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Due to the advantages of low storage cost and fast retrieval efciency, deep hashing methods are widely used in cross-modal
retrieval. Images are usually accompanied by corresponding text descriptions rather than labels.Terefore, unsupervised methods
have been widely concerned. However, due to the modal divide and semantic diferences, existing unsupervised methods cannot
adequately bridge the modal diferences, leading to suboptimal retrieval results. In this paper, we propose CLIP-based cycle
alignment hashing for unsupervised vision-text retrieval (CCAH), which aims to exploit the semantic link between the original
features of modalities and the reconstructed features. Firstly, we design a modal cyclic interaction method that aligns semantically
within intramodality, where one modal feature reconstructs another modal feature, thus taking full account of the semantic
similarity between intramodal and intermodal relationships. Secondly, introducing GAT into cross-modal retrieval tasks. We
consider the infuence of text neighbour nodes and add attention mechanisms to capture the global features of text modalities.
Tirdly, Fine-grained extraction of image features using the CLIP visual coder. Finally, hash encoding is learned through hash
functions. Te experiments demonstrate on three widely used datasets that our proposed CCAH achieves satisfactory results in
total retrieval accuracy. Our code can be found at: https://github.com/CQYIO/CCAH.git.

1. Introduction

As the internet and social networking grow rapidly, mul-
timedia information data such as images and texts are in-
creasing dramatically, and it is a great challenge to retrieve
these data efciently. Cross-modal retrieval aims to search
for heterogeneous modal data with a similar semantic
representation by one modality. Hashing methods[1–8] are
widely used in retrieval tasks to improve storage and
computational efciency. Cross-modal hashing methods
attempt to represent heterogeneous modal data as compact
binary codes while maintaining semantic similarity between
diferent modal data in a common hidden space.

Cross-modal hashing methods fall into two broad cat-
egories: supervised methods and unsupervised methods.
Commonly available supervised hashing methods
[2, 7, 9–13] have demonstrated signifcant performance. Te
principle is to use hand-labeled label information or pre-
computed similarity matrices to guide model training and

learning of binary codes. Unfortunately, in real-world and
more challenging scenarios, images are often accompanied
by their textual description, but difcult to obtain their
labels, categories, or tags.

Recently, an increasing number of research hotspots
have emerged in unsupervised cross-modal hashing
methods. Unsupervised hashing methods [1, 14–18] attempt
to get rid of the model’s reliance on manually annotated data
during training, relying solely on the features of the data
itself, and demonstrate superior performance. However, a
common drawback of the above-unsupervised approach is
that the co-occurrence information inherent in the vision-
text is easily overlooked in the high-level semantic feature
extraction process due to the lack of labeling information
guidance (Figure 1). Tis further leads to unsupervised
models that are unable to accurately capture the semantic
connections between diferent modal data, making retrieval
accuracy suboptimal. In view of this, we point out that hash
codes of images and text that appear in pairs should have
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either a minimumHamming distance or a maximum degree
of semantic similarity.

In addition, most existing cross-modal methods focus on
the alignment of semantic features between cross-modal
data (GAN [19]). Simplifying the semantic association of
reconstructed features within a modality with the original
features makes the generated hash codes not perfectly
compatible with cross-modal retrieval tasks. Inevitably,
there is an inherent modal divide problem in high-level
semantic interactions, where one cannot pay attention to
both intramodal and intermodal semantic information of
one’s modality, nor can one bridge the alignment of modal
features and hash encoding, resulting in retrieval results that
do not achieve optimal solutions.

To solve the above problem, in this paper we propose a
novel deep unsupervised cyclic semantic alignment cross-
modal hashing method termed CLIP-based cycle alignment
hashing for unsupervised vision-text retrieval (CCAH).
CCAH is an end-to-end learning framework that simulta-
neously notices both intramodal and intermodal semantic
features and hash code consistency. Our CCAH network
model consists of three components: deep feature extraction,
cycle alignment, and hash encoding learning. Previous
unsupervised network models have sufered from a problem
of low accuracy in text retrieval images. It is well known that
in image text pairs, images contain richer semantic infor-
mation and can extract higher-level semantic representa-
tions at a fner level. Compared to the corresponding text
description, (e.g.,: BOW) the text has relatively little se-
mantic information, and often only a few keywords can be
matched to the described image area (attention points).
Moreover, the text has a contextual relationship, and the
same word may represent diferent semantic information,
resulting in text retrieval images that are often less accurate
than image retrieval text. We propose to consider the text as
data in a graph structure, transforming text features into
node information in the graph, further fusing sparse text
features by using GAT networks, and fusing related
neighboring node information with the original nodes in an
attention scoring mechanism, while the attention score
indicates the closeness of the connection between diferent

nodes, with higher scores being more closely related. And
the auto-encoder is used to encode and decode the extracted
modal features. Our contribution to this work is as follows:

(i) We propose a new deep hash network model called
CCAH. CLIP is used as a visual coder to extract fne-
grained features. Te GAT network is also used for
feature extraction of text modalities.

(ii) We propose a circular alignment method to align
image features with features extracted by auto-en-
coder, and then align the features after mapping
them to the text modality space to ensure semantic
links between modalities and vice versa.

(iii) Te experiments demonstrate that our model
achieves satisfactory results in terms of fnal total
retrieval accuracy under three commonly used
multimodal datasets.

