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With the continuous improvement of computation and communication capabilities, the Internet ofTings (IoT) plays a vital role
inmany intelligent applications.Terefore, IoTdevices generate a large amount of data every day, which lays a solid foundation for
the success of machine learning. However, the strong privacy requirements of the IoT data make its machine learning very
difcult. To protect data privacy, many privacy-preserving machine learning schemes have been proposed. At present, most
schemes only aim at specifc models and lack general solutions, which is not an ideal solution in engineering practice. In order to
meet this challenge, we propose an efcient and privacy-preserving machine learning training framework (ePMLF) in a fog
computing environment. Te ePMLF framework can let the software service provider (SSP) perform privacy-preserving model
training with the data on the fog nodes. Te security of the data on the fog nodes can be protected and the model parameters can
only be obtained by SSP. Te proposed secure data normalization method in the framework further improves the accuracy of the
training model. Experimental analysis shows that our framework signifcantly reduces the computation and communication
overhead compared with the existing scheme.

1. Introduction

At present, the application of the IoT can realize the real-
time collection of user data. Te large amount of data
generated every day provides a good basis for training high-
quality machine learning models. However, privacy issues
hinder the application of machine learning [1, 2]. On the one
hand, training data contains people’s sensitive information,
which is not allowed to be disclosed. On the other hand, the
trainedmachine learningmodel is a valuable property of SSP
and the leakage of the model will bring serious economic
losses to SSP. Terefore, the training process faces a serious
problem of privacy disclosure. Te strong privacy require-
ments of data make training very difcult.

In order to solve the problem of privacy disclosure in the
training process, many privacy-preserving machine learning

training schemes have been proposed. Tere are two main
solutions: secure collaborative training and secure out-
sourcing training. Te main application scenario of secure
collaborative training is federated learning [3]. In federated
learning, clients complete the training locally. Ten, upload
and download model parameters to the server. Terefore,
frequent interaction leads to a high communication over-
head of federated learning [4]. In addition, the goal of
federated learning is to train a global model for each data
provider, which is diferent from ours [5]. In this paper, the
goal of our proposed framework is to train a private model
for SSP by using the ciphertext data of data providers (fog
nodes). Secure outsourcing training is mainly based on cloud
computing. Cloud servers provide a lot of storage and
computation resources. Data providers use homomorphic
encryption or secret sharing technologies to convert their
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data into ciphertext data and outsource them to cloud
servers. In [6–8], they all adopt the dual cloud server model
and assume that the two cloud servers do not collude.
However, this assumption has potential security hazards [5].

Trough the above analysis, the existing privacy-pre-
serving schemes mainly have two problems. First, these
schemes are only for specifc machine learning algorithms
and cannot meet all machine learning algorithms. Te
second is the lack of global normalization processing of data.
Normalization without disclosing the data can make the
training process converge to the optimal solution more
easily. To solve these problems, Zhu et al. [5] proposed a
privacy-preserving ML training framework, which contains
multiple secure training protocols for the aggregation sce-
nario and defends security under collusion situations.
However, the scheme in [5] does not make a global data
normalization. In addition, there are still some shortcomings
to be improved, including the function of building blocks is
not comprehensive and high communication and compu-
tation overhead, which makes the framework impractical.

Terefore, we propose an efcient and practical privacy-
preserving machine learning training framework in a fog
computing environment. Specifcally, with the continuous
increase of data, it brings a heavy storage burden to IoT
devices with limited resources.Terefore, deploying fog nodes
with higher confgurations near IoT devices has become an
efective solution [9]. IoT devices will store the collected data
in nearby fog nodes. We assume that a SSP wants to use the
data in the fog nodes to train its own private model. In the
training process, the data in the fog nodes will not be leaked to
SSP and other fog nodes. Te model of SSP will not be leaked
to fog nodes. Our contributions are as follows:

(1) Based on the requirements of data privacy-pre-
serving in the IoT environment and the character-
istics of fog computing, we propose ePMLF.Trough
ePMLF, fog nodes can protect the privacy of the data
and let an untrusted SSP train diferent machine-
learning models. At the same time, ePMLF provides
the function of model updating.

(2) Te ePMLF implements secure data processing. We
propose two secure data normalizationmethods (secure
z-score and secure min-max), which can normalize the
data distribution of all fog nodes and form high-quality
training data. Based on the OU cryptosystem, we
propose a method to encrypt negative numbers. Unlike
the existing scheme [10], which can only encrypt
negative numbers by the party holding the private key,
our proposed method can allow any party to encrypt
negative numbers.

(3) In ePMLF, we defne the ciphertext as the encrypted
data and its precision, which can prevent the resulting
error caused by inconsistent precision in ciphertext
computation. Ten, we design a precision control
protocol, which can avoid the plaintext overfow caused
by multiple homomorphic operations. Based on the
ciphertext defned by ePMLF, we propose some secure
algorithms as the basic building blocks of the

framework. Experimental results show that these al-
gorithms are helpful to improve training efciency.

(4) We implement the proposed framework. Strict se-
curity analysis shows that our framework meets the
strong privacy-preserving requirements of all par-
ticipants. Trough comparative evaluation, our
scheme signifcantly reduces the communication and
computation overhead.

2. Related Work

Te existing privacy-preserving machine learning training
scenarios are mainly divided into two categories: secure
collaborative training and secure outsourcing training.

In the scenario of secure collaborative training, each
participant has some computation resources and their own
data. Terefore, each participant undertakes some compu-
tation and communication tasks and cooperatively trains a
global machine-learning model on the joint training data.
Data owners should keep their data confdential during the
training [11–13]. Dani et al. [14] proposed protocols for
solving the secure multi-party computation problem.
Mehnaz et al. [15] proposed a secure sum protocol with
strong security guarantees and used this protocol to propose
two secure gradient-descent algorithms. Saha et al. [16]
proposed a fog-enabled federated learning framework-
FogFL to facilitate distributed learning and reduce com-
munication latency and energy consumption of resource-
constrained edge devices. Xu et al. [17] presented a secure
and verifable federated learning scheme, with which fed-
erated deep learning is achieved and the fnal learning results
are verifable. Wang et al. [18] proposed a privacy-preserving
federated learning scheme for regression training, which is
noninteractive in the whole training process. Zhao et al. [19]
proposed a collaborative architecture based on orbital edge
computing and low-orbit satellite network communication.

