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Explainable artificial intelligence is proposed to provide explanations for reasoning performed by artificial intelligence. There is no
consensus on how to evaluate the quality of these explanations, since even the definition of explanation itself is not clear in the
literature. In particular, for the widely known local linear explanations, there are qualitative proposals for the evaluation of
explanations, although they suffer from theoretical inconsistencies. The case of image is even more problematic, where a visual
explanation seems to explain a decision while detecting edges is what it really does. There are a large number of metrics in the
literature specialized in quantitatively measuring different qualitative aspects, so we should be able to develop metrics capable of
measuring in a robust and correct way the desirable aspects of the explanations. Some previous papers have attempted to develop
new measures for this purpose. However, these measures suffer from lack of objectivity or lack of mathematical consistency, such
as saturation or lack of smoothness. In this paper, we propose a procedure called REVEL to evaluate different aspects concerning
the quality of explanations with a theoretically coherent development which do not have the problems of the previous measures.
This procedure has several advances in the state of the art: it standardizes the concepts of explanation and develops a series of
metrics not only to be able to compare between them but also to obtain absolute information regarding the explanation itself. The
experiments have been carried out on four image datasets as benchmark where we show REVEL’s descriptive and
analytical power.

1. Introduction

In recent years, artificial intelligence (AI) has experienced
a huge development, providing solutions to many real-life
problems. Unfortunately, these systems remain character-
istically opaque, which is known as the black-box problem.
To tackle the comprehension of the black box, several ex-
plainable AI (XAI) techniques have been proposed [1]. In
general, the aim is to extract knowledge from black-box
models so that they become understandable by a human but
it also aims to show the risks of not using the XAI
perspective [2].

In the literature, there is a clear separation between
model-agnostic and model-specific explanations. Expla-
nations designed as agnostic do not require knowledge of

the model’s own structure information [3, 4]. One of the
most used and simple ones is local linear explanation
(LLE).

All proposed explanations are based on different
notions of what constitute an explanation and, therefore,
are not directly comparable. In the literature, there are
several proposals to compare explanations. In [5], dif-
ferent desirable qualitative aspects for an explanation are
proposed, without including ways to measure them. In
[6], the LEAF framework is proposed, designed for the
evaluation and comparison of explanations. This frame-
work has 4 different metrics to evaluate different desirable
qualitative aspects of explanations. However, these met-
rics have different design inconsistencies which make
them incomplete and biased.
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Although there are different measurement proposals,
there is no consensus in the XAI literature on how to
evaluate explanations since there is no definition of what
constitutes a good explanation [7]. Moreover, these mea-
sures have theoretical inconsistencies, and although they are
useful to compare explanations, they do not provide absolute
information on the explanation itself. Therefore, a set of
robust metrics theoretically correct and representing char-
acteristic behaviors of the method in practice is necessary.
We also want to emphasize the difficulty of analyzing dif-
ferent factors that must inherently modify the explanation,
such as the specific task covered by an Al or the type of data
on which the explanation is generated.

Although there is no consensus within the literature on
how we should create or even measure explanations, there
are different state-of-the-art tools available that, combined
with robust mathematical development, can provide a more
generalizable and reliable analysis of the black-box generated
explanations.

This work focuses on the proposal of the REVEL
framework (Robust Evaluation VEctorized Local-linear-ex-
planation), whose main contribution is to offer a consistent
and theoretically robust analysis of the black-box generated
explanations, as well as being useful at a practical level for the
evaluation of explanations. REVEL takes advantage of the
existing state of the art and develops a series of theoretical
improvements on the generation and evaluation methods. In
addition, it redefines and proposes different quantitative
measures to robustly assess different qualitative aspects of the
explanations. These measures emerge naturally and are well
defined, so that we can extract not only comparative in-
formation among explanations but also get an absolute idea
about the quality of an explanation on its own.

Although the theoretical study is generalizable to any
kind of data and any kind of task, we focus on image
classification in order to simplify the final discussion of the
article. In addition, it is easier to work with images for the
purpose of the analysis in the article, since it is simpler to
generate different number of features with this data type.

The experimental section has been designed to show the
analytical and descriptive potential of REVEL. We have
designed three different scenarios on which to use REVEL.
These scenarios are as follows:

(i) We analyze within LIME how much the number of
black-box evaluations affects the quality of the
explanations.

(ii) Within LIME, we also analyze how the number of
features in which we split an image is affecting.

(iii) We compare the two well-known state-of-the-art
black-box explanation generators, LIME and SHAP,
to demonstrate the comparative capability of
REVEL.

The rest of the paper is organised as follows. Section 2
provides a survey of motivations and basic concepts of LLE
and describes two main methods that we will compare,
LIME and SHAP. Section 3 proposes REVEL framework and
highlights its strengths with respect to other methods of
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evaluating explanations in a theoretical way. Section 4 de-
velops a generic experimental pipeline for the comparison of
explanations which we use in Section 5 to perform a com-
parison of different aspects of LIME and SHAP on four
image classification benchmarks. Finally, the concluding
remarks and future work are reported in Section 6.

This paper is based on a preprint version published
in [8].

2. Preliminaries: Considerations to Generate
Local Linear Explanations

In this section, we review the type of explanations named
LLE, also called feature importance models, additive feature
attribution methods, or linear proxy models. These methods
are called LLE because they are a local linear approximation
of the black box. We focus on LLEs because of their rigor and
simplicity, which helps when developing possible metrics.
Other more complex explanations would make this task
more difficult.

This section starts with a theoretical description of LLEs
and describes the two state-of-the-art LLEs, LIME and
SHAP. We then discuss four fundamental aspects for the
generation of feature importance explanations: the differ-
ences between the concept of importance and how to
compare them and how to generate the neighborhood of
examples for the regression of LLEs and different consid-
erations about the type of data we work on and the specific
task we tackle.

2.1. Local Linear Explanations. Formally, let X ¢ RF be the
input dataset. Let f: Rf — R be the original black-box
model, where C is the dimension of the output space ¥%.
Previous works define f as a function that relies on just R,
but in case of tasks such as nonbinary classification prob-
lems, the model output is a vector of probabilities where each
component depends on all others. Let x € X be the input to
be explained. A white-box LLE explainer is a function
g: Rf — RC defined as follows:

g(x) = Ax+B,A € My, B e R, (1)

and in other words, g is a linear application from the feature
space to the output space.

Intuitively, the weights of both A and B are linked to the
importance of each feature. More precisely, each weight g, ;
of matrix A is linked to the importance of feature i to output
j- Also, each bias b; is linked to the general importance of
output j.

The different LLE methods use linear regression mini-
mizing error as follows:

Z(fgm)= Y m@F@-g@),

z€N (x)

where the weight function selection depends on each par-
ticular method. Another factor to consider is how the
neighbors are sampled. The original proposals consider
a Bernoulli experiment for each feature, that is, each feature
has the same probability to be present on the generated
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neighbor. On the other hand, there are other newer pro-
posals that consider a smart perturbation generation [9],
where examples that contribute more to the explainability
white-box model are more likely to be generated. For each
LLE method, we use the sample-wise approach.

2.2. Models of Local Linear Explanations: LIME and SHAP.
Once explained what LLEs are, we are going to describe the
two main state-of-the-art LLEs, linear model-agnostic
explanation (LIME) and Shapley additive explanation
(SHAP). Although both are LLEs, they have clear differ-
ences in performing the black-box regression. We now
describe how each method works and the main differences
between them.

2.2.1. LIME. The LIME method [10] adopts the concept of
local importance, which means that a feature that produces
significant changes in the neighborhood of x is very im-
portant. Therefore, features that are important for the
classification of x but do not produce significant changes in
the neighborhood of x will end up being discarded as an
important feature.

Formally, LIME builds a LLE model g by linear re-
gression over a neighborhood N (x) of the original datapoint
x. The definition of this neighborhood is not trivial due to
each dataset’s different nature. In order to find a LLE g,
LIME fits a ridge regression to N (x) with the linear least
squares function with the default kernel:

2
-d(x,z) >’ (3)

7, (z) = exp( S

where d(-,-) is the euclidean distance and o is a regulari-
zation factor.

The generation of the neighborhood N (x) is performed
by sampling from an exponential distribution with A = 1/6
avalue v with 0, the parameter selected for the LIME kernel.
Finally, let v = Lv'J. In the hypothetical case of v>F + 1, v =
F where F is the number of all features. The value v sampled
is used to select randomly v features to exclude on this
sample.

2.2.2. SHAP. The SHAP method [11] considers a feature to
be important for the classification of an example x if it
produces significant changes when compared to background
values.

Formally, SHAP builds a LLE model g by computing the
contribution of each feature to the prediction from a game
theory approximation. This method tries to find a LLE g as
a regression with the following kernel function, which is the
SHAP kernel 7, defined as follows:

F-1
() E-lebizl )

|z|

m(2) =

where z € {0, 1} is a binary vector representing the presence
of each of the F features on the z example and < ]Z\V/I ) is the
combinatory number of choosing M elements from N
possibilities without replacement.

This method can obtain an exact explanation g if we
evaluate all the possible examples of z, that is, 2F' evaluations
of the black box f. As the number of evaluations required
increases factorially with respect to the number of features,
this nonstochastic approximation is unaffordable. That is
why the general use of this method uses also a stochastic
approximation generating a list of N different examples and
solves the linear ridge regression as LIME does.

The generation of the neighborhood N (x) is performed
by sampling a value v from a random discrete variable X
whose distribution is the following:

o U+ DM -x+1) 3
P[X_x]_2?101/(i+1)(M—i+1)’ x=0. M (5)

that is, X is the random variable that assigns x the pro-
portional probability of the weight that SHAP assigns to all
the instances that exclude exactly x variables. The value v
sampled is used to select randomly v features to exclude on
this sample.

2.3. How to Define Features for LLE in Nontabular Data.
For an explanation based on feature importance, it is very
important to define what a feature is. In tabular data,
a feature is defined naturally from the dataset itself. How-
ever, other types of data do not have this convenience, e.g.,
time series or images. In the case of time series, the mini-
mum amount of information is obtained at each mea-
surement timestep. In the case of images, we get it from each
pixel. This has several associated problems:

(i) Generating exact explanations becomes an un-
affordable task. In the case of SHAP, for a number of
F features, 2% evaluations of the black box are needed
to generate the nonprobabilistic explanation. A ge-
neric ImageNet image has a size of 224 - 224 = 50176
pixels, resulting in 2°°7¢ black-box evaluations in
SHAP. Even in its probabilistic versions, a regression
needs a large number of these evaluations to be
reliable.

