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Te capabilities of deep models are constantly mined for extraction and representation of features among text classifcation tasks.
However, these models are sensitive to changes in input data, resulting in poor robustness. Meanwhile, the model lacks in-
formation interaction and weak representation ability. In this work, for feature extraction, a joint model that consists of
a convolutional neural network, a bidirectional gated recurrent unit, and an attentionmechanism is proposed.Tis newmodel can
improve versatility and fully discover category information in text. For feature representation, a projector under the supervised
contrastive learning method is introduced. Te method can improve the representation of an encoder and realize aggregation of
the same category. Considering the robustness of the PCRA, the gradient penalty is added to a contrastive loss function. Ex-
periments are performed on four datasets to assess the proposed model (PCRA and PCRA-GP) using an accuracy metric. Te
experimental results show that our model is suitable for variable-length and bilingual texts. Compared with the baseline model, it
remains competitive, and it reaches SOTA on the 20 Newsgroups dataset. Moreover, the performance of the model is evaluated
under diferent hyperparameters to clarify its working mechanism.

1. Introduction

Deep learning is constantly expanding its application areas,
such as convolutional and recurrent neural networks and
their increasing use in image processing [1], natural lan-
guage processing (NLP) [2], and many other scenarios [3],
accompanied by the steady increase in computing power and
data volume which are able to be processed. In text category
tasks, deep learning models can automatically obtain the
features of input samples and perform self-learning feature
representation. However, the extracted features from
training data are solidifed, causing the fragility of repre-
sentation. Due to the weak generalization ability of repre-
sentation, models are vulnerable to the attack of the input
side, resulting in wrong decisions. Terefore, there are great
needs for studying model robustness in text classifcation
tasks at present.

Initially, adversarial examples appeared in image-
processing tasks. Szegedy et al. [4] added small

disturbances to samples to propose the concept of adver-
sarial samples for the frst time. Inspired by this, many data
augmentationmethods are used to improve the performance
of deep learning models, and commonmethods entail elastic
distortion, scaling, translation, and rotation in image clas-
sifcation. In the NLP domain, which is analogous to pixel-
level disturbances in images, perturbation is added to the
input by manipulating words in the sentence, such as adding
or subtracting characters and swapping positions. Specif-
cally for classifcation tasks, it not only requires enhanced
features but also high-quality representation capabilities of
the input.

Representation learning (RL) encodes a high-
dimensional input into a much lower dimensional space,
which captures high-level and useful concepts, and the
mapping process involves the conversion of raw input data
into a feature vector or tensor. Fortunately, contrastive
learning (CL) is an easy way to meet these constraints [5]. It
uses a self-supervised paradigm to compare and learn the

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 7386888, 19 pages
https://doi.org/10.1155/2023/7386888

https://orcid.org/0000-0001-6972-5876
https://orcid.org/0000-0001-6479-5154
mailto:wangzhuowei0710@163.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7386888


distribution of positive samples and negative samples so that
similar species are closer and heterogeneous species are
further apart in the mapping space. Besides, the selection of
the projection head can be linear or nonlinear after
encoding. Inspired by triplet, max-margin, and N-pairs loss,
supervised contrastive learning (SCL) introduces CL to the
fully supervised method. Researchers have never stopped in
their quest to model expressiveness. Terefore, the feature
representation ability is still worthy of attention.

In this paper, a multichannel joint architecture, PCRA-
GP, is established based on SCL with the gradient penalty. It
aims to address the model’s robustness through adversarial
training of feature representation. First, the multichannel
convolutional neural network (CNN, C) that enhances the
adaptability to sentence length, the bidirectional gated re-
current unit (BiGRU, R) that extracts contextual in-
formation, and the attention mechanism (A) that calculates
the contribution of diferent features are integrated. Second,
the projector (P) of contrastive learning is pretrained to
improve the representation ability of features with a con-
trastive loss function. Finally, the gradient penalty (GP) is
used to generate perturbation at the feature level, and the
robust representation of text features produced by using the
PCRA encoder is realized. Te main contributions of our
work are summarized as follows:

(i) To realize feature extraction, a joint deep learning
model that consists of the CNN, BiGRU and at-
tention mechanism is established, which are used to
adapt to sentence length, capture contextual in-
formation, and flter features. Te joint model can
efciently improve versatility and fully detect cat-
egory information in text.

(ii) For feature representation, contrastive learning and
a projector are introduced under the supervised
method. Te method can improve the representa-
tion of an encoder and realize aggregation of data
that belong to the same category.

(iii) For model robustness, the gradient penalty is added
to the contrastive loss function, which achieves
robust training.

Te remainder of this paper is organized as follows:
Section 2 reviews contrastive learning, generation of
adversarial samples, and deep learning models for text
classifcation. Section 3 describes the proposed PCRA-GP
architecture. Section 4 introduces the experimental setup in
detail, conducts comparison experiments, and analyzes the
experimental results. Section 5 summarizes the research.

2. Related Work

2.1. Contrastive Learning. Recently, CL has been widely
applied to self-supervised RL for CV [6, 7], NLP audio [8],
graph [9], multimodal methods, and other domains. CL is
a self-supervised learning method inspired by noise con-
trastive estimation or N-pair losses. It learns representations
through comparison between diferent input samples,
closing similar inputs and repelling dissimilar inputs. Le-

Kha et al. [5] declared that CL methods provide a simple yet
powerful approach to learning representations in a dis-
criminative manner in both supervised and self-supervised
setups. PIRL [7] verifed this conclusion by learning in-
variant representations based on pretext task solving jigsaw
puzzles and found that the resulting invariant representa-
tions perform better than their covariant counterparts across
a range of vision tasks in self-supervised and supervised
manners.

Tere remains much research exploring the potential of
CL. Tomaintain the current negative candidate pool and adopt
momentum update strategy passing parameters between
positive and negative samples, He et al. proposed theMoCo [6]
method, a mechanism for building dynamic dictionaries for
CL. Te SimCLR [10] framework introduced learnable non-
linear transformations and two data augmentation methods to
train an encoder and compared the efects of data augmen-
tation, batch sizes, and training steps on the training results.
Common cropping and rotation transformations are no longer
applicable to serialized data such as texts and audio. A universal
unsupervised learning approach CPC [8] architecture that
extracts features from high-dimensional data and uses autor-
egressive models to predict the future in latent space was
proposed.

Beyond self-supervised classifcation, SCL [1] is an ex-
tension of traditional CL. It pulls the same class closer using
SupCon loss by leveraging label information. SsCL [11]
combined the CL loss branch with the cross-entropy loss
branch in semisupervised learning and introduced a coca-
libration mechanism to interchange predictions between the
two branches. RoCL [12] trained a robust neural network
without label information by using a contrastive self-
supervised learning framework. Also, the CosG [9] model
is a graph-based CL method for fact verifcation including
label-supervised and unsupervised graph-contract. Te
former helps the model learn discriminative representation
for items of various classes, and the latter trains a graph
convolutional encoder for reducing the loss of sole node
features in graph propagation.