In the scenario of secure outsourcing training, data
owners with limited computation resources outsource their
ciphertext data to cloud servers. Te cloud servers perform
the privacy-preserving machine learning training process
and train a private machine learning model for the training
service requester. Liu et al. [6] designed a system for privacy-
preserving decision tree training and evaluation in a twin-
cloud architecture. Liu et al. [7] proposed a secure ML-kNN
training and classifcation scheme. Wang et al. [8] proposed
an efcient privacy-preserving outsourced SVM scheme,
which protects the privacy of training data and the SVM
model. Zhang et al. [20] proposed a secure deep compu-
tation model by ofoading the expensive operations to the
cloud. Li et al. [21] proposed an outsourced privacy-pre-
serving C4.5 algorithm over horizontally and vertically
partitioned data for multiple parties. Li et al. [22] proposed a
privacy-preservingmulti-party machine learning framework
and the data owners do not need to participate in the
training process. Liu et al. [23] proposed a privacy-pre-
serving clinical decision support system in the outsourced
cloud computing environment. Deploying machine learning
services in the cloud has become a fexible training solution.
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However, this approach generally relies on the assumption
of noncollusion, which is a serious security risk.

3. Preliminaries

3.1. Homomorphic Encryption

3.1.1. Okamoto-Uchiyama (OU) Cryptosystem. OU crypto-
system is a public key cryptosystem with additive homo-
morphism [24]. We will introduce OU cryptosystem as
follows:

(i) Key Generation: choose two big primes p, q, |p| �

|q| � l, n � p2 · q, L(x) � (x − 1)/p. Generate a
random number g ∈ Z∗n . Compute h � gn modn.
Te public key is pk � (n, g, h, l). Te private key is
sk � (p, q).

(ii) Encryption: given m ∈ [0, 2l−1]. Te message m will
be encrypted with pk. Te ciphertext is
c � gmhr mod n, where r ∈ Zn is a random number.

(iii) Decryption: given a ciphertext c. Compute
m � (L(cp−1 mod p2)/L(gp−1 mod p2))mod p.

(iv) Homomorphic computation: given two ciphertexts
[m1], [m2] under the same public key pk. Te
homomorphic computations are defned as [m1 +

m2] � [m1] · [m2], [m1 · m2] � [m2]
m1 .

3.2.Cloud-ElGamalCryptosystem. In this paper, we select an
enhanced version of ElGamal called Cloud-ElGamal [25],
which supports multiplicative homomorphism and resists
confdentiality attacks.

(i) Key Generation: choose a big prime p. Find a
generator a of Z∗p. Generate a random integer
d, 1< d<p − 1 and compute y � ad mod p. Te
evaluation key is ek � p. Te private key is sk �

(a, d, y).
(ii) Encryption: given m ∈ Zp. Generate a random in-

teger k, 1< k<p − 1 and compute
c1 � ak mod p, c2 � ykmmod p. Te ciphertext is
c � (c1, c2).

(iii) Decryption: Given a ciphertext c. Compute m � c2 ·

(cd
1)−1 mod p.

(iv) Homomorphic computation: given two ciphertexts
[m1], [m2] under the same private key. Te ho-
momorphic computations are defned as
[m1 · m2] � [m1] · [m2].

3.3. Machine Learning Training. Machine learning training
consists of data preprocessing and model training.

For data preprocessing, we focus on data normalization
for continuous data (such as age and height). Tere are two
main methods of data normalization: the min–max method
and the z-score method.

Te min-max method maps the values of attributes
between 0 and 1 according to the maximum and minimum
values of attributes in the dataset. For attribute f, the min-
max method will compute as follows:

x′ �
x − min(f)

max(f) − min(f)
. (1)

Te z-score method is to standardize attributes based on
the average and standard deviation of attributes in the
dataset. For attribute f, we assume that the average of f is μf

and the standard deviation of f is σf. Te z-score method
will compute as follows:

x′ �
x − μf

σf

. (2)

Trough data normalization, high-quality training data
can be formed.

For model training, there are many model training al-
gorithms, which include many linear and nonlinear oper-
ations. For example, logistic regression, SVM, and naive
Bayes. To train a logistic regression model, the parameter w

will be updated by computing w � w − learn rate · x(1/(1 +

e−wx) − y). To train a SVM model, the parameter w will be
updated by computing w � w − learn rate · (z · w − z · yx).
For training a naive Bayes model, we should compute the
class prior probability P(y) and the conditional probability
P(x|y).

4. System Overview

In this section, we will introduce our proposed framework
ePMLF, including the system model, design goal, and threat
model.

4.1. SystemModel. In our system model, the goal is to train
a private machine-learning model for SSP. Te training
task is completed by fog nodes and SSP. At the same time,
the privacy data of each fog node will not be leaked to SSP
and other fog nodes. SSP’s trained model will not be
leaked to fog nodes. Terefore, our system model is
designed as shown in Figure 1.

Tere are four participants in our system model, which
are trusted authority (TA), IoTdevices, fog nodes (FNs), and
software service provider (SSP).

(i) Trusted authority (TA): TA is a trusted authority
and generates system parameters for all participants.

(ii) IoTdevices: IoTdevices will produce a large amount
of IoT data. However, their computation and
storage resources are very limited.

(iii) Fog nodes (FNs): fog nodes have strong compu-
tation and storage capacity. Tey collect, store and
manage the data generated by IoTdevices. Te data
owned by FNs belongs to sensitive information and
cannot be leaked.

(iv) Software service provider (SSP): SSP wants to train
machine learning models through the data in the
FNs. SSP is not trusted and will try to obtain the data
of FNs during the training processing.
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4.2. Design Goal. Based on the system model, our design
goal includes privacy-preserving, training high-accuracy
machine learning models, and low computation and com-
munication overhead.

4.2.1. Privacy Preserving

(1) Te data of FNs should be preserved
(2) Te trained model of SSP should be preserved

4.2.2. Training High Accuracy Machine Learning Model.
When using ciphertext data from FNs to train machine
learning models, it is very important to ensure the high
accuracy of the trained models. Terefore, we need to
generate high-quality training data through data normali-
zation and design a general computing framework.

4.2.3. Low Computation and Communication Overhead.
For achieving privacy-preserving training, the proposed
ePMLF is designed based on cryptography technology.
Cryptography technology will bring signifcant computation
and communication overhead, so we should improve the
framework efciency as much as possible.

4.3.Treat Model. In our proposed ePMLF, we assume that
FNs and SSPs are honest-but-curious (TA is trusted). Tey
will implement the protocol honestly, but they try to obtain
the data of other participants by analyzing the results of the
processing.

