v1
dataset, in contrast towards the second-best results,
at observed rates of 0.3, 0.5, and 0.7, respectively. On
the NewsGroups dataset with observed rates of 0.3,
0.5, and 0.7, the proposed method, respectively,
obtains about 14%, 9%, and 7% improvement of
NMI over the second-best AGC_IMC. Tese out-
comes demonstrate the efectiveness of the suggested
technique in IMC, which may be due to the tensor
ring decomposition’s potent capability in exploiting
the higher relationship among diferent samples
cross all the views.

(2) Observe that, in most situations, multiview ap-
proaches outperform single-view approaches, i.e.,
BSV and Concat. Tis may beneft from the com-
patible and supplementary data ofered by a variety
of perspectives. Also due to the same reason, Concat
outperforms BSV in most cases. However,

sometimes, multiview methods are inferior to single-
view methods under some missing cases, which
demonstrate that data missing would afect the ca-
pacity of multiview methods in learning the com-
plementary information frommultiple views to some
extent.

(3) Compared methods BSV, Concat, MIC, OMVC,
GPMVC, LSIMVC, and GPMVC-GAN are inferior
to completion based methods, i.e. AGC_IMC,
IMVTSC-MVI, and the proposed method, in most
missing cases. Te reason may come from the dif-
ference of their strategies in handling the missing
instance. Note that BSV, Concat, MIC, OMVC,
GPMVC, and LSIMVC, chose to replace the empty
instances using the mean of the existing instances or
zero, which is more likely to damage the intrinsic
structure of each view and hence result in poorer
performance. In contrast, AGC_IMC, IMVTSC-
MVI, and the proposed method are completion-
based methods, which could adaptively fll in the
missing elements during the optimization, hence
obtaining an optimal solution for clustering. Tese
show that a good flling strategy is crucial for
achieving good clustering performance. Besides, we
fnd that the GPMVC-GAN method obtains poor
results and which may be caused by its poor ro-
bustness to high-dimensional feature data. Tis re-
fects the advantages of the proposed model in
processing high-dimensional data compared with
GAN-based the IMC method.

(4) When compared to other completion-based IMC
approaches, such as AGC_IMC and IMVTSC-MVI,
the suggested approach greatly improves the clus-
tering performance in the majority of cases. It reveals
that the suggested approach flls in the missing data
more efectively than the other two approaches. Tis
result may beneft from the powerful ability of the
tensor ring decomposition in exploring the low-rank
structure.

4.4. Sensitivity Analysis of the Penalty Parameters. Te
proposed method has two penalty parameters μ and β. In
this section, we would analyze the sensitivities of these two
parameters in terms of the clustering accuracy.

We conduct experiments on the above mentioned
datasets (MSRC-v1, NewsGroups, ORL, and Yale) with 30%
observable paired-sample under diferent combinations of
parameters μ and β, selected from a set
10− 5, 10− 4, 10− 3, 10− 2, 10− 1, 1, 101, 102, 103, 104, 105 . Ex-
perimental results of the proposed method on the above-
mentioned four datasets are shown in Figure 4. As for the
MSRC-v1 dataset, the proposed method can obtain a relative
good clustering performance when μ ∈ [10− 5, 105] and
β ∈ [10− 5, 1]. As for the NewsGroups dataset, the proposed
dataset can achieve better clustering results when
μ ∈ [10− 5, 105] and β ∈ [10− 5, 10− 1]. As for the ORL dataset,
a relative good clustering result could be obtained when
μ ∈ [10− 5, 105] and β ∈ [10− 5, 1]. As for the Yale dataset, the
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proposed method obtains stable and better performance
when μ ∈ [1, 105] and β ∈ [10− 5, 1]. Te experimental re-
sults show that it is easy to select the penalty parameters of
the proposedmethod. Based on the analysis, we simply select
the values of μ and β by μ � 1 and β � 10− 3 in the exper-
iments of the previous section.

