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Tis paper proposes a novel and practical crack-detection method for infrastructure. Te proposed method exhibits three key
components. First, a multiscale multilevel mask deep convolutional neural network (MSML Mask DCNN) is proposed to accurately
estimate crack candidates comprising linear and curvilinear features. Second, the proposed neural network is trained using only public
image-sets. Te main principle of this approach is that cracks have unique and distinct features, and therefore, public image-sets
provide sufcient information to estimate crack candidates for a neural network.Tird, a line similarity index (LSI), which is calculated
using the Hough transform and coordinate transformation with principal component analysis, is incorporated to eliminate non-crack
candidates from crack candidates based on two key characteristics: the variation in crack features with respect to the representative line
and the number of crack features that crossed the representative line. Addressing these two crack-related characteristics improves
accuracy and robustness by efectively eliminating non-crack features. Field tests performed inside a building and in an underground
power tunnel demonstrated the efectiveness of the proposed method.TeMSMLMask DCNN outperformed other neural networks,
accurately recognizing local crack candidates characterized by linear and curvilinear features even though only public image-sets were
used for training. Te proposed LSI also efectively eliminated non-crack candidates estimated by the MSML Mask DCNN. Te
proposed method is practical for real-world applications, where several non-crack objects and noises are typically present.

1. Introduction

Cracks on the surfaces of civil structures are important
indicators of defect propagation and structural health. Most
defects, including eforescence, water leakage, exfoliation,
and separation, originate from cracks, suggesting that cracks
can be considered as representative metrics of structural
health [1, 2]. It is important to detect these symptoms in
advance because on-time operation and maintenance
(O&M) not only decreases the repair cost and time sig-
nifcantly but also prevents the propagation of cracks and

degradation of structures. Tus, crack detection is an im-
portant initial inspection process in O&M that can efec-
tively maintain the healthy state of civil structures and
ensure their safety and reliability.

In recent years, several studies have proposed a variety of
crack-detection methods using optical images because optical
cameras are inexpensive and can easily record inspection
images to evaluate the health state of the surfaces of civil
structures. Specifcally, cracks in images have distinct features,
such as linear or curvilinear shapes, and appearances that are
darker than the background. Moreover, cracks are
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characterized by the specifc appearance of edges and con-
tinuity of lines. Tese features are difcult to be identifed by
using a conventional signal process and machine learning
methods including particle flter (PF) and Gaussian process
regression (GPR), which are widely used for predicting system
responses [3, 4]. Also, continuity of lines is not easy to be
predicted using long short-term memory (LSTM) and broad
learning system (BLS) [5]. Terefore, these features can be
extracted through image processing methods including image
fltering, edge detection, image segmentation, and a hybrid-
ization of these methods [6]. However, practical crack de-
tection through traditional image processing is disturbed by
noise and low contrast [7]. It is difcult to extract cracks from
the background in images with low contrast using image
segmentation because the pixel intensities of the crack and
background are similar. Furthermore, certain cracks captured
in noisy images may be eliminated through noise fltering
using traditional image processing techniques. However,
most methods merely work on specifc images and cannot be
commonly applied to all images because the selected
hyperparameters for noise fltering depend on the recording
conditions. Consequently, specifc image processing methods
corresponding to the image status are indispensable in the
traditional approach [8].

Te novelty and key contributions of this study are as
follows.

(i) An integrated framework was proposed for efective
crack detection in inspection images for real-world
applications.Tis framework comprises a multiscale
multilevel mask DCNN (MSML Mask DCNN) and
image processing using a line similarity index (LSI).

(ii) Te MSML Mask DCNN estimates crack-related
pixels from the input image with high accuracy and
robustness. Moreover, the MSML Mask DCNN is
only trained using public image-sets, implying that no
additional efort is needed to record images for
training the proposed neural network. Te core
principle of this approach is that cracks have distinct
features, and thus, feature maps from public image-
sets provide sufcient information for crack detection.

(iii) Te LSI is proposed to exclude non-crack candi-
dates that are classifed from the crack estimation
process based on two important criteria. One is the
deviation of the crack features with respect to the
representative line, and the other is the number of
crack features that cross the representative line.
Tese two characteristics of cracks ensure high
precision and robustness in removing non-crack
features.

(iv) Te proposed image processing method successfully
reduced noise from the acquired images caused by
vibration and out-of-focus blurs, which are com-
mon phenomena in recorded images.

(v) Te proposed framework was validated using public
image sets and newly recorded image sets from the
inside of a building and from an underground
tunnel. A test set of public image sets confrmed the

superiority of the proposed MSML Mask DCNN in
terms of both accuracy and robustness. Images from
feld experiments demonstrate that the suggested
LSI eliminated over 75% of non-crack pixels from
the mask estimated by MSML Mask DCNN, con-
frming that the proposed method is efective for
real-world applications.

Te remainder of this paper is organized as follows:
Section 2 discusses the related work, Section 3 provides the
preliminary information, and Section 4 elaborates on the
proposed method. In Section 5, we present the experiments
conducted to validate the efectiveness of our approach,
while Section 6 ofers the results and discussion of the image
sets measured from feld experiments, analyzing the per-
formance and robustness of our method. Finally, the con-
clusion and future work are presented in Section 7.

2. Related Work

Considerable eforts have been devoted to developing an
efective architecture of DCNN for crack detection. One
important factor that can afect estimation accuracy origi-
nates from conventional annotation. Te training image set
for a DCNN is usually annotated with bounding boxes that
may include several background pixels in addition to those
related to crack characteristics. Te background images in
bounding boxes deteriorate the extraction of distinct fea-
tures from crack images, resulting in low accuracy and
robustness. Tis limitation of a square bounding box could
be overcome by incorporating a mask DCNN, which ad-
dresses an annotated mask based on each pixel of the feature
[9]. Tis method uses images that are annotated in a pixel-
to-pixel manner; consequently, this instance segmentation
process assigns a label to each pixel of an image. Te an-
notation characteristic of mask DCNNs signifcantly im-
proves the estimation accuracy of crack detection and has
promoted current research on several efective mask DCNNs
[10–16]. Deeper and wider neural network architectures that
are supervised by annotated images in a pixel-to-pixel
manner can ensure high accuracy and robustness in crack
detection. Several studies have been conducted on classif-
cation models of DCNNs at the image-patch level or region
on two stage detectors, which are sequentially region lo-
calizing and then classifying. Crack and non-crack classi-
fcation models are trained at the image-patch level by
addressing the crack candidate region [13]. A mask regional
convolutional neural network (Mask R-CNN) is also
combined with the DCNN using two stage detectors [14].
Tis architecture of a neural network localizes a crack as an
object in an image using a region proposal network at the
segmentation of pixel-level. However, validation of the
proposed method was limited because image availability is
limited. A dual-scale CNN classifcation neural network,
which combines GoogLeNet classifer at a large scale
(224× 224) and ResNet classifer at a small scale (32× 32),
was also proposed to detect cracks from diferent scales of
input images [15]. However, dual-scale CNNmodels require
a heavy computational efort because this architecture
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repeatedly calls up the operation of each CNNmodel at each
scale of the image. While using a single CNNmodel for both
scales may reduce the computational efort, it adversely
afects a performance of crack detection.

3. Preliminary

DCNN with the architecture of a two-stage detector en-
hances detection accuracy in cases where the target object to
be detected is obvious. However, cracks in real-world en-
vironments are thin and irregularly shaped, suggesting that
cracks that are not fully trained by the training image-set
might not be detected by a two-stage detector. Terefore,
a DCNN with a one-stage detector exhibits better accuracy
in real-world applications. In contrast to one-stage detectors,
U2-Net employs an autoencoder architecture that consists of
an encoder, decoder, and fusionmodule, all built with the U-
net as a fundamental block, which they refer to as the Re-
Sidual U-block (RSU) [17]. Tis architecture allows U2-Net
to efciently extract feature maps from multiscale and
multilevel information at each scale of the encoder and
decoder, providing it with a faster processing speed than
existing models that rely on backbones for feature extrac-
tion. However, a limitation of this approach is that it cannot
fully transfer the initial input spatial information to the
subsequent scale due to the multiscale and multilevel input
manner. A DCNN that was trained with the crack candidate
regions and combined with local and global feature regions
from the speeded-up robust features (SURF)method and the
convolutional neural network (CNN) [13], respectively, has
an improved prediction accuracy by utilizing both features
as complementary components. However, this method
depends on the training image-set and pre-processing step,
including the binarization of the crack images in SURF. Tis
step can adversely afect a performance of crack detection
because the binarization of the crack image in the SURF
method can cause an error in the crack image, including
a noisy background. Transforming a classifcation CNN
model to a fully convolutional model was proposed to
produce coarse output maps to remove the correlation in the
scale of the input image [16]. Tis method does not require
several scales of an input image because the feature maps
from diferent scales of images are trained to build the
classifer. However, this method is limited in that it cannot
classify patterns or noise that are not included in the training
image set. Tis limitation suggests that training all types of
patterns or noise, including cracks, is impossible.