2.2.AdversarialExampleGeneration. InNLP systems, studies
have shown that the model is highly dependent on the input
data and have used this discovery to conduct robust training of
the model through adversarial samples. Belinkov and Bisk [13]
found that even with spell checking, existing models are still
sensitive to the spelling order of words in machine translation
tasks. For character-level attacks, perturbation can be ap-
proximated by the number of character edits. For word-level
attacks, perturbation can be achieved by substitution. EDA
[14], an easy data augmentationmethod, consists of four simple
operations: synonym replacement, random insertion, random
swap, and random deletion. Similarly, there are some methods
based on word semantic similarity. Kobayashi proposed
a contextual augmentation [15] strategy, which uses a bi-
directional language model to generate a diverse alternative
vocabulary according to the context. Exploring the broadening
of the scope of application, round-trip translation constructs
data through translation, which is suitable for words, phrases,
sentences, and texts.
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Recent adversarial attack example generation algorithms
can be generally categorized into two groups: white-box or
black-box methods. In the white-box setting, an adversary
has access to the model, model parameters, and feature set of
inputs. For perturbation at the embedding level, TextTricker
[16] calculated the gradient magnitude of each input unit
and added the scores of each dimension in the embedding
space as the word-level importance score when identifying
key words from input. Perturbating at the grade level,
HotFlip [17] relies on an atomic fip operation to generate
white-box adversarial examples that trick character-level
and word-level neural models. It swaps one token for an-
other based on the gradients of one-hot input vectors.
Papernot et al. proposed FGSM [18], a fast gradient sign
method widely applied in the image domain [19], which
could be solved by linearizing the cost function of the model
around its input and selecting perturbation using the gra-
dient of the cost function with respect to the input itself.
GBDA [20], a gradient-based distributional text attack
against a transformer framework, defnes a parameterized
distribution of adversarial examples and uses Gumbel-
softmax approximation to derive a smooth estimate of the
gradient. In the black-box setting, an adversary is only
allowed to query the target classifer and does not know the
details of learned models or the feature representations of
inputs. In [21], AEG was proposed, a reinforcement-
learning-based approach, to generate adversarial examples
in black-box settings.

Intuitively, the generative adversarial network (GAN)
generator captured the data distribution and made the
discriminant equal to ½ everywhere in the space of its ar-
bitrary function. After continuous research on GAN,
WGAN [22] was developed by using the directed Wasser-
stein distance to produce a value function to solve the
problem regarding original GAN training instability. Facing
weight fipping caused by poor samples inWGAN, Gulrajani
proposed a gradient penalty (WGAN-GP) algorithm [23]
which can penalize the norm of the gradient of the critic with
respect to its input. Moreover, in adversarial examples
producing high quality and efciency, Xiao produced
AdvGAN [24] to generate adversarial examples with GANs
in both semiwhite-box and black-box attack settings.

2.3. Deep Learning Models for Text Classifcation. Te main
basic components of the deep learning model in the text
classifcation task are the recurrent neural network (RNN)
[25], CNN [26, 27], attention mechanism [28, 29], and graph
neural network (GNN) [30]. Tese basic components have
tended to develop towards a fusion model. In the joint
model, the advantages of local information, context in-
formation, and feature screening are combined. Huang and
Liu proposed GCNN [31] and used CNN to compensate for
the shortcoming of gated recurrent units (GRUs) in the
extraction of long sentence information. Yang and Tang [32]
tested the efect of the attention mechanism on diferent
positions of the CNN-based model and performed experi-
mental verifcation in ATCNN-1, ATCNN-2, and ATCNN-
3 which superimposes formers combining feature weighting

and feature selecting. To strengthen the feature extraction
ability, Wenzhen et al. proposed the C-BiGRU-ATT [33]
method to reduce the impact of text representation on the
classifcation results and increase the features of the text at
the vocabulary level and character level to improve classi-
fcation accuracy. Also, in the face of semantic ambiguity,
Liu and Guo proposed AC-BiLSTM [34], which is oriented
to high-dimensional, discrete, and complex semantic phe-
nomena for use on text classifcation tasks. Tis entailed the
use of bidirectional long short-term memory (BiLSTM), an
attention mechanism, and a convolutional layer.

Te success of TextGCN [30] turned the serialized text
model to the graph-structured text model. Wu et al. pro-
posed SGC [35] to accelerate GCN by removing non-
linearities and collapsing weight matrices between
consecutive layers. Zhu and Koniusz proposed SSGC to
improve the performance of GCN and capture the global
and local context of each node using simple spectral graph
convolution. With the enrichment of the corpus and the
development of increased computing power, a series of
transformer models represented by Bert emerged. Lin et al.
proposed that BertGCN [36] adopt transductive learning,
learning representations for both training data and un-
labeled test data, by propagating label infuence through
graph convolution. Zhu and Koniusz proposed SSGC [37] to
solve transition smoothing and reduce computing and
storage costs.

Inspired by large-scale pretraining models [38], re-
searchers have begun to use external information [39, 40] to
improve the classifcation accuracy of the model. Pan et al.
[41] proposed SWEMs to transfer source domain knowledge
to unseen text sequences. Abid et al. proposed BiGRU-CNN
[28] based on pretrained GloVe embedding which retains
domain knowledge.Tere are also models that do not rely on
external knowledge. In the sparse classifcation of short text
data, Liu et al. [42] proposed a bilevel attention model that
does not rely on external knowledge to capture word-level
information which is presented to explore the topic-word
association and sequence-level information which is used to
extract the relationship between local and global sentiment
expression.

So far, we have discussed the development of CL,
adversarial sample generation strategies, and deep models
used in text classifcation tasks. Obviously, there is still
potential for improvement in CL’s robust representation.
Te adversarial sample generation technique based on the
entire feature embedding is not addressed. Te majority of
deep models are focused on enhancing feature acquisition
while ignoring model stability. To make the best of the text
feature and robust representation content, a new neural
network signifcantly improving the model classifcation
robustness is proposed in this paper. Te proposed model
can efciently represent enhanced features and learn the
stable representation by input attacks.

3. Proposed Model

Here, we introduce the structure of the proposed model,
main components, and realization of data-processing fow in
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detail. Te model combines the powerful instance repre-
sentation ability of contrastive learning and robustness
brought about by GP. In the feature vector extraction part,
the joint model of CNN, RNN, and the attention mechanism
is used. Te SCL projection method is adopted to obtain
better representation capabilities. Finally, we add the gra-
dient penalty to the SCL loss to obtain the robustness of the
model to perturbation of the feature vector. Te model
processes the input data in a two-step process. In the frst
step, the embedding layer is used to vectorize the input.
Next, CNNs, BiGRU, an attention mechanism, and a pro-
jector are integrated to construct an encoder. Ten, the
dataset is utilized to train the encoder to achieve a better
representation of the input text. In the second step, the
frozen encoder with the classifer layer realizes text classi-
fcation. Te overall structure of PCRA-GP is shown in
Figure 1. Te pseudocode of PCRA-GP is presented in
Algorithm 1.Te key points of our approach are described as
follows.

