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Anomaly detection is nowadays increasingly used in industrial applications and processes. One of the main felds of the appliance
is the visual inspection for surface anomaly detection, which aims to spot regions that deviate from regularity and consequently
identify abnormal products. Defect localization is a key task that is usually achieved using a basic comparison between generated
image and the original one, implementing some blob analysis or image-editing algorithms in the postprocessing step, which is very
biased towards the source dataset, and they are unable to generalize. Furthermore, in industrial applications, the totality of the
image is not always interesting but could be one or some regions of interest (ROIs), where only in those areas there are relevant
anomalies to be spotted. For these reasons, we propose a new architecture composed by two blocks. Te frst block is a generative
adversarial network (GAN), based on a residual autoencoder (ResAE), to perform reconstruction and denoising processes, while
the second block produces image segmentation, spotting defects. Tis method learns from a dataset composed of good products
and generated synthetic defects. Te discriminative network is trained using a ROI for each image contained in the training
dataset. Te network will learn in which area anomalies are relevant. Tis approach guarantees the reduction of using pre-
processing algorithms, formerly developed with blob analysis and image-editing procedures. To test our model, we used
challenging MVTec anomaly detection datasets and an industrial large dataset of pharmaceutical BFS strips of vials. Tis set
constitutes a more realistic use case of the aforementioned network.

1. Introduction

Semisupervised computer vision is a task increasingly used
in the industrial sector. Te reasons are to be found in its
fexibility and in its capability to generalize when a new
anomaly is seen. Moreover, despite the good performance of
supervised approaches in computer vision felds, but re-
quiring a large number of examples during the training
phase, the previously mentioned approach requires only
a signifcant number of nominal examples to defne their
distribution. Regarding defects, on the other hand, it re-
quires just a little set of anomalies, used for testing purposes
and in some cases to defne an anomaly threshold.

In real cases, on production lines, the availability of
regular products is the vast majority compared to anomalies.
For this reason, the training dataset would be extremely

unbalanced in favor of nominal examples. Tis makes it
difcult performing a good training supervised model.
Moreover, it is often required to locate the defect within the
image because usually the defective portion covers a small
area of the whole surface. To give an example, on phar-
maceutical vials, defects are frequent little scratches, very
small black spots, or some alien particles deposited on the
surface of products, which are usually between 100 and
1000 μm. Tis target could be more easily reached with
semisupervised anomaly detection architecture and more
specifcally with a reconstruction-based approach, in which
the network gives you a reconstruction of the image without
the anomalous area.

Reconstructive methods include autoencoder (AE) [1, 2],
variational autoencoder (VAE) [3, 4], and generative
adversarial network (GAN) [5]. Tey have been thoroughly
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investigated since they make it possible to learn a robust
reconstruction subspace using only images without anom-
alies. Tanks to the incapability to rebuild anomalous re-
gions, which were not contained within nominal images
during training, the network fails to reproduce the out-of-
distribution area. For this reason, it is possible to detect
discrepancies between the two images by thresholding, for
example, the absolute value of the diference between them.
Tis is the most immediate and simple method for per-
forming fnal classifcation, but it is a nonparametric ap-
proach for anomaly localization, and in some cases,
discrimination could be erroneous in some noisy cases
because the sum of all the small diferences could exceed the
threshold. In other cases, it could be inaccurate due to the
lack of comprehension of diferences between the two im-
ages, which is left to a simple threshold.

In addition to this, our generative-reconstructive-
discriminative anomaly detection with region of interest
attention module network (GRD-Net) aims to minimize the
development of preprocessing algorithms that are used to
locate the portion of the image in which they search for
anomalies. In classical reconstruction-based methods, the
generation of anomaly map, as mentioned above, is left to
a threshold-based classifer, so it is not possible to turn
attention to one or more specifc ROIs. Embedding
similarity-based approach constitutes another big family of
architectures, ofering encouraging results. However, due to
the lack of comprehensibility of the result and learning
process, it becomes more difcult to impose an ROI, which
draws attention to defects.

For all the aforementioned reasons, a second network,
chained to the frst generative part, is required to achieve the
intended results. Tis work is heavily inspired by the dis-
criminatively trained reconstruction anomaly embedding
model (DRÆM) [6]. DRÆM works by learning a joint
representation of an anomalous image and its anomaly-free
reconstruction and simultaneously learning a decision
boundary between anomalous and positive examples. Tis
method enables direct anomaly localization avoiding the
implementation of some postprocessing techniques.

Te DRÆM is based on a frst reconstructive network
(an autoencoder) and a discriminative network. Te frst
network is trained to identify and reconstruct anomalies,
maintaining the nonanomalous regions of the input image.
Te second network combines original and reconstructed
appearance to learn joint-anomaly inclusion reconstruction,
to produce accurate anomaly segmentation maps [6].

In the context of this work, the autoencoder that defnes
the reconstructive network is replaced with GANomaly [7].
GANomaly is a generative adversarial network (GAN) [5]
architecture that simultaneously learns how to create a high-
dimensional image space and infer a latent space. Te model
can map the input image to a lower dimension vector using
encoder-decoder-encoder subnetworks, which are then used
to reconstruct the generated output image. Tis generated
image is mapped to its latent representation by the addi-
tional encoder network. Learning the data distribution for
the normal samples is aided by minimizing the distance
between these images and the latent vectors during training.