(ii) Explanations lose perspective. For a human being,
a single pixel means nothing. In order to make
a meaningful explanation, several pixels must be
grouped together.



To solve these problems, some works use a division of the
image into squares of the same size [12] while others use an
unsupervised segmentation method to generate larger
segment-size features [13].

2.4. How to Explain with LLE in Different Machine Learning
Tasks. To explain an artificial intelligence model, it is
necessary to take into account the task for which the model
has been designed.

(i) In the regression task, each element of the output
can be explained separately. Thanks to this, no
output is dependent on any other and a separate
analysis can be performed.

(ii) In the classification task, the output is usually
a vector of probabilities with clear constraints that
must be satisfied (each element must be greater than
or equal to 0 and the sum of all of them must be 1).
Furthermore, it is not just the class to which it is
classified that has an influence, but also the degree of
certainty with which it is classified into each class.
Since the outputs are dependent on each other in
this case, a joint analysis of the output must be
carried out.

(iii) In the clustering task, an explanation can be carried
out simply by some example or by some rule for
each cluster [14]. Therefore, it is necessary to unify
the concept of explanation within the
clustering task.

Therefore, for each specific task, a different method of
explanation must be developed. From now on, we focus on
the task of classification, described formally in the following.

2.4.1. Classification Task Specifications. Let g be a local
linear white-box-model where g: F — Y, over the logit
space, g(x) = Ax + B. We define the signed importance
matrix as the derivative matrix Al, over the logit space. It
should be noted that A = Al.

To obtain the probability vector, we need to apply the
softmax function, that is, p = softmax (Ax + B). We define
AP = D (softmax(g(x)))(x) where D() is the derivative
operator.

The component a; ; of matrix A' and A? will refer to the
importance of feature i for class j over the logit and
probability spaces, respectively.

Both matrices give us important and complementary
information about the behavior of the white box g. The A’
matrix gives us absolute information about how the logits of
all classes correspond to the original features. Additionally,
the AP matrix gives us information about the classes that are
potentially most likely to be classified as, disregarding the
least likely. This may provide us apparently contradictory
information, as we show in the following example:

(i) Let g: & — R be the white-box linear model of
a multiclass problem of three classes on the logit
regression and let x be the original example. Say
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g(x) = (5,3,-2) and, therefore, softmax(g(x))
= (95.17%, 4.73%, 0.08%).

(ii) We now consider x, a neighbor of x with a per-
turbation on i feature, that produces g(x') =
(2.5,1.5,—-1) and, therefore, softmax(g(x’)) =
(71.52%, 26.31%, 2.15%).

(iii) If we consider exclusively the logit approximation, it
may be interpreted as feature i influences positively
for classes 1 and 2 and negatively for class 3, with
approximately the same intensity.

(iv) If we consider exclusively the probability approxi-
mation, feature i may have a positive influence for
class 1, a negative influence for class 2, and, much
less significantly, a negative influence for class 3.

From a global view point, each view point has its impact
on the analysis. Thus, we define a new matrix & as the
importance matrix and it is obtained as follows from the
matrices A' and AP:

o, = sign(4;;)|A] - |AL] (6)

which attempts to combine the information of both matrices
Aland AP. This matrix & has the sign of the logit matrix and
the geometric mean of the intensity of importance of both
matrices.

From the importance matrix &, we define the relative
importance matrix &, as d/maxai_ed(lai)jl) and the nor-
malized matrix that maintains 0 as 0 and transforms the
value with the greater absolute value to 1 or —1, depending
on the original sign of this specific value.

We define the absolute importance matrix |&/| as the
matrix of the terms &/, in absolute value, that is, a; ; = |a; 1
for each coefficient 7, j of matrix &/. Each term g, ; of |4, | is
the absolute importance of feature i to the class j.

2.5. Proposed Frameworks to Compute LLE: Qualitative and
Quantitative Approaches. All proposed explanations are
based on different notions of what constitute an explanation
and, therefore, are not directly comparable. In the literature,
there are several proposals to compare explanations. In [15],
another set of metrics is proposed to measure the quality of
explanations. However, they are specialized in rules-based
explanations. In [6], the LEAF framework is proposed, with
also four different metrics to evaluate agnostically different
explanation metrics, independent of the explanation gener-
ation method. It also offers a practical example of their use,
evaluating the quality of different explanations. However, the
theoretical development of this framework is not mathe-
matically consistent, which leads to biased conclusions. On
the one hand, qualitative measures are not objective, and on
the other hand, poorly calibrated measures where the worst or
best score is not achieved only by the worst or best option,
respectively, result in saturations that equalize part of the
examples, removing relevant information. In addition, it is
desirable that these measures have good mathematical
properties such as smoothness so that there are no abnor-
malities in practical cases that were not considered.
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It is in this scenario where the need for a mathematically
consistent and unbiased explanation evaluation framework
arises. In addition, this framework must also provide
a measure not only comparative but also giving an absolute
idea of the good behavior of the explanation itself.

3. REVEL Framework

In this section, we propose a new explanation evaluation
framework called REVEL framework, presenting five new
metrics for assessing the quality of an explanation. In
particular, for each metric proposed, we describe the
qualitative aspect we want to measure with the metric and
show how the formal definition measures this aspect. We
also provide a guideline on how to interpret the metric.
Finally, for each qualitative aspect, we make a theoretical
comparison of each metric with other proposed metrics.

In Table 1, we summarize the metrics we propose and the
qualitative aspect they measure.

3.1. Local Concordance. There are LLE methods guaran-
teeing the white-box explanation and the black-box model to
match on the specific datapoint. However, these methods
have a strong computational constraint, since they require
a large number of evaluations of the black-box model. Other
methods do not ensure the coincidence between white-box
explanation and black-box model. Since the concordance
between both is not guaranteed, it is possible that the class
proposed is different from each other, which means the
proposed explanations end up being inconsistent. We want
to measure how much the explanation and the model are
similar.

On the classification task of more than two classes, it is
also necessary to consider jointly the whole probability
vector. Our proposal also attempts to measure the
smoothness from the min to the max concordance values,
that is, only the min concordance should have a score of
0 and the max concordance should have a score of 1 on this
metric.

We can easily abstract the loss function that evaluates
our metric to consider vector distances among probability
vectors:

Local_Concordance (g) = 1 - M, (7)
where |-| is a defined norm (1-norm, 2-norm, inf-norm...)
and C is the maximum distance between two possible
probability vectors. This term exists and is reached because
the probability space is complete and the norm is contin-
uous. Moreover, C is computed as |u—v|, where
u=(1,0,...,0) and v=(0,1,0,...,0), regardless of
the norm.
This metric has the following qualities:

(i) Using C as the normalization factor makes our score
well defined in the interval [0, 1], with the max
concordance achieving 1 and the min concordance
achieving 0, regardless of the number of classes in the
dataset.

(ii) This metric considers the whole probability vector
jointly and not just one coordinate of the probability
vector.

3.1.1. Guideline. This metric measures how similar the ex-
planation is to the black box in the original example. It is
very important that this metric is close to 1. Otherwise, the
proposed explanation does not explain what happens in the
example itself.

3.1.2. Comparison. The analogous LEAF proposal local
concordance is defined as I(|f (x) — g(x)|), where I(k) =
max (0, 1 — k) is the hinge loss function [16]. In contrast to
our proposal, the use of the hinge function makes it non-
smooth. It also does not assure that only the maximum
discordance reaches the worst value of the metric. In con-
clusion, the LEAF proposal has inconsistencies that our
proposal overcomes.

3.2. Local Fidelity. Local fidelity applies not to a classification
task but a regression one. The main idea of this metric is how
close is the white box g approximating the probabilities
obtained by the black box f. We propose the mean con-
cordance between probabilities of g and f obtained on the
neighborhood N (x), that is,

1 z l_lf(n)—g(n)ll

Local_Fidelity (g) = NI C

neN (x)
(8)

This metric is an extension of the local concordance on x
extended to its neighborhood N (x). It is also well defined on
the interval [0, 1], regardless of the number of classes in the
dataset.

3.2.1. Guideline. This metric measures the similarity be-
tween the explanation and the black box in the neighbor-
hood. This metric is essential to check that the tendency of
the explanation is similar to the tendency of the black box. It
must be close to 1 to obtain a good explanation.

3.2.2. Comparison. The analogous LEAF metric proposes to
evaluate the resemblance between the white-box explanation
and the black-box model in the proposed neighborhood
N (x) using the F1 metric.

(i) The LEAF proposal is a measure designed to evaluate
classification problems. Since N (x) is a neighbor-
hood of x, most examples will, by continuity, be of the
same class as x, resulting in an imbalance in N (x).

(ii) This metric presents problems at decision borders. In
a binary problem with threshold 0.5, let x' be an
example of set N(x) where g(x') =0.49 and
f(x') =0.51. The F1 metric will penalize this ex-
ample while actually the white box g mimics almost
perfectly the undecidability of the black box f.
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TaBLE 1: Summary of the metrics developed by REVEL and the qualitative aspect they measure.
Name What is evaluated

Local concordance

Local fidelity

Prescriptivity

Conciseness
Robustness

How similar is the LLE to the original black-box model on the original example
How similar is the LLE to the original black-box model on a neighborhood of

original example

How similar is the LLE to the original black-box model on the closest neighbor that

changes the class of the original example
How brief and direct is the explanation

How much two explanations generated by the same LLE generator differ

Our proposal has no problem with the imbalance dataset
generated by N (x) for the metric evaluation. Also, our
metric is not biased by a threshold selection.

3.3. Prescriptivity. The main idea of prescriptivity is to test
whether the white-box explanation g has correctly predicted
the changes needed in the original example in order to
change the original class.

Mathematically, let x be the original example, f be the
black-box model, g be the white-box model mimicking f,
and h be the changes needed on x to change the class
predicted by the white box g. We propose the following
prescriptivity metric:

If (x+h)—g(x+hl
C

Prescriptivity (g) = 1 - , 9
where C is a normalization factor. This normalization factor
is the same as in equation (7).