2. Related Work

Currently, cross-modal hash retrieval is broadly divided into
supervised and unsupervised hashing. Supervised hashing
methods have better performance compared to unsuper-
vised methods with the aid of labels or similarity matrices to
avoid redundant information interference.

2.1. Supervised Hashing Methods. Supervised hashing
methods: supervised hashing methods use manually anno-
tated label information or load predefned similarity ma-
trices to guide the training of binary encoding between
diferent modalities and have shown excellent imple-
mentation in multimodal data retrieval. Recently, many
supervised hashing methods have been used to continuously
improve the retrieval accuracy benchmarks. TDH [20] uses
triples to fexibly capture a variety of higher-level similari-
ties, rather than the simple similarity or dissimilarity of
binary groups, sorting to optimize intraclass and interclass
variation; SCM [13] learns the hash function bit by bit using
supervised information in linear time complexity; DOH [21]
learns ordinal representations to generate ranking-based
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Figure 1: As images contain richer higher-order semantic information than text, text retrieval of images usually pays attention to image
regions that are consistent with the text representation, resulting in missing vision modal semantics and reduced accuracy of text retrieved
images.
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hash codes by leveraging the ranking structure of feature
space from both local and global views; Seph [3] uses a
probability distribution, which is approximated by mini-
mizing Kullback–Leibler divergence, to a hash code learned
in Hamming space; QCH [9] proposes to simplify the op-
timization process by transforming themultimodal objective
function into a unimodal formalism; MCSCH [12] proposed
a multiscale association mining strategy, which is a multi-
scale feature-guided sequence hashing method; DLFH [11]
introduces a discrete learning algorithm that learns binary
hash codes directly, without the need for successive relax-
ations. However, the above methods require a lot of manual
and fnancial efort to label the dataset during the hash
function learning process, which is often unrealistic in real-
life scenarios. And without labeling information, the re-
trieval accuracy inevitably degrades.

2.2. Unsupervised Hashing Methods. Unsupervised hashing
methods: to reduce the need for manual annotation infor-
mation during model training, unsupervised cross-modal
hashing methods are proposed. CVH [1] learns binary codes
by minimizing the similarity-weighted Hamming distance;
IMH [6] builds two intramodal similarity matrices based on
neighbor relations; CMFH [16] uses matrix decomposition
to address the semantic relevance of diferent modalities and
maps heterogeneous modal data into a hidden state space;
UDCMH-based [17] learning of features and hash codes
under Laplacian and discrete constraints; DJSRH [14] fuses
semantic information into the afnity matrix to calculate
potential correlations between modes; DSAH [22] aligns
intramodel and intermodal data by fusing them using se-
mantic similarity alignment and heterogeneous modal data
reconstruction; JIMFH [23] combines intramodal and in-
termodal hash codes to obtain the fnal hash code; DBRC
[24] proposes a framework with adaptive binary recon-
struction that allows discrete hash codes to be learned di-
rectly; HNH [25] weighted the original similarities using
Hadamard products and created a joint similarity matrix
using linear combinations. Although these unsupervised
cross-modal hash models have achieved better results re-
garding the colinear information of image text pairs, they
still ignore part of the image information, resulting in poor
accuracy of text retrieved images.

3. Problem Formulation

3.1. Problem Defnition. Suppose we have m image text pairs,
We defne our data structure as O � oi 

m
i�1. We defne Ii to

represent the i-th image and Tj to represent the j-th text. Each
image text pair instance can be represented as ok � Ik, Tk .
We defne the representation of the feature dimension asF.Te
semantic features extracted by the visual feature encoder
denoted as FI and FI ∈ Rm×DI , DI is the high-level dimen-
sional feature representation of the image obtained by passing
the original vision through the image encoder. We also defne
the feature representation of the text after the text encoder as
FT ∈ Rm×DT , DT denotes the high-level feature dimensional
representation of the text, and m is the number of sample

instance points. In addition, we defne the hash code repre-
sentation as B∗ ∈ − 1, +1{ }m×c, and ∗ ∈ I, T{ }. Here c denotes
the length of the hash code, and the hash code of the i-th
original data in B∗ is denoted b∗,i. In addition we defne the
cosine similarity loss function for paired image text as cos(·),
and use the sign(·) function for element wise symbolic
functions. Te defnitions are as follows:

cos (a, b) �
ab

‖a‖‖b‖
,

sign(x) �

+1, x≥ 0,

− 1, x< 0,

⎧⎪⎨

⎪⎩

(1)

here we defne ‖∗‖ to denote the l2 regularization paradigm
for the Frobenius regularization of vectors and matrices.

3.2. Model. In Figure 2, we show all the components of our
model. Te CLIP-based cycle alignment hashing for unsu-
pervised vision-text retrieval (CCAH) consists of three parts,
namely, the feature extraction part, the cycle semantic
alignment part, and the hash coding learning part.

Graph networks [26] represent node information as a
graph, transforming the graph topology into a constructed
adjacency matrix by aggregating node-to-node associations,
fusing the information of each node and its neighbors into a
new node. With attention [27] showing advanced execution
in NLP and CV, the attention mechanism is introduced into
graph networks, where instead of just doing a simple fusion,
the attention algorithm gives each node an attention score,
and then fuses the diferent nodes for information. Less
relevant feature words have a lower score, and feature words
that are more relevant to them can receive a high attention
score. In fusing this information, the infuence of diferent
feature words on the nodes is reinforced and better semantic
information can be extracted.