4.5. Efect of Adaptive Weighting Strategy. To demonstrate
the efcacy of the adaptive weighting strategy in multiview
clustering, we undertake trials on the MRSC-v1 and Yale
datasets with paired-sample observed rates of 0.3, 0.5, and
0.7. Experimental fndings in terms of ACC, NMI, and
purity, are displayed in Figure 5, where IMC-LTR-W and
IMC-LTR-WO denote the proposed methods with and

without adaptive weighting, respectively. Note that, since the
adaptive weighting strategy is removed in IMC-LTR-WO,
the weights α(v), v � 1, . . . , l are all equal to 1/l. Observe from
the experimental fndings in Figure 5 that the adaptive
weighting strategy contributes to the enhancement of
multiview clustering.

4.6. Convergence Analysis. Note that, since the proposed
model is nonconvex, it would be difcult to guarantee the
convergence theoretically. Fortunately, experimental fndings
on the MRSC-v1, NewsGroups, ORL, and Yale datasets with
50% observed paired-samples clearly demonstrate the
convergence of the suggested approach. Specifcally, we defne
the goal function as 1/2‖S(t) − R(G(1),G(2),G(3))

Table 1: Average values of ACC (%), NMI (%), and purity (%) of diferent methods onMSRC-v1, NewsGroups, ORL, and Yale datasets with
diferent observed rates of paired-samples.

ACC (%) NMI (%) Purity (%)
Dataset Method/rate 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

MSRC-v1

BSV [21] 38.67 45.90 57.29 31.02 37.56 47.95 39.19 46.67 58.19
Concat [21] 32.05 36.19 39.24 24.45 27.05 30.98 33.67 37.62 41.10
MIC [23] 43.29 61.52 68.10 37.19 54.09 61.45 45.95 63.48 70.00

OMVC [24] 44.24 37.81 41.29 38.06 29.33 31.57 47.29 39.43 42.48
GPMVC [25] 52.57 54.95 66.24 41.52 45.48 55.74 53.90 56.76 67.48
AGC_IMC [34] 55.62 71.33 71.57 42.99 57.36 61.66 57.48 72.38 74.86

IMVTSC-MVI [50] 48.10 60.00 73.81 36.52 50.17 65.79 48.73 60.32 73.81
LSIMVC [51] 34.00 35.14 36.24 27.04 27.37 27.68 37.10 37.19 38.29

GPMVC-GAN [37] 22.19 22.38 24.73 5.77 5.88 9.23 23.24 23.57 26.10
IMC-LTR 67. 3 79.1 81.71 51.11 6 .69 68.53 67.71 79.1 81.71

NewsGroups

BSV [21] 20.60 21.68 23.68 4.48 7.58 10.13 20.88 22.14 23.84
Concat [21] 20.70 21.00 22.06 4.88 5.53 7.61 21.02 21.28 22.26
MIC [23] 26.44 28.94 29.54 11.26 15.85 17.15 26.88 29.96 31.08

OMVC [24] 23.70 23.32 24.46 7.26 7.54 8.00 24.04 23.78 24.76
GPMVC [25] 32.32 34.06 37.18 9.93 11.30 15.19 34.44 36.32 40.30
AGC_IMC [34] 67.26 84.12 88.86 45.88 61.55 71.01 68.06 84.12 88.86

IMVTSC-MVI [50] 46.00 59.20 80.07 22.08 42.60 65.68 46.20 59.47 80.20
LSIMVC [51] 28.66 32.62 32.72 8.48 12.96 16.46 30.52 36.38 36.56

GPMVC-GAN [37] 25.08 26.72 27.59 5.90 7.80 8.27 25.76 27.36 28.15
IMC-LTR 83.06 88.7 92.58 59.01 70.1 78.87 83.06 88.7 92.58

ORL

BSV [21] 26.98 35.18 43.33 46.54 54.24 62.44 31.03 38.85 47.28
Concat [21] 32.20 37.23 43.75 50.52 56.60 63.19 34.78 40.93 47.73
MIC [23] 42.83 60.68 63.88 62.44 78.03 81.46 45.88 64.63 68.68