In our proposal, & is obtained by removing the presence
of the most important positive features of the class predicted
by the white box g on the example x. The algorithm ends
when g assigns a different class to x and x + h, that is,
argmax (g (x)) # argmax (g (x + h)).

This metric has the following properties:

(i) This prescriptivity proposal is defined as a vector-
ized proposal, so the metric has a global view of the
whole output.

(ii) This metric obtains the maximum value 1 when
both vectors u and v are equal and obtains the
minimum value 0 when both vectors are in the
maximum possible disagreement on this pre-
scriptivity scenario. It is designed not to depend on
the dimensions of the probability vectors either, so
the metric is independent of the number of classes
in the dataset.

(iii) This metric is not dependent of a boundary selec-
tion, nor it is dependent on a specified
neighborhood N (x).

3.3.1. Guideline. Prescriptivity challenges the explanation to
propose an example far enough to change the prediction of
the model but without losing predictive quality at this point.
Indirectly, each explanation proposes an example x' dif-
ferent from the original example x whose prediction must be
markedly different from that of x. Although the best possible

score for this metric is 1, it is understandable that it does not
reach the best score and serves more as a comparative metric
between different explanation methods.

3.3.2. Comparison with LEAF. The prescriptivity metric is
formally proposed in LEAF for a binary classification
problem, where a fixed decision boundary is chosen. This
decision boundary is the set 2, (y') = {x € Rg: g(x) = y'},
that is, the set of points in the domain whose prediction by
the white box is exactly y'.

On the LEAF proposal, the obtention of 4 is based on the
closest projection of our example x on &, (y'). In reality,
this is only possible if the features selected are real-valued. In
case of binary data, this approximation cannot be achieved
because each feature cannot process a real value. It is also
dependent on a selection of a boundary y'.

LEAF proposes as prescriptivity metric the following

function:
l<|f(x')(—:9(x')|)) (10)

where I (-) is the hinge loss function and C = max(y',1 - y')
is a normalization factor, so that 1 means that x' lies at the
boundary, and 0 means x’ is at the furthest distance from the
boundary. One may observe that by taking the absolute
value, the measure both overshoots and undershoots the
boundary as a loss of prescriptivity.

The LEAF proposal has different problems:

(i) This metric is designed for a single output variable.
For classification problems, it is usual to obtain
a vector of probabilities whose components are
linked to each other and whose analysis must be
done jointly.

(ii) Choosing a fixed y' value does not guarantee the
change of class when we talk about nonbinary
classification problems. In case of a classification
problem of more than two classes, the majority class
could have a 50% probability and other classes could
share the rest of the probability equally. This results
in a x' neighbor of x whose changes do not change
the original class.

(iii) The proposed norm is restricted to the interval [0, 1]
but not smoothly. Even if it is used a normalization
parameter C, it is not clear if only the maximum
possible disagreement results in a 0 score on this
metric or if it is even reachable. It is reasonable for
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this kind of metric to guarantee that the maximum
disagreement obtains 0 as the worst score, and as
agreement increases, the metric increases smoothly
up to 1, the maximum score.

Our proposal does not show all of the different problems
detected in the LEAF prescriptivity proposal, since our
metric jointly measures the full probability vector, is not
boundary dependent, and is well defined in the interval [0,
1], where it changes smoothly from worst case to the
best one.

3.4. Conciseness. Conciseness measure aims to evaluate the
brevity of the explanation. In our case, the less relevant
features our explanation has, the more concise it
should be.

We propose the following conciseness metric based on
the absolute importance matrix |&f|, particularly in the
vectors of importance of each feature. Let v; = (a;1,...,4a;y)
be the importance vector of feature i, where the coefficient
a;j is the i, j coefficient of matrix |/|. We define the con-
ciseness of the explanation proposed by the white box g as

f
1
Conciseness (g) = 1 Z 1-|vil, (11)
T =l

which can be described as the mean irrelevance of the
features. If we consider |v;| instead of 1 — |v;|,, we would have
the mean relevance of the features and the most concise
method would have a score of 1/ f — 1. That is why we have
reversed this term.

This metric has the following qualities:

(i) It rewards the use of few features with a high weight.

(ii) We have a general idea of how many features are
important on the white box.

(iii) The best possible score is obtained if we have only
one feature with absolute importance 1 and the rest
with 0 absolute importance, in which case we would
obtain 1 as conciseness. The worst case is obtained
when we have all the features with 1 as absolute
importance, in which case we would obtain 0 as
conciseness. In addition, the number of classes has
been taken into account, so that, regardless of the
number of classes in the dataset, these max and min
values are reachable.

(iv) We can compare explanations with different
amount of features taken into account.

3.4.1. Guideline. This metric evaluates the ability of the
explanation to focus on the most important features of an
example and discard the less important ones. Depending on
the complexity of the explanation we want, we may prefer
greater or lesser conciseness. For instance, in image clas-
sification, the explanation to dismiss a large part of the image
could be desired but not to have a single pixel explaining the
complete decision of the model.

3.4.2. Comparison. LEAF proposes as conciseness a con-
straint for explanations, where it requires that explanations
use exclusively k features. In the case of LIME, conciseness is
a variable that we supply to the algorithm so that it restricts
itself to choose a given number of features with nonzero
importance. On the other hand, in the case of SHAP, the
algorithm uses by default all available features and gives
them an importance. In order to compare both methods, the
LEAF framework proposes to select a default conciseness
parameter k, the number of features to be used on the white-
box explanation, and restrict both LIME and SHAP to use
the top-k most important features.

As mentioned in the previous paragraph, the proposed
conciseness is not a metric but a constraint on white-box
explanation models. Moreover, the LEAF proposal does not
leave the white-box models to decide whether a particular
decision has been influenced by more or fewer features.

Our proposal, instead of a constraint, provides a metric
to evaluate the conciseness of each white-box explanation.

3.5. Robustness over Explanations. A key point to consider is
the variability of the methods used to generate explanations.
It is desirable that independent explanations generated by
the same method must be as similar as possible, since very
different or even contradictory explanations would lead to
mistrusting the method. In case of deterministic methods,
this is ensured since there is just one proposed explanation.
In case of nondeterministic methods, there are several
proposed explanations, and therefore, we need to ensure that
the explanations do not differ or even contradict each other.

To measure how two explanations g and g’ differ, we
propose two possible measures:

(i) First, we propose the cosine similarity between &,
and o/}, which are the relative importance matrices
of g and g, respectively:

_ 'Q(r ) dr’
09 [ ]

sim, (12)

where - is the scalar product.

(ii) The metric proposed before based on the cosine
similarity takes into account the direction of the
matrices &/ and &/ but not the magnitude. To take
the magnitude also into account, we propose the
following measure of similarity:

. . . ! ! Edr . d;
similarity (g,g) = (W)
, <1 AN >
max(||, [ |/

that takes into account both direction and magni-
tude of the explanations. In case of the same mag-
nitude, this similarity function is exactly the cosine
similarity. In case of different magnitude, this sim-
ilarity function has lesser punctuation than the



cosine similarity in case of a positive scalar product.
In case of a negative scalar product, this score has
also a lesser absolute value than the cosine similarity.
In case of perpendicular explanation vectors, both
metrics have a 0 score.

In both cases, as robustness, we propose the mathe-
matical expectation of the chosen similarity of two different
explanations g and g, that is:

robustness (G) = E [similarity (g, g')], (14)

where G is the set of all explanations that could be proposed
by a certain explanation method such as LIME or SHAP. The
expectation can be approximated by generating a given
number of explanations and computing the mean of the
similarities among explanations.

Those metrics have the following qualities:

(i) Both metrics take into account the weight of all
features, so two explanations g and g choosing
a different most important feature would be pun-
ished by both metrics.

(ii) The second metric takes into account the magnitude
of the importance matrix.

(iii) As both robustness metrics use bounded similarity
functions, this metric consistently achieves the
maximum and minimum possible in the best and
worst case scenarios, respectively, regardless of the
number of classes in the dataset.

3.5.1. Guideline. This metric does not evaluate a specific
explanation but the method that generates them. All de-
terministic methods will score 1 in this metric since they
always generate the same explanation. Therefore, this metric
is designed to evaluate the robustness of nondeterministic
methods. The closer this metric is to 1, the less the expla-
nations generated by this method vary. It should be noted
that this metric, due to the way it is designed, can give
negative scores, which would indicate that the proposed
explanations are contradictory.

3.5.2. Comparison. LEAF proposes the reiteration similarity
metric, which measures how much two explanations gen-
erated by the same method vary by measuring the difference
between the top-k features over several explanations.

(i) This metric depends directly on the conciseness
constraint of the LEAF proposal.

(ii) This metric does not consider the importance of
a feature, since it penalizes equally for choosing
important and not so important features, not
penalizing it.

(iii) This metric does not penalize choosing a “positive”
important feature as “negative” and vice versa. Two
different explanations can consider using the same
feature i for their explanation but attributing pos-
itive importance to it in the first explanation and
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negative importance in the second, which is a clear
contradiction. The similarity proposal does not see
this example as a contradiction and does not
penalize it.

Our proposed robustness metric does not depend on
external constraints and does not have the shortcomings
described above while still measuring the variation between
generated explanations.

4. Experimental Setup

In this section, we describe the experimental setup we use in
this work. The objective of this experimental section is to
show how to implement the proposed measures, not to
demonstrate the best performance of our measures com-
pared to others. This demonstration must be done at the
theoretical stage, as we do in Section 3. We first select four
image datasets as benchmark where we train the models to
explain. Finally, we fix some hyperparameters to compare
different LLE aspects with the REVEL framework.

4.1. Benchmark Selection. The datasets selected as bench-
marks are CIFAR10 [17], CIFAR100 [18], FashionMNIST
[19], and EMNIST-balanced [20], which is a benchmark
already used in [2] for explainability tasks. Table 2 shows
a short description of each dataset.