Since our text is a 1386-dimensional feature vector
representation, we treat these features as node data and each
text can be represented as fi ∈ R1386. To obtain sufcient
expressive power to transform the input features into
higher-level features, after a learnable weighting matrix
W ∈ Rf×f transformation, then self-attention is applied to
the node.

eij � a Wfi

→
, Wfj

�→
 , (2)

where a is the attention calculation factor, eij denotes the
importance of node j to node i. We calculate each neigh-
boring node of node i. To make the coefcients easily
comparable between diferent nodes, we use the softmax
function to normalize all neighboring nodes.

aij � softmaxj eij 

�
exp LeakyReLU a

→T
Whi

→������Whj

→
   


m
k�1 exp LeakyReLU a

→T
Whi

→������Whk

→
   

.

(3)
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T represents the transpose of a vector. By doing this for
all nodes, the node information of the adjacency matrix has
been transformed into a new node vector containing the
attentional features of each neighboring node, which is the
most easily weighted fusion of semantic information that is
lacking in the text modality, leading to a more powerful
modal representation of the text modality. Te graph at-
tention network is a fusion of feature words associated with a
certain feature word with its associated feature words using
attention. And the weighted fusion employing the attention
mechanism can obtain a new semantic feature representa-
tion containing the information of neighboring nodes.

3.2.1. Deep Feature Extraction. In order to extract richer
information about the high-level semantic representations
of the modalities, we design diferent modal encoders for
diferent modal data. Since image modalities contain richer
semantic information than text modalities, and the single-
stream model (eg: ViLT [28]) cannot bridge the inherent
modal gap across modalities, cannot perform optimal fea-
ture extraction for each modality, and has limited ability to
mine semantic consistency information for heterogeneous
data, we adopt a dual-stream model to extract semantic
features for diferent modal data information and show
excellent results throughout the training phase. Te results
were excellent throughout the training phase.

(1) Image Feature Extraction. CLIP [29] used a training
method of contrast learning in unsupervised learning, using
a dataset of huge size for training, compared to ViT [30],
which yielded good quality results on several datasets. Using
the CLIP pretrained model as a feature extractor for image
modalities in our model. In the image section using CLIP’s
image encoder (encode-image), we feed the original image

into the CLIP image encoder (Figure 3), and after extraction,
we obtain a 1024-dimensional high-level semantic vector,
which we defne as FI ∈ Rm×1024.

(2) Text Feature Extraction. We consider text modal data as
not containing as much high-level semantic information as
image data, but text semantics are contextually relevant. We
treat the features of text as nodes of a graph and use graph
attention networks (GAT [31]) to extract aggregated se-
mantic information from text. GAT treats text features as
nodes, and converts input features into higher-level features
to obtain more powerful expression, introduces an attention
mechanism, performs self-attention on nodes, and fnds the
attention weight coefcients between nodes; and by
weighted summation of surrounding neighboring nodes,
you can get information that aggregates all surrounding
nodes, making the connection of text information more
realistic (Figure 4). Te text features are constructed as
adjacency matrices, and the information in the adjacency
matrices represents the linkage of text modalities, and the
semantic representation of text can be better processed by
weighting the features. Te original text message is char-
acterized by FT ∈ Rm×1386.

For simplicity, we defne the feature extractor as F. Te
mathematical notation of each modal feature extractor is
defned as follows:

FI � F I;ΘI(  FT � F T;ΘT( , (4)

where I and T are the original image and text.ΘI andΘT are
the parameters of the feature extractor. To this end, we can
extract semantically rich high-level representation features
for each modality, which can be used to fully explore the
semantic relationships between the data and further guide
modal alignment and hash code learning.
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Figure 2:Te entire architecture of our model is represented in the fgure above, with the orange region indicating the imagingmodality and
the green region is the text modality. We construct similarity matrices within and across modalities, and the generated hashmatrices are also
aligned betweenmodalities to be able to guarantee semantic alignment withinmodalities, hash encoding, and features across modalities, and
hash matrix to hash matrix alignment.
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3.2.2. Cycle Alignment. To facilitate intramodal semantic
feature alignment and to maintain cross-modal data se-
mantic interaction, we propose the use of circular semantic
alignment methods. Te distance between semantically
similar vision-texts is promoted to be close in the common
representation space and vice versa makes the distance in the
common representation space farther. To further align text
and images we use intramodal and intermodal loss mea-
sures. We use auto-encode to compress the high-level se-
mantic features into low-level semantic representations and
to reconstruct this underlying semantic feature back into a
feature of heterogeneous data. We defne the function that
compresses the high-level semantic representation as
follows:

TVI � Enc FI; δI(  TVI ∈ R
m×c

,

TVT � Enc FT; δT(  TVT ∈ R
m×c

,
(5)

where F∗ denotes the original features of the image and text,
δ∗ is defned as the parameter under each modal pass Enc(∗),
and ∗ ∈ I, T{ }.

Te high-level semantic features extracted by the feature
extractor are encoded and compressed by the encoder to
obtain a true-value semantics with strong representational
power and containing highly semantic features, which we
then reconstruct back into a representation of the hetero-
geneous data by means of a decoder, which we defne as
follows:
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Figure 3: We use CLIP image encoder for the images, with the left side representing the original image and the right side representing the
results of attention visualization for diferent levels of features.
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FI
′ � Dec TVT; cT(  FI

′ ∈ R
m×DI ,

FT
′ � Dec TVI; cI(  FT

′ ∈ R
m×DT .