At the same time, we allow (m − 1) FNs at most collude
with each other to analyze the privacy of other participants

and (m − 2) FNs at most collude with SSP to analyze the
privacy of other participants, which is the same as [5]. To
prove our proposed scheme is secure, we defne an adver-
sary. Te adversary can eavesdrop and analyze data during
the data transmission. Te data transmission process is the
interaction between participants in protocol
implementation.

5. Our Proposed Framework

In this section, we describe our proposed framework in
detail.Te ePMLFmainly includes system initialization, data
normalization, basic building blocks, privacy-preserving
machine learning training, and machine learning model
updating. Te workfow of our proposed framework is
shown in Figure 2.

In order to accurately describe our proposed scheme, we
give the description of used notations in Table 1.

5.1. System Initialization. In the system initialization phase,
TA generates system parameters for all participants.

Improved OU encryption.
Zhang et al. [10] achieved the negative integers en-
cryption based on the OU cryptosystem. Tey divided
the plaintext space into two parts as follows: [0, p/2)

represents positive integers and (p/2, p − 1] represents
negative. For a negative integer −m, it should be
converted to p − m. It should be noted that p is the
private key of OU cryptosystem.
Trough the above analysis, we can fnd that the
negative integers encryption method proposed by
Zhang et al. can only be implemented by the partici-
pants with the private key, which is not practical.
Terefore, we propose a new method to realize that any
participants can encrypt negative integers based on the
OU cryptosystem without disclosing the private key.
Specifcally, TA generates a large prime q′ after gen-
erating p, q. TA computes N � p · q′ and publics N.
When a participant without a private key needs to
encrypt the negative integer −m, computing N − m and
encrypting it. In decryption, N is eliminated by
modulus p. Te range of encrypted integers is
(−p/2, p/2). We prove the correctness of our proposed
method as follows.
Negative integers encryption

c � g
N− m

h
r mod n. (3)

Negative integers decryption

......

... ... IoT devices

Fog Nodes

SSP

TA

Figure 1: System model.
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(4)

Table 1: Notation and defnition.

Notation Defnition
l Te key length (bit)
l(x) Te key length of x

(PKO
i , SKO

i ) OU public-private key pair of FNi

(PKO
s , SKO

s ) OU public-private key pair of SSP
(EKE

i , SKE
i ) Cloud-ElGamal evaluation-private key pair of FNi

E Te precision of foating-point numbers
[x]PK Te ciphertext of x under PK

IoT devices
IoT data

Global training
data

Generate system
parameters

Parameters
of user

SDNOriginal data

Fog nodes

Data encryption

TA Parameters of FNs

Model training

Model updating

SDN: Secure Data NormalizationData Flow

Model updating

Model training

Private model

SSP

...

Processing
Data/Parameters

Output Results

Figure 2: System workfow.
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Generate system parameters.

(1) We assume that there are m fog nodes in our system.
TA generates a OU public-private key pair (PKO

i �

(ni, gi, hi, Ni, l), SKO
i � (pi, qi)) and a Cloud-ElGa-

mal evaluation-private key pair (EKE
i � pe

i , SKE
i �

(ai, di, yi)) for FN FNi.
(2) TA generates two random integers α, β,

l(α) � l(β)< l and splits α, β to m random integers,
α � α1 + α2 + · · · + αm, β � β1 + β2 + · · · + βm. Ten,
TA distributes αi, βi to FNi and α, β to SSP by a
secure communication channel.

(3) TA generates a OU public-private key pair (PKO
s �

(ns, gs, hs, Ns, l), SKO
s � (ps, qs)) for SSP.

5.2. Privacy Preserving Data Normalization. In our pro-
posed framework, SSP uses the encrypted data of all FNs to
train a machine-learning model. Terefore, we need to
normalize the data by all FNs, which can improve the
quality of training data.

Te data format of FNi is (x
ij
1 , x

ij
2 , . . . , x

ij

d , yij) , j �

1, 2, . . . , ni. In the processing of data normalization, any
participants cannot know the data of FNi.

Secure z-score as follows:

(1) For the k-th dimension data, FNi computes xi
k �


ni

j�1 x
ij

k . Ten, FNi encrypts xi
k with PKO

s and sends
[xi

k + βi]PKO
s
, i � 1, 2, . . . , m and ni to SSP.

(2) SSP computes xk � (
m
i�1 xi

k − β)/
i�1
m ni and sends

it to each FN.
(3) FNi computes σ �

���������������


ni

j�1 (x
ij

k − xk)2/ni



and
x

ij

k � (x
ij

k − xk)/σ.
Secure min–max as follows:

In our proposed secure min-max, the (3) and (4)
computation method is the same as [18].

(1) Each FN computes the maximum and minimum
values of each dimensional data.
FNi(i � 1, 2, . . . , m) can obtain
(xi max

1 , xi max
2 , . . . , xi max

d ) and
(xi min

1 , xi min
2 , . . . , xi min

d ).
(2) For xi max

j (xi min
j ), setting pos � 1. Starting with i �

2, FNpos and FNi input x
pos max
j (x

pos min
j ) and

xi max
j (xi min

j ) into the comparison protocol [26]
respectively to compare. If x

pos max
j

<xi max
j (x

pos min
j > xi min

j ), pos � i.
(3) For x

pos max
j (x

pos min
j ), FNpos generates a random

integer Rj
max(Rj

min), l(Rj
max) � l(x

pos max
j )

(l(Rj
min) � l(x

pos min
j )) and computes x

pos max
j + Rj

max(x
pos min
j − Rj

min). Ten, FNpos publics
x
pos max
j + Rj

max (xpos min
j − Rj

min).
(4) After computing the global maximum andminimum

values, the data will be standardized according to
(x1

max + R1
max, x2

max + R2
max, . . . , xd

max) and
(x1

min − R1
min, x2

min − R2
min, . . . , xd

min − Rd
min).

FNi computes as follows:

x
ij

k �
x

ij

k − xk
min

− Rk
min

 

xk
max

+ Rk
max

(  − xk
min

− Rk
min

 
. (5)

5.3. Basic Building Blocks. In order to make our framework
realize the privacy-preserving machine learning training, we
will modularize the proposed framework by designing some
general building blocks.