4.2. General Training Pipeline. For this experiment, we chose
the EfficientNet-B2 model [21] with the pretrained weights
in the ImageNet dataset. Next, the network has been fine-
tuned on the benchmark dataset for 100 epochs, 32 images
per batch with the Adam optimizer [22] with learning rate
le—5, weight decay=0.001, and AMSGrad=True. We
randomly selected 10% of the training set as validation
subset on which the loss is not computed. Over the 100-
epoch models, we select the model whose performance on
this validation subset is the best. As the objective of this work
is the analysis of the metric behavior, we will not go deeper
into the training of the network and we will set these pa-
rameters as default. In Table 3, we show the performance
obtained by the model in the different test sets of the datasets
used as benchmarks.

4.3. Local Linear Explanation Pipeline. In this section, with
the purpose of generating a fair comparison, we fix as default
some shared hyperparameters of the LLE generation models,
explained below.

Number of neighbors (N): For each example of the test
split, we will generate a different number of neighbor
examples to explain the original example. In the ex-
periments, N = 100, 200, 300, 400, 500, 600, 700, 800.

Neighbor generation (N(x)): we use a smart pertur-
bation generator, where each neighbor is generated
with a probability proportional to the weight associated
to it in each method of explanation generation.
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TABLE 2: Descriptive table of the benchmarks selected.

Original image

Dataset Number of classes size Training Test RGB
CIFAR10 10 32-32 50.000 10.000 Yes
CIFAR100 100 32-32 50.000 10.000 Yes
FashionMNIST 10 2828 60.000 10.000 No
EMNIST-balanced 47 2828 112.800 18.800 No

TaBLE 3: Performance of the default model on the test sets of the selected datasets.

Classification model top-1

Dataset Train/test partition accuracy (test) (%)
CIFARI10 83.3%/16.7% 95.26
CIFAR100 83.3%/16.7% 81.84
FashionMNIST 86%/14% 94.25
EMNIST 86%/14% 90.66

Number of explanations generated (E): for each LLE
method and each instance to be explained, we will
generate 5 different explanations.

Number of features of each image (F-F): we divide
each image into square patches of size 224/F - 224/F, so
each image will have F - F features.

Feature occlusion: to set a feature as occluded, we set
the original patch from its original value to a neutral
grey patch, that is, we set all pixel of the patch to 0.5 on
each RGB channel.

4.4. On the Comparison between LEAF and REVEL. This
paper presents REVEL as a proposal of theoretically robust
measures for the evaluation of LLE explanations. The
comparison with other measurement proposals, such as
LEAF, should be carried out theoretically and not practically,
since the measurements offered by the different proposals
have nothing related to each other. That is why the com-
parison on this work is made exclusively on the theoretical
proposal and not on the practical use cases.

5. Assessing Explanations Using REVEL:
Use Cases

In this section, we propose three different scenarios in which
REVEL can be used, thus demonstrating its analytical po-
tential. These scenarios are as follows:

(i) Dependence of LIME on the number of features
(Section 5.1): in this scenario, we study how much
the number of patches into which we have divided
the original image can influence, or if there is an
ideal partition in which to divide the images.

(ii) Dependence of LIME on the number of black-box
evaluations (Section 5.2): In this scenario, we an-
alyze the number of black-box evaluations needed
to generate a good-quality explanation. We also
evaluate the trade-off between quality and time
needed to generate a good explanation.

(iii) LIME vs. SHAP (Section 5.3): We compare the
results obtained by the two state-of-the-art expla-
nation generator models, LIME and SHAP, with the
best configuration determined by the above sce-
narios. This scenario provides an idea about which
explanation generator can offer us better explana-
tions depending on their scores in each of the
proposed metrics.

To better support our analysis on the experiments for
each previous scenarios, we use the Shapiro test and Wil-
coxon test from the SciPy stats library [23]. In particular, the
Shapiro test has been used to check whether each experiment
follows a normal distribution, and thus using a parametric
test is appropriate (Tables 4-6). Since with an exception of
a single experiment in Table 4 we can discard that the
distributions are normal, we need the nonparametric Wil-
coxon test to check that the distributions of different ex-
periments have essentially different results. We considered
a p value of 0.05 to discard the null hypothesis. For each use
case, the Wilcoxon test tables used to perform the com-
parisons are cited.

5.1. Dependence of LIME on the Number of Features. In this
section, we compare how LIME performs over different
number of features. This comparison allows to perform both
a general study and a study focusing on the image data type.
At a general level, we analyze how the number of features
influences the quality of the explanation. In the case of
images, we use this study to determine the best performing
granularity.

5.1.1. Local Concordance. In Figure 1 we note that, as
a tendency, the local concordance score increases as more
features are processed. As the number of features increases,
the explanation method has more parameters to fit.
Therefore, the model increases its performance on mim-
icking the black box on the original example. The difference
remains significant (Tables 7-10).
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TABLE 4: Shapiro test for the number of features.

Features Metric CIFARI10 CIFAR100 EMNIST FashionMNIST
36 Local_Concordance 0.0000 0.0 0.0 0.0000
36 Local_Fidelity 0.0000 0.0 0.0 0.0000
36 Prescriptivity 0.0000 0.0 0.0 0.0000
36 Conciseness 0.0000 0.0 0.0 0.0000
36 Robustness 0.0000 0.0 0.0 0.0000
49 Local_Concordance 0.0000 0.0 0.0 0.0000
49 Local_Fidelity 0.0000 0.0 0.0 0.0000
49 Prescriptivity 0.0000 0.0 0.0 0.0000
49 Conciseness 0.0000 0.0 0.0 0.0000
49 Robustness 0.0000 0.0 0.0 0.0000
64 Local_Concordance 0.0000 0.0 0.0 0.0000
64 Local_Fidelity 0.0000 0.0 0.0 0.0000
64 Prescriptivity 0.0000 0.0 0.0 0.0000
64 Conciseness 0.0000 0.0 0.0 0.2323
64 Robustness 0.0000 0.0 0.0 0.0000
81 Local_Concordance 0.0000 0.0 0.0 0.0000
81 Local_Fidelity 0.0000 0.0 0.0 0.0000
81 Prescriptivity 0.0000 0.0 0.0 0.0000
81 Conciseness 0.0001 0.0 0.0 0.0000
81 Robustness 0.0000 0.0 0.0 0.0000
100 Local_Concordance 0.0000 0.0 0.0 0.0000
100 Local_Fidelity 0.0000 0.0 0.0 0.0000
100 Prescriptivity 0.0000 0.0 0.0 0.0000
100 Conciseness 0.0000 0.0 0.0 0.0000
100 Robustness 0.0000 0.0 0.0 0.0000
121 Local_Concordance 0.0000 0.0 0.0 0.0000
121 Local_Fidelity 0.0000 0.0 0.0 0.0000
121 Prescriptivity 0.0000 0.0 0.0 0.0000
121 Conciseness 0.0003 0.0 0.0 0.0001
121 Robustness 0.0000 0.0 0.0 0.0000
144 Local_Concordance 0.0000 0.0 0.0 0.0000
144 Local_Fidelity 0.0000 0.0 0.0 0.0000
144 Prescriptivity 0.0000 0.0 0.0 0.0000
144 Conciseness 0.0000 0.0 0.0 0.0000
144 Robustness 0.0000 0.0 0.0 0.0000

TaBLE 5: Shapiro test for the number of max examples and the number of features.

Examples Metric CIFAR10 CIFAR100 EMNIST FashionMNIST
100 Local_Concordance 0.0 0.0 0.0 0.0000
100 Local_Fidelity 0.0 0.0 0.0 0.0000
100 Prescriptivity 0.0 0.0 0.0 0.0000
100 Conciseness 0.0 0.0 0.0 0.0004
100 Robustness 0.0 0.0 0.0 0.0000
200 Local_Concordance 0.0 0.0 0.0 0.0000
200 Local_Fidelity 0.0 0.0 0.0 0.0000
200 Prescriptivity 0.0 0.0 0.0 0.0000
200 Conciseness 0.0 0.0 0.0 0.0001
200 Robustness 0.0 0.0 0.0 0.0000
300 Local_Concordance 0.0 0.0 0.0 0.0000
300 Local_Fidelity 0.0 0.0 0.0 0.0000
300 Prescriptivity 0.0 0.0 0.0 0.0000
300 Conciseness 0.0 0.0 0.0 0.0003
300 Robustness 0.0 0.0 0.0 0.0000
400 Local_Concordance 0.0 0.0 0.0 0.0000
400 Local_Fidelity 0.0 0.0 0.0 0.0000
400 Prescriptivity 0.0 0.0 0.0 0.0000
400 Conciseness 0.0 0.0 0.0 0.0000

400 Robustness 0.0 0.0 0.0 0.0000
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TaBLE 5: Continued.

Examples Metric CIFARIO CIFAR100 EMNIST FashionMNIST
500 Local_Concordance 0.0 0.0 0.0 0.0000
500 Local_Fidelity 0.0 0.0 0.0 0.0000
500 Prescriptivity 0.0 0.0 0.0 0.0000
500 Conciseness 0.0 0.0 0.0 0.0000
500 Robustness 0.0 0.0 0.0 0.0000
600 Local_Concordance 0.0 0.0 0.0 0.0000
600 Local_Fidelity 0.0 0.0 0.0 0.0000
600 Prescriptivity 0.0 0.0 0.0 0.0000
600 Conciseness 0.0 0.0 0.0 0.0000
600 Robustness 0.0 0.0 0.0 0.0000
700 Local_Concordance 0.0 0.0 0.0 0.0000
700 Local_Fidelity 0.0 0.0 0.0 0.0000
700 Prescriptivity 0.0 0.0 0.0 0.0000
700 Conciseness 0.0 0.0 0.0 0.0000
700 Robustness 0.0 0.0 0.0 0.0000
800 Local_Concordance 0.0 0.0 0.0 0.0000
800 Local_Fidelity 0.0 0.0 0.0 0.0000
800 Prescriptivity 0.0 0.0 0.0 0.0000
800 Conciseness 0.0 0.0 0.0 0.0000
800 Robustness 0.0 0.0 0.0 0.0000

TaBLE 6: Shapiro test for the different XAI methods.