According to the literature survey, two-stage models
perform well with respect to the detection area of an image-
patch or region but require heavy computational eforts. Te
network fuses results based on features extracted from each
level of the U-net. Moreover, these methods still have several
limitations, resulting in false detection due to the envi-
ronment of the training data. In addition, these neural
networks also detect non-crack objects, which have features
similar to cracks in real-world applications. Specifcally,
non-crack objects with crack-like shapes, such as tiles,
boundary lines between tiles and tile joints, and wall-to-
ceiling boundaries in backgrounds, are estimated as cracks

through mask DCNNs.Tese results considerably limit real-
world applications of DCNNs. Moreover, capturing images
for training neural networks and annotating cracks in im-
ages require great efort. Tis is another hurdle in the use of
DCNN for crack detection. Tese limitations motivated the
present study to establish an improved crack-detection
method that can be used in real-world applications.

4. Methodology

A complete fowchart of the proposed method comprising
four phases is shown in Figure 1. In phase A, a crack mask
was estimated from an optical image using the MSML Mask
DCNN. Te multiscale multilevel architecture of the pro-
posed neural network ensures a high accuracy and ro-
bustness. In phase B, the estimated crack masks were
preprocessed using morphological image processing, and
a contour flter was used for denoising. Tese masks were
modifed to have distinguishable curvilinear lines for cal-
culating the LSI.

In phase C, straight lines corresponding to the pre-
processed crack masks were calculated through the Hough
transform and then transformed to the principal compo-
nents according to the principal component axis. In phase D,
the LSI was calculated based on the straight lines calculated
in phase C and the estimated mask. Te probability dis-
tribution of the LSI for crack features, which was constructed
using a public image-set, was used to eliminate line-like
candidates from the estimated mask. Te detailed processes
performed in each phase are described in the following
subsections.

4.1. Phase A: Crack Detection Using the MSMLMask DCNN.
In this phase, a crack mask was predicted using the MSML
Mask DCNN from a measured optical image ((a) in Fig-
ure 1). Te MSML Mask DCNN was especially addressed to
detect cracks because of its high accuracy and robustness
among many mask-based DCNN. Specifcally, it constructs
a high-scale feature map from low-scale input images and
a low-level feature map from high-scale input images, which
implies that a multiscale architecture can efectively extract
diferent features at diferent size of images and fuse them to
recognize the object of interest. Furthermore, multilevel
feature layers conduct elementwise summation of features
extracted from shallow and deep feature maps. Tis ele-
mentwise summation overcomes the gradient vanishing
problem because shallow features summed by elements to
features in a deeper layer conserve the semantic information
of objects [18]. Hence, this architecture would be efective to
extract features at diferent level of complexity.

Te architecture of the proposed MSML Mask DCNN is
shown in Figure 2.Tismodel is designed to extract cracks of
varying lengths from input images recorded in diferent
environments. Te theoretical basis of this model lies in the
incorporation of multiscale layers in both the encoder and
decoder, which enables the extraction of both local and
global features. Te multiscale layers in the shallow part of
the encoder detect fne and sharp features including edges
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and corners, whereas those in the deeper part of the encoder
detect smooth yet complex features including surfaces of
various objects [19]. Te feature maps extracted at each scale
are then concatenated to estimate the cracks in an image.
Tis architecture reduces the size of parameters and is
computationally efcient [17, 20]. Furthermore, the MSML
Mask DCNN includes multiple levels, each consisting of an
encoder and decoder pair, with the multilevel encoders
capturing multilevel features from shallow to deep. In ad-
dition, the MSML Mask DCNN includes multiple levels,
each comprising an encoder and decoder pair, with the
multilevel encoders capturing features at diferent levels of
abstraction. Te encoder which is propagates initial in-
formation to lower level helps maintain the spatial in-
formation of features, thereby minimizing potential
information loss that may occur due to the multilevel
autoencoder architecture. Te decoder branch adds 1× 1
convolution layers after up-sampling and an elementwise
sum operation to enhance the learning ability and maintain
the smoothness of the features. All outputs in the decoder of
the multilevel concatenate the multiscale features of the
current level [21, 22]. It is worth noting that the proposed
architecture difers from that of U2-Net, even though both
address an autoencoder architecture. In essence, the pro-
posed model addresses a cascade form, whereas the U2-Net
addresses a nested U-net architecture. Further, the proposed
method directly transfers the spatial information of input
features into the initial encoder across multiple levels,
whereas the U2-Net model sequentially transfers input
features through the steps of multiscale and multilevel,
which may result in a relatively higher potential for spatial
information loss. Hence, the proposed method would be
more accurate and robust than other neural networks in the
architecture of autoencoder. Quantitative evaluation on
performances of the proposed architecture as well as those of
other neural networks are described in detail at Section 6.

Te features extracted from each layer in the frst level
execute the convolution operation of the corresponding
feature at the same scale and encoder/decoder in the second
level extracts the features at each layer of the encoder and
decoder. All features extracted from all layers of each scale
and encoder/decoder were concatenated to determine the
fnal features of the estimation. Ten, the concatenation
result executes a convolution operation with a one-by-one
flter and a sigmoid function. Tis process results in a fnal
crack mask. However, the estimated crack mask includes all
line-like features including actual cracks and non-crack
candidates. Hence, the non-crack mask should be elimi-
nated from the estimated mask for real-world applications.

4.2. Phase B: Preprocessing for LSI Calculation. Phase B aims
to not only acquire a new crack mask with denoising ((h) in
Figure 1) but also to generate a mask for calculating the LSI
((g) in Figure 1). To achieve these goals, this study utilizes
several morphological image-processing methods, including
a dilation method, skeletonization [23], and a contour
method [24].

First, a dilation method is applied to connect articulation
points in the estimated cracks to retain and reinforce the
linearity of the cracks ((b) in Figure 1). Tis method is
necessary because an estimated mask for a crack has several
disconnected points, even though an actual crack is a long
curvilinear line. Te dilation operation ⊕ is a convolution
operation between an input image A and a kernel mask B
that performs image dilation, which is formulated as follows:

A⊕B � z ∣ (B)z ∩A≠∅ ,

A⊕B � z ∣ (B)z ∩A⊆A ,
(1)

where z and (B)z denote the values related to the co-
ordination of kernel mask B and the value of the operation
matrix, which is the result of the convolution between A and
B transitioned upon z. Second, the subsequent skeletoni-
zation method reduces the line thickness of the curvilinear
line in the pre-processed mask ((c) in Figure 1). Tis pre-
processing method improves the efciency of the LSI cal-
culations. Figure 3 shows a fowchart of the skeletonization
method comprising opening and erosion operations. Te
erosion operation ⊖ ((c) in Figure 3) is also a convolution
operation, as shown below.

A⊖B � z ∣ (B)z ⊆A ,

A⊖B � z ∣ (B)z ⊆A
C ≠∅ ,

(2)

where (B) denotes the set of B elements through the op-
eration mask with A and B among z.