Te generative part of the GAN is constituted by a fully
convolutional residual autoencoder [8], that, as mentioned
byWickramasinghe et al., residual blocks help to prevent the
gradient vanishing on deep convolutional networks, thus
avoiding the deterioration of learned embedded-
representations.

In this work, we summarize the following:

(1) Te generalization capability of the GANomaly ar-
chitecture [7] with the denoising ability derived from
the DRÆM architecture [6] is merged in the re-
constructive part of the model

(2) Te reconstructive autoencoder is residual and fully
convolutional [8], improving the stability of the
learning process

(3) An attention module that uses a ROI is added for
each example during the training phase to learn the
area where to focus the segmentation of the ab-
normal area in the discriminative part of the model

Te frst network rebuilds the original image in a better
and more precise way with a more performing and stable
training phase, regarding the two reference models
GANomaly and DRÆM. Tis is due to the residual
autoencoder with the GAN structure and the mask super-
imposed obtained by adding Perlin noise to the input. Tis
technique challenges the network not only to rebuild the
input image as it is but also to regenerate the hidden part by
the noise in a coherent way. Te second block identifes the
area where the defect is located, which is a specifcation
required in most industrial applications, with a ROI-based
attention module. Defning a ROI for each training example
lets the network learn the important area of the product
where to look for defects, using the original and the
reconstructed image by the frst block. In this way, the
second net generalizes and spots the ROI in the new input
images during production, excluding the research of defects
outside.Tis is a very important result because often we need
to spot defects within a region of interest (ROI), excluding
the more chaotic and false-reject-prone areas outside.

Te rest of the paper is organized as follows: Section 2
describes related works. Section 3 presents the background
knowledge necessary for the correct understanding of this
work (Sections 3.1 and 3.2) and our contribution (Section
3.3). Section 4 illustrates the experiments and the results
obtained on the various datasets. Finally, in Section 5, we
present conclusions and future work.

2. Related Work

Many surface anomaly detection techniques exploit the
reconstruction-based approach. Tis approach is based on
image reconstruction and identifes anomalies working on
image reconstruction errors [7, 9, 10]. Typically, neural
networks such as autoencoders (AEs) [10, 11], variational
autoencoders (VAEs) [12], and generative adversarial net-
works (GANs) [7, 13–15] are used for image reconstruction
as described in [10]. Te fnding of an anomaly is generally
based on the quality of image reconstruction.

2 International Journal of Intelligent Systems



Reconstruction-based methods can use the structural sim-
ilarity [10] or the pixel-wise reconstruction error [16] as the
anomaly score to localize anomalies. A visual attention map
created from the latent space can also be used as the anomaly
map [12]. Another reconstruction-based model that im-
plements a segmentation structure based on transformer is
RDAD [17]. Te reconstruction-based approaches are easily
interpretable, but their performance is constrained by the
fact that AE can occasionally produce good reconstruction
outcomes for anomalous images as well [18]. A good
comparison and analysis of the diferent techniques was
described by Xia et al. [15], explaining the benefts of
a semisupervised machine learning architecture for
reconstruction-based methods, but also comparing some
embedding similarity-based methods.

Another important family of methods in the feld of
anomaly detection is, precisely, the embedding similarity-
based approach. Tese techniques extract useful vectors
describing an entire image for anomaly detection [19, 20] or
an image patch for anomaly localization [21] using deep
neural networks. However, in several works based on em-
bedding similarity-based methods, it ofers encouraging
results but frequently lacks interpretability. It is impossible
to identify the specifc aspect of an anomalous image that
contributed to its anomaly score. Te anomaly score is, in
this case, the distance between the embedding vectors of
a test image and the reference vectors representing normality
from the training dataset. Te normal reference can be
defned as the center of a sphere that contains embedding
from normal images or the entire set of normal embedding
as in the case of SPADE [22]. Another interesting approach
that works with patch embedding is PaDiM [23]. Normal
class in PaDiM is described through a set of Gaussian
distributions that utilize the pretrained convolutional neural
network (CNN) to model correlations between semantic
levels. Heavily related to SPADE and PaDiM, there is
PatchCore [24] that uses a memory bank with
neighborhood-aware patch-level features in order to in-
crease performance. In addition, corset subsampling of the
memory bank ensures low inference cost at higher perfor-
mance. A further subcategory of methods, however, based
on embedding similarity-based approach, is the one based
on generative models called normalizing fows (NFLOW)
[25]. Te main advantage of NFLOWmodels is the ability to
estimate the exact likelihoods for out-of-distribution ex-
amples compared to other generative models [26–28].
Notable works in the NFLOW category can be the system
developed by Rudolph et al. called DiferNet [29], the work
of Gudovskiy et al. called CFLOW-AD [30], and the more
recent work of Jaehyeok Bae et al. called PNI [31], which
takes into account the position and neighborhood in-
formation on the distribution of normal features.

Knowledge distillation techniques are also widely used in
anomaly detection tasks, especially when we are dealing with
large images, as in the work of Paul et al. [32]. Tis matter is
examined in the work also written by Paul Bergmann
et al.[33], in which anomalies are divided into logical and
structural. Noteworthy is also the knowledge distillation-
based work of Kilian Batzner et al. [34] where processing

time plays a central role in the problem defnition because
more and more often lots of real-time applications use
unsupervised machine learning algorithms for anomaly
detection tasks.