Te following is a summary of the implementation
process of the PCRA-GP model for the text classifcation
task:

Step 1: Embedding is implemented on training data
Ttrain, and a joint feature extraction model is estab-
lished. Next, equations (2), (3), and (4) are employed to
capture the feature representation of training items.
Ten, GP perturbation is added to the feature repre-
sentation. Finally, a robustness projector is trained
under the loss function, as shown in equation (6).
Step 2: Te trained encoder in Step 1 is used to extract
the training sample feature vectors. Besides, the cross-
entropy function with the Adam optimizer is adopted
to train the classifer, and the parameters are updated
according to the results.
Step 3: Te trained encoder and the classifer of the
PCRA-GP model are applied to predict the label of
testing data Ttest. Te comparison between the pre-
dicted value and the true value reveals the model
classifcation accuracy.

3.1. CNN Layer. CNNs are widely used for image tasks and
are gradually being applied to NLP. Tey can extract local
correlation of spatial or temporal structures and can also be
used to capture sequence information and reduce the
number of input dimensions. TextCNN [43] added a con-
volutional layer after the word vector to build a simplemodel
and achieved good sentence classifcation results. Te CNN
layer used is the same as TextCNN. Te structure of
TextCNN is shown in Figure 2.

Te input text of the CNN is denoted as
T � (x1, x2, . . . , xn), T ∈ Rn×d. Te text length is n, and each
word is represented as a vector xn. After the embedding
layer, the word is represented as a vector of the dimension d.
Because the input text matrix must be of the same length, we
cut of lengths greater than n and pad those lengths less than
n. For the selection of n-gram features, the height of con-
volution kernels is set to 3, 4, and 5. Te step size is set to 1.

After one-dimensional convolutional operation, the mth

local features encoding fm are calculated using equation (1).
Regarding unilateral suppression operation, the ReLU
function is used to change negative values to zero, all positive
values and zero remain unchanged, and a pooling layer is
adopted to retain the main features while reducing pa-
rameters and computation. Finally, the feature sequence is
derived as Lf � [f1, f2, . . . , fm]. Te output of the three-
layer CNN is concatenated as the downstream input (as
given by equation (2)):

fm � r Wt ∙ xt + b( 􏼁, (1)

F � F1, F2, . . . , Fm􏼂 􏼃 � L
(3)
f ⊕ L

(4)
f ⊕L

(5)
f

� f
(3)
1 ⊕f

(4)
1 ⊕f

(5)
1 , . . . , f

(3)
m ⊕f

(4)
m ⊕f

(5)
m􏽨 􏽩,

(2)

where r(∙) is the ReLU function, Wt and b represent the
flter weight and bias term in a window of the word xt, m

denotes the total number of flters, F represents the output
through the CNN layer, ∙(∙) represents the feature under
diferent kernel sizes, and ⊕ represents the concatenate
operator. Te length of F is equal to m.

3.2. Bi-GRU Layer. RNNs have a recurrent hidden state
throughout the computational fow which can maintain
continuous sequence information and has a good efect on
processing sequence data. Terefore, in addition to text local
features, we also pay attention to sequence global in-
formation. A GRU is a type of RNN architecture and has
become the popular structure. It performs in a manner
similar to long short-term memory and is less computa-
tionally onerous. In our architecture, BiGRU is used to
encode the forward and backward information of the sen-
tence. Te structure of the BiGRU is shown in Figure 3.

Te forward GRU (GRU
����→

) calculates each timestep
hidden state from 1 to m. In the backward GRU (GRU

⃖
)

layer, the reverse calculation is performed from m to 1.
Finally, the bidirectional output is merged as the result of
BiGRU. Te whole calculation process can be described
using the following formulae:

Ym � GRU
����→

(F) � f w1Fm + w2Ym−1( 􏼁,

Ym
′ � GRU
⟵

(F) � f w3Fm + w4Ym−1′( 􏼁,

om � BiGRU w5Ym + w6Ym
′( 􏼁,

(3)

where Ym and Ym
′ are the forward and backward output, om

represents the output results of BiGRU at time m, the fnal
output of the BiGRU network is O � [o1, o2, . . . , om], and
w(∙) denotes the weights corresponding to the forward and
reverse hidden states.

3.3. Attention Layer. An attention mechanism is a feature
selection method, which focuses on the strength and
weakness of local information and obtains dependent
information for correct judgment. In practice, the at-
tention function is commonly divided into two cate-
gories: dot-product attention and additive attention [44].
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Lscl + ε (∇zLscl (Z))2

Figure 1: Te framework of the PCRA-GP model.

Input: a set of text T

Output: Accuracy
#Step 1: training an encoder()
Ttrain ∈ T;
for t ∈ Ttrain do

F⟵ concat (CNN(t, 3),CNN(t, 4),CNN(t, 5));
O⟵BiGRU(F);
c⟵Att (O);
z⟵ projector(c);
losstrain⟵ equation (6);
update θtrain e to minimize losstrain e;

#Step 2: training a model PCRA-GP() with a frozen encoder encoder()
for t ∈ Ttrain do

z⟵ encoder (t);
􏽢y⟵ classif ier (z)

losstrain c⟵ crossentropy (y, 􏽢y);
update θtrain c to minimize losstrain c;

#Step 3: testing the PCRA-GP() model
Ttest ∈ T;
for t ∈ Ttest do
return accuracy⟵ PCRA-GP (t). evaluate();

ALGORITHM 1: Pseudocode for PCRA-GP.
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Dot-product attention is much faster and more
space-efcient and uses a highly optimized matrix
multiplication code, while additive attention is com-
mitted to dealing with long-term memory problems and
applied to longer and wide varying sequences. Te
schematic of the attention mechanism is illustrated in
Figure 4.

Te attention mechanism can be simplifed as follows:

et � a(O),

αt �
exp et( 􏼁

􏽐
m
k�1 exp ek( 􏼁

,

c � 􏽘
m

t�1
αtot,

(4)

Embedding
layer

Convolution
layer

Feature
extraction

Output
layer

Input
layer

Concatenate
layer

Kernel size: 3 Kernel size: 4 Kernel size: 5

x1 x2 x3 xn

Lf
(3) Lf

(4) Lf
(5)

F

Figure 2: Structural diagram of the TextCNN process.

GRU GRU GRU

GRU GRU GRU

Output layer

Backward

Forward

Input layer Fm–1 Fm Fm+1

Ym–1 Ym Ym+1

Figure 3: Structural diagram of the BiGRU.
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where a(∙) is a learnable function dependent only on O, c

denotes the attention weight embedding sequence that
matches the product of the input hidden state o and the
weight α, and the parameters t and k indicate diferent
positions.