Another morphological image processing technique is
an opening operation ∘ , which combines the dilation and
erosion operations as follows:

A ∘B � (A⊖B)⊕B. (3)

In the opening operation, the order of methods is im-
portant; the erosion operation should be executed frst,
followed by the dilation operation. Note that the opening
operation is an efective method for eliminating small
amounts of noise in this study [25]. In the skeletonization
method, opening and erosion operations ((b) and (c) in
Figure 3) are executed in parallel with an estimated mask.
Te processed result of the former operation is subtracted
from the input mask ((d) in Figure 3) and then united to the
processed result of the latter operation ((e) in Figure 3). Tis
process is iterated until the width of the connection node is
less than or equal to one pixel, resulting in a thin skele-
tonized crack line. Tis mask is input to two subsequent
steps, that is, noise fltering ((d) in Figure 1) and the Harris
corner detection method ((g) in Figure 1). Noise fltering is
used to separate crack and non-crack features, whereas the
Harris corner detection method is used to calculate the LSI.

Tird, noise fltering is executed by applying a contour
method to a pre-processed mask ((d) in Figure 1). A de-
tailed fowchart of the denoising process using the contour
method is shown in Figure 4. Tis method comprises two
steps: contour identifcation and noise fltering. In the frst
step, a positive pixel, defned as a nonzero pixel, is scanned
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and selected. When a positive pixel is selected, the sub-
sequently connected positive pixels with the same direction
of rotation as the initial pixel are identifed. Te next
positive pixel then becomes the center of the points. Tis
process is iterated until the initial positive pixel becomes
the center of the points, and the path taken by all tasks is
considered the contour of the object. Tis task is repeated
until all pixels of the image have been scanned. In the
second step, the area of the contour is calculated; and it is
determined if the area is smaller than tharea, where tharea
denotes the predefned threshold of the noise size for
elimination. Te detected contour is considered as noise if
the aforementioned condition is satisfed and eliminated
from the input mask. Tis process is iterated until all
contours have been inspected, resulting in a denoised
output mask. Tis mask is input into the second dilation
method ((e) in Figure 1), followed by an intersection op-
eration to generate a denoised mask ((f ) and (h) in Fig-
ure 1). Tis mask is used for separating cracks from the
non-crack features in phase D.

Te Harris corner detection method, which is used to
enable an efective calculation, [26] is executed in parallel with
the previous step to eliminate the intersection point ((g) in
Figure 1). Te fowchart of the process involved in eliminating
the intersection point is shown in Figure 5.Te processedmask
obtained from the skeletonization method is the input in this
method. In this step, a window of size 3× 3 was used as
a kernel, which wasmoved along the rows and columns over all
pixels. Trough this task, (u, v) was calculated as follows:

E(u, v) � Σ
xi,yi( )∈W I xi+u,yi+v( )− I xi,yi( )[ ]

2, (4)

where u and v denote the moving coordinates indicating the
row and column inside the window (ranging from −1 to 1),
and xi, yi denote the row and column coordinates inside the
input mask. Furthermore, I denotes the intensity value of the
pixel. (u, v) indicates the variation in intensity between the
center pixel and one of the other pixels around the center
pixel. A value greater than the predefned threshold is
regarded as a corner or crossing point. (u, v) can be sim-
plifed as follows:

E(u, v) � [u v]M
u

v
 , (5)

where M is defned as follows for efcient calculation:

M �

Σ
zI

zx
 

2

Σ
zI

zx

zI

zy

Σ
zI

zx

zI

zy
Σ

zI

zy
 

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Finally, R is calculated from M to classify the size of the
singular value in each direction. Ten, to determine whether
the pixel is a corner, edge, or fat portion, the following
calculation is performed:

R � det(M) − k(trace(M))
2
, (7)

where k denotes the weight of a square trace of M to obtain
an appropriate value of R in the range of 0.04 to 0.06.Te gap
between the R value and zero is calculated. An R value less
than zero indicates that the pixel is an edge, whereas an R
value close to zero indicates that the pixel represents a fat
portion. An R value greater than zero indicates that the pixel
represents a corner. Based on this principle, pixels regarded
as corner or crossing points are selected. After the pixels
have been selected, the region around these pixels is elim-
inated. If these pixels are not eliminated in this step, the
calculated LSI exhibits many errors. Te pixels around the
crossing point include the information of lines other than
the representative line targeted for the LSI. Terefore, this
task results in a mask being used for the LSI calculation in
the subsequent phases.

4.3. Phase C: Selection of the Representative Crack. In phase
C, a straight line representing an estimated mask is frst
calculated through the Hough transformation ((i) in Fig-
ure 1) [27]. Several straight lines are generated for one
estimated mask in the Hough space, implying that one
representative line will be selected among these candidates.
Tis representative line is selected by utilizing a mean-shift
cluster method [28] in the Hough space because this method
is faster than other clustering methods and achieves accurate
performance with no limitation in the number of detected
lines. Note that both processing speed and accuracy are
important for real-world applications. Te representative
line is used to defne a candidate region for calculating the
LSI, which includes pixels within a predefned distance T
with respect to the representative line ((l) in Figure 1). An
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intersection operation is also executed for the mask in this
region using the mask created in phase B so that the in-
formation available in the original estimatedmask is used for
calculating the LSI ((j) in Figure 1).When calculating the LSI
of the line, the result of the intersection operation ((j) in
Figure 1) preserves information regarding the targeted line,
and the LSI from this mask is the real targeted information of
this phase. Principal component analysis is also performed
on the resulting mask in the original coordinate system to
determine the two principal axes and to efectively calculate
the LSI ((k) in Figure 1).Temask image is then transformed

to a hyperplane represented by the frst and second axes
based on a principal component analysis, such that the x-axis
becomes a representative line, that is, the frst principal axis
through this coordinate transformation, whereas the y-axis
represents the second principal axis.

4.4. Phase D: Eliminating Non-Crack Features. In this phase,
the LSI is calculated to distinguish actual cracks from non-
crack features in the estimated mask ((m) in Figure 1). Te
LSI is a quantitative metric that represents the variation in
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a curvilinear line with respect to the representative line at the
principal coordinates, which implies that an actual crack
might be characterized by large values of the LSI, whereas
line images such as edges and straight line-like objects are
characterized by small values of the LSI. Tis principle is
implemented as follows:

LSI �


xmax
i�xmin

|f(i)|

xmax − xmin
× exp

αn

xmax − xmin
 , (8)

where x and n denote the frst principal axis (x-axis) in the
transformed coordinate system and the number of lines in
the estimated mask crossing the x-axis, respectively. Te
subscripts of max and min denote the maximum and
minimum values, respectively, of a curvilinear line at the
transformed principal coordinates, and f denotes the
function formed by the line. Te constant α represents the
weight of the second term. Note that the LSI combines two
crack characteristics. Te frst is the variation in the crack
features with respect to the representative line, which is
shown as the frst term on the right side of equation (8). Te
second is the number of crack features that cross the rep-
resentative line, which is the x-axis in the principal co-
ordinate system. Tis is the second term on the right-hand
side of equation (8). An exponential function with the
weight of α is used to ensure an even contribution of each
factor while calculating the LSI. Ten, the calculated LSI is
compared to the probability distribution of the LSI values of
cracks, which was created from public crack image-sets. Te
LSI value of non-crack pixels can be considered an outlier in
this probability distribution because the LSI value of non-
cracks is smaller than that of cracks. Tus, it is possible to
distinguish non-crack features from crack features using the
proposed method.