Method Metric CIFARI10 CIFARI100 EMNIST FashionMNIST
LIME_2.0 Local_Concordance 0.0 0.0 0.0 0.0000
LIME_2.0 Local_Fidelity 0.0 0.0 0.0 0.0000
LIME_2.0 Prescriptivity 0.0 0.0 0.0 0.0000
LIME_2.0 Conciseness 0.0 0.0 0.0 0.0000
LIME_2.0 Robustness 0.0 0.0 0.0 0.0000
LIME_3.0 Local_Concordance 0.0 0.0 0.0 0.0000
LIME_3.0 Local_Fidelity 0.0 0.0 0.0 0.0000
LIME_3.0 Prescriptivity 0.0 0.0 0.0 0.0000
LIME_3.0 Conciseness 0.0 0.0 0.0 0.0000
LIME_3.0 Robustness 0.0 0.0 0.0 0.0000
LIME_4.0 Local_Concordance 0.0 0.0 0.0 0.0000
LIME_4.0 Local_Fidelity 0.0 0.0 0.0 0.0000
LIME_4.0 Prescriptivity 0.0 0.0 0.0 0.0000
LIME_4.0 Conciseness 0.0 0.0 0.0 0.0000
LIME_4.0 Robustness 0.0 0.0 0.0 0.0000
LIME_5.0 Local_Concordance 0.0 0.0 0.0 0.0000
LIME_5.0 Local_Fidelity 0.0 0.0 0.0 0.0000
LIME_5.0 Prescriptivity 0.0 0.0 0.0 0.0000
LIME_5.0 Conciseness 0.0 0.0 0.0 0.0000
LIME_5.0 Robustness 0.0 0.0 0.0 0.0000
LIME_6.0 Local_Concordance 0.0 0.0 0.0 0.0000
LIME_6.0 Local_Fidelity 0.0 0.0 0.0 0.0000
LIME_6.0 Prescriptivity 0.0 0.0 0.0 0.0000
LIME_6.0 Conciseness 0.0 0.0 0.0 0.0030
LIME_6.0 Robustness 0.0 0.0 0.0 0.0000
LIME_7.0 Local_Concordance 0.0 0.0 0.0 0.0000
LIME_7.0 Local_Fidelity 0.0 0.0 0.0 0.0000
LIME_7.0 Prescriptivity 0.0 0.0 0.0 0.0000
LIME_7.0 Conciseness 0.0 0.0 0.0 0.0050
LIME_7.0 Robustness 0.0 0.0 0.0 0.0000
LIME_8.0 Local_Concordance 0.0 0.0 0.0 0.0000
LIME_8.0 Local_Fidelity 0.0 0.0 0.0 0.0000
LIME_8.0 Prescriptivity 0.0 0.0 0.0 0.0000
LIME_8.0 Conciseness 0.0 0.0 0.0 0.0258

LIME_8.0 Robustness 0.0 0.0 0.0 0.0000
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TaBLE 6: Continued.

Method Metric CIFARI10 CIFAR100 EMNIST FashionMNIST

Global SHAP Local_Concordance 0.0 0.0 0.0 0.0000
Global SHAP Local_Fidelity 0.0 0.0 0.0 0.0000
Global SHAP Prescriptivity 0.0 0.0 0.0 0.0000
Global SHAP Conciseness 0.0 0.0 0.0 0.0000
Global SHAP Robustness 0.0 0.0 0.0 0.0000
Local SHAP Local_Concordance 0.0 0.0 0.0 0.0000
Local SHAP Local_Fidelity 0.0 0.0 0.0 0.0000
Local SHAP Prescriptivity 0.0 0.0 0.0 0.0000
Local SHAP Conciseness 0.0 0.0 0.0 0.0000
Local SHAP Robustness 0.0 0.0 0.0 0.0000

1
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FIGURE 1: Performance of LIME methods grouped over number of features used in the local concordance metric.

TaBLE 7: Wilcoxon test for the number of features and the local concordance metric in the CIFAR10 dataset.

36 49 64 81 100 121 144

36 — — — — — — —
49 0.000205 — — — — — —
64 0.0 0.002105 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.00482 — — —
121 0.0 0.0 0.0 0.000005 0.050236 — —
144 0.0 0.0 0.0 0.0 0.087729 0.293829 —

TaBLE 8: Wilcoxon test for the number of features and the local concordance metric in the CIFAR100 dataset.

36 49 64 81 100 121 144

36 — — — — — — —
49 0.121167 — — — — — —
64 0.000003 0.001704 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —

144 0.0 0.0 0.0 0.0 0.0 0.157955 —




International Journal of Intelligent Systems 13
TaBLE 9: Wilcoxon test for the number of features and the local concordance metric in the FashionMNIST dataset.

36 49 64 81 100 121 144

36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.000177 — — — —
100 0.0 0.0 0.0 0.004466 — — —
121 0.0 0.0 0.0 0.000022 0.173217 — —
144 0.0 0.0 0.0 0.0 0.009454 0.183706 —

TaBLE 10: Wilcoxon test for the number of features and the local concordance metric in the EMNIST dataset.

36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.0 0.0 0.877998 —

5.1.2. Local Fidelity. In Figure 2, we note a tendency similar
to the local concordance. That is, local fidelity increases the
more features we use. This is natural since the neighbors
where we are evaluating local fidelity are closer to the
original example the more features we use. The differences
remain significant except for 121 and 144 features
(Tables 11-14).

5.1.3. Prescriptivity. In Figure 3, in contrast to the local
concordance and local fidelity metrics, a different pattern
arises, where as the number of features increases, the pre-
scriptivity metric gets worse. Prescriptivity not only evaluates
how well the explanation mimics the black box in areas near
the original example but also evaluates the proposed changes
to the white box. The fewer the features considered in the
explanation, the fewer the changes necessary to change the
predicted class. Thus, the explanation has less problems in
finding the necessary features for the class to change. On the
other hand, we must pay attention to where the differences in
this metric are significant. In CIFAR10, FashionMNIST, and
EMNIST, the results are significantly different while in
CIFARI100, there are cases where they are not (Tables 15-18).

5.1.4. Conciseness. In Figure 4, we note a tendency to in-
crease conciseness as the granularity increases. However, we
observe that before this increase, conciseness decreases with
64 features. This seems to indicate that the higher the
number of features, the better the performance. However, it
can also be interpreted as an overfitting of the explanation
and that the minimum amount of information that can be
obtained from the image is by separating it into 64 different
features and that a higher granularity overfits the model. It
should be added that in almost all cases, there are significant
differences (Tables 19-22). Even so, a study with images of
various resolutions should be done because it could depend
on the information contained on each patch.

5.1.5. Robustness. In Figure 5, we observe that the more
features the models use, the more unstable the method
becomes. Having more features to evaluate leads to more
uncertainty in the choice of explanations. All the experi-
ments present significant differences (Tables 23-26).

5.1.6. Global Conclusion. We appreciate that the higher the
number of features, the better the local performance. This is
an expected result since it is biased by the neighborhood we
have chosen to calculate the local fidelity. Therefore, we
should focus on the rest of the metrics. In the prescriptivity
calculation, we see that the more the features are, the worse
the result is obtained. In contrast, the more features we see,
the more concise the methods are, discarding more un-
important features. Finally, we appreciate that LIME loses
robustness the more features we use. This is due to the fact
that the more features we use, the more likely it is that the
explanation will use a larger set of features.

5.2. Dependence of LIME on the Number of Black-Box
Evaluations. In this section, we will evaluate how important
the number of black-box evaluations is over the LIME
methods. This study is critical since black-box evaluations
are considered the biggest bottleneck of black-box
explainability methods. Although it is desirable to be able
to evaluate the black-box function as many times as possible,
there must be a trade-off between the quality of the ex-
planation and the time it takes to generate it.

5.2.1. Local Concordance. In Figure 6, we can appreciate that
increasing the number of black-box evaluations does not
change the local concordance score significantly. Also, if we
look at absolute values, we realize that we obtain significantly
high values. This is due to the fact that the sampling used by
LIME is very stable in picking the neighbors close to the
original example. The fact that most experiments show no
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FIGURE 2: Performance of LIME methods grouped over number of features used in the local fidelity metric.
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TaBLE 11: Wilcoxon test for the number of features and the local fidelity metric in the CIFAR10 dataset.

36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.000288 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.005839 — — —
121 0.0 0.0 0.0 0.0 0.011812 — —
144 0.0 0.0 0.0 0.0 0.00005 0.022145 —
TaBLE 12: Wilcoxon test for the number of features and the local fidelity metric in the CIFAR100 dataset.
36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.0 0.0 0.386582 —
TaBLE 13: Wilcoxon test for the number of features and the local fidelity metric in the FashionMNIST dataset.
36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.291572 — — —
121 0.0 0.0 0.0 0.0 0.000028 — —
144 0.0 0.0 0.0 0.0 0.0 0.376673 —
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TaBLE 14: Wilcoxon test for the number of features and the local fidelity metric in the EMNIST dataset.

36 49 64 81 100 121
36 — — — — — —
49 0.0 — — — — —
64 0.0 0.0 — — — —
81 0.0 0.0 0.0 — — —
100 0.0 0.0 0.0 0.0 — —
121 0.0 0.0 0.0 0.0 0.000004 —
144 0.0 0.0 0.0 0.0 0.0 0.241494
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FIGURE 3: Performance of LIME methods grouped over number of features used in the prescriptivity metric.
TaBLE 15: Wilcoxon test for the number of features and the prescriptivity metric in the CIFAR10 dataset.
36 49 64 81 100 121
36 — — — — — —
49 0.000023 — — — — —
64 0.0 0.0 — — — —
81 0.0 0.0 0.0 — — —
100 0.0 0.0 0.0 0.002282 — —
121 0.0 0.0 0.0 0.0 0.0 —
144 0.0 0.0 0.0 0.0 0.0 0.001164
TaBLE 16: Wilcoxon test for the number of features and the prescriptivity metric in the CIFAR100 dataset.
36 49 64 81 100 121
36 — — — — — —
49 0.0 — — — — —
64 0.0 0.017497 — — — —
81 0.0 0.0 0.000215 - — -
100 0.0 0.0 0.000713 0.705141 — —
121 0.0 0.0 0.0 0.0 0.0 —

144 0.0 0.0 0.0 0.018171 0.002832 0.00614




16 International Journal of Intelligent Systems

TaBLE 17: Wilcoxon test for the number of features and the prescriptivity metric in the FashionMNIST dataset.