(6)

We input the features of the image (text) into the de-
coder and the semantic information obtained is then
mapped to the feature space of the text (image) by the
decoder to achieve semantic alignment between modalities.
After obtaining the reconstructed features of heterogeneous
data, to facilitate cross-modal information interaction. We
semantically align the original image features with the text
reconstructed by the decoder. To ensure that the resulting
compressed feature vector represents the original high-di-
mensional feature representation, we align the high-di-
mensional features with the encoded features once as well,
achieving intramodal semantic alignment.

(1) Intermodal. To facilitate information interaction between
diferent data and achieve cross-modal semantic interaction,
we use the semantic features obtained by the feature extractor
of one modality to be mapped to the corresponding semantic
space of another modality after being decoded by the auto-
encoder. FT,I represents the vector representation after
mapping the text features to the image feature space, and FI,T

represents the vector representation obtained by mapping the
image features to the text feature space. We construct the
cross-modal semantic featurematrix SFT,I

and SFI,T
. Alignment

of diferent modal types is achieved by minimizing cross-
modal semantic losses, with the following loss function:

LC− inter1 � SFI
′ − SFI

�����

�����
2
,

LC− inter2 � SFT
′ − SFT

�����

�����
2
.

(7)

Te total intermodal loss is expressed as follows:

LC− inter � LC− inter1 + LC− inter2. (8)

We can leverage the high-level semantic feature repre-
sentations between two modalities for cross-modal align-
ment, and we achieve cross-modal heterogeneous data
alignment by computing the minimization LC− inter.

(2) Intramodal. To ensure the representativeness of the
semantic information within the modality and to reduce
semantic feature loss, we also perform intramodal con-
straints within the same modality, and we align the features
extracted from the original image with the higher-level
semantic representations encoded by the auto-encoder.
Ensuring representability and completeness of high-level
semantic information within a modality by minimizing
LC− intra, we construct the image modal feature matrix as SFI,I

after auto-encoder to obtain the features of the hidden state,
which is denoted by SEnc− I. Te text features are also rep-
resented by SFT,T

for the original extracted features and SEnc− T

for the features decoded by auto-encoder. We defne the
intramodal losses as follows:

LC− intra �  SF∗ − SEnc− ∗
����

����
2 ∗ ∈ I, T{ }. (9)

Terefore, we construct a semantic alignment method
with intramodal and intermodal alignment, which achieves
intramodal semantic alignment by aligning the high-level
semantic representation extracted by the visual coder and
the text encoder with the compressed semantic features of
the feature after auto-encode, ensuring that the high-latitude
modal data can be restored with a small number of high-level
features, aligning the heterogeneous data with the original
modal features through the mapping of the decoder, en-
abling information interaction across the modal data, and
achieving intramodal and intermodal alignment. We defne
the loss of cycle-alignment as follows:

LC � LC− inter + LC− intra. (10)

3.2.3. Hash Encoding Learning. After feature extraction and
cycle semantic alignment, the semantic information of the
text and visual data can be extracted and interlinked in a
high-quality way. In the area of cross-modal retrieval, we
aim to make semantically more similar heterogeneous data
more closely related, by fnding semantically related data
samples from one modality in the dataset from query
points in another modality according to a defned simi-
larity metric. By converting the query points into a hash
code, the corresponding modal information can be re-
trieved more quickly. With the AE (auto-encoder) map-
ping, we can fully extract the high-latitude feature
encoding corresponding to each modality during the
training phase. We perform the mapping of the hash
encoding through the AE generated feature vector, and
due to the feature extraction and reconstruction semantic
operations, we use the true value to construct the hash
encoding and generate hash codes via the tanh(·) function.
We compute this pairwise cosine similarity matrix by
defning them as SB

xy, which is used to represent the
generated hash matrix. Te visualization of the feature
generation hash encoding is shown in Figure 5. Te hash
matrix of text modalities is denoted as SB

TT and the hash
matrix of the image part is denoted as SB

II. For the matrix
elements, we calculate by using the following cosine
similarity:

S
B
xy(i, j) � cos bx,i, by,j . (11)

In addition inspired by [22], to make fuller use of the
semantic information described jointly by image text pairs,
we construct cross-modal hash code similarity matrices
where colinear image text pairs have the most similar labels
or categories compared to other modal data, and the ele-
ments on the diagonal are better as they should be closer to 1,
decomputed into hash codes for image text pairs, and
minimizing the loss of colinear instances as follows:

min
BI,BT



m

i�1
1 − S

B
I,T

����
����
2
. (12)

Regarding other elements, we use diagonal similarity loss
to bridge the connection between diferent modalities, e.g.,
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the same pair of image text similarity should be independent
of location information and only related to feature infor-
mation, bridging the semantics of the image text pairs to-
gether by minimizing the diagonal loss, which we defne as
follows:

min
BI,BT

�
1
2



m

i�1

m

j�1
S

B
I,T(i, j) − S

B
I,T(j, i)

����
����
2
. (13)

Te total loss on SB
I,T is as follows:

min
BI,BT

LS � 

m

i�1
1 − S

B
I,T(i, i)

����
����
2

+
1
2



m

i�1


m

j�1
S

B
I,T(i, j) − S

B
I,T(j, i)

����
����
2
.