4.5. Evaluation Metrics. Two types of metrics were used in
this study for the performance evaluation: metrics for the
evaluation of the DCNN and for the proposed method. Te
former includes the optimal dataset scale (ODS), optimal
image scale (OIS), and average precision (AP) [29]. Typical
segmentation models use a mean intersection over union
(mIoU) metric because it can evaluate clustering or classi-
fcation performances by comparing the pixels of ground
truth and predicted masks [30]. However, the mIoU fails to
provide a proper performance evaluation of the prediction
result over all images in the image-set because the pixels in
the predicted masks are used for the calculation of mIoU,
which are determined by a threshold in the classifer.
Typically, a threshold of 0.5 is used [31]. In other words, the
threshold of the classifer plays a critical role in the evalu-
ation of mIoU. However, this predefned threshold has no
regular role as a representative value for the dataset, because
the evaluated mIoU up to the threshold value cannot be
proportional. Tis efect stands out in the dataset containing
imbalanced objects such as cracks for anomaly detection
[32]. Specifcally, a crack in an image usually comprises
a connection of thin pixels. Tese unique characteristics are
difcult to evaluate using mIoU. Hence, many previous

studies related to crack detection have addressed ODS, OIS,
and AP instead of mIoU, including DeepCrack, FPHBN, and
CrackIT [10, 33–35]. Hence, this study also addressed ODS,
OIS, and AP instead of mIoU to evaluate the performance of
the proposed method for fair comparison. Note that ODS
indicated the best F1 score for all thresholds ranging from
0.01 to 0.99 for all image-sets, whereas OIS indicated the best
F1-score in the same range of thresholds for each image in
image-sets. AP indicates the average precision of all image-
sets, which is equal to the area of the precision-recall curve.
Tese metrics can be used to compare the performances of
the DCNN architecture for crack detection, regardless of the
threshold of classifcation in an imbalanced dataset. Pre-
cision is defned as a fraction of the relevant pixels among all
the pixels retrieved from the estimated mask. Recall is de-
fned as a fraction of the retrieved pixels among all the
relevant pixels obtained from the ground truth. Te metrics
used to calculate the ODS, OIS, and AP are Precision, Recall,
and F1-score, which are defned as follows:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 − score � 2
Precision ∙Recall
Precision + Recall

,

(9)

where TP, FP, and FN denote true positive, false positive,
and false negative rates, respectively, which are calculated by
comparing the estimated mask to the ground truth. TP
indicates the number of pixels accurately estimated as
positive in the estimated mask compared to the ground
truth. FP is the number of pixels incorrectly estimated as
positive in the estimated mask when compared to the
ground truth. FN is the number of pixels incorrectly esti-
mated as negative in the estimated mask when compared to
the ground truth.

Te metrics used for the evaluation of the proposed
method were Mrem, Melim, and F1M, which indicate the
changes in TP and FN. Mrem is defned as the ratio of the
remaining TP pixels, that is, TPrem, to the TP pixels in the
estimated mask, which are obtained using the mask DCNN
after employing the proposed method, as follows:

Mrem �
TPrem
TP

. (10)

Melim is defned as the ratio of the eliminated FP pixels,
that is, FPelim, to the FP pixels in the estimated mask, which
are obtained using the mask DCNN after employing the
proposed method, as follows:

Melim �
FPelim

FP
�
FP − PLSI − TPrem( 

FP
, (11)

where PLSI denotes the number of pixels remaining after the
deployment of the proposed method.

Both metrics ranged from 0 to 1, where 1 indicated the
best performance of the proposed method. Tus, Mrem � 1
indicates that all TP pixels remain, and there is no loss in
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estimation, and Melim � 1 indicates that all FP pixels are
eliminated after deploying the proposed method. However,
both metrics demonstrate diferent aspects related to the
performance of the proposed method. Consequently, F1M
was calculated to evaluate the overall accuracy of the pro-
posed method as follows:

F1M �
2Mrem ∙Melim

Mrem + Melim
. (12)

Note that this metric is the harmonic mean of Mrem and
Melim and thus, F1M is a representative metric for evaluating
the proposed method. However, these metrics should be
considered together for quantitative analysis because each
metric represents a diferent aspect of performance. A high
value of Mrem indicates a greater precision in crack esti-
mation, whereas a high value of Melim indicates that one of
the cracks has a greater recall in the evaluation of crack
estimation while estimating the performance of the DCNN.

5. Experiments

5.1. Public Image Set. Four sets of crack images obtained
from the literature were used for training, validating, and
testing the proposed neural network. Tese four public
image-sets, as provided in Ref [10], were acquired and
employed for this study. Sample images from each image-set
are illustrated in Figure 6, while detailed information re-
garding all image-sets is presented in Table 1. Te
CrackTree260 image-set consisted of 260 road pavement
images with a resolution of 800× 600 pixels, whereas the
CRKWH100 and CrackLS315 image-sets consisted of 100
and 315 pavement images with a resolution of 512× 512
pixels. Stone331 comprises 331 images of stone surfaces with
a resolution of 512× 512 pixels. Tese images were recorded
in diferent environments and presented a variety of cracks
of diferent origins, suggesting that these images are efective
for training and testing the accuracy and robustness of the
proposed neural network.

As the frst step, precise annotation was carried out again
to secure accurate ground truths for all image-sets, even
though public image-sets already provide ground truths.
Although the proposed approach may be executable without
further precise annotation, the additional annotation was
conducted in light of the dependency of crack detection
accuracy on the proposed approach’s performance. Te
provided annotation of crack masks included incorrect and
missing annotations for thin cracks and cracks with similar
appearances to their environments, making it difcult to
quantitatively evaluate neural networks. Our proposed
methodology has the ability to determine whether a detected
line represents a crack based on the variability of the de-
tected line, whichmakes additional annotations more useful,
especially for detecting minor cracks. Tis can be stated that
this was a valuable task of the proposed framework in phase
A ((a) in Figure 1). Note that precise annotation plays
a critical role to well train the neural network to cognize
crack features including real cracks and crack-like objects
with crack-like shapes including tiles, boundary lines be-
tween tiles and tile joints, and well-to-ceiling boundaries,

whereas the strategy in Figure 1 plays a critical role to
remove crack-like objects cognized from the MSML Mask
DCNN for feld applications. Hence, both tasks are im-
portant to inspect cracks in real-world applications. After
completing precise annotation, the CrackTree260,
CRKWH100, and CrackLS315 datasets were divided into
training and validation image-sets. Te Stone331 dataset was
specifcally chosen as the test set to evaluate the impact of
training on a particular crack image dataset from one en-
vironment on crack detection in diferent environments.Te
training and validation image-sets were distributed at a ratio
of 9 :1, resulting in 605 training images and 70 validation
images without augmentation (Table 1).

5.2. Field Tests. Two feld tests were conducted to demon-
strate the efectiveness of the proposed method. One ex-
periment was conducted inside a building, whereas the other
was conducted in an underground tunnel equipped with
power-transmission facilities. Both structures are made from
concrete.Te captured images included crack and non-crack
features because these mixed features are commonly cap-
tured in real-world applications.

Te efect of light was frst evaluated in feld tests because
several studies suggested the use of optical and infrared
lights for crack measurements. [10, 36, 37] Tree types of
light intensities (low, medium and high) were used in the
measurements under diferent conditions of light emitting
diode (LED) lights. Te frst case was without an LED; in the
second case, the LED, which was fxed on the camera, was
facing 45° away from the crack; in the third case, the LEDwas
fxed facing the crack. Te images captured under diferent
light intensities were then used as the input images for the
MSML Mask DCNN to generate the estimation mask, as
shown in Figure 7. Table 2 lists the efectiveness of the
diferent light intensities. Four metrics were used to evaluate
the accuracy of the estimated mask (threshold: 0.5). Te
results clearly indicate that the F1-score and AP of the
images captured under the high-intensity light showed the
best scores of 0.7320 and 0.5430, respectively. Tis implies
that images captured under higher light intensities are ef-
fective for accurately evaluating cracks. Hence, all image-sets
were recorded under high-intensity light.

In the indoor experiments, crack images were recorded
of cracks present on the ceilings and walls of two buildings,
numbered 207 and 310, at Chung-Ang University, Seoul.
Buildings 207 and 310 were constructed in 1969 and 2016,
respectively. Te images were recorded using See3-
cam_CU135, a 4K USB camera (e-con Systems). Te res-
olution and feld of view were set at 1920×1080 and 67°,
respectively. Tis experiment aimed to achieve two goals.
First, to obtain the stochastic LSI threshold, which is used for
classifying the crack and non-crack features, and second, to
test the proposed method. Eighteen images were obtained
for determining the LSI threshold. Ten, 250 crack and
250 non-crack sub-masks were extracted from these images
using a method similar to that used in phase C ((j) in
Figure 1). Sub-masks were extracted from the full-resolution
image because one image may include two or more target
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masks that are line-shaped, and the LSI of each line is
calculated. Ten images were considered for testing the
model, as exemplifed in Figure 8(a). Tese images include
crack and non-crack features, where the non-crack features
include tiles on the ceiling or a corner or crossing connected
to each wall.