36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.000801 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.021647 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.031498 0.000021 0.000167 —
TaBLE 18: Wilcoxon test for the number of features and the prescriptivity metric in the EMNIST dataset.
36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.121733 — — — —
100 0.0 0.0 0.192885 0.056783 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.000001 0.000004 0.0 0.820603 —
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FIGURE 4: Performance of LIME methods grouped over number of features used in the conciseness metric.
TaBLE 19: Wilcoxon test for the number of features and the conciseness metric in the CIFAR10 dataset.
36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.000006 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.000001 — —

144 0.0 0.0 0.0 0.0 0.0 0.000006 —
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TaBLE 20: Wilcoxon test for the number of features and the conciseness metric in the CIFAR100 dataset.
36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.488279 — —
144 0.0 0.0 0.0 0.0 0.0 0.0 —
TaBLE 21: Wilcoxon test for the number of features and the conciseness metric in the FashionMNIST dataset.
36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.582463 — —
144 0.0 0.0 0.0 0.0 0.0 0.0 —
TaBLE 22: Wilcoxon test for the number of features and the conciseness metric in the EMNIST dataset.
36 49 64 81 100 121 144
36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.0 0.0 0.708112 —
1
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FIGURE 5: Performance of LIME methods grouped over number of features used in the robustness metric.
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TABLE 23: Wilcoxon test for the number of features and the robustness metric in the CIFAR10 dataset.

36 49 64 81 100 121 144
36 — — — — — — —
49 0.385861 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.0 0.0 0.0 —
TABLE 24: Wilcoxon test for the number of features and the robustness metric in the CIFAR100 dataset.

36 49 64 81 100 121 144

36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.0 0.0 0.0 —

TaBLE 25: Wilcoxon test for the number of features and the robustness metric in the FashionMNIST dataset.

36 49 64 81 100 121 144

36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.0 0.0 0.0 —

TABLE 26: Wilcoxon test for the number of features and the robustness metric in the EMNIST dataset.

36 49 64 81 100 121 144

36 — — — — — — —
49 0.0 — — — — — —
64 0.0 0.0 — — — — —
81 0.0 0.0 0.0 — — — —
100 0.0 0.0 0.0 0.0 — — —
121 0.0 0.0 0.0 0.0 0.0 — —
144 0.0 0.0 0.0 0.0 0.0 0.0 —

significant differences between them corroborates this
statement (Tables 27-30).

5.2.2. Local Fidelity. In Figure 7, we appreciate that, in this
case, the more the evaluations of the black box, the better the
result. We may expect that by randomly generating more
neighbors, we obtain a better score in the neighborhood of the
original example. However, as in local concordance metric, the
differences in the experiments are not significant, corrobo-
rating the hypothesis that LIME is very stable near the example
to be explained (Tables 31-34).

5.2.3. Prescriptivity. In Figure 8, we observe that the number
of evaluations is not a differentiating factor. LIME proposes
a series of changes that consistently change the prediction of

the model by the same amount approximately. This hy-
pothesis is corroborated by the fact that the experiments
show no significant  differences between them
(Tables 35-38).

5.2.4. Conciseness. In Figure 9, we observe that the con-
ciseness metric is influenced by the number of evaluations of
the black box, making it less variable. Thus, LIME methods
propose on average the same percentage of important fea-
tures although increasing the number of evaluations tends to
obtain less variable results, which is the main goal of in-
creasing the number of maximum evaluation of black-box
evaluations. Differences between experiments end up being
significant when there is a difference in the number of
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FIGURE 6: Performance of LIME methods grouped over max number of evaluations in the local concordance metric.
TaBLE 27: Wilcoxon test for the number of max examples and the local concordance metric in the CIFAR10 dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.006679 — — — — — — —
300 0.000004 0.079712 — — — — — —
400 0.000005 0.110028 0.615945 — — — — —
500 0.000018 0.057421 0.967871 0.970798 — — — —
600 0.000207 0.410788 0.292255 0.343868 0.775002 — — —
700 0.000008 0.095581 0.708867 0.494841 0.684628 0.580048 — —
800 0.000088 0.202669 0.328229 0.394013 0.942875 0.997817 0.645379 —
TaBLE 28: Wilcoxon test for the number of max examples and the local concordance metric in the CIFAR100 dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.001844 — — — — — — —
300 0.000008 0.805911 — — — — — —
400 0.0 0.051266 0.351842 — — — — —
500 0.000122 0.559817 0.769675 0.707414 — — — —
600 0.00078 0.971505 0.50302 0.098521 0.632858 — — —
700 0.000566 0.652594 0.570233 0.208287 0.40554 0.70078 — —
800 0.000011 0.136901 0.53912 0.639846 0.70536 0.250579 0.057151 —
TABLE 29: Wilcoxon test for the number of max examples and the local concordance metric in the FashionMNIST dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.003203 — — — — — — —
300 0.000084 0.507544 — — — — — —
400 0.000251 0.46633 0.442869 — — — — —
500 0.000004 0.172619 0.766257 0.790495 — — — —
600 0.000021 0.452418 0.180001 0.849488 0.955108 — — —
700 0.000468 0.461356 0.972145 0.581572 0.67944 0.573234 — —
800 0.0 0.091889 0.299545 0.762933 0.741445 0.376171 0.393368 —
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TaBLE 30: Wilcoxon test for the number of max examples and the local concordance metric in the EMNIST dataset.

100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — _
300 0.0 0.17739 — — — — — —
400 0.0 0.915154 0.146136 — — — — —
500 0.0 0.010281 0.379468 0.135889 — — — —
600 0.0 0.374906 0.631138 0.863129 0.187004 — — —
700 0.0 0.913341 0.229467 0.939601 0.078328 0.706811 — —
800 0.0 0.09263 0.761107 0.749104 0.347307 0.941701 0.879176 —
1
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FIGURE 7: Performance of LIME methods grouped over max number of evaluations in the local fidelity metric.
TaBLE 31: Wilcoxon test for the number of max examples and the local fidelity metric in the CIFAR10 dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.00383 — — — — — — —
300 0.000063 0.029227 — — — — — —
400 0.0 0.044276 0.948819 — — — — —
500 0.000003 0.00873 0.484636 0.762416 — — — —
600 0.00003 0.142469 0.66191 0.453485 0.504563 — — —
700 0.0 0.006484 0.389521 0.977929 0.583729 0.375596 — —
800 0.000027 0.23166 0.807472 0.398913 0.686507 0.925547 0.247536 —
TaBLE 32: Wilcoxon test for the number of max examples and the local fidelity metric in the CIFAR100 dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.116586 — — — — — —
400 0.0 0.000094 0.033743 — — — — —
500 0.0 0.004109 013314 0.674681 — — — —
600 0.0 0.003937 0.110797 0.621707 0.820858 — — —
700 0.0 0.021621 0.372432 0.740649 0.979647 0.40044 — -

800 0.0 0.000007 0.002837 0.334775 0.087606 0.124636 0.01012 —
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TaBLE 33: Wilcoxon test for the number of max examples and the local fidelity metric in the FashionMNIST dataset.

100 200 300 400 500 600 700
100 — — — — — — —
200 0.021311 — — — — — —
300 0.000438 0.333243 — — — — —
400 0.001385 0.54142 0.31622 — — — —
500 0.0 0.039717 0.246309 0.467611 — — —
600 0.000009 0.172931 0.100948 0.673224 0.597415 — —
700 0.000141 0.28358 0.731288 0.875086 0.956504 0.559957 —
800 0.0 0.026779 0.071696 0.215298 0.434691 0.305927 0.282759
TaBLE 34: Wilcoxon test for the number of max examples and the local fidelity metric in the EMNIST dataset.
100 200 300 400 500 600 700
100 — — — — — — —
200 0.0 — — — — — —
300 0.0 0.008746 — — — — —
400 0.0 0.005612 0.841771 — — — —
500 0.0 0.000004 0.02384 0.224304 — — —
600 0.0 0.000002 0.026052 0.168841 0.823687 — —
700 0.0 0.000001 0.023204 0.05079 0.969599 0.937187 —
800 0.0 0.000001 0.020001 0.095514 0.821418 0.689143 0.489925
1
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FIGURe 8: Performance of LIME methods grouped over max number of evaluations in the prescriptivity metric.
TaBLE 35: Wilcoxon test for the number of max examples and the prescriptivity metric in the CIFAR10 dataset.
100 200 300 400 500 600 700
100 — — — — — — —
200 0.5842 — — — — — —
300 0.907305 0.201728 — — — — —
400 0.014904 0.000051 0.000592 — — — —
500 0.000688 0.0 0.000001 0.072502 — — —
600 0.0 0.0 0.0 0.000012 0.004546 — —
700 0.0 0.0 0.0 0.000001 0.000786 0.18838 —

800 0.0 0.0 0.0 0.0 0.0 0.0 0.000248
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TaBLE 36: Wilcoxon test for the number of max examples and the prescriptivity metric in the CIFAR100 dataset.

100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.059451 — — — — — — —
300 0.0 0.000231 — — — — — —
400 0.0 0.000001 0.179442 — — — — —
500 0.0 0.0 0.000015 0.007755 — — — —
600 0.0 0.0 0.000024 0.02083 0.539939 — — —
700 0.0 0.0 0.0 0.000002 0.049246 0.031741 — —
800 0.0 0.0 0.000009 0.009774 0.794275 0.970759 0.041494 —
TaBLE 37: Wilcoxon test for the number of max examples and the prescriptivity metric in the FashionMNIST dataset.
100 200 300 400 500 600 700 800
100 - - - — — — - -
200 0.534507 — — — — — — —
300 0112968 0.020653 — — — — — —
400 0.001432 0.000023 0.052142 — — — — —
500 0.001171 0.000052 0.010819 0.625029 — — — —
600 0.000001 0.0 0.00002 0.010288 0.091626 — — —
700 0.0 0.0 0.0 0.000534 0.001308 0.220096 — —
800 0.0 0.0 0.000012 0.005565 0.011733 0.613277 0.530278 —
TaBLE 38: Wilcoxon test for the number of max examples and the prescriptivity metric in the EMNIST dataset.