(14)

After autoencoder encoding, we map the obtained features
to our hash codes through hash functions, and we use these
hash codes to construct the similarity matrices SB

I,I and SB
T,T. In
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Figure 5: t-SNE visualization of the data on the Flickr-25K. (a) Original image features. (b) Image encoded feature distribution. (c) Original
text features. (d) Text encoded feature distribution. In the fgure, the circle (○) and star (∗) denote the representation of text and image
samples, respectively, and diferent colors denote the representation with diferent semantic categories.
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addition, we introduce a new similaritymatrix that we obtained
by mapping the hash function SB

I,T, which is constructed from
image-text labels. We do not use labels for bootstrapping in the
training phase, but introducing label information mainly to
calculate the hash loss.

Whereas hashing methods can speed up the retrieval
process, mapping truth-valued features to hash codes still
results in some missing information, leading to suboptimal
solutions for retrieval. In hash encoding learning, we also
need to pay attention to the semantic relationships between
data from diferent modalities, and similarity information
across modalities is a central task in cross-modal retrieval.
Based on this, we align the features within individual mo-
dalities with the generated hash codes to ensure that the
generated hash codes are more realistic representations of
the original data information. k is the modal adjustment
parameter that allowsmore fexibility to ensure our semantic
similarity.

LH− intra �  kS
F
x,x − S

B
x,x

����
����
2
x ∈ I, T{ }. (15)

We are constructing a joint feature matrix that integrates
the text feature matrix with the image feature matrix in a
weighted way, which is represented by only one common
matrix SF

I,T. Te ɑ is a hyperparameter that can be used to
weight the feature matrix of images and text.

S
F
I,T � αS

F
I,I + (1 − α)S

F
T,T. (16)

In optimising our hash encoding based on matrix
alignment.

LH− inter � kS
F
I,I − S

B
I,I

����
����
2

+ kS
F
I,T − S

B
T,T

����
����
2

+ kS
F
I,T − S

B
I,T

����
����
2
.

(17)

Te total loss between modes is as follows:

LH � LH− inter + βLH− intra. (18)

3.3.Optimisation. We combine these losses to construct our
total loss function as follows:

min
BI,BT

L � LC + LS + LH. (19)

Moreover, during our training process, the cyclic
semantic interaction module uses truth codes, and during
the training process, if the truth codes are converted into
hash codes, some information will be lost, and the truth
features are more conducive to the training of the model,
and the truth codes generated after multiple modal in-
teractions are closer to the hash codes. However, the
generated truth codes cannot be gradient-derived because
they are discrete values. To solve this problem, inspired by
(limη⟶∞ than(ηx) � sign(x)), we transform them into
binary hash codes via tanh(.) with the following function
defnition:

BI � tanh ηHI( BT � tanh ηHT( . (20)

Te proposed CCAH algorithm is shown in Algorithm 1.

4. Experiment

Datasets: our experiments were tested on three cross-modal
retrieval datasets, including MIRFlickr-25K [32], NUS-
WIDE [33], andMS COCO [34], to validate the efectiveness
of our proposedmodel.Te datasets are described as follows:

MIRFlickr-25K: MIRFlickr contains 25,000 image-text
pairs collected from the Flickr website. Each image text
pair is saved as an instance. And for text patterns, after
DJSRH [14], each text will be sorted and tagged with
occurrence characteristics and transformed into a
BOW (bag-of-words) vector.
NUS-WIDE: NUS-WIDE consists of 269,648 pairs of
multimodal data containing 81 categories, with each
multimodal instance containing an image and corre-
sponding label. For simple processing, we selected the
10 most frequent categories from the original 81 cat-
egories and the 186,577 tagged instances in all pairs.
Te text of each instance was represented as a 500-
dimensional bag-of-words (BOW) vector. We collated
the index vector of the most frequent 1,000 text labels.
MS COCO: MS COCO was originally collected for the
image understanding task and contains 123,287 images.
For each image, a text description and a 91-dimensional
semantic label are given. Te experiment contains
87,081 images with category information and uses a
2,000-dimensional bag-of-words vector to represent
the textual information. Of these, 5,000 image-text
pairs were randomly selected as the query set and the
remaining image-text pairs were used as the retrieval
set. For the training set, 10,000 pairs were randomly
sampled from the retrieval set.

4.1. Implementation Details. We used CLIP as a feature
extractor for image modality and GATas a feature extractor
for text modality. We used cyclic modal interaction to
achieve semantic alignment within and between modalities
(Intramodal and intermodal). We use hidden features of one
modality to reconstruct features of another modality and
carefully set some hyperparameters α, β, k to assist learning.
We analyze the sensitivity of these parameters based on
experiments. Finally, we selected our parameters as
α � 0.8, β � 0.2, and k � 1.5, batch-size is 16, the learning
rate is 0.005 for both image and text modalities, the SGD
optimization strategy is used, and the weight decay is set to
5 × 10− 4.

4.2. Baseline and Validation. Evaluation criteria: we use
three cross-modal common datasets, MIRFlickr-25K, NUS-
WIDE, and MS COCO to validate our model. For MIR-
Flickr-25K and NUS-WIDE, we follow [14, 16, 17] and
sample 2,000 instances as query points and the remainder as
query database. Due to the overwhelming amount of data in
MIRFlickr-25K and NUS-WIDE, we randomly sampled
from one of the datasets in the database set for training. For
fairness in training, we took some instances from each class
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in the frst round of training and randomly sampled them in
the remaining stages. In the MS COCO dataset, we take
10,000 instances as the retrieval set and the remainder makes
up the database set. In our experiments, we take MAP and
precision @ top-curves as the model judging criteria.