3.4. SCL Method. SCL adopts a fully supervised method to
further reveal label information. Te SCL method [1]
comprises three parts: data augmentation, an encoder net-
work, and a projection network. In our work, the feature
extraction network consists of a CNN layer (Section 3.1),
a RNN layer (Section 3.2), and attention (Section 3.3)
components. Besides, we do not directly use the data aug-
mentation part in our model but indirectly adopt the em-
bedding penalty gradient (Section 3.5). In this section, the
project network and supervised contrastive loss function are
introduced.

Te projection network is instantiated as a dense layer.
First, this layer maps the encoder network output c to
a feature vector z � project(c) ∈ RDp , where Dp � 128 and
z is normalized to place the output on the unit hypersphere;
then, an inner product is used to measure the output in the
projection space.

Khosla et al. [1] argued that the SCL loss is equivalent to
theN-pair loss when more than one negative item is present.
Te N-pair loss [45] is a metric-learning objective, which
accelerates convergence through strengthening the in-
teraction between positive classes and negative classes in
each update. Te contrastive loss is shown as follows:

Lscl �
1
N

􏽘

N

i�1
log 1 + 􏽘

j≠ i

exp
z

T
i z

+
j − z

T
i z

+
i

τ
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ , (5)

where N is the total number of sample data categories and
i, j ∈ N, (∙)T denotes the transpose operation, z+

i represents
the positive example representation while z+

j , i≠ j denotes
the negative example representation, and τ is the temper-
ature parameter.

3.5. Gradient Penalty. Commonly, text classifcation mainly
relies on text representation and feature extraction to obtain
better classifcation results. However, the model trained by
this method is vulnerable to attacks, which leads to the
model having poor robustness. In the feld of NLP, data
augmentation is a way to improve the robustness of the
model, but it has its own limitations. Text enhancement
methods are usually suitable for the character level, word
level, and sentence level and are rarely applied to document-
level materials. Te GP method adds perturbation to the loss
function, realizing a universal adversarial method. As
a regularization method, the gradient penalty reduces
overftting and improves model generalizability.

In our method, the disturbance part is calculated by the
diferential of the contrastive loss Lscl to the feature vector z,
defned as ∇zLscl(z). A hyperparameter ε is also introduced
to control the extent of the penalty applied. Ten, loss
function equation (5) is updated to equation (6):

Ltotal � Lscl + ε ∇zLscl(z)( 􏼁
2 . (6)

In PCRA-GP, the pooling layer, dropout layer, and
normalizing layer are used to avoid overftting. Te softmax
layer is used to generate the probability distribution of the
text label class, and the Adam optimizer is selected to op-
timize the loss function of the network.

4. Experiments

In this section, the experimental set-up and comparative
experimental design are demonstrated. Te experimental
setup is about the presence of datasets and the initial settings
of model parameters used in the experiment. In the com-
parative test part, the results are compared with the deep
learning baselines and the state-of-the-art text classifcation
methods. Finally, the model classifcation accuracy changes
under the two main components of the model, and
hyperparameter settings are evaluated. Te detailed exper-
imental data are recorded in Appendix A (Tables 1–8). In
addition, as a verifcation of the versatility of our idea, the GP
method is also used in image classifcation (Appendix B)
(Figure 5).

4.1. Experimental Setup

4.1.1. Datasets. Our model is used to solve bilingual text
classifcation tasks (including sentiment and news category)
at the chapter level and paragraph level in English and
Chinese (Table 9). Te datasets used in this article are as
follows:

(i) IMDB: it is a dataset of 50,000 movie reviews in
English, labeled by sentiment (positive/negative).

(ii) ChnSentiCorp-Htl (https://github.com/SophonP
lus/ChineseNlpCorpus): it is a corpus including
more than 7,000 hotel reviews in Chinese.

(iii) 20news: Te 20 Newsgroups (https://qwone.com/
~jason/20Newsgroups/) dataset is a collection of
approximately 20,000 English newsgroup

c

a (O)

o1 o2 o3 om

α1 α2 α3 αm

Figure 4: Schematic of the attention mechanism.
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documents, partitioned evenly across 20 diferent
newsgroups. It has become a popular dataset for
experiments in text applications of machine
learning techniques, such as text classifcation and
text clustering.

(iv) Cnews: It is a subset of the THUCnews (https://
github.com/thunlp/THUCTC) dataset produced by
NLP and Computational Social Science Lab,
Tsinghua University. Te THUCnews dataset
mainly collects Sohu news, and Cnews contains 10
categories and 65,000 Chinese texts.

4.1.2. Baseline Methods. BALB: it is a backdoor attack
against the LSTM-based text classifcation system [46].

GCNN: it is a model that introduces contextual in-
formation obtained by the RNN and local information
captured by the CNN and was proposed by Huang and
Liu [31].

AEG: it is a reinforcement-learning-based approach to
generating adversarial examples in black-box settings [21].

AC-BiLSTM: it is a novel and unifed architecture that
contains the bidirectional LSTM (BiLSTM), attention
mechanism, and convolutional layer [34].

BiGRU-CNN: A model composed of GloVe, CNN, RNN
and max-pooling layer was proposed by Abid et al. [28].

BAM: it is a bilevel attention model that does not rely on
external knowledge and was proposed by Liu et al. [42].

Text GCN: in this model, the frst task is to build the
whole corpus into a heterogeneous graph and use GNN to

Table 1: IMDB with various epsilon (temperature�0.05) on RTX2080.

0.01 0.02 0.031 0.04 0.05 0.06
L 89.34% 89.38% 89.38% 89.26% 89.75% 89.55% 89.52%
B 89.22% 88.51% 89.36% 78.07% 74.67% 52.30% 88.61%
L 89.47% 89.76% 89.44% 49.47% 87.58% 49.47% 89.38%
B 89.38% 89.13% 88.95% 88.77% 88.88% 87.37% 89.16%
L 88.75% 49.47% 49.47% 50.53% 49.47% 49.47% 89.21%
B 89.42% 89.37% 89.04% 89.18% 52.03% 50.73% 89.00%
L 89.69% 89.64% 50.80% 89.71% 89.24% 88.90% 89.72%
B 88.78% 88.67% 89.06% 88.94% 89.23% 86.89% 88.89%
L 88.93% 49.47% 89.91% 87.60% 50.10% 49.47% 89.46%

B 89.19% 88.47% 89.43% 87.81% 82.84% 89.12% 86.48%
L 89.15% 89.24% 50.53% 49.47% 49.47% 49.47% 89.24%

B 89.29% 88.76% 88.92% 89.30% 50.32% 49.46% 89.05%

IMDB with various epsilon (temperature=0.05) on RTX2080
epsilon

epoch

200

normbatch_size

256

128

64

256

128

64

100

PCRA

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores.

Table 2: IMDB with various epsilon (temperature�0.05) on K80.