5.3.1. Precision Control. In the machine learning training
process, many data are foating-point numbers. Terefore, it
is necessary to convert foating-point numbers to integers
before encrypting. Generally, the conversion method is to
multiply the foating-point number by 2E or 10E [26], E is
the precision. Tis method will signifcantly expand the
original data. However, the plaintext space of the encryption
algorithm is limited. Using the expanded data for homo-
morphic operation will lead to the problem of plaintext
overfow and the pression of the data will change. For ex-
ample, (x2E) · (y2E)⟶ xy22E, xy22E + z2E⟶ (xy2E +

z)2E ≠ (xy + z)2E.
To solve this problem, we propose a method called

precision control. We express the encrypted data as (c, t).
Te c is the ciphertext data and the t is the precision of the
data. For example, xy · 22E is expressed as ([xy · 22E], 2).
Trough the method, we can know the current precision of
the data. When E · (t + 1)≥ l, we need to reduce the pre-
cision bits of encrypted data to avoid plaintext overfow. In
order to better control the precision, we require that any
participant must set t � 1 before encrypting the data. Te
detailed method is as follows and is described in
Algorithm 1.

(1) SSP chooses a random integer R, l(R)<E. For
([x2t·E]PKO

i
, t), SSP sends ([x2t·E + R2t·E], t) to FNi.

For ([x2t·E]SKE
i
, t), SSP sends ([x2t·ER]SKE

i
, t) to FNi.

(2) For ([x2t·E + R2t·E]PKO
i
, t), FNi computes x2E + R2E

� x2t·E +R2t·E/2(t− 1)E. For ([x2t·ER]SKE
i
, t), FNi

computes x2ER � x2t·ER/2(t− 1)E. Ten, FNi en-
crypts x2E + R2E (or x2ER) and sends
([x2E + R2E]PKE

i
, 1) (or ([x2ER]SKE

i
, 1)) to SSP.

(3) For ([x2E + R2E]PKE
i
, 1), SSP computes ([x2E]P

KE
i , 1) ←[x2E + R2E]PKE

i
· [Ni − R2E]PKE

i
. For

([x2ER]SKE
i
, 1), SSP computes the inverse R− 1 of R

modulo pe
i and obtains ([x2E]SKE

i
, 1)←[x2ER]SKE

i
·

R− 1.

5.3.2. Secure Addition. Given two ciphertext data encrypted
with PKO

i , ([x2t·E]PKO
i
, t) and ([y2t·E]PKO

i
, t). SSP will obtain

([(x + y)2t·E]PKO
i
, t) � ([x2t·E]PKO

i
· [y2t·E]PKO

i
, t).

5.3.3. Secure Subtraction. Given two ciphertext data encrypted
with PKO

i , ([x2t·E]PKO
i
, t) and ([y2t·E]PKO

i
, t). SSP will obtain

([(x − y)2t·E]PKO
i
, t) � ([x2t·E]PKO

i
· [y2t·E]

Ni−1
PKO

i

, t).
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5.3.4. Secure Multiplication (OU). Given a ciphertext data
encrypted with PKO

i , ([x2t·E]PKO
i
, t) and a plaintext data of

SSP, y · 2E. SSP will obtain ([xy2(t+1)E]

PKO
i
, t + 1) � ([x2t·E]

y·2E

PKO
i

, t + 1).

5.3.5. Secure Multiplication (Cloud-ElGamal):. Given two
ciphertext data encrypted with SKE

i , ([x2t1 ·E]SKE
i
, t1) and

([y2t2 ·E]SKE
i
, t2). SSP will obtain ([xy2(t1+t2)E]SKE

i
, t1 + t2) �

([x2t1 ·E]SKE
i

· [y2t2 ·E]SKE
i
, t1 + t2).

5.3.6. Secure Division:. Te algorithm is inspired by [27].
Given two ciphertext data encrypted with PKO

i ,
([x2t1 ·E]PKO

i
, t1) and ([y2t2 ·E]PKO

i
, t2). SSP will obtain

([x/y22E]PKO
i
, 2). Te computation process is as follows:

(1) SSP chooses two random integers R1, R2 ∈ (0, 2l/2)

and computes

x2t1 ·E
R1 

PKO
i

� x2t1 ·E
 

R1

PKO
i

,

y2t2 ·E
R2 

PKO
i

� y2t2 ·E
 

R2

PKO
i

.

(6)

Ten, SSP sends them to FNi

(2) FNi decrypts [x2t1 ·ER1]PKO
i
, [y2t2 ·ER2]PKO

i
and ob-

tains xR1/yR2. Sending ([xR1/yR22E]PKO
i
, 1) to SSP

(3) SSP computes ([x/y22E]PKO
i
, 2)%←

[xR1/yR22E]
R2/R12E

PKO
i

Secure power computation

Given a ciphertext data encrypted with SKE
i ,

([x2t·E]SKE
i
, t) and a plaintext data of SSP, y · 2E. SSP will

obtain ([xy2E], 1). Te computation process is as follows:

(1) SSP computes

x
y2E

2y2Et·E
 

SKE
i

� a
k
i 

y2E

modp
e
i , y

k
i x2t·Ey2E

modp
e
i .

(7)

Choosing a random integer R1 ∈ (0, 2l/3), R2, R2′ �
R2E

2 ∈ (0, 2l/3) and computes [xy2E2y2Et·ER1]

SKE
i

� [xy2E2y2Et·E]SKE
i

· R1, 2y2Et·ER1R2′. Ten, send-
ing [xy2E2y2Et·ER1]SKE

i
and [2y2Et·ER1R2′]SKE

i
to FNi.

(2) FNi decrypts and computes

x
y

R2
�

����

2E
 


x

y2E

2y2Et·E
R1

2y2Et·E
R1R2′

. (8)

Ten, sending ([xy/R22E]SKE
i
, 1) to SSP

(3) SSP computes ([xy2E]SKE
i
, 1)← [xy/R22E]SKE

i
· R2

5.3.7. Secure Inner Product. Given an encrypted vector of
FNi, [x]PKO

i
� ([x12t·E]PKO

i
, t), ([x22t·E]PKO

i
, t)

, . . . , ([xd2t·E]PKO
i
, t)} and a plaintext vector of SSP,

y � (y12E, y22E, . . . , yd2E). SSP will obtain

xy2(t+1)E
 

PKO
i

, t + 1  � 
d

j�1
xj2

t·E
 

yj2E

PKO
i

, t + 1⎞⎠.⎛⎝ (9)

Input: ([x2t·E]PKO
i
, t) or ([x2t·E]SKE

i
, t),

i ∈ [1, m]

Output: ([x2E]PKO
i
, 1) or ([x2E]SKE

i
, 1)

SSP:
(1) Send ([x2t·E + R2t·E]PKO

i
, t)

or ([x2t·ER]SKE
i
, t) to FNi

FNi:
(2) Decrypt ([x2t·E + R2t·E]PKO

i
, t)

or ([x2t·ER]SKE
i
, t)

(3) Compute x2E + R2E � x2t·E + R2t·E/2(t− 1)E

or x2ER � x2t·ER/2(t− 1)E and encrypt x2E

(4) Send ([x2E + R2E]PKO
i
, 1) or ([x2ER]SKE

i
, 1) to SSP

SSP:
(5) Compute

([x2E]PKO
i
, 1)←[x2E + R2E]PKO

i
· [Ni − R2E]PKE

i

or ([x2E]SKE
i
, 1)←[x2ER]SKE

i
· R− 1

ALGORITHM 1: Precision control.