To validate our CCAH model, we compare it with some
common cross-modal approaches. Shallow cross-modal
Hashing: CVH [1], IMH [15], LCMH [35], CMFH [16],
LSSH [9], RFDH [36], FSH [37], and STMH [38]. Deep
cross-modal Hashing: DBRC [24], UDCMH [17], DJSRH
[14], DSAH [22], JDSH [39], MGAH [40], JIMRH [23],
HNH [25], and DUCH [41]. Te results of CCAH compared
to other models are shown in Figure 6.

We compare with previous work on the MIRFlickr-25K
and NUS-WIDE datasets, where we used a benchmark of
MAP@50. Te total retrieval accuracy of our CCAH model
demonstrates better results than previous work in diferent
coding lengths as shown in Table 1.

As can be seen, our experimental data demonstrate ex-
cellent results on two widely used datasets, with signifcant
gains in both image retrieval text and text retrieval image on
MIRFlickr-25K, and slightly worse results for image retrieval
text on the NUS-WIDE dataset, but signifcant gains in text
retrieval image accuracy, and gains in overall retrieval accuracy.
Te NUS-WIDE (tc-10) dataset was used, taking the most
common 10 classes as the composition of the dataset. As the
NUS-WIDE dataset is relatively large, it is not possible to
ensure that the classes of the sample points taken are equal
when sampling the sample points, and the data is more sparse
when constructing the adjacency matrix, leading to a reduction
in the efciency of image retrieval of the text. To validate our
theory, guided by DAEH [42], we tested again on the MS
COCO dataset, which uses class 81. We used MAP@5000 to
evaluate our model and the results are shown in Table 2.

4.3. Ablation Experiment. We experimentally validate the
efect of diferent modules on the accuracy and we validate
the model on the MIRFlickr dataset for 128 bits. We have

also made other attempts. In the encoding and compression
phase, we adopt a two-way model where the compressed
vector reconstructs both its original features and the original
features of the heterogeneous data, rather than just the
features of the heterogeneous data. We validated this on the
MIRFlickr and NUS-WIDE datasets. Te results show that if
we add homogeneous feature reconstruction, there is a
relative 1% improvement in image retrieval of text, but the
accuracy of text retrieval of images decreases (Table 3).

In Table 4, we perform ablation experiments on diferent
modules to demonstrate the efectiveness of our proposed
method.

4.4. Visualization of the Learned Representation. To visualize
the efectiveness of the proposed CCAH, we use t-SNE to
visualize the learned representation of images, text on the
Flickr-25K dataset (Figure 5). Te original feature repre-
sentation of the images and text are shown in Figures 5(a)
and 5(c), respectively. It can be seen that the distributions of
these modalities have large diferences and it is difcult to
distinguish the samples by the original representations.
Figures 5(b) and 5(d) gives the distribution of the learned
representations of the images and text, respectively. It can be
seen from the fgures that the proposed CCAHmethod helps
to distinguish samples with diferent semantic classes and
some clusters show distinguished intervals.

4.5. Hyperparameter Sensitivity. We further validated our
parameters k, α, and β on three datasets using 128 bits
coding lengths. k is the infuence factor by which we op-
timize our hash matrix with the eigenvalues into an align-
ment of the hash code, and we fnd that the best results are
obtained when k � 1.5. α is the parameter for aligning images
and text across modalities. It is known that image modalities
contain richer semantic features than text modalities
(Figure 1), so when weighting images and text, the image
component is weighted more than the text, and our model

Require: Image set I; text set T;
Batch size set m, hash code length c, Max epoch E.

Ensure: Deep Feature extract functions FT, and FI;
encoder function set Enc − (I/T)(∗), and ∗ ∈ FI, FT ;
Hash coding functions than(·), and . ∈ BT, BI .

(1) Initialize the pretrained extractor parameters: k, α, β.
(2) Whilee inEdo
(3) η �

�
e

√
;

(4) Extract the depth characteristics of each mode: F∗, ∗ ∈ I, T{ };
(5) Encode the features to get the hidden states, by Enc(∗);
(6) Using the hidden states to generate truth matrix and hash codes;
(7) Decode the hidden states to generate heterogeneous features FI

′ and FT
′

(8) Calculate the objective function;
(9) Back propagate the gradient with the chain rule;
(10) Update the whole parameters;
(11) end while

ReturnFI(.; θI)andFT(.; θT)

ALGORITHM 1: CLIP-based cycle alignment hashing for unsupervised vision-text retrieval.
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Figure 6: Continued.
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achieves the best results when α� 0.8. β is the parameter that
balances the hash encoding with the original features and
also boosts the intramodal and intermodal coefcients. Te
visualization of hyperparametric sensitivity is shown in
Figure 7.

4.6. Comparing Other Models. On the 3 cross-modal com-
mon datasets mentioned above, our results are signifcantly
improved compared to other models, and our total retrieval
accuracy in top-k exceeds previous methods in all cases. We
added the GAT network, which successfully constructs

adjacency matrices employing graph neighbors to atten-
tionally boost semantic feature-poor text modalities with
higher accuracy compared to traditional bag-of-words
features. Using CLIP to extract image features, the CLIP
large-scale pretrained model can extract features from im-
ages at a fner level. We construct a cyclic semantic align-
ment module to construct the semantic features of the
heterogeneous modes by using the hidden state vector of
each mode from the self-encoder, compared to using a
binary code to construct the features, the true value infor-
mation is more representative of the mode features and a lot
of useful information is lost by using the binary code.