0.01 0.02 0.031 0.04 0.05 0.06
L 90.18% 89.83% 50.83% 50.56% 50.48% 50.80% 89.82%
B 89.94% 89.86% 90.23% 88.81% 89.47% 88.59% 90.26%
L 89.97% 50.69% 90.16% 89.94% 89.60% 49.47% 89.40%
B 89.90% 90.34% 89.23% 89.86% 90.18% 52.20% 90.23%
L 88.85% 49.47% 49.47% 50.53% 49.47% 49.47% 89.03%
B 89.80% 89.35% 55.62% 50.82% 50.64% 49.50% 89.39%
L 89.89% 51.09% 50.71% 50.86% 50.80% 50.78% 89.94%
B 89.23% 51.59% 89.51% 50.78% 90.13% 50.80% 88.08%
L 89.68% 50.57% 50.77% 49.47% 49.47% 50.53% 89.66%

B 90.31% 89.71% 90.09% 90.01% 90.76% 51.04% 90.14%
L 89.90% 90.24% 49.47% 49.47% 49.47% 49.47% 89.78%

B 89.70% 89.54% 52.95% 50.89% 50.47% 51.11% 89.57%

norm PCRA

IMDB with various epsilon (temperature=0.05) on K80
epsilon

64

batch_size

256

128

128

64

256

200

100

epoch

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores.
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jointly learn word and document embeddings, as performed
by Yao et al. [30].

SGC: it is a method aimed to simplify single linear
transformation and was proposed by Wu et al. [35].

SSGC: this model is a variant model derived fromMarkov
difusion kernels, deals with degradation caused by the in-
creased depth, and was proposed by Zhu and Koniusz [37].

C-CNN: this model can realize centrality convolution
based on a separate encoding function and was proposed by
Dong et al. [26].

BertGCN: it is a model that combines Bert’s large-scale
pretraining knowledge and the transferability of the GCN
and was proposed by Lin et al. [36].

RoBERTaGCN: this method entails joint RoBERTa and
GCN as a comparative experiment and was proposed by Lin
et al. [36].

SWEM: this method uses amodifed hierarchical pooling
strategy in few-shot transfer learning and was proposed by
Pan et al. [41].

C-BiGRU-ATT: this model uses the CNN, attention
mechanism, and BiGRU, extracting contextual and local
information at the character and vocabulary levels, and was
proposed by Wenzhen et al. [33].

ATCNN-3: this method extracts and flters features by
adding attention mechanisms in diferent positions and was
proposed by Tang and Yang. [32].

Table 4: ChnsentiCorp-Htl with various epsilon (temperature�0.05) on K80.

0.01 0.02 0.031 0.04 0.05 0.06
L 90.00% 89.17% 90.42% 90.25% 91.08% 57.33% 91.75%
B 90.42% 90.58% 89.75% 89.17% 90.92% 89.58% 89.42%
L 89.67% 90.08% 89.33% 91.42% 59.08% 59.08% 90.92%
B 89.42% 88.42% 89.67% 89.83% 90.42% 90.58% 89.33%
L 91.25% 89.17% 48.92% 57.50% 48.92% 48.92% 90.17%
B 90.42% 90.42% 88.58% 90.00% 57.92% 56.42% 90.25%
L 89.25% 89.58% 77.25% 58.83% 59.83% 57.58% 90.42%
B 91.67% 89.50% 91.25% 88.58% 90.67% 90.33% 89.25%
L 91.08% 90.33% 58.83% 58.25% 59.08% 58.17% 90.75%
B 87.92% 89.92% 91.00% 90.25% 91.00% 88.92% 89.00%
L 91.75% 89.67% 58.33% 58.67% 57.50% 59.83% 88.92%
B 90.83% 90.42% 90.25% 90.33% 90.58% 55.50% 89.25%

128

64

100

256

128

64

256

200

ChnsentiCorp-Htl with various epsilon (temperature=0.05) on K80

epoch batch_size norm
epsilon

PCRA

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores among PCRA-GP and PCRA.

Table 3: ChnsentiCorp-Htl with various epsilon (temperature�0.05) on RTX2080.

0.01 0.02 0.031 0.04 0.05 0.06
L 88.42% 90.67% 90.08% 90.17% 89.42% 55.33% 91.08%
B 89.92% 89.75% 89.50% 90.75% 89.67% 90.08% 89.67%
L 89.50% 89.25% 89.17% 89.17% 89.75% 56.42% 90.25%
B 90.33% 89.58% 90.08% 90.00% 89.00% 89.08% 90.58%
L 89.00% 88.75% 49.42% 57.25% 49.42% 49.42% 88.92%
B 91.42% 89.00% 90.08% 88.75% 90.17% 56.92% 89.92%
L 90.25% 90.17% 90.83% 72.25% 58.25% 56.42% 90.50%
B 90.00% 89.17% 90.42% 90.83% 89.50% 89.75% 90.83%
L 89.42% 90.58% 56.67% 56.75% 56.58% 56.75% 90.08%
B 89.67% 89.83% 90.17% 89.25% 90.17% 91.42% 90.25%
L 89.42% 88.50% 56.08% 57.08% 61.42% 57.50% 91.00%
B 89.58% 89.75% 89.83% 57.00% 89.67% 56.17% 89.83%

128

64

100

256

128

64

256

200

ChnsentiCorp-Htl with various epsilon (temperature=0.05) on RTX2080

epoch batch_size norm
epsilon

PCRA

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores among PCRA-GP and PCRA.
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4.1.3. Parameter Settings. Te PCRA-GP model uses accu-
racy as the evaluation metric to estimate the overall clas-
sifcation performance. Te frst layer of PCRA-GP is an
embedding layer which converts words into 300-
dimensional vectors. Te kernels of multichannel CNNs
are set to 3, 4, and 5. Te number of hidden units of BiGRUs
and CNNs is set to 256 which is suitable for document
classifcation and 128 which is suitable for paragraph clas-
sifcation.Te training batch sizes are set to 256, 128, and 64.
Te dropout rate is 0.5. To better avoid model overftting, we
add dropout behind the embedding layer and before the
classifcation dense layer and set it to 0.2 when solving IMDB

and ChnSentiCorp-Htl models. Te two hyperparameters
(epsilon and temperature) are set to 0.01–0.06. Te back-
propagation algorithm based on the Adam stochastic op-
timizationmethod is used to train the network through time,
and the learning rates are 0.001 and 0.0001, which are used
for diferent datasets. Te normalization layer involves batch
normalization and layer normalization. Each corpus is split
into training and testing sets in the proportion of 8 : 2. All
experiments are conducted with Python 3.7.9 and Keras
2.4.3 on GeForce RTX 2080 Ti and NVIDIA Tesla K80
systems. Te specifc parameters of the model are listed in
Table 10.

Table 5: 20news with various epsilon (temperature�0.05) on RTX2080.