Reconstruction-based anomaly detection approaches are
widely used in diferent areas with other types of data, such
as time series data. In these cases, conventional threshold-
based anomaly detection methods are inadequate, as
mentioned by Li et al. [35]. To handle this type of data, an
LSTM-RNN model must be introduced into the GAN or
VAE-GAN architecture [36, 37] with an encoder-decoder-
encoder shape. Such data may be derived from industrial
processes [38], where it is often difcult to obtain balanced
data between regular and abnormal data. Also, it can be
obtained by smart grids [39, 40], where it is mandatory to
monitor data for security tasks but equally difcult to handle
such big data without artifcial intelligence algorithms; f-
nally, data could consist of video streams [41].

A special mention should be made to the work of
Zavrtanik et al. [6] as this work is largely based and inspired
by DRÆM. Tis work exploits a reconstruction and a dis-
criminative network to segment artifcial noise. Te output
of DRÆM is an anomaly detection mask and the anomaly
score. Te anomaly mask can be used to estimate the image-
level anomaly score. Te maximum value of the smoothed
anomaly score map is used to calculate the fnal score.

3. Methods

To explain our approach, we frstly introduce DRÆM and
GANomaly as they are the knowledge base necessary for
understanding the rest of the paper.

In this section, we summarize the following:

(1) DRÆM architecture [6], which is the starting point
of our improvements

(2) GANomaly architecture [7], which extends with
GAN’s, benefts the DRÆM architecture, with spe-
cial attention to GAN structure and training loop

(3) Te generative-reconstructive-discriminative net-
work (GRD-Net) architecture, with the attention
module based on ROIs

3.1. DRÆM. As mentioned before, DRÆM is an anomaly
detection framework based on two diferent subnetworks.
Te frst subnetwork (called reconstructive subnetwork) is
trained to recognize anomalies and reconstruct them while
keeping the portions of the input image that are not
anomalous. Te second network learns joint-anomaly in-
clusion reconstruction to create accurate anomaly seg-
mentation maps by fusing the original and reconstructed
appearance.

Instead of generating simulations that accurately refect
the actual appearance of the anomaly in the target domain,
DRÆM instead creates just-out-of-distribution appearances
that allow learning the proper distance function to identify
the anomaly by its departure from normality. Tis paradigm
is used in the proposed anomaly simulator. Te images with
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artifcial anomalies are generated through Perlin noise
generator [42] to generate a variety of anomaly shapes (see
Figure 1(a)). Te generated image is then binarized by
a threshold into an anomaly map using uniformly random
samples.Ten, merging the anomaly map with random RGB
pixels, we obtain the fnal noise (see Figure 1(b)) to be added
to the images of the dataset, as can be seen in Figure 1(c).
Tus, this process creates training sample triplets with the
original image that is free of anomalies, the augmented
image that contains simulated anomalies, and the pixel-
perfect anomaly mask.

Te reconstructive subnetwork of DRÆM performs an
image denoising task. It is trained to reconstruct the
original image from the artifcial corrupted version pro-
duced by the process described above. Te discriminative
subnetwork is a U-Net-like neural network that takes in
inputting the channel-wise concatenation of the re-
constructive subnet output and the original image. Tis
second subnetwork learns to segment the Perlin noise
applied to the original image instead of similarity functions
such as SSIM [43].

Te output of the discriminative subnetwork is an
anomaly detection mask. Tis mask can be interpreted for
the image-level anomaly score estimation. Te anomaly
mask is smoothed by a convolutional flter. Te fnal
anomaly score is computed by taking the maximum value of
the smoothed anomaly score map.

3.2. GANomaly

3.2.1. Adversarial Autoencoders. An autoencoder (AE) [44]
is a neural network that has been trained to attempt to
replicate its input to its output.Te two components of this
network are an encoder (E) that maps the input into latent
space h and a decoder (D) that reconstructs the input
from the latent space. Te ability to constrain h to be
smaller than x and the input copying task are where AE’s
potential lies (in this case, we talk about undercomplete
AE). Te network is forced to recognize the most crucial
aspects of the input data when learning an undercomplete
representation. Tis procedure can be carried out by
minimizing the network’s penalty function when it is far
from x. To outperform the standard AEs, we can think to
train an AE in an adversarial environment [45]. Training
AEs with adversarial setting improves reconstruction
while also giving the user more control over latent space
[46, 47].

3.2.2. Generative Adversarial Networks. GANs are an un-
supervised machine learning approach developed for the
task of generating synthetic data [5]. Specifcally, the frst
purpose of the GANs was to generate realistic synthetic
images. Te concept is that during training, two net-
works—the discriminator and the generator—compete with
one another so that the former attempts to generate an image
while the latter determines whether it is real or fake. Te
generator that is similar to a decoder learns the distribution
of input data from a latent space.