100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.000001 — — — — — —
400 0.0 0.0 0.000032 — — — — —
500 0.0 0.0 0.0 0.010922 — — — —
600 0.0 0.0 0.0 0.0 0.001549 — — —
700 0.0 0.0 0.0 0.000202 0.059805 0.619722 — —
800 0.0 0.0 0.0 0.000004 0.014507 0.939177 0.423023 —
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F1GURE 9: Performance of LIME methods grouped over max number of evaluations in the conciseness metric.
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TaBLE 39: Wilcoxon test for the number of max examples and the conciseness metric in the CIFAR10 dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.609983 — — — — — —
400 0.0 0.102388 0.185725 — — — — —
500 0.000003 0.598608 0.735026 0.165057 — — — —
600 0.0 0.258252 0.286917 0.853349 0.325011 — — —
700 0.000016 0.588461 0.685646 0.251913 0.714545 0.352133 — —
800 0.000004 0.432255 0.524231 0.490735 0.478845 0.650608 0.603819 —
TaBLE 40: Wilcoxon test for the number of max examples and the conciseness metric in the CIFAR100 dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.000402 — — — — — — —
300 0.024399 0.294329 — — — — — —
400 0.002669 0.243941 0.055526 — — — — —
500 0.733905 0.058091 0.549324 0.008971 — — — —
600 0.269944 0.361222 0.632872 0.077468 0.350272 — — —
700 0.242506 0.795124 0.677092 0.312538 0.205854 0.708336 — —
800 0.053038 0.68238 0.44231 0.291114 0.17388 0.380468 0.937535 —
TaBLE 41: Wilcoxon test for the number of max examples and the conciseness metric in the FashionMNIST dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.000004 — — — — — —
400 0.0 0.0 0.47811 — — — — —
500 0.0 0.0 0.144291 0.687725 — — — —
600 0.0 0.000003 0.585043 0.613311 0.416136 — — —
700 0.0 0.0 0.156878 0.621658 0.648151 0.121491 — —
800 0.0 0.0 0.037749 0.264671 0.376721 0.051915 0.631084 —
TaBLE 42: Wilcoxon test for the number of max examples and the conciseness metric in the EMNIST dataset.
100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.336169 - - — - - - -
300 0.000386 0.007551 — — — — — —
400 0.000002 0.000507 0.40222 — — — — —
500 0.0 0.000007 0.053632 0.29106 — — — —
600 0.0 0.000015 0.104366 0.404215 0.64368 — — —
700 0.0 0.0 0.001188 0.021228 0.293383 0166263 - -
800 0.0 0.0 0.000002 0.000061 0.002865 0.00126 0.276616 —
evaluations between one experiment and another  5.2.6. Global Conclusion. In this case, the metric of ro-

(Tables 39-42).

5.2.5. Robustness. In Figure 10, we observe that as the
number of black-box evaluations increases, LIME methods
become more consistent, although at the cost of using more
computational time. Depending on the desired robustness or
time limit requirements, we can estimate of how much an
explanation can change. All experiments show significant
differences between them (Tables 43-46).

bustness is the one that outstands the most. Such results are
expected since the more examples we use from the neigh-
borhood, the less variable the generated explanation will be.
Thanks to this analysis, we will be able to see what the cost is
in time associated with particular robustness.

5.3. LIME vs. SHAP: General Analysis over the Explanation
Generators. In this section, we evaluate the performance on
each proposed metric of LLE methods, LIME with
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FIGURE 10: Performance of LIME methods grouped over max number of evaluations in the robustness metric.

TABLE 43: Wilcoxon test for the number of max examples and the robustness metric in the CIFAR10 dataset.

100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.0 — — — — — —
400 0.0 0.0 0.0 — — — — —
500 0.0 0.0 0.0 0.0 — — — —
600 0.0 0.0 0.0 0.0 0.0 — — —
700 0.0 0.0 0.0 0.0 0.0 0.0 — —
800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —

TABLE 44: Wilcoxon test for the number of max examples and the robustness metric in the CIFAR100 dataset.

100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.0 — — — — — —
400 0.0 0.0 0.0 — — — — —
500 0.0 0.0 0.0 0.0 — — — —
600 0.0 0.0 0.0 0.0 0.0 — — —
700 0.0 0.0 0.0 0.0 0.0 0.0 — —
800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —

TABLE 45: Wilcoxon test for the number of max examples and the robustness metric in the FashionMNIST dataset.

100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.0 — — — — — —
400 0.0 0.0 0.0 — — — — —
500 0.0 0.0 0.0 0.0 — — — —
600 0.0 0.0 0.0 0.0 0.0 — — —
700 0.0 0.0 0.0 0.0 0.0 0.0 — —

800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
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TABLE 46: Wilcoxon test for the number of max examples and the robustness metric in the EMNIST dataset.

100 200 300 400 500 600 700 800
100 — — — — — — — —
200 0.0 — — — — — — —
300 0.0 0.0 — — — — — —
400 0.0 0.0 0.0 — — — — —
500 0.0 0.0 0.0 0.0 — — — —
600 0.0 0.0 0.0 0.0 0.0 — — —
700 0.0 0.0 0.0 0.0 0.0 0.0 — —
800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —

0=2,3,4,5,6,7,8 and SHAP, local and global versions. For
this comparison, we considered the results of the above
scenarios to choose the best number of features and the
maximum number of black-box evaluations. In our case, we
pick 64 features and 800 black-box evaluations.

5.3.1. Local Concordance. In Figure 11, we show the per-
formance of the local concordance metric over all datasets.
We observe that LIME with larger o performs worse. o
parameter controls the width of the neighborhood gener-
ated, making the original example x less relevant. On the
other hand, local SHAP and global SHAP obtain stable and
comparable results to those obtained by LIME with ¢ =
2,3,4 because in each SHAP regression, the relative im-
portance of the original example x remains constant with
respect to the rest of the generated neighbors. Most of the
LIME experiments show significant differences between 2
experiments. However, we cannot discard that local SHAP
and global SHAP behave in the same way (Tables 47-50).

5.3.2. Local Fidelity. In Figure 12, we note the same behavior
for LIME methods as for the local concordance metric, i.e.,
the score of this metric decreases as o is higher since the
larger the neighborhood it generates, the less importance is
given to the direct surroundings of the x example. We also
note that SHAP methods obtain a worse result than LIME
with ¢ = 4. This would mean that the behavior of SHAP gets
worse as it moves away from the original x example. Most of
the LIME experiments show significant differences between
2 experiments. However, we cannot discard that local SHAP
and global SHAP behave in the same way (Tables 51-54).

5.3.3. Prescriptivity. In Figure 13, we note that different
LIME methods show similar performance regardless of o,
with slight variations between datasets. On the other hand,
there is a noticeable loss in SHAP local. This is partly due to
the fact that SHAP gives significant weight to the original
example x when there are a large number of features and
does not extrapolate to more distant examples. On the other
hand, global SHAP performs slightly worse than LIME
methods. It pays attention not only to the closest examples to
the original x example but also to the farthest possible
examples. In CIFAR10 and FashionMNIST, all experiments
show significant two-to-two differences. However, this is not
the case in CIFAR100 or EMNIST. SHAP local and SHAP
global always behave with significant differences
(Tables 55-58).

5.3.4. Conciseness. In Figure 14, we note that the LIME
methods have a similar behavior among the different o
configurations, obtaining slightly different results depending
on the dataset. On the other hand, the global SHAP method
shows worse results, which tells us that SHAP global spreads
its attention over too many features. On the other hand, local
SHAP obtains a comparable score with the different LIMEs,
which means that both methods spread their attention over
almost the same number of features. In this case, all the
datasets have experiments with significant differences except
CIFARI1O0 in the experiments with sigma greater than 4
(Tables 59-62).

5.3.5. Robustness. In Figure 15, we note that the best scoring
results are obtained in this case by the SHAP models. This is
due to the fact that SHAP methods choose neighbors in
a stable way. LIME methods generate examples less stably as
we increase the o parameter. The reason of the increase of ¢
is that we also increase the size of the neighborhood and,
therefore, the diversity of the generated neighbors. All ex-
periments have significant differences with the rest of the
experiments (Tables 63-66).

5.4. Global Analysis and Lessons Learned. Once we have
analyzed the performance of each metric separately, we can
extract lessons learned about each of the methods evaluated
thanks to the auditing potential of the REVEL framework.

(i) SHAP: It focuses too much on the concrete example
to be explained and does not generalize well in the
synthetic neighborhood. Local concordance is good
although the local fidelity, in comparison with
LIME, is worse than expected and prescriptivity
results are very poor. Although they are very stable
methods, as we observe in the robustness metric, we
may establish, in conjunction with the previous
conclusions, that they are in fact methods whose
neighborhood is too small and therefore they use
almost all the same examples to generate
explanations.

(ii) Global SHAP vs. local SHAP: The main difference
between local and global SHAP is found in pre-
scriptivity and conciseness. Local SHAP is able to
discard unimportant features, while global SHAP
hardly does so. The reason for this behavior is
because local SHAP is using only the neighborhood
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FIGURE 11: Performance of each explanation generator over the local concordance metric.

TaBLE 47: Wilcoxon test for the different XAI methods and the local concordance metric in the CIFAR10 dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local

LIME 2 — — — — — — — — —
LIME 3 0.224211 — — — — — — — —
LIME 4 0.0 0.000045 — — — — — — —
LIME 5 0.0 0.0 0.001585 — — — — — —
LIME 6 0.0 0.0 0.0 0.004809 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.000511 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.096012 — — —
SHAP global 0.0 0.0 0.038764 0.158645 0.00001 0.0 0.0 — —
SHAP local 0.0 0.0 0.346758 0.016339 0.000002 0.0 0.0 0.168907 —

TABLE 48: Wilcoxon test for the different XAI methods and the local concordance metric in the CIFAR100 dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global ~ SHAP local

LIME 2 — — — — — — — — —
LIME 3 0.296419 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.000032 — — — — — —
LIME 6 0.0 0.0 0.0 0.036054 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.00005 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.001009 — — —
SHAP global 0.0 0.000002 0.248288 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.000388 0.025539 0.0 0.0 0.0 0.0 0.381647 —
near the instance to be analyzed, while global SHAP (iii) LIME: This method focuses on the local neigh-
uses also the instances of completely empty images borhood of the example to be explained. We observe
except for some particular patches. In other types of that the parameter ¢ establishes the size of the
data, this approach is correct (e.g., in tabular data, to neighborhood, and as it increases, it obtains worse
see if any particular feature biases the overall result), results in the local environment but has greater
but in the case of images, an almost entirely grey generalization power. We deduce this because in the

image does not give much information. metrics of local concordance and local fidelity, it
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TABLE 49: Wilcoxon test for the different XAI methods and the local concordance metric in the FashionMNIST dataset.