0.01 0.02 0.031 0.04 0.05 0.06
L 87.65% 84.07% 88.93% 88.87% 11.92% 10.89% 87.49%
B 87.52% 86.67% 81.65% 86.43% 86.22% 83.30% 88.48%
L 88.79% 87.44% 12.80% 14.21% 12.13% 12.80% 87.87%
B 86.94% 86.22% 87.33% 84.63% 78.23% 71.93% 87.31%
L 87.87% 12.06% 13.99% 13.91% 12.98% 15.53% 86.80%
B 86.67% 85.82% 78.57% 85.98% 82.77% 15.03% 86.43%
L 88.93% 89.17% 88.40% 87.60% 11.87% 11.15% 88.40%
B 86.62% 85.90% 80.48% 78.20% 72.09% 69.25% 88.10%
L 87.97% 73.58% 12.64% 12.27% 10.62% 13.12% 87.33%
B 84.71% 82.95% 78.60% 86.72% 62.00% 62.27% 86.72%
L 87.89% 13.54% 13.20% 13.14% 12.80% 12.56% 87.63%
B 86.80% 86.51% 78.92% 61.13% 12.51% 13.78% 86.78%

20news with various epsilon (temperature=0.05) on RTX2080

epoch batch_size norm
epsilon

PCRA

200

256

128

64

100

256

128

64

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores among PCRA-GP and PCRA.

Table 6: 20news with various epsilon (temperature�0.05) on K80.

0.01 0.02 0.031 0.04 0.05 0.06
L 88.48% 88.53% 88.08% 89.86% 89.09% 88.79% 88.42%
B 87.39% 87.84% 87.92% 77.83% 85.90% 86.86% 88.42%
L 83.59% 86.83% 13.09% 13.78% 14.07% 14.74% 86.99%
B 87.31% 86.19% 87.44% 80.91% 87.36% 86.17% 87.55%
L 88.02% 12.80% 13.73% 12.77% 13.86% 12.03% 86.59%
B 86.51% 86.70% 86.48% 13.70% 85.34% 86.25% 86.25%
L 86.99% 89.27% 88.37% 87.20% 83.64% 88.58% 88.26%
B 87.04% 87.41% 87.92% 68.61% 85.58% 87.28% 87.87%
L 88.82% 11.82% 11.74% 12.11% 10.46% 10.73% 88.02%
B 87.52% 86.35% 82.90% 78.07% 84.94% 85.10% 88.37%
L 87.12% 12.37% 12.83% 12.13% 12.16% 14.87% 87.68%
B 86.99% 82.45% 76.10% 82.10% 79.05% 77.80% 86.38%

20news with various epsilon (temperature=0.05) on K80

epoch batch_size norm
epsilon

PCRA

200

256

128

64

100

256

128

64

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores among PCRA-GP and PCRA.
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Table 7: Cnews with various epsilon (temperature�0.05) on RTX2080.

0.01 0.02 0.031 0.04 0.05 0.06
L 96.79% 96.99% 96.92% 97.08% 97.08% 93.59% 97.18%
B 93.48% 97.01% 97.14% 96.97% 97.02% 97.13% 97.08%
L 96.57% 97.09% 96.82% 57.18% 93.15% 62.88% 96.60%
B 96.62% 96.92% 93.56% 67.17% 64.64% 71.28% 93.64%
L 96.93% 56.23% 97.05% 53.88% 45.96% 97.07% 96.52%
B 97.02% 93.20% 57.51% 57.96% 65.53% 57.29% 92.80%
L 96.80% 96.88% 97.01% 97.18% 97.09% 72.39% 97.18%
B 93.32% 97.05% 96.95% 97.10% 97.09% 97.04% 93.60%
L 97.13% 90.56% 96.99% 50.32% 50.53% 96.95% 97.16%
B 96.90% 97.11% 93.76% 71.48% 66.04% 78.09% 92.99%
L 97.15% 55.15% 58.15% 46.34% 53.30% 48.79% 96.54%
B 96.94% 97.21% 97.07% 96.97% 56.91% 38.40% 92.93%

Cnews with various epsilon (temperature=0.05) on RTX2080

epoch batch_size norm
epsilon

PCRA

200

256

128

64

100

256

128

64

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores among PCRA-GP and PCRA.

Table 8: Cnews with various epsilon (temperature�0.05) on K80.

0.01 0.02 0.031 0.04 0.05 0.06
L 97.01% 96.99% 97.37% 97.12% 97.15% 63.26% 96.78%
B 96.84% 97.15% 96.98% 97.19% 97.15% 97.15% 92.85%
L 97.12% 97.25% 58.61% 67.05% 96.70% 59.00% 96.88%
B 97.18% 96.85% 97.37% 96.87% 71.18% 66.63% 96.86%
L 96.91% 61.41% 59.38% 55.95% 70.95% 97.22% 96.69%
B 97.01% 97.18% 69.25% 97.03% 71.02% 71.55% 96.57%
L 96.88% 96.78% 97.12% 97.22% 97.25% 67.02% 96.90%
B 97.26% 97.22% 97.45% 96.98% 97.17% 97.19% 93.14%
L 97.04% 96.89% 50.22% 60.03% 60.78% 95.42% 96.92%
B 96.98% 97.08% 97.42% 87.72% 67.95% 65.45% 93.82%
L 97.15% 60.97% 58.25% 53.68% 71.65% 56.35% 96.65%
B 97.02% 96.91% 70.54% 65.58% 97.06% 69.87% 96.35%

Cnews with various epsilon (temperature=0.05) on K80

epoch batch_size norm
epsilon

PCRA

200

256

128

64

100

256

128

64

Bold values are the better performances with diferent epsilon. Values with color red are the best accuracy scores among PCRA-GP and PCRA.
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Figure 5: Result of SCL with GP on the cifar10 dataset.
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4.2. Experiments

4.2.1. Overall Comparison. In this section, all the experi-
mental data are summarized and the best classifcation
accuracy is selected for comparisons with the baseline model
accuracy. Te results recorded in Table 11 involve the
classifcation of sentiment and news texts, and the text
languages are Chinese and English. Te baseline results are
all reported in the cited papers.

Te results for the IMDB dataset show that the PCRA is
higher than GCNN by 0.26%, while the PCRA-GP is 0.34%
higher. In comparison with backdoor attack models, our
model classifcation accuracy improvement is signifcantly
ahead of theirs by 5.42% and 5.34%. Te black-box setting
AEG model is better than backdoor attack models, but it is
weaker than our model by 0.39% and 0.31%. Te results
indicate that perturbation on the model loss function is an
efective way to improve accuracy.

Te models applied to the ChnsentiCorp-Htl dataset
show that BiGRU-CNN lacks an attention layer compared
to AC-BiLSTM, and AC-BiLSTM lacks projection com-
pared to the PCRA model. Te model using only bilevel
attention returns the lowest result. Due to the small
amount of data, the simple model BiGRU-CNN is better
than the complex point model AC-BiLSTM, and the
addition of the GP method results in the highest accuracy
of classifcation. Te results for the Cnews dataset indicate
that PCRA and PCRA-GP are, respectively, 1.37% and
1.9% better than C-BiGRU-ATT that does not use
a projector and GP components. Compared with
ATCNN-3, PCRA is 0.34% higher after increasing feature
extraction ability. Compared with SWEM, which is a few-
shot model, the overall training method can maintain
a high level of expressiveness. Te results show that

a projector under the SCL training process brings im-
proved results with the GP constraint.