3.2.3. GANomaly Architecture and Training. Te GANo-
maly architecture contains two encoders, a decoder, forming
an encoder-decoder-encoder structure, and discriminator
networks [7]. Te frst encoder-decoder subnetwork in an
AE works as the generator of the model. Te generator uses
an AE network to reconstruct the input image x after
learning how to represent the input data. Te second en-
coder of the encoder-decoder-encoder structure is a network
that compresses the reconstructed image 􏽢x. Tis encoder has
the same architecture on the previous encoder but with
diferent parametrization. Tis encoder explicitly learns to
minimize the distance with its parametrization. Tis min-
imization is used during the test to perform anomaly de-
tection. Te discriminator network aims to classify the input
x and the output 􏽢x as real or fake.

GANomaly is trained by minimizing a loss consisting of
three components: the adversarial, contextual, and encoder
losses. Adversarial loss (Ladv) is calculated for the dis-
criminator, and it is used to reduce the instability of GAN
training. Contextual loss (Lcon) is used to add the con-
textual information to the fnal loss. Tis subloss consists of
the sum of the L1 distance, between the input image x and
the rebuilt image 􏽢x, and the SSIM loss: Lssim � 1 − SSIM
score, also calculated between x and 􏽢x. So fnal Lcon
becomes

Lcon � ωaL1(x, 􏽢x) + ωbLssim(x, 􏽢x). (1)

Finally, the encoder loss (Lenc) is used to minimize the
distance between bottleneck features of the input and the
encoded features of the generated image. Ten, the fnal loss
is described as follows:

Lgan � ω1Ladv + ω2Lcon + ω3Lenc, (2)

where the weighting parameters (ω1, ω2, and ω3) are used to
modify the efect of individual losses on the overall objective
function. Empirically, it has been found that the best values
of the parameters are as follows:

ωa � 1,ωb � 1,ω1 � 1,ω2 � 50,ω3 � 1. (3)

Tese results were obtained starting from the relative
reference papers of GANomaly [7], where ω1 � 1, ω2 � 40,
and ω3 � 1, and DRÆM, where ωa � 1 and ωb � 1. Using
a branch and bound approach with a step of ± 5 on one ω∗
at a time, keeping constant the value of the others. We thus
noticed that the weight related to Lcon, that is, ω2, could be
increased to 50 with a better result in terms of training time,
without losing the contribution of the other components of
the main loss.

3.3. Generative-Reconstructive-Discriminative Network with
Attention Module. Tis work is heavily inspired by DRÆM
[6]. Tis is refected in the general architecture of the proposed
framework. As you can see in Figure 2, the architecture is quite
similar to vanilla DRÆM, but we can see the implementation of
GANomaly instead of the AE which acted as the reconstructive
network. All networks engaged in the reconstructive sub-
network are residual to avoid degradation problems during the
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training. Ten, to train the GANomaly engaged in the GRD-
Net, the loss described in Equation (2) is used. To train the
discriminative network, focal loss (FL) [6, 48] is used. FL can be
defned by the following equation:

FL(p) � − (1 − p)
c log(p). (4)

Basically, FL adds the factor − (1 − p)c to the standard
cross entropy. Setting c> 0 reduces the relative loss for the
well-classifed images, putting more focus on the mis-
classifed examples [48]. Tis loss applied on this sub-
network increases robustness towards accurate
segmentation of hard examples. A further improvement was
applied to the discriminatory network in order to ensure that
only the defects present on the surface of the inspected

products are considered. To do this, in addition to the images
of the dataset, the network is also given a segmentation mask
that highlights the area of interest (AOI) of the product. Tis
mask is multiplied by the anomaly detection mask to obtain
an intersection mask. Ten, FL is calculated on this in-
tersection. Te overall loss of the GRD-Net became

I � Adiscr × ROIinput, (5)

where I is the intersection mask, that is, a tensor obtained
by the intersection (multiplication) of the input mask tensor
ROIinput that highlights a ROI (region of interest) in which
the network has to segment the anomaly area and the output
mask tensor Adiscr of the discriminative network that seg-
ments the original image.

Real/
Fake

Concat.

η
Anomaly Score

Reconstructive network | GANomaly

Discriminative network

Encoder EncoderDecoder

Discriminator

Perlin Noise generator

Anomaly map

Figure 2: Te architecture of DRÆM GAN. Te architecture is quite similar to vanilla DRÆM, but we can see the implementation of
GANomaly instead of the AE which acted as the reconstructive network.

(a) (b) (c)

Figure 1: Simulated anomaly generation process: (a) Perlin noise, (b) Perlin noise with random RGB pixels, and (c) dataset’s image with
Perlin noise.
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Ltot � Lgan + FL I,Minput􏼐 􏼑. (6)

So, the total loss functionLtot is the sum of the GAN loss
Lgan and the focal loss calculated on the intersection
area FL(I).

Finally, the overall training and inference sequences are
schematized, respectively, in Figures 3 and 4.

4. Experiments

Several experiments were performed to test the performance
of the GRD-Net. First of all, the performances of the GAN
with residual convolutional autoencoder have been
compared and evaluated with DRÆM and GANomaly,
which represent state-of-the-art reconstruction-based
anomaly detection and localization technologies. A
schema of one stage composed of two residual blocks is
shown in Figure 5.

Experiments were conducted over 200 training epochs
using vanilla DRÆM autoencoder and our GAN with re-
sidual AE. Our network takes inspiration from the ResNet
V2 architecture used for the classifcation task [49].