Table 1: Comparison results on mean accuracy (MAP@50) for diferent code lengths under the Flickr-25K and NUS-WIDE dataset.

Dataset Flickr-25K NUS-WIDE

Task I->T T->I I->T T->I

Method 16
bits

32
bits

64
bits

128
bits

16
bits

32
bits

64
bits

128
bits

16
bits

32
bits

64
bits

128
bits

16
bits

32
bits

64
bits

128
bits

CVH 0.606 0.599 0.596 0.598 0.591 0.583 0.576 0.576 0.372 0.362 0.406 0.39 0.401 0.384 0.442 0.432
IMH 0.612 0.601 0.592 0.579 0.603 0.595 0.589 0.58 0.47 0.473 0.476 0.459 0.478 0.483 0.472 0.462
LCMH 0.559 0.569 0.585 0.593 0.561 0.569 0.582 0.582 0.354 0.361 0.389 0.383 0.376 0.387 0.408 0.419
CMFH 0.621 0.624 0.625 0.627 0.642 0.662 0.676 0.685 0.455 0.459 0.465 0.467 0.529 0.577 0.614 0.645
LSSH 0.584 0.599 0.602 0.614 0.618 0.626 0.626 0.628 0.481 0.489 0.507 0.507 0.455 0.459 0.468 0.473
RFDH 0.632 0.636 0.641 0.652 0.681 0.693 0.698 0.702 0.488 0.492 0.494 0.508 0.612 0.641 0.658 0.68
DBRC 0.617 0.619 0.62 0.621 0.618 0.626 0.626 0.628 0.424 0.459 0.447 0.447 0.455 0.459 0.468 0.473
UDCMH 0.689 0.698 0.714 0.717 0.692 0.704 0.718 0.733 0.511 0.519 0.524 0.558 0.637 0.653 0.695 0.716
DJSRH 0.810 0.843 0.862 0.876 0.786 0.822 0.835 0.847 0.724 0.773 0.798 0.817 0.712 0.744 0.771 0.789
DSAH 0.863 0.877 0.895 0.903 0.846 0.860 0.881 0.882 0.  5 0.805 0.818 0.82 0.770 0.790 0.804 0.815
HNH 0.853 0.883 0.895 0.902 0.833 0.854 0.868 0.878 0.582 0.747 0.800 0.816 0.423 0.743 0.781 0.780
CCAH 0.863 0.879 0.899 0.910 0.891 0.908 0.914 0.913 0.715 0.754 0.775 0.787 0.834 0.851 0.864 0.8 4

100 200 500 1000 1500 2000 2500 3000 3500 4000 4500 500050

Number of Retrieved Points

0.30

0.35

0.40

0.45

0.50

0.55

0.65

0.60

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ec

isi
on

LSSH
OURS
HNH
DSAH
DJSRH
UDCMH
DBRC

RFDH

LCMH
CVH

IMH
CMFH

NUS–WIDE: T–>I @ 128 bits

(e)

100 150 200 250 500 750 1000 1250 1500 1750 200050

Number of Retrieved Points

0.70

0.75

0.80

0.85

0.90

Pr
ec

isi
on

OURS
HNH
JDSH
JIMFH
MGAH

DJSRH
CMFH
IMH
LSSH

MSCOCO : T–> I @ 128 bits

(f )

Figure 6: MAP@topK curves on MIRFlickr-25K, NUS-WIDE, and MS COCO.
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Table 2: Comparison results on mean accuracy (MAP@5000) for diferent code lengths under the Flickr-25K, NUS-WIDE, and MSCOCO
dataset.

Task MIRFLickr-25K NUS-WIDE MSCOCO
Method 16 32 64 128 16 32 64 128 16 32 64 128

I->T

IMH 0.681 0.659 0.643 0.633 0.607 0.623 0.619 0.591 0.737 0.687 0.681 0.659
LSSH 0.675 0.677 0.682 0.684 0.678 0.706 0.703 0.694 0.813 0.832 0.838 0.848
STMH 0.566 0.585 0.619 0.659 0.409 0.429 0.468 0.482 0.646 0.687 0.653 0.738
CMFH 0.686 0.692 0.701 0.718 0.635 0.664 0.699 0.731 0.725 0.757 0.777 0.816
FSH 0.659 0.678 0.684 0.706 0.578 0.596 0.631 0.634 0.748 0.770 0.794 0.810
RFDH 0.636 0.648 0.658 0.681 0.551 0.572 0.608 0.649 0.690 0.710 0.749 0.782
DJSRH 0.673 0.701 0.730 0.744 0.587 0.671 0.717 0.743 0.754 0.815 0.861 0.870
MGAH 0.631 0.649 0.658 0.692 0.601 0.677 0.715 0.586 0.780 0.807 0.814 0.752
JIMRH 0.611 0.622 0.633 0.632 0.493 0.516 0.551 0.588 0.660 0.706 0.732 0.756
JDSH 0.725 0.731 0.752 0.761 0.678 0.724 0.743 0.756 0.690 0.758 0.888 0.890
DSAH 0.639 0.766 0.779 0.789 0. 24 0. 53 0.  2 0.  8 0.850 0.881 0.900 0.900
HNH 0.730 0.745 0.738 0.721 0.684 0.721 0.740 0.737 0.830 0.855 0.868 0.850
DUCH 0.667 0.688 0.706 0.723 0.686 0.714 0.728 0.747 0.847 0.866 0.876 0.883
CCAH 0. 83 0.801 0.815 0.815 0.715 0.733 0.753 0.764 0.8 4 0.898 0.90 0.90 