Since TextGCN was proposed, GNN has demonstrated
high-quality performance and gradually replaced the tra-
ditional deep model based on CNNs and RNNs. Te results
for the 20 Newsgroups dataset show that the classifcation
accuracies of GNN-based models (TextGCN, SGC, and
SSGC) are gradually improving. After fusing the pretrained
Bert model, the performance of the GNN model is further
improved. Our proposed model is 0.36% better than
RoBERTaGCN and achieved SOTA results. Te results
indicate that our model improves the performance of
traditional deep models based on the CNN, RNN, and
attention mechanism.

Combined with the performance of our proposed model
for four public datasets, our results are found to be con-
sistently better than the baseline results recorded in most
published papers. In view of the above discussion, the
PCRA-GP model that we proposed is highly competitive.

4.2.2. Efect of Components of PCRA-GP. In Figure 6, the
classifcation accuracies are plotted for all datasets, in which
the temperature hyperparameter is set to 0.05 and comes
from the experiment using the RTX 2080Ti system. Since the
experimental results are sensitive to parameter settings, our
experimental process mainly focuses on the type of nor-
malization, batch size, epoch, and epsilon.

Overall, as shown in Figure 6, the performance of the
PCRA model is relatively stable and less afected. Batch
normalization could withstand larger epsilon disturbances
than layer normalization. When the batch size is set to 256,
the model classifcation accuracy can be maintained in re-
sponse to variations in other factors. Te various epoch

Table 9: Dataset statistics.

Corpus Classes Instance Avg length Train/test Language
IMDB 2 50,000 231 25,000/25,000 English
ChnSentiCorp-Htl 2 7767 128 3000/3000 Chinese
20news 20 18,846 221.26 11,314/7532 English
Cnews 10 65,000 530 50,000/15,000 Chinese

Table 10: Te specifc parameters of PCRA-GP.

Component Parameter
Word embedding 300
CNN [3, 4, 5], [256, 128]
BiGRU [256, 128]
Batch size [256, 128, 64, 32]
Dropout [0.2, 0.5]
Dense 128
Epsilon [0.01, 0.02, 0.031, 0.04, 0.05, 0.06]
Temperature [0.01, 0.02, 0.03, 0.04, 0.05, 0.06]
Learning rate [0.001, 0.0001]
Normalization Batch normalization, layer normalization
Python 3.7.9
Keras 2.4.3
GPU GeForce RTX 2080 Ti, NVIDIA Tesla K80
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Table 11: Accuracy of the models.

Dataset Models Accuracy (%)

IMDB

BALB [46] 84.92
GCNN [31] 90.0
AEG [21] 89.95

PCRA (ours) 90.26
PCRA-GP (ours) 90. 4

ChnSentiCorp-Htl

AC-BiLSTM [34] 90.60
BiGRU-CNN [28] 91.60

BAM [42] 90.0
PCRA (ours) 91.75

PCRA-GP (ours) 91.75

20news

TextGCN [30] 86.34
SGC [35] 88.50
SSGC [37] 88.60
C-CNN [26] 82.59
BertGCN [36] 89.3

RoBERTaGCN [36] 89.5
PCRA (ours) 88.42

PCRA-GP (ours) 89.86

Cnews

SWEMs [41] 90.07
C-BiGRU-ATT [33] 95.55
ATCNN-3 [32] 96.58
PCRA (ours) 96.92

PCRA-GP (ours) 97.45
Bold values are the best accuracy scores.
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Figure 6: Continued.
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settings have little efect on the performance. When epsilon
is greater than 0.04, the classifcation accuracy decreases
signifcantly.

In Table 12, the maximum value is counted under dif-
ferent parameter settings, which ignores epsilon, and the
data are selected from Figure 6. Diferent from the trend
analysis of the data, we pay more attention to specifc
accuracy value information. By summarizing the classif-
cation results of all datasets, the layer normalization
classifcation results are found to be 33 times higher than
those of batch normalization among 48 groups, and the
best accuracy occurrence ratio is 5 : 3. Moreover, eight
locations, where the minimum value is obtained, are
counted, fve of them appear at a batch size of 64, and the
epoch is 200.Temaximum value appears 5 times when the
batch size is 256.

In summary, batch normalization methods are stable,
while layer normalization has high accuracy and often
leads to the optimal classifcation. A large batch size can
acquire good accuracy and ofset the impact of diferent
epochs. In terms of overall results, the result is best

balanced when epsilon is 0.01, and the second best choice
is 0.02.

4.2.3. Ablation Experiment. We tested the performance of
diferent combinations, and the results are shown in
Table 13. Te experimental hyperparameters are fxed and
executed on RTX 2080Ti. We set the epoch size to 100,
batch size to 256, and temperature to 0.05. Besides, epsilon
is set to 0.01 during adversarial training. Considering PC as
the baseline, the introduction of R reduces the classifcation
efect and the integration of A brings a huge improvement
in the results. Te adversarial training with GP also im-
proves the classifcation accuracy of the model. 20news is
not well trained in methods PC and PCR. Additionally, we
visualize the loss value and accuracy during the training
process to understand the results. Te training process data
are shown in Figure 7. During the training stage of the
encoder and classifer, the loss values of PC and PCR do not
drop signifcantly, resulting in low accuracy. However,
metrics for PCRA and PCRA-GP perform well. In addition,
during the training of the encoder, the introduction of GP
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Figure 6:Te accuracy of datasets with the type of normalizations, epoch, and batch size on RTX2080 Ti.Te symbol L/B_XXX_YYYmeans
layer (L) and batch (B) normalizations, epsilon, epoch, and batch size. Te PCRA column represents contrastive learning without the
gradient penalty. (a) Te PCRA-GP’s accuracy on IMDB, trained with L. (b) Te PCRA-GP’s accuracy on IMDB, trained with B. (c) Te
PCRA-GP’s accuracy on ChnSentiCorp-Htl, trained with L. (d) Te PCRA-GP’s accuracy on ChnSentiCorp-Htl, trained with B. (e) Te
PCRA-GP’s accuracy on 20news, trained with L. (f ) Te PCRA-GP’s accuracy on 20news, trained with B. (g) Te PCRA-GP’s accuracy on
Cnews, trained with L. (h) Te PCRA-GP’s accuracy on Cnews, trained with B.
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Table 12: Best results obtained from diferent parameters without epsilon. Te minimum and maximum values are in bold in the table, and
the maximum values are marked in red.