LIME 2 LIME 3 LIME 4 LIME 5

LIME 6 LIME 7 LIME 8 SHAP global ~ SHAP local

LIME 2 — — — — — — — — —
LIME 3 0.036628 — — — — — — — —
LIME 4 0.00007 0.036533 — — — — — — —
LIME 5 0.0 0.0 0.000029 — — — — — —
LIME 6 0.0 0.0 0.0 0.004669 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.000001 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.000006 — — —
SHAP global 0.0 0.000001 0.00191 0.221104 0.001733 0.0 0.0 — —
SHAP local 0.0 0.0 0.00107 0.647406 0.000414 0.0 0.0 0.656478 —
TaBLE 50: Wilcoxon test for the different XAI methods and the local concordance metric in the EMNIST dataset.
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 _ _ _ _ _ _ _ — _
LIME 3 0.0 — - — - — — - -
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.0 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.0 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.0 — — —
SHAP global 0.0 0.0 0.0 0.125947 0.0 0.0 0.0 — —
SHAP local 0.0 0.0 0.0 0.205828 0.0 0.0 0.0 0.928104 —
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FIGURe 12: Performance of each explanation generator over the local fidelity metric.

worsens with increasing ¢ but remains stable or
even increases in prescriptivity. The increase in
neighborhood size also results in slightly more at-
tention being paid to diverse features and, in ad-
dition, causes a more diverse generation of
neighbors, as we see in the conciseness and ro-
bustness metrics, respectively.

In conclusion, we may establish that SHAP focuses too
much on the example to be explained while LIME is able to
generalize better on these datasets.

Finally, the most important lesson learned is the ex-
haustive and mathematically robust study we performed for
the development of REVEL. Thanks to this study, we have
not only been able to establish comparative measures
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TaBLE 51: Wilcoxon test for the different XAI methods and the local fidelity metric in the CIFAR10 dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global ~ SHAP local

LIME 2 — — — — — — — — —
LIME 3 0.000016 — — — — — — — —
LIME 4 0.0 0.000051 — — — — — — —
LIME 5 0.0 0.0 0.002586 — — — — — —
LIME 6 0.0 0.0 0.0 0.053614 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.002317 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.11511 — — —
SHAP global 0.0 0.0 0.0 0.0 0.000017 0.466122 0.331583 — —
SHAP local 0.0 0.0 0.0 0.0 0.000652 0.336936 0.031794 0.420162 —
TaBLE 52: Wilcoxon test for the different XAI methods and the local fidelity metric in the CIFAR100 dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.0 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.001361 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.000001 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.000072 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.32619 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.000001 0.590278 0.780151 —

TaBLE 53: Wilcoxon test for the different XAI methods and the local fidelity metric in the FashionMNIST dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.0 - — — - — - - —
LIME 4 0.0 0.008124 — — — — — — —
LIME 5 0.0 0.0 0.001078 — — — — — —
LIME 6 0.0 0.0 0.000013  0.153165 — — — — —
LIME 7 0.0 0.0 0.0 0.000005  0.00009 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.001501 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.050607  0.14538 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.007146  0.476541 0.245657 —

TaBLE 54: Wilcoxon test for the different XAI methods and the local fidelity metric in the EMNIST dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.0 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.0 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.0 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.0 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.024961 — —

SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.037695 0.402308 —
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FIGURE 13: Performance of each explanation generator over the prescriptivity metric.
TaBLE 55: Wilcoxon test for the different XAI methods and the prescriptivity metric in the CIFAR10 dataset
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8  SHAP global = SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.003363 — — — — — — — —
LIME 4 0.0 0.000565 — — — — — — —
LIME 5 0.0 0.0 0.046085 — — — — — —
LIME 6 0.0 0.0 0.0 0.000023 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.029132 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.000012  0.024575 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
TaBLE 56: Wilcoxon test for the different XAI methods and the prescriptivity metric in the CIFAR100 dataset.
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8  SHAP global = SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.241746 — — — - - — — —
LIME 4 0543763  0.429915 — — — — — — —
LIME 5 0.72744 090477  0.63844 — — — — — —
LIME 6 0310117 0944617  0.514841  0.780728 — — — — —
LIME 7 0.629185  0.637106  0.808105  0.765539  0.626447 — — — —
LIME 8 0227314  0.655869  0.2653 0301112  0.598209  0.290457 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
TaBLE 57: Wilcoxon test for the different XAI methods and the prescriptivity metric in the FashionMNIST dataset.
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.004948 — — — — — — — —
LIME 4 0.004952  0.870345 — — — — — — —
LIME 5 0.0 0.002011  0.001656 — — — — — —
LIME 6 0.0 0.000061  0.000006  0.08854 — — — — —
LIME 7 0.0 0.0 0.0 0.000057  0.009363 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.000352  0.422926 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
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TaBLE 58: Wilcoxon test for the different XAI methods and the prescriptivity metric in the EMNIST dataset.
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.481407 — — — — — — — _
LIME 4 0.275306 0.017817 — — — — — — —
LIME 5 0.04566 0.000502  0.386528 — — — — — —
LIME 6 0.240065 0.081447 0.839167 0.201618 — — — — —
LIME 7 0.060687 0.009952 0.773493 0.848934 0.471 — — — —
LIME 8 0479104  0.049914 0920686 0113797 0922287  0.211443 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
1
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FIGURE 14: Performance of each explanation generator over the conciseness metric.
TaBLE 59: Wilcoxon test for the different XAI methods and the conciseness metric in the CIFAR10 dataset.
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.0 — — — — — — — —
LIME 4 0.0 0.024372 — — — — — — —
LIME 5 0.0 0.000042 0.017442 — — — — — —
LIME 6 0.0 0.000921 0.119171 0.182328 — — — — —
LIME 7 0.0 0.0 0.000891 0.206938 0.012491 — — — —
LIME 8 0.0 0.0 0.000001 0.006758 0.000132 0.239556 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
TaBLE 60: Wilcoxon test for the different XAI methods and the conciseness metric in the CIFAR100 dataset.
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.000093 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.000002 — — — — — —
LIME 6 0.0 0.0 0.0 0.013876 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.000216 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.044479 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.412729 0.011452 0.0 0.0 0.0 0.0 0.0 0.0 —
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TABLE 61: Wilcoxon test for the different XAI methods and the conciseness metric in the FashionMNIST dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local

LIME 2 — — — — — — — — —
LIME 3 0.0 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.000002 — — — — — —
LIME 6 0.0 0.0 0.0 0.000679 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.002381 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.000381 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
TABLE 62: Wilcoxon test for the different XAI methods and the conciseness metric in the EMNIST dataset.
LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.0 - - — - — - — -
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.0 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.000011 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.0 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.674696 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —
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FIGURE 15: Performance of each explanation generator over the robustness metric.
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TABLE 63: Wilcoxon test for the different XAI methods and the robustness metric in the CIFAR10 dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local

LIME 2 — — — — — — — — —
LIME 3 0.0 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.0 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.0 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.0 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.000685 0.000001 0.0 0.0 0.0 0.0 0.0 —
TaBLE 64: Wilcoxon test for the different XAI methods and the robustness metric in the CIFAR100 dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — _ _ — —
LIME 3 0.0 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.0 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.0 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.0 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.058395 0.0 0.0 0.0 0.0 0.0 0.0 —

TABLE 65: Wilcoxon test for the different XAI methods and the robustness metric in the FashionMNIST dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.0 — — — — — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.0 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.0 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.0 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —
SHAP local 0.0 0.536291 0.0 0.0 0.0 0.0 0.0 0.0 —

TABLE 66: Wilcoxon test for the different XAI methods and the robustness metric in the EMNIST dataset.

LIME 2 LIME 3 LIME 4 LIME 5 LIME 6 LIME 7 LIME 8 SHAP global SHAP local
LIME 2 — — — — — — — — —
LIME 3 0.0 — — — - — — — —
LIME 4 0.0 0.0 — — — — — — —
LIME 5 0.0 0.0 0.0 — — — — — —
LIME 6 0.0 0.0 0.0 0.0 — — — — —
LIME 7 0.0 0.0 0.0 0.0 0.0 — — — —
LIME 8 0.0 0.0 0.0 0.0 0.0 0.0 — — —
SHAP global 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — —

SHAP local 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —




International Journal of Intelligent Systems

between explanations but also show that these measures
serve as absolute measures, without the need to compare
with others.

6. Concluding Remarks

In this paper, we present REVEL, a novel framework spe-
cialized in analysis and comparison of explanations. We
provide a theoretical guideline for the use of REVEL. We also
provide a practical illustration of usage of REVEL by
comparing LIME and SHAP methods in four different
benchmarks.

As lessons learned, we want to remark that having
bounded metrics with well-defined limits gives us absolute
information on every evaluation aspect and not only
a comparative one. This is useful to dismiss explanations by
themselves even if there is no baseline to compare with. For
the development of future metrics, this characteristic is
desirable.

Regarding the developed metrics themselves, we can
extract the following lessons. Local metrics can help us to
detect biases; compared with prescriptivity, conciseness
provides us information about whether an explanation is
useful or not by the percentage of discarded features, and
robustness shows information on the stability of the
explanations.

From the above analysis, we can establish that, within
the black-box methods of explanation proposals over the
image classification task, LIME behaves better than SHAP
because SHAP focuses too much on the locality of the
example to be explained, while LIME is able to generalize
much better.

Once the method of explanation has been chosen for
a particular model, we emphasize that the analysis should
not stop there but analyze different aspects such as the
number of features considered or the number of evaluations
of the black box necessary for a robust explanation.

Finally, we consider that the base case on which to work
rigorously in XAI is LLE. As future work, and based on the
study already done, we leave the extension of the proposed
metrics to other types of explanations, such as those based
on decision trees or knowledge graphs.
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