In this section, we summarize the following:

(1) Te residual block applied to our architecture
(2) Te two phases of the training loop for the generative

part and the discriminative part
(3) Te benefts of the residual network applied to

autoencoder of the generative part of the GAN
(4) Experiments on the generative-reconstructive-

discriminative network (GRD-Net) architecture,
with the attention module based on ROIs

(5) A real-case experiments based on pharmaceutical
BFS vials, with attention on the body of the
aforementioned vials

Te frst part of the experiments was conducted using three
challenging datasets from MVTec’s sets: hazelnut, metal nut,
and pill datasets. In the second part, the network was tested on
hazelnut, zip, and a proprietary pharmaceutical set of BFS strips
of vials, from a real study and use case that took place in
Bonfglioli Engineering, for a quality control vision inspection
machine. For those datasets, a second ROI dataset was pre-
pared for each training nominal image.

4.1. GAN with Residual AE. As mentioned above, the frst
experiment aims to challenge the vanilla version of DRÆM
architecture. Te training lasted 200 epochs, instead of the
700 used for testing DRÆM on the original paper; this
provides a more realistic case, which can be implemented on
a production line in a real industrial feld. During this step,
we evaluated the anomaly detection per image performance,
using AUROC score, and defect localization within the
image, using the AUROC pixelwise score. Te learning rate
is set to 10− 4, and we used a policy based on “reduction on
plateau” heuristic with a patience of 3 epochs and a re-
duction factor α � 0.1.When a plateau of 3 epochs is reached
at epoch k, it decreases using the formula:

LRk � LRk− 1 · e
− α

, (7)

where LRk is the learning rate at the k-th epoch.
For the evaluation, we used the AUROC, widely used in

architecture comparisons, at the image level and at the pixel
level, as semisupervised anomaly detection and
localization score.

Data augmentation is performed on training examples,
using a random rotation in the range of [− π/2, +π/2] radians
in order to reduce overftting during training over lots of
epochs because of the small number of anomaly-free images
provided in MVTec datasets.

For the sake of completeness, we also tested and com-
pared the GRD-Net with a vanilla convolutional autoen-
coder (that is without residual block) and the GRD-Net with
fully convolutional residual autoencoder.

Te experiment was performed using our huge phar-
maceutical dataset on 500 epochs, using only the generative
part, comparing the losses. Because this is a second network,
the disciminative one that segments the defect within the
image depends strictly on the performance of the frst, and
its architecture has not been modifed.

Te experimental results are very encouraging in support
of the intuition that the residual network, even in the case of
an autoencoder applied to a GAN, is more efective in
generating the fnal data.

Tis can be visually appreciated in Figure 6. We also
provided a comparison between losses used for the generator
in Table 1.

4.1.1. Anomaly Detection. For what concerns surface
anomaly detection, our proposed architecture enhances
somewhat not only the fnal score of the two reference models
but improves also the learning curve making it smoother and
steeper toward convergence, especially during the frst
transitional period. In addition to this, also the diference
between training and validation curves is far less with our
model. Te smoothing of the learning curve can be explained
by the GAN model that, with the discriminator network,
improves the stability of the training process. Te steepest
incline and a lower presence of the overftting phenomenon
(that can be observed with the higher diference between
validation and training curves), can be attributed to both the
GAN model and residual network. Tis is due to the im-
provement given by the adversarial part of the GAN and by
the reduction of the gradient vanishing that could afect deep
convolutional networks.

4.1.2. Anomaly Localization. As for anomaly detection, also
anomaly localization has been compared with DRÆM after
200 epochs of training. GANomaly was not included in this
comparison because it does not exist in the ofcial paper,
a method capable of locating defective regions. Tables 2–5
show the AUROC result comparison between DRÆM and
our approach, as mentioned above in four diferent stages of
the training phase: after 10, 50, 100, and 200 epochs. Te
results are very encouraging because they improve those of
the vanilla network; in fact, a better quality of the
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reconstructed image implies a better performance of the
second discriminative network.Moreover, as in Figure 7, it is
clear how validation curves are much better in our (red)
model, compared to the vanilla one (orange), especially in
the frst phase of the training, thus reducing the number of
needed epochs for obtaining an acceptable result for an
industrial process.

On the other hand, embedding similarity-based net-
work, such as PatchCore, seems to have a better pixelwise
AUROC score. But because of the nature itself of the ar-
chitecture, it is not possible to add, in an easy way, an at-
tention module based on ROIs.