Epoch
Batch
Size

Norm
Accuracy

IMDB ChnsentiCorp-Htl 20news Cnews

PCRA-gp PCRA PCRA-gp PCRA PCRA-gp PCRA PCRA-gp PCRA

200

256
L 89.55% 89.52% 90.67% 91.08% 88.93% 87.49% 97.08% 97.18%
B 89.36% 88.61% 90.75% 89.67% 87.52% 88.48% 97.14% 97.08%

128
L 89.76% 89.38% 89.75% 90.25% 88.79% 87.87% 97.09% 96.60%
B 89.38% 89.16% 90.33% 90.58% 87.33% 87.31% 96.92% 93.64%

64
L 88.75% 89.21% 89.00% 88.92% 87.87% 86.80% 97.07% 96.52%
B 89.42% 89.00% 91.42% 89.92% 86.67% 86.43% 97.02% 92.80%

100

256
L 89.71% 89.72% 90.83% 90.50% 89.17% 88.40% 97.18% 97.18%
B 89.23% 88.89% 90.83% 90.83% 86.62% 88.10% 97.10% 93.60%

128
L 89.91% 89.46% 90.58% 90.08% 87.97% 87.33% 97.13% 97.16%
B 89.43% 86.48% 91.42% 90.25% 86.72% 86.72% 97.11% 92.99%

64
L 89.24% 89.24% 89.42% 91.00% 87.89% 87.63% 97.15% 96.54%
B 89.30% 89.05% 89.83% 89.83% 86.80% 86.78% 97.21% 92.93%

Table 13: Experimental results of diferent component combinations.

Model IMDB ChnSentiCorp-Htl 20news Cnews
PC 64.35 67.33 8.98 61.69
PCR 59.57 57.58 7.04 54.85
PCRA 89.47 90.  88.34 96.91
PCRA-GP 89.7 89.33 89.  96.83
Bold values are the best accuracy scores.
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Figure 7: Continued.
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gives a delayed efect to the loss compared to PCRA. Te
results indicate that joint features enhance the performance
of the model and that adversarial training is an efective
way for the classifcation task.

4.2.4. Tuning of the Temperature Parameter. In addition to
the changes brought about by the above hyperparameter
changes, temperature is also a hyperparameter introduced
by SimCLR [10], which is an adjustable value to help learn
hard negatives well. Table 14 lists the accuracy under
a change in temperature. Obviously, PCRA-GP is easier to be

afected than PCRA, and only three results are improved by
adjusting temperature. In the IMDB dataset, the PCRA
method is improved by 0.12% at a temperature of 0.04.
Besides, the PCRA method improved by 0.21% at a tem-
perature of 0.02 in the Cnews dataset. In addition, only
PCRA is higher than PCRA-GP in the Cnews dataset. Te
results indicate that the best value of temperature is 0.05.

4.2.5. Model Training Efciency. Te training time is also
recorded in Table 15 to observe the efect of diferent
components on the training time. Te experimental tests
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Figure 7: Te training process data of diferent datasets. e_l means the encoder loss, c_l denotes the classifer loss, and acc means accuracy.
(a) Te training process data of IMDB. (b) Te training process data of ChnSentiCorp-Htl. (c) Te training process data of 20news. (d) Te
training process data of Cnews.

Table 14: Classifcation results under diferent temperature parameters. Te temperature is adjusted for the maximum value in Table 12,
which is trained at a fxed temperature of 0.05.

Temperature
Accuracy

IMDB ChnSentiCorp-Htl 20news Cnews
PCRA-GP (%) PCRA (%) PCRA-GP (%) PCRA (%) PCRA-GP (%) PCRA (%) PCRA-GP (%) PCRA (%)

0.01 51.43 89.23 59.42 90.50 12.98 84.55 66.34 97.35
0.02 49.50 87.71 88.83 89.58 12.37 82.10 68.92 97. 9
0.03 50.10 81.27 89.17 90.08 13.04 86.86 56.46 97.18
0.04 88.80 89.84 88.92 89.25 88.10 86.91 96.50 96.92
0.05 89.91 89.72 91.42 91.08 89.17 88.48 97.21 97.18
0.06 89.56 89.65 89.83 89.25 87.76 87.97 97.2 97.08
Bold values are the best accuracy scores.

Table 15: Model training time comparison (ms/step).

Model
IMDB ChnSentiCorp-Htl 20news Cnews

Encoder Classifer Encoder Classifer Encoder Classifer Encoder Classifer
PC 95.77 27.98 51.38 11.94 138.71 35.78 211.87 58.18
PCR 99.10  5. 9 57.31 16.52 1 8.22 51.47 215.81 80.77
PCRA 94.31 35.2 57.70 16.8 130.24 47.01 199.34 77
PCRA-GP 94.78 34.81 49.27 15 131.12 47 213.37 79.67
Bold values are the most time-consuming results.
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were performed on RTX 2080Ti. Te results show that R
increases the training time per step. Te attention mecha-
nism reduces the training time and verifes the efect of
automatic feature selection. However, the role of the attention
mechanism fails for ChnSentiCorp-Htl. Tis is mainly due to
the small size of the dataset and the short text length. Fur-
thermore, the lower time reduction during the classifcation
stage is due to the use of the frozen encoder. Te results
indicate that the training time can be reduced by the attention
mechanism in the multilevel feature fusion strategy.

5. Conclusion

In this research, PCRA-GP that takes the best advantages
from both feature extraction and representation is proposed
for text classifcation. First, the CNN, BiGRU, and attention
mechanism are combined to obtain text features. Second,
contrastive learning is used to train a projector which en-
hances feature vector embedding. Finally, a gradient penalty is
used to generate feature vector disturbance by improving the
robustness of PCRA. Experiments are performed on Chinese
and English texts, involving sentiment classifcation and news
text classifcation.Te comparisons with some state-of-the-art
baseline models demonstrate that the PCRA-GP model is
more efective, efcient, and adaptable in terms of the clas-
sifcation quality and domain in most cases. In subsequent
research, we will optimize the details of the model.Te feature
extractor will be adjusted to reduce the dimensionality ap-
propriately to accelerate training speed. In addition, this work
will be useful in other domain classifcation tasks.

Appendix

A The Detailed Results on K80 and RTX2080 Ti

Te list of detailed results related to each dataset about text
classifcation is shown in.

B Applied GP to Image Classification

Our proposed model is regarded as a pretrained encoder
combining the SCL loss with GP. To show that the proposed
training process remains applicable to image classifcation
tasks after changing the encoder, the GP method is added to
SCL [1] work to improve classifcation accuracy. Te en-
coder is a ResNet50 system, with a batch size of 256, an
epoch size of 50, a projection unit size of 128, a temperature
of 0.05, and an Adam optimizer on the Tesla K80 system.Te
experimental results are shown in Figure 5. Te raw value of
epsilon means accuracy without the GP method. Te clas-
sifcation accuracy is the largest when epsilon is 0.01, which
is 0.35% higher than the accuracy of raw data. An epsilon
value of 0.031 returns the lowest accuracy, and accuracy is
improved with increasing epsilon.
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