In the underground tunnel, images of structural surfaces
such as the ceiling and side wall were captured. Te tunnel
constructed in 2001, carries Shingwangmyeong-
Yeungdeungpo power transmission lines and is managed
by the Korea Electric Power Corporation. Te O&M pro-
tocols for underground power transmission lines

recommend that tunnel structures should be inspected bi-
annually through a patrol-based inspection. Hence, 2 km of
this underground tunnel was inspected. Te images shown
in Figure 8(b) were acquired using an M5055 pan-tilt-zoom
camera (Axis Communications, Sweden) with a 5x optical
zoom. Te resolution, feld of view, and zoom were set to
1920×1080, 71°, and 3x, respectively, to record the images
accurately. Twenty images were captured from the un-
derground tunnel. Figure 8(b) shows that these images
include crack and non-crack features, confrming that non-
crack features in the images should be eliminated to accu-
rately detect cracks. Non-crack features included

Table 1: Information of image-sets (original and fused) learning the MSML mask DCNN.

Image-set (a) CrackTree260 (b) CRKWH100 (c) CrackLS315 (d) Stone331
No. of images 260 100 315 331
Resolution 800× 600 512× 512 512× 512 512× 512
Structure Pavement Stone surface

No. of images (training/validation/test)

Training Test
605 331

Validation
30 10 30 —

(a) (b)

(c) (d)

Figure 6: Public image-sets of a crack. (a) CrackTree260, (b) CRKWH100, (c) CrackLS315, and (d) Stone331.
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Input Image Estimation

(a)

(b)

(c)

Light
Low

High

Figure 7: Efect of light intensity on crack measurements (overlapped for visualization by the crack mask with dilation of three). (a) Image
taken at the low light and estimated result, (b) image taken at themedium light and estimated result, and (c) image taken at the high light and
estimated result.

Table 2: Comparison of the estimated metrics based on the light intensity (@threshold).

Light intensity Precision@0.5 Recall@0.5 F1@0.5 AP
Low 0.9572 0.4611 0.6224 0.4413
Medium 0.9001 0.5664 0.6952 0.5098
High 0.8256 0.6576 0.7320 0.5430

(a)

(b)

Figure 8: Sample images recorded in feld tests. (a) Building and (b) underground tunnel.
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transmission lines, hangers, or supports, such as pillars in
this experiment. It is worth noting that obtaining multiple
images of a crack is difcult because cracks occur randomly
and sparsely. Tis is another reason for using the F1-score in
the evaluation [38].

5.3. Construction of the Proposed Method. Tis subsection
describes the details for development of the proposed
method.Tis includes the estimation of the hyperparameters
used in the MSML Mask DCNN and other variables used in
the proposed method.

In phase A, the MSML Mask DCNN and other neural
networks were trained, validated, and tested using a graphics
processing unit (GPU) server with an Intel Xeon Gold 5218
CPU with 128GB memory and four NVIDIA RTX 2080 Ti
graphics cards. Out of the original image-sets, from
CrackTree260, CRKWH100, and CrackLS315, 90% were
used for training, and the remaining 10% for validation. All
images from Stone331 were used for the test set. Te res-
olution of the input images was reshaped to 512× 512 to
improve computational efciency. Te MSML Mask DCNN
has two levels of the multiscale Mask DCNN (MS Mask
DCNN). Te MS Mask DCNN levels were constructed by
combining three and four diferent scales of the encoder and
decoder networks. Note that fusing the information ob-
tained from three and four feature maps from a deep and
wide neural network enhanced the estimation accuracy. Te
larger the scale of the MS neural network, the more accurate
the estimation but the longer the calculation time, suggesting
that a trade-of exists in constructing neural networks.
Hence, this study uses two diferent scales of the MSML
Mask DCNNs to analyze the advantages and disadvantages
of these neural networks in terms of both accuracy and
computational efort. A single MS Mask DCNN with the
same structure at each level in the MSML Mask DCNN,
Mask R-CNN, and Residual UNet (ResUNet) was con-
structed for quantitative evaluation in terms of accuracy,
robustness, and computational load because they show good
performances in the literature [39, 40]. Te Bayesian opti-
mization (BO) method iteratively evaluates promising
hyperparameter confgurations within a user-defned budget
to achieve the best results [41]. In this study, the BO method
was used with a trial number of 100 to optimize the
hyperparameters of each model and ensure fairness in the
comparison of the diferent models. Te use of BO is im-
portant to secure the best results for each model and ensure
a fair comparison between the diferent models. Te trial
number of the BO method was set to 100 to secure optimal
hyperparameters. Tis study needs to identify the optimal
hyperparameters for the early stopping and Adam opti-
mizer, specifcally patience, learning rate, β1 and β2, and ϵ,
when applying the BO method. Te BO method should
determine the range for each hyperparameter. Hence, this
study selects the range of each hyperparameter based on
literatures. Specifcally, patience, which is the hyper-
parameter for early stopping, has a value between 10 and 20
[42–44]. However, this study set a relatively broad range of
10 to 50 to account for variations in model size and dataset

characteristics. Several studies have indicated that a learning
rate of 0.001, β1 of 0.9, β2 of 0.999, and an ϵ of 10−8 can
produce satisfactory results in the Adam optimizer [45, 46].
Based on this recommendation from literatures, β1 and β2
were set within the range of 0.9 to 0.999, which are not far
from the recommended values. Since ϵ and learning rate
have a lesser impact on the results than β1 and β2, a wide
range was established to explore various combinations of
values. Table 3 lists the ranges of hyperparameters used in
hyperparameter optimization and the estimated optimal
hyperparameters for each DCNN method. Furthermore, as
a performance metric for each deep learning model, Frames
Per Second (FPS) was calculated for each model’s input and
output images to compare their performance.

In phase B, the parameter used in the frst dilation
method was the number of iterations, which was set to three
for the steps shown in (b) and (e) in Figure 1.Te predefned
threshold of the area classifying the noise and cracks, which
was determined by the contour method, was set to 50 for the
step shown in (d) in Figure 1. Te number of iterations used
in the second dilation method was set to fve. Te window
block size, aperture size, and threshold of the Harris corner
value in the Harris corner detection method were set to 3, 1,
and 0.005, respectively.

Phase C comprises the Hough transform to identify the
representative lines and coordinate transformation followed
by principal component analysis. Te Hough transform only
has hyperparameters. In the step where the representative
line is selected, the width of the pixel around the repre-
sentative line was set to fve for the intersection operation
with the result of the Harris corner detector mask.

In phase D, the decision line, which separates crack
features from non-crack features, should be chosen to cal-
culate the LSI. Te image-sets of the crack and non-crack
features comprised 750 and 250 images, respectively. Spe-
cifcally, 500 images of cracks were randomly selected from
the public image-sets listed in Table 1, whereas 250 images of
cracks were selected from the images acquired inside the
buildings, as mentioned in Section 5.2. Furthermore, 250
images of non-crack features were extracted, as mentioned
in Section 5.2. Te right-sided three-sigma value was cal-
culated from non-crack features, whereas the left-sided
three-sigma value was calculated from crack features. Te
mean of these boundary values was then considered as the
decision line in the probability distribution of the LSI values
of the cracks.