4.2. GRD-Net with ROI. In the second experiment, the
network's capability to learn an interesting region was tested
in which and only within it anomalies can be spotted and
located. Tis region of interest is arbitrarily defned in the
training set, within the input image area. Zipper and
Hazelnut datasets were used for the purpose. Especially,
Zipper is particularly suitable, since samples have 2 logic
regions of interest: the zipper area itself and the fabric area.
In our case, we used as the region of interest of the zipper
part, so we would exclude defects on the fabric zone. An
example is shown in Figure 8. As previously explained in
Section 3.3, the discriminative network was trained using as

Input Image
(X)

Input tuple: original image,
noise mask and image with

noise
(X, M, Xn)

(M, Xn) = P (X)

PERLIN NOISE

GENERATOR

X = G (Xn)
||X - X||
ˆ

ˆ

DISCRIMINATOR

 E = D (X) ∈ [0,1]
Ê = D (X) ∈ [0,1]ˆ

Input tuple: image with noise,
rebuild image, noise mask

(X, Xn, M)ˆ

ˆ

DISCRIMINATIVE NET

(η, M) = Δ (X, Xn) 
ˆ

ˆ

0

||M - (M × ROI)||2
0

Figure 3: Train step fowchart: input image X is transformed in Xn, that is, the image with the Perlin noise superimposed. M is the mask
image of the noise areas.
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Conv 2D

LeakyReLU

Conv 2D

LeakyReLU

Conv 2D

LeakyReLU

Conv 2D

LeakyReLU

Conv 2D

LeakyReLU

F (x) F (x)
G (x)

F (x) + x F (x) + G (x)

x
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Figure 6: Visual representation of how the network with vanilla autoencoder (magenta) is not only less efective, but also noisier in some
losses, such as adversarial loss, compared to the residual architecture (cyan): (a) training adversarial loss, (b) training contextual loss, (c)
training encoder loss, (d) training SSIM loss, (e) validation adversarial loss, (f ) validation contextual loss, (g) validation encoder loss, and (h)
validation SSIM loss.
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focal loss variable intersection between ROI and the mask
generated from Perlin noise. In this way, the net will start
generalizing not only how to spot anomalies from difer-
ences between original and reconstructed images but also
where the region of interest is and in which to focus the

search for diferences. In fact, in most industrial cases, the
totality of the image is not important; indeed, sometimes it
could be misleading, as there may be anomalies within the
frame that are not part of the product itself.

In order to obtain this result, a ROI for each training
image was created and the focal loss was customized as
explained in Section 3.3, namely, by intersecting mask
during training and the aforementioned region of interest.
Tus, the discriminative network learns to generalize the
most important part of the image, where to focus the
attention.

4.3. Real-Case Experiment. Te studied model was used in
a real-case industrial process to perform a quality control on
pharmaceutical BFS strips of vials. Tests are performed by
a Bonfglioli Engineering automatic machine, with a rotary
carousel with a tracker where acquiring sensors are installed.
Te training set is composed by 230355 images of vials,
acquired in 3 diferent areas by an online camera, during the
production process. For reasons related to nondisclosure
agreements, we cannot show full product images, but only
a limited area that covers one of the most interesting parts of
our aim. Strips consist of 5 BFS plastic vials, which stick to
each other on the long side and liquid flled. Because of these
features, one of the most challenging areas is the meniscus

Table 1: Comparison between vanilla and residual architecture used for generative part of the GAN architecture in the GRD-Net.

Loss value for training (validation) phase
Epoch 250 vanilla Epoch 250 residual Epoch 500 vanilla Epoch 500 residual

Adversarial loss 2.8811 × 10− 3 3.2498 × 10− 4 7.4750 × 10− 4 1.3797 × 10− 4

(5.1180 × 10− 2) (3.8928 × 10− 3) (1.3720 × 10− 3) (4.5011 × 10− 4)

Contextual loss 0.03502 0.01853 0.02912 0.01460
(0.04136) (0.02782) (0.03747) (0.02488)

Encoder loss 1.7221 × 10− 4 6.8905 × 10− 5 1.1745 × 10− 4 4.6982 × 10− 5

(2.1078 × 10− 4) (1.2333 × 10− 4) (1.6965 × 10− 4) (1.4363 × 10− 4)

SSIM loss 0.02665 0.01304 0.02200 0.01014
(0.03115) (0.02010) (0.02830) (0.01872)

Table 2: AUROC score after 10 epochs of training per image
(pixel).

AUROC per image (pixel) at 10
epochs

DRÆM GRD-Net

Hazelnut 73.1 96.7
(55.7) (91.0)

Metal nut 58.3 96.4
(49.0) (69.3)

Pill 74.2 77.5
(66.0) (90.5)

Table 3: AUROC score after 35 epochs of training per image
(pixel).

AUROC per image (pixel) at 35
epochs

DRÆM GRD-Net

Hazelnut 85.3 99.5
(82.4) (95.5)

Metal nut 61.8 99.3
(49.0) (69.3)

Pill 75.7 89.8
(86.5) (95.5)

Table 4: AUROC score after 100 epochs of training per image
(pixel).

AUROC per image (pixel) at 100
epochs

DRÆM GRD-Net

Hazelnut 98.8 100.0
(94.8) (97.3)

Metal nut 99.7 99.8
(86.7) (70.4)

Pill 93.8 98.2
(94.8) (95.5)

Table 5: Final comparative table with AUROC score between
GANomaly (200 epochs), DRÆM (200 epochs), PaDiM (ResNet18
pretrain), PatchCore (ResNet50 pretrain,) and GRD-Net (200
epochs).