Input: si, i � 1, 2, . . . ,m
Output: s
FNs:
for i � 1⟶ m:
(1) FNi computes si′ � si + αi
(2) Encrypt si′ with PKO

s and send [si′]PKO
s
to SSP

end for
SSP:
(3) Compute [s′]PKO

s
� 

m
i�1 [si′]PKO

s
(4) Decrypt [s′]PKO

s
and compute s � s′ − α

ALGORITHM 2: Secure summation.

International Journal of Intelligent Systems 7



5.3.8. Secure Summation. SSP wants to obtain the sum-
mation of 

m
j�1 si and si belongs to FNi. Te process is

described in Algorithm 2.

(1) FNi encrypts si
′ � si + αi with PKO

s and sends [si
′]PKO

s
to SSP

(2) SSP computes [s′]PKO
s

� 
m
i�1 [si′]PKO

s
and decrypts

[s′]PKO
s
. Ten, SSP can obtain s � s′ − α

5.3.9. Secure Sigmoid Function:. To complete the nonlinear
computation of the sigmoid function, we propose an al-
gorithm called Secure Sigmoid Function. Te process is
described in Algorithm 3.

(1) FNi has ex � (ex1 , ex2 , . . . , exd). FNi encrypts exj2E
with SKE

i and sends it to SSP
(2) SSP has w � (w1,w2, . . . ,wd). SSP computes

ewjxj2E2wj2EE 
SKE

i

� aki
wj2E mod pei , yki exj2Ewj2E mod pei 2

wj2EE � 2E 
wj2E

,

ewx·2E2ws2EE 
SKE

i

� 
d

j�1
ewjxj2E2wj2EE 

SKE
i



d

j�1
2wj2EE,

(10)

where ws � w1 + w2 + · · · + wd. Ten, SSP chooses
two random integers R1,R2, R1,R2′ � R2E

2 ∈ (0, 2l/4)
and sends [ewx·2E2ws2EER1]SKE

i
, 2ws2EER1R2′ to FNi

(3) FNi decrypts and computes

ewx

R2
�

����

2E 



ewx·2E 2ws2EER1

2ws2EER1R2′
. (11)

Ten, sending [(ewx/R2)2E]PKO
i
to SSP

(4) SSP chooses two random integers R3,R4 ∈ (0, 2l/4)
computes as follows:

ewx2ER3 PKO
i

�
ewx

R2
 2E 

R2R3

PKO
i

,

ewx + 1( 2ER3R4 PKO
i

� ewx2E PKO
i

· 2E PKO
i

 
R3R4

.

(12)

Ten, SSP sends [ewx2ER3]PKO
i

and [(ewx + 1)

2ER3R4]PKO
i
to FNi

(5) FNi decrypts [ewx2ER3]PKO
i
, [(ewx + 1)2ER3R4]PKO

i
and obtains

xje
wx

ewx + 1( R4
�

xje
wxR3

ewx + 1( R3R4
. (13)

Ten, SSP sends [xjewx/(ewx + 1)R42E]PKO
i
to SSP

(6) SSP computes

xjewx

ewx + 1
2E 

PKO
i

, 1⎛⎝ ⎞⎠←
xjewx

ewx + 1( )R4
2E 

R4

PKO
i

. (14)

5.3.10. Secure Sign Computation. Given encrypted data that
is computed by SSP, ([x2t·E]PKO

i
, t)([x2t·E]SKE

i
, t). FNi needs

to know if x2t·E < 0 but cannot know the value of x2t·E.
SSP fips a coin s and chooses a random integer

R ∈ (0, 2l/2− t·E). If s � 1, SSP computes
[tmp]PKO

i
� [x2t·ER]PKO

i
([tmp]SKE

i
� [x2t·ER]SKE

i
). If s � 0,

SSP computes [tmp]PKO
i

� [−x2t·ER]PKO
i

([tmp]SKO
i

� [−x2t·ER]SKE
i
). Ten, SSP sends the computed

data to FNi. FNi decrypts and obtains tmp. Let judg e � 1 if
tmp< 0 else judg e � 0. FNi sends [judg e]PKO

s
. If s � 1 and

judg e � 1, SSP will know x2t·E < 0. If s � 1 and judg e � 0,
x2t·E ≥ 0. If s � 0 and judg e � 1, x2t·E ≥ 0. If s � 0 and
judg e � 0, x2t·E < 0.

Converting Cloud-ElGamal to OU
For this building block, we cite building block 7 of [5].
Converting OU:
For this building block, we cite building block 8 of [5].

5.4. Privacy Preserving Machine Learning Training. In this
section, we achieve four training protocols based on our
proposed building blocks, which are popular machine
learning models. We assume that the training data has been
normalized before training.

5.5. Secure Logistic Regression (LR) Training. We use the
stochastic gradient descent (SGD) algorithm to train a
Logistic Regression model. SSP randomly selects T data of
FNs (all data of FNs have been numbered). Te process is
described in Algorithm 4.

5.6. Secure SVM Training. For training a SVM model, we
also use the SGD algorithm. Te process is described in
Algorithm 5.

5.7. SecureNaive Bayes (NB)Training. To train a naive Bayes
model, the user needs to aggregate the class prior probability
P(y) and the conditional probability P(x|y) from FNs. We
assume that it is a binary classifcation problem. Te process
is described in Algorithm 6.

5.8. Secure Deep Neural Network Training. Te training
process of deep neural networks contains nonlinear compu-
tations such as ReLU. To compute a nonlinear activation
function, we will make an approximation method. Te ap-
proximation method is proposed in [28] and the nonlinear

8 International Journal of Intelligent Systems



activation functions will be converted to polynomial functions.
Ten, the training process can be completed with our proposed
building blocks. In addition, we use the training method
proposed in [29] to train the deep neural network models.