6. Results and Discussion

6.1. Superiority of MSML Mask DCNN. Te accuracy and
robustness of the proposed method were compared to those
of other DCNNmethods, includingMask R-CNN, ResUNet,
and MS Mask DCNN. Public image-sets were used for
training, as mentioned in Section 5.1. Table 4 shows the
evaluation results in terms of the ODS, OIS, and AP for all
validation and test image-sets, and the best scores are shown
in bold font for each image-set. Remarkably, the MS Mask
DCNN and MSML Mask DCNN show better accuracy than
Mask R-CNN and ResUNet, although the calculation speeds
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of Mask R-CNN and ResUNet are generally faster than those
of the MS Mask DCNN and MSML Mask DCNN. Tese
results are reasonable because the multilevel and multiscale
architecture of a neural network increases both the pre-
diction accuracy and computational loads. Specifcally, the
Mask R-CNN model requires both segmented mask in-
formation and bounding box information of the object.
However, cracks scarcely fll the bounding boxes owing to
their diverse shapes, such as irregularly stretched lines or
meshes, and because it is difcult to separate each crack as an
object. Tis DCNN also performs poorly in instance seg-
mentation of cracks, resulting in a relatively low accuracy

compared to other neural networks. Te ResUNet has
a similar structure to theMSMask DCNN, which is based on
the auto-encoder, and the results of the ResUNet were
approximately equivalent but marginally worse than those of
the MS Mask DCNN and MSML Mask DCNN. Specifcally,
the mAP of the ResUNet was 90.75% for the validation
image-sets of CrackTree260, CRKWH100, and CrackLS315,
whereas that of the proposed neural network was 94.19% for
three validation image-sets. Moreover, the AP of the
ResUNet and MSML Mask DCNN with four layers were
72.65 and 83.26% for the test image-set of Stone331, con-
frming that the proposed neural network outperforms the

Table 3: Initial range of hyperparameter and optimal value of hyperparameter for each model.

Hyperparameters

Early stopping Adam optimizer

Patience Learning rate β1 β2 ϵ
Range of initial settings

10∼50 10−5∼10−2 0.9∼0.999 0.9∼0.999 10−9∼10−5

DCNN methods Optimal values
Mask R-CNN 24 5.67e−4 0.924 0.995 1.81e−7
ResUNet 12 1.27e−3 0.922 0.967 5.12e−8
MS mask DCNN w/three scale layers 11 1.46e−3 0.937 0.977 3.57e−7
MS mask DCNN w/four scale layers 18 8.18e−4 0.920 0.990 1.12e−6
MSML mask DCNN w/three scale layers 25 5.50e−5 0.932 0.975 8.94e−8
MSML mask DCNN w/four scale layers 15 8.21e−4 0.915 0.998 1.12e−7

Table 4: Comparison of estimation accuracy for deep convolutional neural networks.

Image-set DNN method
Metric (%)

FPS
ODS OIS AP

CrackTree260

Mask R-CNN 87.93 93.85 82.81 24.73
ResUNet 97. 1 97. 7 94.63 21.11

MS mask DCNN w/three scale layers 90.53 90.75 90.95 30.31
MS mask DCNN w/four scale layers 91.59 91.91 90.16 15.27

MSML mask DCNN w/three scale layers 91.87 91.75 90.02 21.32
MSML mask DCNN w/four scale layers 92.66 92.98 91.14 7.05

CRKWH100

Mask R-CNN 89.32 89.43 88.73 25.01
ResUNet 96.41 96.63 94.24 19.21

MS mask DCNN w/three scale layers 93.96 94.58 97.59 29.12
MS mask DCNN w/four scale layers 95.64 96.13 97.66 14.56

MSML mask DCNN w/three scale layers 96.27 96.31 96.89 20.37
MSML mask DCNN w/four scale layers 96.54 97. 3 98.55 6.91

CrackLS315

Mask R-CNN 84.68 85.98 79.65 25.55
ResUNet 90.31 87.18 83.39 22.37

MS mask DCNN w/three scale layers 90.05 88.98 90.39 30.33
MS mask DCNN w/four scale layers 90.03 88.33 89.75 14.78

MSML mask DCNN w/three scale layers 90.72 87.73 89.01 21.10
MSML mask DCNN w/four scale layers 91.6 89.17 92.88 7.02

Stone331

Mask R-CNN 58.73 59.37 47.35 24.21
ResUNet 83.21 80.11 72.65 22.13

MS mask DCNN w/three scale layers 81.32 79.54 78.03 30.98
MS mask DCNN w/four scale layers 82.03 81.38 78.82 14.97

MSML mask DCNN w/three scale layers 83.54 83.89 80.35 21.34
MSML mask DCNN w/four scale layers 84.71 84.4 83.26 7.05

(Best scores shown in bold font).
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Mask R-CNN and ResUNet. Note that the ResUNet showed
better accuracy in the three metrics only for the validation
image-set of CrackTree260. Tis can be explained by the fact
that the ResUNet would be overftted for the
CrackTree260 image-set because this image-set was parti-
tioned into training and validation sets. Note also that the
phenomenon a neural network can be overftted to the
training image-set is in common and therefore this evalu-
ation of neural network capability focuses on results of the
test images-sets in general [47]. Te results for the
Stone331 image-set clearly indicated that generality and
accuracy of MSML Mask DCNN is better than those of the
ResUNet because the Stone331 image-set was measured at
diferent environment from the training image-sets. It can be
inferred that the ResUNet estimates more false positive
pixels than the MS Mask DCNN. Tis diference originates
from the architecture of the neural network that extracts
feature maps at each scale layer in the auto-encoder. Spe-
cifcally, the ResUNet concatenates feature maps corre-
sponding to each scale in the decoder network for
augmentation of features and then estimates the mask at the
last layer of the network. Consequently, the feature maps of
the encoder network are combined with those of the decoder
network, and then the feature maps are faded out. In
contrast, the MS Mask DCNN utilizes the feature maps
together to calculate a loss and to estimate a mask directly.
Tis architecture conserves the semantic information of
cracks, which are extracted from diferent scales, resulting in
better performance for detecting cracks. Table 4 also com-
pares the MS Mask DCNN and the MSML Mask DCNN.
Interestingly, the MSMask DCNN andMSMLMask DCNN
with two diferent scale layers show similar accuracy within
a maximum of 3% for the three-validation image-sets, even
though calculation speed signifcantly depends on each
neural network. Tis observation can be explained by two
hypotheses: First, the weights of neural networks would be
overftted because all images were measured in the same
environments, even though validation image-sets were not
used for training. Second, the multilevel architecture of the
MSML Mask DCNN might not be efective for crack de-
tection because crack features would be simpler than
expected.

Te frst hypothesis is more reasonable than the second
hypothesis in this study because the three metrics for the test
image-set of Stone331 show diferent results. Te MSML
Mask DCNN outperformed the MS Mask DCNN for the
same scales of three and four layers. Specifcally, ODS, OIS,
AP of the MSMLMask DCNN were higher than those of the
MS Mask DCNN by 2.22, 4.35, and 2.32% for three scale
layers, whereas those of theMSMLMask DCNNwere higher
than those of the MS Mask DCNN by 2.63, 3.02, 4.44% for
four scale layers. Tese results suggest that the MSML Mask
DCNN is more accurate and robust for crack estimation
using images measured from diferent environments. Tis
observation can be explained by the fact that the MSML
Mask DCNN not only maintains the advantage of the MS

Mask DCNN, but also improves the performance by using
feature maps extracted from the second level of the network,
which is concatenated to feature maps from the frst level of
the neural network. Te feature maps extracted from each
scale in the second level of the network also contributed to
the estimation of cracks. Terefore, additional feature maps
at each scale in the second level of the neural network, which
are based on the feature maps extracted from the frst level of
the neural network, improve the performance in detecting
objects precisely. In conclusion, the MSML Mask DCNN
outperforms other neural networks in terms of both accu-
racy and robustness, even though a complex architecture
increases the computational load in estimating cracks. It
should be noted that testing the proposed neural network
with images from diferent environments is important to
secure estimation accuracy and robustness. However, the
FPS of the MSML Mask DCNN was slower than that of the
MS Mask DCNN. Tis trade-of is an important consider-
ation in real-world applications.

6.2. Applications of Each Phase. Te results for each phase
executed using the proposed method are described in this
subsection. One image, which included several non-crack
features, was used to demonstrate the efectiveness of the
proposed method, and a detailed transformation of this
image is shown in Figure 9.

In Phase A, the candidate mask is estimated using the
MSML Mask DCNN. Figure 9 (a) shows that an image
estimated using the MSML Mask DCNN contained several
line and pattern features. Line features originated from the
connections between diferent tiles, and pattern features are
obtained from the patterns on the tiles. Tese features were
estimated as crack features because their characteristics are
similar to those of cracks. Tis was a common in real-world
applications, which degrades the accuracy of estimating
cracks through neural networks.