AUROC per image (pixel)
GANomaly DRÆM PaDiM PatchCore GRD-Net

Hazelnut 78.5 100.0 — 100.0 100.0
(—) (95.0) 97.7 98.6 (97.4)

Metal nut 70.0 98.7 — 99.7 100.0
(—) (86.7) 96.7 98.4 (96.2)

Pill 74.3 97.9 — 97.0 98.5
(—) (94.8) 94.7 97.1 (95.8)

Cable 75.7 91.8 — 99.3 99.5
(—) (94.7) 96.7 98.2 (98.1)

Te results of GANomaly and DRÆM are obtained by us adjusting the
number of training epochs to the number of training epochs used to train
the GRD-Net; for this reason, the fnal result may vary a little from the
reference paper.
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Figure 7: Validation losses for generative (a) and discriminative (b) subnetworks. Red curve is obtained during training of our model, the
orange one is obtained with the vanilla model. It is evident that the learning curve is much better in our case, for both nets: (a) validation
contextual loss and (b) validation focal loss.
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Figure 8: Continued.
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region.Tis is due to the great randomness and variability of
the aforementioned meniscus. Its own shape and the pos-
sibility that there could be bubbles under it or liquid drops
over it make it very difcult to treat this region using only
classical blob analysis algorithms.

Figure 9 shows 3 real-case examples where blob analysis is
almost impossible due to the variability of the meniscus shape
and the shadows generated by the shape of the product itself
and the position of the sensor in relation of the product.

With our network, we managed to localize those
anomalies, with good result, acceptable compared to human
and classical algorithms’ scores. Tese results could be seen
in Figure 10 and in Table 6.

4.4. Ablation Study. Te GRD-Net architecture is analyzed,
evaluating the network generative model and the loss of the
discriminative part.

4.4.1. Generative Model. Te generative subnet, namely, the
reconstructive part, was challenged starting from the SoA de-
scribed in the DRÆM paper [6], in 4.2. Ablation Study-
Architecture section. Adding the GAN structure with a re-
sidual autoencoder, the latter has been tested using a full-
convolutional bottleneck, with a latent size of z � 32 × 8 × 8,
and a dense bottleneck, with a latent size of z � 2048. As
previously shown, best performance was obtained using our

(g) (h)

Figure 8: Especially, signifcant example from the zipper dataset in which we could spot 3 anomalies: one in the zipper, one in the middle of
fabric part, and another, the last, on the border of the fabric zone. As we can see, the only spotted is the one in the zipper region, perfectly
inside ROI, and almost perfectly aligned with the ground truth defect region: (a) original image (X), (b) reconstructed image by the
generator G( 􏽢X), (c) ground truth (M), (d) generated heatmap by discriminative model, (e) generated heatmap by discriminative model
after average pooling with 21 × 21 kernel, (f ) result generated anomaly localization region ( 􏽢M), (g) original image with regions: blue region
is the ROI, the orange region is the ground truth (M), and fnally the red region is the generated region ( 􏽢M), and (h) image generated
overimposing the convoluted heatmap from the discriminative net to X, and colorizing it with jet color-map.

(a) (b) (c)

Figure 9: 3 examples of real cases where algorithmic analysis is difcult, if not almost impossible: (a) foating black particle on meniscus,
near the shoulder of the vial, (b) black spot near the meniscus, and (c) scratch at the turn of horizontal engraving.
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GAN architecture, with a fully convolutional residual
autoencoder (CRAE). Dense-bottleneck residual autoencoder
(DRAE), on the other hand, is a good alternative, and in some
cases, it is better in anomaly removal task but is less capable of

learning the aleatory areas. A good example, shown in Fig-
ure 11, is a pill dataset, whose pills, used as examples, have a
random-like dotted reddish texture that is better reproduced
with a fully convolutional bottleneck.

(a) Original image X
with dark foating particle

on meniscus

(b) Generated heatmap
M⌃ normalized between 0

and 1 

(c) Defect localization
afer convolution and

threshold

(d) Original image X
with black spot on vial

surface

(e) Generated heatmap
M⌃ normalized between 0

and 1 

(f) Defect localization
afer convolution and

threshold

(g) Original image X (h) Generated heatmap
M⌃ normalized between 0

and 1 

(i) Defect localization
afer convolution and

threshold

(j) Original image X
without defect but a

system of bubble near
meniscus

(k) Generated heatmap
M⌃ normalized between 0

and 1 

(l) Defect localization
afer convolution and

threshold

Case 1:

Case 2:

Case 3:

Case 4:

Figure 10: Visual results on real-case experiment. Te frst 3 images represent a defect and the last a regular product really difcult to spot.
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4.4.2. Discriminative Model Loss. Discriminative model
loss was originally composed by focal loss added to the
cross entropy overlap distance loss [50, 51]. Te initial

idea was that the second addendum would help to focus
attention of the network only into the ROI area. So, the
frst idea was

Loverlap Adiscr,ROIinput􏼐 􏼑 � w 1 −
Adiscr ∩ROIinput

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

min Adiscr,ROIinput

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (8)

with w ∈ [0, 1], where Loverlap is the contribution of the
cross entropy overlap distance loss in the discriminative loss,
w is a hyperparameter, Adiscr is the area mask generated by
the discriminative network, and ROIinput is the reference
ROI.

LFL � FL Adiscr,Minput􏼐 􏼑 + Loverlap Adiscr,ROIinput􏼐 􏼑.