T->I

IMH 0.681 0.667 0.654 0.640 0.626 0.644 0.638 0.617 0.768 0.717 0.715 0.694
LSSH 0.648 0.653 0.662 0.660 0.567 0.587 0.624 0.628 0.708 0.745 0.779 0.800
STMH 0.643 0.674 0.690 0.694 0.581 0.611 0.645 0.675 0.686 0.769 0.811 0.833
CMFH 0.661 0.669 0.679 0.695 0.609 0.641 0.672 0.696 0.757 0.789 0.809 0.838
FSH 0.682 0.697 0.702 0.725 0.609 0.649 0.665 0.668 0.769 0.791 0.809 0.826
RFDH 0.625 0.646 0.654 0.663 0.551 0.568 0.592 0.630 0.701 0.717 0.741 0.777
DJSRH 0.675 0.691 0.698 0.712 0.601 0.656 0.707 0.719 0.759 0.832 0.862 0.869
MGAH 0.627 0.648 0.625 0.632 0.590 0.613 0.645 0.688 0.747 0.772 0.768 0.845
JIMRH 0.647 0.647 0.657 0.659 0.584 0.586 0.610 0.626 0.728 0.767 0.779 0.802
JDSH 0.699 0.719 0.724 0.735 0.674 0.715 0.711 0.718 0.758 0.829 0.895 0.895
DSAH 0.646 0.754 0.759 0.758 0.668 0.716 0.748 0.745 0.854 0.886 0.890 0.891
HNH 0.723 0.720 0.706 0.700 0.671 0.699 0.696 0.693 0.839 0.863 0.867 0.851
DUCH 0.652 0.668 0.681 0.697 0.662 0.694 0.709 0.713 0.860 0.885 0.898 0.903
CCAH 0.803 0.826 0.835 0.848 0. 64 0. 98 0.806 0.826 0.8 0 0.886 0.890 0.897

Table 3: Reconstructive experimental ablation analysis.

Bits
MIRFlickr-25K NUS-WIDE

16 32 64 128 16 32 64 128
I⟶ T 0.869 0.898 0.913 0.919 0.743 0.755 0.770 0.789
T⟶ I 0.878 0.893 0.899 0.902 0.797 0.827 0.835 0.842

Table 4: MAP@50 results at MIRFlickr-25K and NUS-WIDE for ablation analysis.

Method
Firlickr-25K NUS-WIDE

I->T T->I I->T T->I
Bits 16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128
CCAH 0.863 0.879 0.899 0.91 0.891 0.908 0.914 0.913 0.715 0.754 0.775 0.787 0.834 0.851 0.864 0.874
GAT 0.892 0.922 0.935 0.905 0.886 0.886 0.897 0.896 0.796 0.829 0.841 0.85 0.774 0.792 0.8 0.808
CLIP 0.869 0.871 0.888 0.901 0.89 0.895 0.906 0.908 0.735 0.759 0.781 0.793 0.836 0.842 0.858 0.869
CA 0.859 0.876 0.891 0.907 0.883 0.899 0.906 0.904 0.713 0.748 0.771 0.784 0.828 0.848 0.861 0.87
ALL 0.863 0.877 0.895 0.903 0.846 0.86 0.881 0.882 0.775 0.805 0.818 0.827 0.772 0.791 0.804 0.815
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Figure 7: Continued.
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We perform validation of our model on the MS COCO
dataset and we mark the detected images with manual re-
gions. In text retrieved images, text marked in red is the
feature word of the text (corresponding to the image marker
region); in image retrieved text, text marked in red indicates
that the retrieval result does not quite match the description
of the image Figure 8.

5. Conclusion

In this paper, we propose a novel deep unsupervised cross-
modal hashingmethod, CLIP-based cycle alignment hashing
(CCAH) for unsupervised vision-text retrieval. We con-
struct a cycle alignment module that allows for more fexible
exploitation of high-level semantic information within and

A man is riding on the top
of an elephant

a man on skis stands in
the snow

A female tennis player is standing on a tennis court.

A female tennis player is running to catch the ball.
A female tennis players wings her racket at a tennis ball and a line umpire
stands behind her
A female tennis player raises her racket to hit the ball on a tennis court.

A woman is holding a tennis racket as the ball is in front of her.

There is a man riding a bike carrying a bag
A man riding a bike along side of a yellow bus.
A person riding a bike in front of a bus
A guy riding a bike close to a car in the street
a person riding a bike on a city street

Figure 8: Text query image and image retrieval text on the MS COCO dataset. Te building boxes of images are manually labelled for
readability. Te image retrieval text is shown in red for incorrect retrieval results.
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Figure 7: Parametric sensitivity analysis on MIRFlickr, MS COCO, and NUS-WIDE datasets at 128 bits.
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across modalities. To further bridge the gap between the two
modalities, we use the hidden state vector of one modality to
reconstruct the features of the other modality, enabling
cross-modal data to be mutually characterized. Extensive
experiments on three benchmark datasets show that CCAH
outperforms several state-of-the-art methods in multimodal
data retrieval tasks.
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