5.9. Privacy Preserving Machine Learning Model Updating.
With the continuous increase of fog node data in the
system or the addition of new fog nodes in the system, the
quantity and quality of the overall data will be signif-
cantly improved. Terefore, it is very important to update
the SSP’s trained model. For diferent types of machine
learning models, we propose diferent updating methods.
Specifcally, we divide the machine learning model into
the model trained by the gradient-descent method and
the model trained by a nongradient-descent method. In
order to prevent a diferential attack, the model trained by
the nongradient-descent method can be updated only
when the data of the original fog nodes increases to more
than 50%.

A model trained by the gradient-descent method:
For the model trained based on the gradient-descent

method (e.g., LR and SVM), the updating process of the
model is as follows:

(1) TA determines the fog nodes and SSP participating
in the updating process and redistributes the system
parameters for them (in the way of 5.1).

(2) FNs and SSP train a new model on the added data.
SSP will obtain the new model w′.

(3) Based on the w′ and the original model w, SSP will
compute the updated model wi � n/n+

n′wi + n′/n + n′wi′, i � 1, 2, . . . , d (n is the number
of original data and n′ is the number of added data).

5.10.ModelTrainedbyNongradient-DescentMethod. For the
model trained by the nongradient-descent method (for
example, naive Bayes), the updating process of the model is
as follows:

(1) TA redistributes system parameters for all fog nodes
and SSP to update the model (in the way of 5.1)

(2) FNs and SSPs use all the data to retrain a model. SSP
takes the model as the updated model

6. Security Analysis

In this section, we make a security analysis of our proposed
framework with the real and ideal paradigm and composition

Input: ex � (ex1 , ex2 , . . . , exd ),w � (w1,w2, . . . ,wd)

Output: ewx
FNi:
forj � 1⟶ d:
(1) Send [exj2E]SKE

i
to SSP

end for
SSP:

(2) [ewjxj2E2wj2EE]SKE
i

� ((aki
wj2E mod pei , (yki e

xj2Ewj2E mod pei )
(3) 2wj2EE � (2E)wj2E

(4) [ewx·2E2ws2EE]SKE
i

� 
d
j�1 [ewjxj2E2wj2EE]SKE

i
(5) 2ws2EE � 

d
j�1 2

wj2EE

(6) Choose two random integers R1,R2, R1,R2′ � R2E
2 ∈ (0, 2l/4)

(7) Send [ewx·2E2ws2EER1]SKE
i
, 2ws2EER1R2′ to FNi

FNi:
(8) Decrypt and compute

ewx/R2 �
����
[2E]


ewx·2E2ws2EER1/2ws2EER1R2′

(9) Send [(ewx/R2)2E]PKO
i
to SSP

SSP:
(10) Choose two random integers R3,R4 ∈ (0, 2l/4)

(11) [ewx2ER3]PKO
i

� [(ewx/R2)2E]
R2R3
PKO

i

(12) [(ewx + 1)2ER3R4]PKO
i

� ([ewx2E]PKO
i

· [2E]PKO
i
)R3R4

(13) Send [ewx2ER3]PKO
i
and [(ewx + 1)2ER3R4]PKO

i
to FNi

FNi:
(14) Decrypt [ewx2ER3]PKO

i
, [(ewx + 1)2ER3R4]PKO

i

(15) xjewx/(ewx + 1)R4 � xjewxR3/(ewx + 1)R3R4
(16) Send [xjewx/(ewx + 1)R42E]PKO

i
to SSP

SSP:
(17) ([xjewx/ewx + 12E]PKO

i
, 1)←[xjewx/(ewx + 1)R42E]

R4
PKO

i

ALGORITHM 3: Secure sigmoid function.
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Teorem, like [27]. We use a simulator in the ideal world to
simulate the view of an adversary (honest-but-curious) in the
real world. We consider the adversaries are FNs and SSP, A �

(AFN1
,AFN2

, . . . ,AFNm
,ASSP). We will prove the security of

our proposed basic building blocks.

Theorem 1. Te precision control is secure against honest-
but-curious adversaries A.

Proof. We construct two simulators based on FNi and SSP,
(SimFNi

, SimSSP). Te SimSSP computes ([x2t·E + R2t·E], t)
(or ([x2t·ER]SKE

i
, t)) and ASSP cannot distinguish the real

execution from the ideal simulation due to the semantic security
of the OU cryptosystem (or Cloud-ElGamal cryptosystem). For
SimFNi

, the view of AFNi
is x2t·E + R2t·E (or x2t·ER). Because

the statistics are distinguishable,AFNi
cannot distinguish the real

execution from the ideal simulation. □

Theorem 2. Te secure addition, secure subtraction, secure
multiplication (OU), secure multiplication (Cloud-ElGamal),
and secure inner product are secure against honest-but-cu-
rious adversaries A.

Proof. It should be noted that these basic building blocks are
similar, so we will make a security analysis for secure ad-
dition as an example.

For secure addition, the simulator SimSSP is the same as
Teorem 1. Based on the semantic security of the OU
cryptosystem,ASSP cannot distinguish [x2t·E]PKO

i
, [y2t·E]PKO

i
and [(x + y)2t·E]PKO

i
. Te view ofASSP is indistinguishable in

the real and ideal world. □

Theorem 3. Te secure division is secure against honest-but-
curious adversaries A.

Proof. Because R1, R2 are random integers, x2t1·ER1 and
y2t2·ER2 are statistics distinguishable forAFNi

. Te simulator
SimSSP can only obtain [x/y22E]PKO

i
. □

Theorem 4. Te secure power computation is secure against
honest-but-curious adversaries A.

Proof. BecauseR1,R2,R2′ are random integers, xy2E2y2Et·ER1,
2y2

Et·ER1R2′ and xy/R2 are statistics distinguishable for AFNi
.

Te simulator SimSSP can only obtain [xy2E]SKE
i
. □

Theorem 5. Te secure summation is secure against honest-
but-curious adversaries A.

Proof. Te si′ of FNi is computed through si + αi, so theASSP
cannot obtain the value of si based on the statistics dis-
tinguishable. At the same time, si′ is encrypted with PKO

s . For
[s1′]PKO

s
, [s2′]PKO

s
, . . . , [sm′]PKO

s
 , the adversaries cannot dis-
tinguish the real execution from the ideal simulation due to
the semantic security of the OU cryptosystem. □

Theorem 6. Te secure sigmoid function is secure against
honest-but-curious adversaries A.

Proof. Te SimSSP performs computation on [exj2E]SKE
i
and

wj(j � 1, 2, . . . ,d), whichmeans thatASSP cannot obtain the
value of [ewx2E2ws2EE]SKE

i
. Because the statistics are distin-

guishable, SimFNi
cannot obtain the value of ewx with ewx/R2

and xjewx/(ewx + 1)R4. Te SimSSP can only obtain
[xjewx/ewx + 12E]PKO

i
. □

Theorem 7. Te secure sign computation is secure against
honest-but-curious adversaries A.