In Phase B, the dilation method is executed on the es-
timated mask candidates (Figure 9 (b)). Tis method con-
nects the disconnected cracks in the mask. Te
skeletonization method is then applied to the dilated mask
(Figure 9 (c)). Tis process thins the dilated mask, resulting
in a realistic image, from which it is easier to select the
representative line for the LSI calculation. Te size of the
patterns, which are considered noise in this study, becomes
smaller than the predefned threshold; consequently, the
contour method eliminates these patterns, that is, noise
(Figure 9 (d)). Te mask does not include noise after this
step, implying that it can be compared to the original es-
timation. Te dilation method is executed again because
certain pixels are disconnected after implementing the prior
steps (Figure 9 (e)), and then an intersection operation is
performed between the original mask and the dilated mask,
resulting in a new mask that only includes line or curvilinear
features without patterns or noises (Figure 9 (f)). Simul-
taneously, the Harris corner detector is applied to the mask
obtained from the skeletonizationmethod. Pixels around the
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corner or crossing points detected by the Harris corner
detector are eliminated to minimize the error of the LSI
(Figure 9 (g)).

In Phase C, the Hough transform obtains representative
lines for the LSI from the mask after the application of the
Harris corner detector (Figure 9 (h)). Tis method trans-
forms all the information in an image into Hough spaces
comprising r and θ coordinates (Figure 9 (i)), where r and θ
denotes the distance between the origin coordinates in
a mask and a line and the angle between the x-axis in a mask
and a line, respectively. A line that is thicker than one pixel is
selected as a representative line because the LSI is calculated
from pixels around the representative line, which is selected
based on the Hough transform ((j) in Figure 9). An in-
tersection operation is performed between this mask and the
mask from phase B ((g) in Figure 9) to select a targeted mask
for the LSI calculation ((k) in Figure 9). Ten, coordinate
transformation was performed, followed by principal
component analysis to analyze the line and curvilinear
features in the frst principal axis ((l) in Figure 9). Tese
steps, from phases A to C, prepare a mask for the LSI
calculation.

In phase D, non-crack features are eliminated based on
the probability distributions of the crack and non-crack
image-sets. Figure 10 shows this probability distribution
with the decision line, which was calculated from the mean
of the three-sigma boundary values (99.7%) for crack and
non-crack features. Specifcally, the three-sigma value of the
cracks on the left side is 0.7321, whereas that of the non-
cracks on the right side is 0.6719, resulting in a decision line
of 0.7 as the mean of these two values. Tis clear separation
of the two features originated from two key characteristics:
the variation of crack features with respect to the repre-
sentative line and the number of crack features that crossed
the representative line, suggesting that the decision lines can
classify crack and non-crack features. Hence, a subtraction
operation in this phase efectively eliminates non-crack
candidates in the mask. It is worth noting that the den-
sity of the crack features was diferent from that of the non-
crack features. Te former is in the range of 0.0 to 0.1,
whereas the latter is in the range of 0 to 6, confrming again
that the proposed LSI is an efective metric for distinguishing
crack features from non-crack features. When the LSI of the
representative line was smaller than that of the decision line,

(a)

(b) (c) (d) (e) (f)

(g)

yes

no

LSI < Th

Crack

(h) (i) (j) (k) (l) (m)

Morphology operation
Mask operation
Intersect operation

Subtract operation

Figure 9: Results of each phase through the proposed method.
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the representative line mask ((j) in Figure 9) was subtracted
from the new mask ((f ) in Figure 9). Finally, the subtracted
mask becomes the fnal mask ((m) in Figure 9), where the
non-crack components have been eliminated. Tis process
was repeated until the number of representative lines had
been estimated.

6.3. Cracks in Building Interiors. Figure 11 shows images
after deploying the MSML Mask DCNN and the proposed
method. Table 5 lists the three values of metrics evaluating
the proposed method with the indoor test image-set. Esti-
mating cracks with the MSML Mask DCNN includes both
non-crack pixels, which are components of the ceiling tiles,
and crack pixels on the concrete wall (Figure 11 (A-3)),
whereas the proposed method eliminates non-crack pixels
(Figure 11 (A-4)). Non-crack features were mostly elimi-
nated, confrmed by the values of Mrem, Melim and F1M,
which are 0.98, 0.94, and 0.96, respectively (image No. 8 as in
Figure 11(a)). Specifcally, 2% of the estimated pixels among
the TP pixels were eliminated, whereas 94% of FP pixels,
which are the non-crack components of tiles and notches on
ceilings, were eliminated.Tis analysis demonstrates that the
proposed method efectively eliminated non-crack features,
whereas remained crack features. Te non-crack compo-
nents eliminated depend on the predefned threshold of the
area classifying noise and crack, which is decided by the
contour method, suggesting that an appropriate threshold
would be important for real-world applications. Noise
closely located to the representation line also degrade ac-
curacy, implying that objects around cracks play an im-
portant role in detection accuracy.Tese factors result in low
accuracy for some recorded images including image No. 3
and 7. Considering image No. 3, the values of Mrem, Melim
and F1M were 0.36, 0.98, and 0.53, respectively, suggesting
that TP pixels were mostly not eliminated, whereas FP pixels

were almost eliminated. Specifcally, cracks located on the
inner side of a corner were barely detected because one long
crack was detected as several short cracks, and thereby TP
pixels were considered noise in the proposed method; please
see Figures S1(a) and S1(b), which are enlarged fgures of
Figure 11 (B-2) and (B-3). An edge of a corner has a line-like
characteristic and therefore the corner negatively afected
crack detection because the cracks were located around the
corner. By contrast, image No. 10 shows low F1M because FP
pixels were mostly not eliminated, whereas TP pixels were
almost eliminated. Exact values for three metrics Mrem,
Melim and F1M were 0.83, 0.63, and 0.71, respectively.

Tis result is also highly correlated to the objects around
the cracks and the geometrical environment. Specifcally, image
No.10 includes several non-crack pixels that are components of
the door and ceiling tiles (Figure 11(c)). Figure 11 (C-4) shows
that the results of the proposed method retained several non-
crack features because of the adjacent lines to the represen-
tation line, which have lower pixels than the threshold of the
LSI. Te proposed method calculates the LSI from an area of
crack candidates with respect to the representation line, im-
plying that the LSI is proportional to the size of the amplitude
and variation of the crack candidate. If a crack candidate in-
volves a crossing line because of other objects (as in Figure 11
(C-4)), this crossing line results in an error in the LSI calcu-
lation because it amplifes the LSI of the crack candidates. Te
Harris corner detection was used in the proposed method to
eliminate the area of the crossing point. However, the Harris
corner detection method also defnes an appropriate threshold
for hyperparameters to detect the corner of crossing points and
the results depend on the images. In this case, the crossing
points are not fully detected, and this causes an error for a high
LSI to be retained as a crack. [48].

Regardless of these limitations, the proposed method
shows a good capability for crack detection in real-world
applications. To validate the superiority of the proposed
method, the accuracy of the proposed method is compared
to other state-of-the-art methods in literature [13–16] (Ta-
ble 6). Te architecture of the other four methods was
replicated from Ref. [13–16] and then trained with the same
public image-sets (Table 1). Finally, the hyperparameters for
each method were optimized using the BO method. Te
results showed that the proposed method outperformed
other state-of-the crack detection methods, suggesting that
the proposed deep and wide neural network efectively
detects crack features, even though the MSML Mask DCNN
was only trained using public datasets. Moreover, the AP of
the entire framework fusing the MSML Mask DCNN and
LSI shows at least two times higher accuracy than the others,
confrming that false positive pixels are successfully elimi-
nated by the proposed method. However, the proposed
method is slower than other methods because of the deep
architecture of the MSML Mask DCNN and LSI processing,
suggesting that a high performances GPU would be in-
dispensable for implementing the proposed method in real-
world applications.Tis comparison clearly suggests that the
proposed method is efective in real-world applications.
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6.4. Cracks in the Underground Tunnel. Figure 12 shows
sample images of applying the proposed method on the
underground tunnel image-set and Table 7 lists the quan-
titative results of the proposed method for the three metrics.
Image No 12 shows one of the best results (Figure 12(a)); the
metrics Mrem, Melim and F1M are 0.97, 0.94, and 0.95, re-
spectively, suggesting that the proposed method efectively
eliminates non-crack features in crack candidates. Similarly,

image No. 1 also obtained a high score for the metrics (Mrem:
0.99, Melim: 0.95 and F1M: 0.97), confrming again that the
MSML Mask DCNN accurately estimates all crack features,
and the proposed LSI efectively eliminates non-crack
candidates. By contrast, values of Mrem, Melim and F1M

were 0.93, 0.19, and 0.32 for image No. 6 (Figure 12(c)),
implying that only a few FP pixels were eliminated by the
proposed method. Tree categories of non-crack features

(B-3) (B-4)

(C-3) (C-4)

(B-2)

(C-2)

(A-3) (A-4)(A-2)(A-1)

(B-1)

(C-1)

Original Ground truth Estimation Proposed method

(a)

(b)

(c)

Figure 11: Estimated masks of sample images captured inside a building (overlapped for visualization by the crack mask with dilation of
three). (a) to (c)Te notation 1 to 4 corresponds to the original image, original image overlapped by ground truth, original image overlapped
by the DCNN estimation result, and original image overlapped by the result from the proposed method.