OMVC [24] 29.88 30.13 33.85 54.39 55.01 57.41 32.40 32.58 36.48
GPMVC [25] 42.78 49.28 53.78 62.72 67.53 71.34 45.53 52.53 56.68
AGC_IMC [34] 40.88 53.18 64.38 62.85 70.91 79.03 43.93 55.98 67.30

IMVTSC-MVI [50] 29.50 45.00 59.25 49.67 62.58 74.94 31.33 47.58 63.25
LSIMVC [51] 52.53 57.65 64.30 70.98 75.32 78.33 55.68 60.83 66.43

GPMVC-GAN [37] 14.70 15.08 15.92 34.36 35.93 37.68 16.25 16.32 16.88
IMC-LTR 50.75 62.58 69.83 69.05 76.27 81.3 52.90 6 .20 71. 3

Yale

BSV [21] 29.94 37.33 42.48 37.72 44.31 49.03 31.88 38.73 44.36
Concat [21] 33.76 39.09 41.39 40.46 44.75 47.01 35.15 40.61 43.64
MIC [23] 35.70 47.88 52.73 42.33 52.32 56.54 37.21 48.91 53.33

OMVC [24] 27.09 25.82 27.70 34.57 32.61 34.97 30.00 27.82 29.09
GPMVC [25] 42.18 49.21 56.24 50.13 56.15 61.96 44.00 50.06 56.79
AGC_IMC [34] 39.21 46.85 60.48 45.09 53.19 64.12 40.61 48.48 61.27

IMVTSC-MVI [50] 37.78 48.28 63.64 42.35 51.90 65.72 38.38 48.69 64.04
LSIMVC [51] 43.21 50.36 54.18 50.60 55.32 61.00 44.18 51.82 55.94

GPMVC-GAN [37] 18.79 19.03 19.84 23.26 22.73 23.70 20.61 20.79 21.66
IMC-LTR  9.15 57.70 65.52 51.91 59.51 65.71 50.12 58.61 65.58

Bold numbers denote the best result.
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‖F + 1/2‖S(t) − S(t− 1)‖F, and then record the objective value
versus each iteration in Figure 6. According to the conver-
gence curves in Figure 6, which exhibits the strong convergent

quality of the proposed method in multiview clustering, all
the curves rapidly decline and then stabilize with an increase
in the number of iterations.
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Figure 3: ARs (%) and F-score (%) of diferent methods on the MSRC-v1 dataset, NewsGroups dataset, ORL dataset, and Yale dataset with
diferent observed rates of paired-samples. (a) MSRC-v1. (b) NewsGroups. (c) ORL. (d) Yale. (e) MSRC-v1. (f ) NewsGroups. (g) ORl.
(h) Yale.
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Figure 4: ACC (%) versus parameters μ and β of the proposed method on the (a) MSRC-v1 dataset, (b) NewsGroups dataset, (c) ORL
dataset, and (d) Yale dataset, with 30% observable paired-sample.
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Figure 5: Continued.
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Figure 5: ACC (%), NMI (%), and purity (%) with or without adaptive weighting strategy on the MSRC-v1 dataset and Yale dataset with
diferent observed rates of paired-samples, where IMC-LTR-WO denotes the proposed method without adaptive weighting. (a–c) MSRC-v1
and (d–f) Yale.
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Figure 6:Te convergence curves of the proposed method on four datasets: (a) MRSC-v1 dataset, (b) NewsGroups dataset, (c) ORL dataset,
and (d) Yale dataset with 50% observed rates of paired-samples.
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5. Conclusion

Tis paper established a low-rank tensor ring
decomposition-based tensor completion method for IMC.
Te suggested approach is to frst stack the incomplete
similarity graphs of all views into a 3rd-order incomplete
tensor, and then perform tensor ring decomposition on it for
graphs completion. In this way, the incomplete graphs could
be completed via the low-rank high-order correlation cross-
views. Te suggested model explores the high-order cor-
relations by concurrently taking into account sample-level
and view-level correlations, and it is shown that the opti-
mum full graphs outperform previous cutting-edge ap-
proaches for improving the clustering performance. For
further research, we are looking to expand the suggested
paradigm into a semisupervised environment.
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