Input: the selected data of FNs, iterations T, learning rate L
Output: model parameters W � (w1,w2, . . . ,wd)

FNs:
for i � 1⟶ m:
(1) FNi encrypts the selected data with PKO

i
Such as xj(j ∈ [1,d]), send ([xjy2E]PKO

i
, 1) to SSP

end for
SSP:
for it � 1⟶ T:

(2) ([xjewx/ewx+12E]PKO
i
, 1)←Secure Sigmoid Function

for j � 1⟶ d:
(3) SSP performs

SecureAddition and SecureMultiplication(OU)

(4) ([wj22E]PKO
i
, 2)←[wj22E]PKO

i

[xjewx/ewx+12E]
Ni−L2E

PKO
i

· [xjy2E]
L2E

PKO
i(5) Converting OU: [wj22E]PKO

s
←[wj22E]PKO

i
(6) wj2E � wj22E/2E

end for
end for

ALGORITHM 4: Secure logistic regression training.
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Proof. Te SimFNi
can obtain x2t·ER or −x2t·ER through the

building blocks. Based on the statistics distinguishable,AFNi
cannot obtain the value of x. □

Theorem 8. Te secure machine learning training protocols
are secure against honest-but-curious adversaries A.

Proof. We construct the machine learning training protocol
through our designed building blocks in a modular way. Te
simulators are SimFN1

, SimFN2
, . . . , SimFNm

, SimSSP , which
is the same asTeorems 1–7. We have proved the security of
the proposed building blocks, so the view of adversaries
cannot distinguish the real execution from the ideal
simulation. □

7. Performance Evaluation

In this section, we evaluate our proposed ePMLF and
compare it with Zhu et al. [5]. Zhu et al. [5] proposed a

privacy-preserving ML training framework for the aggre-
gation scenario. However, there are still some shortcomings
to be improved, including the function of building blocks is
not comprehensive and high communication and compu-
tation overhead, which makes the framework impractical.
Our proposed framework efectively solves these problems.
Our experimental environment is shown in Table 2.

To train LR, SVM, and NB, we implement our frame-
work on three datasets of the UCI machine learning library,
as shown in Table 3.

For the deep neural network, we will use the MNIST
dataset to train a LeNet model [30]. Te MNIST dataset
contains 60,000 training samples and 10,000 testing samples.

7.1. Performance of Our Proposed Framework

7.1.1. Building Blocks Evaluation. To test our proposed
building blocks, we test three main building blocks, secure

Input: the selected data of FNs,
iterations T, learning rate L, regularization parameter z
Output: model parameters W � (w1,w2, . . . ,wd)

FNs:
for i � 1⟶ m:
(1) FNi encrypts the selected data with PKO

i
Such as xj(j ∈ [1,d]),
send ([xj2E]PKO

i
, 1), ([xjy2E]PKO

i
, 1) and [y] to SSP

end for
SSP:
for it � 1⟶ T:

(2) ([wx22E]PKO
i
, 2)←Secure Inner Product([x]PKO

i
,w)

(3) [t1]PKO
i

� [wx22E]PKO
i

· [Ni − 1]PKO
i
(y � 1)

[t2]PKO
i

� [wx22E]
Ni−1
PKO

i
· [Ni − 1]PKO

i
(y � −1)

(4) SSP and FNi perform Secure SignComputation
for [t1]PKO

i
, [t2]PKO

i
FNi:

(5) In the process of Secure SignComputation:
if y � 1: FNi will judge [t1]PKO

i
else: FNi will judge [t2]PKO

i
SSP:

(7) To compute ([wj22E]PKO
i
, 2), SSP performs

SecureAddition and SecureMultiplication(OU)

if s � 1, judge � 1 or s � 0, judge � 0:
for j � 1⟶ d:
([wj22E]PKO

i
, 2)←[wj22E]PKO

i

·[wj2E]
Ni−L·z2E

PKO
i

· [xjy2E]
L·z2E

PKO
i

Converting OU: [wj22E]PKO
s
←[wj22E]PKO

i

wj2E � w2E
j /2E

end for
else:
for j � 1⟶ d:
([wj22E]PKO

i
, 2)⟵ [wj22E]PKO

i
· [wj2E]

Ni−L·z2E

PKO
i

Converting OU: [wj22E]PKO
s
⟵ [wj22E]PKO

i
wj2E � w2E

j /2E
end for
end for

ALGORITHM 5: Secure SVM training.
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inner product, secure summation, and secure power com-
putation. We set the diferent key lengths (256 bits, 512 bits,
1024 bits, and 2048 bits). Te computation time results are
shown in Figure 3. It can be seen that the increase in key
length will make the computation time longer. To balance
security and efciency, the key length is usually set to
1024 bits or 2048 bits.

Ten, we evaluate the impact of d on computation time
for secure inner product and secure sigmoid function. Based
on the above results, the key length will be set to 1024 bits.
Te results are shown in Figure 4. It can be seen that with the
increase in d, the computation time of secure inner product
and secure sigmoid function will increase.

7.1.2. Secure Machine Learning Training Analysis. In order
to test the quality of the model trained using our framework,
we test the accuracy of the trained model (LR, SVM, NB, and
LeNet).Te results are shown in Table 4. From Table 4, it can
be seen that the accuracy of the training model is high.

7.2. Comparative Analysis. In this section, we analyze the
computation and communication overhead of our proposed
framework. Ten, we make a comparison with Zhu et al. [5].
According to [31], we know that the computation cost of an
exponentiation operation is equal to 1.5l multiplication
operations, where l is the length of ciphertexts. We assume
that lo, le, lp and lr denote the ciphertext length of OU
cryptosystem, Cloud-ElGamal cryptosystem, Paillier cryp-
tosystem, and Cloud-RSA cryptosystem, respectively.

7.2.1. Computation Complexity Analysis. In our proposed
framework, we focus on the exponentiation operation and
multiplication operation. Te computation complexity of

secure addition is lo. Te secure subtraction costs 2.5lo. For
secure multiplication (OU) and secure multiplication (Cloud-
ElGamal), they cost 1.5lo and 2le respectively. For secure
division, the computation complexity is 9lo. For secure power
computation, the computation complexity is 6.5le. For a
secure inner product, the computation complexity is 2.5d · lo.
For secure summation, the computation complexity ism · lo.
Te secure sigmoid function costs 5.5d · le + 1.5le + 10.5lo.
Te secure sign computation costs 1.5lo (or le). Te com-
parison results are shown in Table 5. In our framework, the
OU cryptosystem and Cloud-ElGamal cryptosystem are used
to encrypt data. In [5], the Paillier cryptosystem and Cloud-
RSA cryptosystem are used to encrypt data. It should be noted
that lo < lp, le � lr and bi≫d. FromTable 5, it can be seen that
our proposed scheme has lower computation costs.