Table 5: Result of the indoor test set (total 10 images) using the proposed method.

Image no 1 2 3 4 5 6 7 8 9 10 Mean
Mrem 0.73 0.52 0.36  .99 0.78 0.54 0.37 0.98 0.98 0.83 0.71
Melim 0.98 0.89 0.98 0.92 0.92 0.73  .99 0.94 0.88 0.63 0.89
F1M 0.83 0.65 0.53  .96 0.84 0.62 0.54  .96 0.93 0.71 0.76
(Best scores are shown in bold font).
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Table 6: Comparison of estimation accuracy for crack-detection methods.

Image-set DNN methods
Metric (%)

FPS
ODS OIS AP

Indoor test set (total 10 images)

MSML mask DCNN w/four scale layers 20.12 21.53 5.39 6.98
MSML mask DCNN w/four scale layers w/LSI 29.86 29.99 12.35 5.10
Surf & CNN-based classifcation model [13] 8.55 6.43 1.98 21.58

Mask R-CNN [14] 9.58 8.59 2.12 23.63
Dual-scale CNN-based classifcation [15] (GoogLeNet & ResNet) 15.73 11.28 4.32 10.23

CrackPix [16] 13.30 10.19 2.40 15.33
(Best scores shown in bold font).

(A-3) (A-4)(A-2)

Original Ground truth Estimation Proposed method

(A-1)

(B-3) (B-4)(B-2)(B-1)

(C-3) (C-4)(C-2)(C-1)

(D-3) (D-4)(D-2)(D-1)

(a)

(b)

(c)

(d)

Figure 12: Estimated masks of sample images captured inside a building (overlapped for visualization by the crack mask with a dilation of
three). (a) to (d) correspond to images no. 12, no. 1, no. 6, and no. 11. Te notation 1 to 4 corresponds to the original image, original image
overlapped by ground truth, original image overlapped by the DCNN estimation result, and original image overlapped by the result from the
proposed method overlapped on the image.

Table 7: Result of the underground tunnel test set (total 20 images) using the proposed method.

Image no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean
Mrem 0.99 1.  0.98 0.97 0.98 0.93 0.99 0.63 0.71 0.98 0.46 0.97 0.97 0.95 0.96 1.  0.98 0.70 0.98 1.0 0.91
Melim 0.95 0.91 0.61 0.95 0.26 0.19 0.51  .99 0.98 0.92 0.72 0.94 0.90 0.73 0.62 0.93 0.26 0.53 0.92 0.45 0.71
F1M  .97 0.95 0.76 0.96 0.41 0.32 0.67 0.77 0.82 0.95 0.56 0.95 0.94 0.82 0.75 0.96 0.41 0.61 0.95 0.62 0.76
(Best scores are shown in bold font).
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result in these poor performances (- in Figure 12 (C-3)). In
category, the estimated crack-candidates located on the right
were eliminated because the Hough transform detected this
line. By contrast, the crack candidate located on the left side
remained because the Hough transform could not detect it
because of the catenary shape of the line. Category includes
a large area of several rounded holes that are similar to
curved lines. However, a shape made up of several rounded
holes can approximate a line and thereby most candidate
cracks were efectively eliminated. By contrast, a small area
of rounded holes was retained in category because of
a resolution problem (Figure S1(c)). A small area of rounded
holes can be eliminated like in category if the image is
recorded at a closer distance and has adequate resolution.
However, the image was recorded far from cracks, and
therefore a small area of rounded holes was considered
a small line and not eliminated. Image No. 11 also shows low
accuracy (Mrem: 0.46, Melim: 0.72, and F1M: 0.56).

Tis image includes the most concerns including many
disconnected cracks and rounded holes of TP pixels
(Figure 12(d)). Tis observation indicates that complex
facilities in the underground tunnel degrade the accuracy of
the proposed method. Tus, automated crack inspection for
real-world applications in such tunnels would be extremely
difcult and limited. Hence, more eforts should be devoted
in future work to increase automated inspection processes.
However, the mean values of Mrem, Melim, and F1M are 0.91,
0.71, and 0.76, respectively, for all images from the un-
derground tunnel, suggesting that the proposed method
efectively eliminates non-crack features of a line shape even
in complex circumstances. It is worth noting that the res-
olution of images plays an important role in all crack-
detection methods. A high-resolution close-up image in-
creases the accuracy of crack detection, which is a reason for
most previous studies recording images within a dozen
centimeters or using high resolution images [15, 16].
However, this study measured images from 1.4-1.8m dis-
tance because it is a reasonable and economic distance for
practical applications considering the camera deployed on
the mobile robot. It is also worth noting that the mea-
surements were limited by the camera’s unchangeable po-
sition. A camera facing cracks exactly in parallel enhances
the detection accuracy. However, it is difcult to face all
internal structures for recording during a patrol inspection.
Te resolution and position of the camera are the main
reasons for low accuracy in some images.

Regardless of several limitations, the proposed method is
more efective than other state-of-the- art crack-detection
methods for real-world applications. Table 8 compares the
results from the proposed method with those of the other
four state-of-the art methods [13–16]. Te other four
methods were trained with the same public image-sets
(described in Table 1) and optimized through the BO
method. Te results are similar to those from the indoor
image-set. However, the estimated APs were higher than
those obtained from the indoor image-set. Remarkably, the
proposed method outperformed other state-of-the-art
crack-detection methods. Specifcally, the proposed MSML

Mask DCNN is better than other deep learning-based crack-
detection methods, suggesting that the proposed deep and
wide neural network efectively detects crack features, even
though the MSML Mask DCNN was only trained using
public datasets. Moreover, the AP of the entire framework
combining the MSML Mask DCNN and the LSI shows two
times higher accuracy than the others, confrming that false
positive pixels are successfully eliminated by the proposed
method. In conclusion, a comparison of the proposed
method with other four state-of-the-art methods for indoor
and tunnel image-sets clearly demonstrates that the pro-
posed method is efective for real-world applications in
complex structures with many objects.

7. Conclusions

Tis study proposes an integrated framework for efective
crack detection in images for real-world applications
comprising the MSML Mask DCNN and LSI. Te proposed
method estimates crack candidates using the MSML Mask
DCNN only trained by public image-sets based on the
principle that cracks have distinct features. Employing the
proposed method to test the images demonstrated its ef-
fectiveness. Specifcally, the MSML Mask DCNN out-
performed the state-of the-art neural networks in terms of
both accuracy and robustness, whereas the proposed LSI
efectively distinguishes non-crack features from cracks.
Hence, the proposed method can improve the capability of
crack detection on the surface of structures located in
complex and various environments. However, the proposed
method limits the elimination of other shapes with non-
crack features, such as round holes. Future work includes
studying a method for eliminating other shapes with non-
crack features in crack candidates. Furthermore, a quanti-
tative evaluation of the proposed method should be con-
ducted using more feld test images. A novel architecture of
a mask neural network should also be studied to enhance the
estimation accuracy of crack detection in structures.
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