(9)

Tis loss led the discriminative network to focus on
the ROI, but also led to highlight all the ROI area on the
heatmap generated as discriminative net output. Tis is
because (8) meant that the Adiscr region tends to
ROIinput · w. In order to prevent this issue, we per-
formed 4 experiments, with 4 diferent variations of the
LFL:

(1) For the frst experiment, we used (9)
(2) For the second trial, we used the vanilla focal loss, but

with the intersection, as in equation (5),
I � |Adiscr ∩ROIinput| � Adiscr × ROIinput, as
the focal loss function input

(3) For the third experiment, we added to the vanilla loss
with the input explained in the previous point, the
overlap custom loss

(4) For the fourth, and last, test, we negated the overlap
function to not intersect 1 − ROIinput

Best results, both visually (as shown in Figure 12)
and numerically (as shown in Table 7), were obtained
using method 2. Tis is due to the tendency to
carry min(Adiscr ∩ROIinput) to be w. Similar results
were obtained on the zipper dataset that was a good
benchmark for real-case defects that, on the same image,
appear both inside and outside the ROI, as illustrated in
Figure 8.

5. Conclusions

Te aim of this work is to create an anomaly detection
network that pays attention mainly to a specifc part of an
image to avoid the identifcation of part of images containing
noise defects in the background.Tis new architecture called
generative-reconstructive-discriminative anomaly detection
with the region of interest attention module network (GRD-
Net) is based on two state-of-the-art anomaly detection
networks: GANomaly and DRÆM. GDR-Net is composed
by a frst generative-reconstructive part (GANomaly)
trained to identify and reconstruct anomalies, maintaining
the nonanomalous regions of the input image. Te frst
submodel maps the input image to a lower dimension vector

(a) (b) (c) (d)

Figure 11: (a) Original pill image (X), (b) pill image with Perlin noise X(n)(
􏽢X), (c) pill image rebuilt by the GRD-Net with CRAE ( 􏽢X), and

(d) pill image rebuilt by the GRD-Net with DRAE ( 􏽢X).

Table 6: Real-case experiment statistics after 30 epochs of training.

Best results on 30 epochs training
Best AUROC per image Best AUROC per pixel Best accuracy

Vials on the meniscus area 0.981 0.996 0.932
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(a) Original image X (b) Generated heatmap
M⌃ 

(c) Colorized and super-
imposed M⌃ on X

(d) Original image X (e) Generated heatmap
M⌃ 

(f) Colorized and super-
imposed M⌃ on X 

(g) Original image X (h) Generated heatmap
M⌃ 

(i) Colorized and super-
imposed M⌃ on X 

(j) Original image X (k) Generated heatmap
M⌃ 

(l) Colorized and super-
imposed M⌃ on X 

Case 1:

Case 2:

Case 3:

Case 4:

Figure 12: Visual comparison between 4 losses, for the discriminative network. Te second case is more clear that segment better only the
anomalous areas.

Table 7: AUROC score after 200 epochs of training per image (pixel).

AUROC per image (pixel) at 100 epochs
AUROC AUROC pixel Accuracy

Case 1 99.4 94.3 94.6
Case 2 100.0  5.3 100.0
Case 3 99.9 91.6 99.1
Case 4 100.0 93.5 100.0
Bolded value are higher values among the cases.
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using encoder-decoder-encoder subnetworks, which are
then used to reconstruct the generated output image. In
order to learn joint anomaly inclusion reconstruction and
create accurate anomaly segmentation maps, the second
network combines the original and reconstructed images. In
order to ensure that only the defects present on the surface of
the inspected products are considered; in addition to the
images of the dataset, the network is also given a segmen-
tation mask that highlights the area of interest (AOI) of the
product. Tis mask is multiplied by the anomaly detection
mask generated by the discriminative network to obtain an
intersectionmask.Tis contribution is summed to the loss of
the network. Te GRD-Net was tested on all MVTec-AD
datasets, on an updated version of the zipper MVTec-AD
dataset and on a real industrial dataset provided by company
Bonfglioli Engineering, located in Ferrara (IT). Experiments
show that the GRD-Net performs better than both DRÆM
and GANomaly not only in terms of performance (AUROC)
but also in visual terms. In fact, the experiments show that
the attention module allows the GRD-Net to identify as real
defects only to those that are in the AOI of the product. In
this way, the noise introduced by random variations in the
background makes no negative contribution to the per-
formance and reliability of the system created.

Nomenclature

AE: Autoencoder
VAE: Variational autoencoder
CNN: Convolutional neural network
RNN: Recurrent neural network
LSTM: Long short-term memory
GAN: Generative adversarial network
Generator: Generative subnet of the GAN
Discriminator: Adversarial subnet of the GAN
Discriminative
net:

U-Net subsequent to the GAN used for
segmentation

CRAE: Convolutional residual autoencoder
DRAE: Dense-bottleneck residual autoencoder
AUROC: Area under the receiver operating

characteristic
ROI: Region of interest
SSIM: Structural similarity index measure.

Data Availability

TeMVTec dataset data used to test the software andmodels
of this study can be found on the proprietary website, https://
www.mvtec.com/company/research/datasets/mvtec-ad. Te
software and real-case dataset data used to build the ar-
chitecture and test the model of this study are restricted by
the Bonfglioli Engineering NDA in order to protect client
data. Data are available from Niccolò Ferrari (niccolo.-
ferrari@unife.it) for researchers who meet the criteria for
accessing confdential data.
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