7.2.2. Computation Overhead Analysis. We test the com-
putation time of our framework and [5]. Te key length of
the cryptosystem is set to 1024 bits. Te results are shown
in Table 6. From Table 6, it can be seen that our
framework is more efcient. Ten, we compare the
computation overhead of each participant with [5]. We
assume that the SSP is the model owner and the FNs are
the data owners. Te comparison results are shown in
Table 7 (m � 2, d � 2). From Table 7, the computation
overhead is lower than [5] for SSP and FNs. We have
obvious advantages to perform secure machine learning
training.

Example of secure sigmoid function: Te computation
process of secure sigmoid function will cause the loss of ac-
curacy. Terefore, it is very important to ensure accuracy. To
prove the accuracy of the secure sigmoid function, we perform
the building block by setting a case. We set ex � (1.1, 1.22)

and w � (1.31, 2.42), which is the same as [5]. In the plaintext,

Input: the data of FNs
Output: model parameters P(y � 1),P(y � 0),P(xi � 0|y � 0),
P(xi � 0|y � 1),P(xi � 1|y � 0),P(xi � 0|y � 1)

FNs:
for i � 1⟶ m:
(1) FNi computes Si(y�1) + αi � (

ni
j�1 yj) + αi,

Si(xk�0|y�0) + αi, Si(xk�0|y�1) + αi, k � 1, 2, . . . ,d
Encrypt them with PKO

s and send them to SSP
end for
SSP:

(2) Compute [S(y�1) + α]PKO
s

� 
m
i�1 [Siy�1 + αi]PKO

s
,

[S(xk�0|y�0) + α][S(xk�0|y�0) + α][S(xk�0|y�0) + α]PKO
s

� 
m
i�1[Si(xk�0|y�0) + αi]PKO

s
[S(xk�0|y�1) + α][S(xk�0|y�1) + α][S(xk�0|y�1) + α]PKO

s
� 

m
i�1[Si(xk�0|y�1) + αi]PKO

s
(3) Decrypt them with SKO

s
for k � 1⟶ d:

(4) P(xk � 0|y � 0) � S(xk�0|y�0)/(n − S(y�1))

P(xk � 0|y � 1) � S(xk�0|y�1)/S(y�1)

P(xk � 1|y � 0) � 1 − P(xk � 0|y � 0)

P(xk � 1|y � 1) � 1 − P(xk � 0|y � 1)

end for
(5) P(y � 1) � S(y�1)/n,P(y � 0) � 1 − P(y � 1)

ALGORITHM 6: Secure naive Bayes training.
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Table 2: Experimental environment.

Operating system Windows 10
CPU Intel(R) Core(TM)i7-10510U, 1.80GHz, 2.30GHz
Memory 8G
Program language Python

Table 3: Experiments datasets.

Dataset Records Attributes Classifcations
Dermatology 366 34 6
Heart disease 303 13 5
Breast cancer 699 9 2

Table 4: Te accuracy of machine learning models.

Machine learning model Dataset Accuracy (%)

LR
Dermatology 94.44
Heart disease 93.33
Breast cancer 94.16

SVM
Dermatology 98.61
Heart disease 93.33
Breast cancer 94.89

NB Breast cancer 97.81
LeNet MNIST 97.69
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the value ewx is 1.83. Our result is 1.81 and the result of [5] is
1.6588. It can be seen that our result is more accurate.

7.2.3. Communication Analysis. We analyze the commu-
nication overhead and interactions of our building blocks
and compare them with [5]. Te secure addition, secure
subtraction, secure multiplication (OU), secure multipli-
cation (Cloud-ElGamal), and secure inner product are
computed by the user, so the interactions of these building
blocks are 0. For the secure division, the communication
overhead is 3lo. For the secure summation, the communi-
cation overhead is m · lo and the interactions are m. For the
secure sigmoid function, the communication overhead is
(d + 1) · le + 4lo. Te comparison results are shown in

Table 8. It can be seen that the communication overhead of
our proposed secure summation is much lower than [5].

8. Conclusion

In this paper, we propose a privacy-preserving machine
learning framework, including secure training data
normalization, model training, and model updating.
Based on our proposed framework, SSP can train dif-
ferent machine learning models. Te trained models have
high accuracy. Compared with the existing scheme, our
proposed framework signifcantly reduces the compu-
tation and communication overhead. In future research,
we will focus on the efciency and robustness of the

Table 5: Comparison of computation complexity.

Building blocks Ours, k � 1024 bit [5], k � 1024 bit
Secure addition lo lp
Secure subtraction 2.5lo 2.5lp
Secure division 9lo Not support
Secure inner product 2.5d · lo 2.5d · lp
Secure summation m · lo 2.5m · lp
Secure sigmoid function 5.5d · le + 1.5le + 10.5lo (

d
i�1 bi + d)lr + 2.5lr + 9lp

Table 6: Comparison of computation time.

Building blocks Ours, k � 1024 bits [5], k � 1024 bits
Secure addition 0.019ms 0.08ms
Secure subtraction 42.6ms 80.5ms
Secure division 98.8ms Not support
Secure inner product 10.1ms 79.6ms
Secure summation 181.8ms 1666.9ms
Secure sigmoid function 232.4ms 445.7ms

Table 7: Comparison of computation overhead: model owner and data owners.

Building blocks
Model owner (ms) Data owners (ms)

Ours [5] Ours [5]
Secure addition 0.019 0.08 0 0
Secure subtraction 42.6 80.5 0 0
Secure inner product 10.1 79.6 0 0
Secure summation 11.93 1410.23 133.64 306.15
Secure sigmoid function 139.45 231.65 92.96 190.67

Table 8: Comparison of communication overhead.

Building blocks Ours [5]
Secure addition 0 0
Secure subtraction 0 0
Secure division 3lo Not support
Secure inner product 0 0
Secure summation m · lo 3m · lp
Secure sigmoid function (d + 1) · le + 4lo (d + 1) · lr + 3lp
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privacy-preserving machine learning training
framework.

Data Availability

In our experiments, we implement our framework on four
datasets, dermatology, heart disease, breast cancer, and
MNIST.
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